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Abstract

Generalizing the notion of automatic complexity of individual words
due to Shallit and Wang, we define the automatic complexity A(E) of
an equivalence relation E on a finite set S of words.

We prove that the problem of determining whether A(E) equals the
number |E| of equivalence classes of E is NP-complete. The problem of
determining whether A(E) = |E|+ k for a fixed k ≥ 1 is complete for
the second level of the Boolean hierarchy for NP, i.e., BH2-complete.

Let L be the language consisting of all words of maximal nonde-
terministic automatic complexity. We characterize the complexity of
infinite subsets of L by showing that they can be co-context-free but
not context-free, i.e., L is CFL-immune, but not coCFL-immune.

We show that for each ε > 0, Lε 6∈ coCFL, where Lε is the set
of all words whose deterministic automatic complexity A(x) satisfies
A(x) ≥ |x|1/2−ε.

1 Introduction

Automatic complexity was introduced by Shallit and Wang [10] as a way
to retain some of the power of Kolmogorov complexity while obtaining a
computable notion. They raised the question whether the automatic com-
plexity of a string (which we shall call a word) x is in fact polynomial-time
computable as a function of |x|, the length of x. We give partial negative
results for that question in two ways. (Our results also partially address
Allender’s question [1, Open Question 3.8] whether there is evidence that
automatic complexity is computationally intractable.)

∗This work was partially supported by a grant from the Simons Foundation (#315188
to Bjørn Kjos-Hanssen). This material is based upon work supported by the National
Science Foundation under Grant No. 1545707.
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• For nondeterministic automatic complexity, introduced by Hyde and
Kjos-Hanssen [9], there is a natural notion of maximally complex
words. We show that the language L consisting of all such words
is not context-free, by virtue of being CFL-immune. This result ap-
pears to be at the right level of the complexity hierarchy, insofar as
we also show that L is not coCFL-immune. While we do not know
whether L ∈ coCFL, a related language consisting of “somewhat com-
plex” words is shown to be non-coCFL.

• We generalize automatic complexity to a more general notion of au-
tomatic complexity of equivalence relations on words, and show that
is not polynomial-time computable. In particular, we show that the
set of minimally complex equivalence relations is NP-complete and the
set of equivalence relations whose complexity is exactly a constant k
above the minimum is BH2-complete.

In the past, Gold [8] and Angluin [2] established NP-completeness for
related problems. Heggernes et al. [7] considered parametrized complexity
variations, such as fixing the number of states at two (|Q| = 2) and increasing
the alphabet size.

As an illustration of the power and computability of automatic complex-
ity, we have created the following web service. To find the complexity of,
say, the word 01011010, and an illustration of any automaton used in the
associated proof, go to

http://math.hawaii.edu/wordpress/bjoern/complexity-of-01011010/

Alternatively, play the Complexity Guessing Game at:

http://math.hawaii.edu/wordpress/bjoern/complexity-guessing-game/

2 The set of maximally complex words is

CFL-immune but not coCFL-immune

Definition 1 ([9, 10]). Let x be a finite word. The nondeterministic auto-
matic complexity AN(x) of x is the minimum number of states of a nonde-
terministic finite automaton that accepts x, and does not accept any other
word of length |x|, and accepts x via only one computation path.

The (deterministic) automatic complexity A(x) of x is the minimum
number of states of a deterministic finite automaton that accepts x, and
does not accept any other word of length |x|.
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q1start q2 q3 q4 . . . qm qm+1

x1 x2 x3 x4 xm−1 xm

xm+1

xm+2xm+3xn−3xn−2xn−1xn

Figure 1: A nondeterministic finite automaton that only accepts one word
x = x1x2x3x4 · · · xn of length n = 2m+ 1.

Theorem 2 (Hyde [9]). For a word x of length n,

AN(x) ≤
⌊n

2

⌋

+ 1.

An idea of the proof of Theorem 2 is given in Figure 1.

Definition 3. Let b(n) = ⌊n
2
⌋+1 be the canonical upper bound for AN from

Theorem 2. Let Lk = {x ∈ {0, 1, . . . , k − 1}∗ : AN(x) = b(n)}. Any x ∈ Lk

is called a maximally complex word.

Remark 4. L3 is known to be infinite (see Theorem 9) but we do not know
whether L2 is infinite.

Lemma 5. Let x0, y0, a, b be positive integers with a and b relatively prime,
x0 < b, and y0 < a. Then the equation

ax+ by = ax0 + by0 (1)

has a unique solution (x, y) in nonnegative integers.

Proof. Equation (1) implies

a(x− x0) ≡ 0 (mod b).

Since a and b are relatively prime it follows that x− x0 ≡ 0 (mod b). Thus
x = x0+nb for some n ∈ Z. If n < 0 then x ≤ x0− b < 0, which contradicts
the requirement that x ≥ 0. If n > 0 then using y ≥ 0,

ax+ by ≥ a(x0 + b) + b(0) > ax0 + by0

contradicting (1). Thus n = 0 and the only solution is x = x0.
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Definition 6. For any collection of languages M, a language L is M-immune
if it is infinite and contains no infinite subset in M. We say that L ∈ coM

if the complement of L belongs to M. Let CFL be the class of all context-free
languages.

Theorem 7 (Pumping lemma for CFL [3]). If a language L is context-free,
then there exists some integer p ≥ 1 (a pumping length) such that every
word s in L with |s| ≥ p can be written as s = uvwxy where

1. |vwx| ≤ p,

2. |vx| ≥ 1, and

3. uvNwxNy is in L for all N ≥ 0.

Definition 8. Let Σ be a finite alphabet. A function π : Σ∗ → Σ∗ is a
homomorphism if it respects concatenation: for all x, y,

π(xy) = π(x)π(y).

Theorem 9. L3 is not coCFL-immune.

Proof. Let t be an infinite square-free word over {0, 1, 2} generated by, and
a fixed point of, a homomorphism. Such a t was constructed by Thue [12].
Let

Pref(t) = {x : x is a prefix of t}.
By Berstel [4, Theorem on page 7], Pref(t) ∈ coCFL. Since by [9, Theorem
18] every square-free word over {0, 1, 2} belongs to L3, we also have Pref(t) ⊆
L3.

Theorem 10. L3 is CFL-immune.

Proof. Since L3 is not coCFL-immune (Theorem 9), in particular L3 is infi-
nite. Suppose L3 has an infinite subset K ∈ CFL. By the pumping lemma
(Theorem 7) there is a “pumping length” p such that any word X ∈ K of
length at least p can be written as X = uvwxy, where |vx| ≥ 1 and

XN := uvNwxNy ∈ K ⊆ L3 for all N ≥ 0.

We denote the length of XN by nN . Since L3 is infinite, there exists at least
one such word X.

Case 1: |v| 6= |x|. Let us first assume |v| > |x|. In particular, ε :=
|v|

|v|+|x| − 1

2
> 0. Consider an automaton which loops at each occurrence of

4



q0start q1 q2
u wxNy

v

Figure 2: Schematic of the automaton for Case 1 of the proof of Theorem
10. The number of states in the actual automaton is |uvwxNy|.

q0start q1 q2 q3 q4
u vi w y

va xb

Figure 3: Schematic of the automaton for Case 2 of the proof of Theorem
10. The number of states in the actual automaton is |uvaviwxby| − 1.

v and otherwise proceeds to the right (Figure 2). Let N be so large that

|vN | ≥
(

1

2
+ ε

2

)

nN and |v|
nN

≤ ε
2
. Then

AN(XN ) ≤ |uwxNy|+ |v| = nN − |vN |+ |v| ≤ nN −
(

1

2
+

ε

2

)

nN + |v|

=

(

1

2
− ε

2

)

nN + |v| ≤ nN

2
.

and so XN 6∈ L3.
The case where |x| > |v| is quite identical. The remainder of the proof

concerns Case 2.
Case 2: d := |v| = |x| > 0. By Lemma 5, for any positive integer i, the

equation ar + bs = i(a+ b) has only the solution r = s = i provided that a
and b are relatively prime and both a and b are greater than i. In particular,
this holds for any a and b with a > i and b = a+ 1.

We construct an automaton M as follows (Figure 3). We put one loop of
length ad and later one of length bd, and add id additional straggling states
after the smaller loop of length ad. There are no loops apart from that.

Now for the analysis. Let N = bi. Each of the loops of M will be
traversed i times during the processing of the word

XN = uvbiwxbiy.

Let U = |u|+ |w|+ |y|. Let us compare

|XN | = nN = U + 2bdi
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to the number of states of M ,

q = U + bd+ ad+ id− 1 = U + 2bd+ (i− 1)d− 1.

(Note that when i = 1, q = (nN+1)−2 as expected as there are 2 repetitions
of states.) In order to show XN 6∈ L3 we need q < ⌊nN/2⌋+1. To that end
it suffices to have q < nN/2, i.e.,

bd+ ad+ id+ U − 1 = (2b− 1 + i)d+ U − 1 <
1

2
(2bdi + U) = bdi+

U

2
.

Equivalently,

i− 1 +
U

2d
− 1

d
< (i− 2)b.

Choose i = 3; then the inequality will hold for all sufficiently large b. Thus,
M witnesses that XN 6∈ L3, in contradiction to the pumping lemma (Theo-
rem 7).

3 Somewhat simple words do not form a CFL

Let RE denote the collection of recursively enumerable (or if you prefer,
computably enumerable) languages. Recall that L3 is the set of maximally
complex words for nondeterministic automatic complexity over the alphabet
{0, 1, 2}. Let C denote plain Kolmogorov complexity and let

R = {x : C(x) ≥ |x|}

be the corresponding set of random words. We have seen (Theorem 9 and
Theorem 10) that L3 is CFL-immune but not coCFL-immune. This is a pleas-
ant analogue of the classical fact that R is RE-immune [6, Section 3.1] but
not coRE-immune. Indeed, R ∈ coRE, but we conjecture that the analogous
statement L3 ∈ coCFL fails.

Conjecture 11. L3 6∈ coCFL.

We shall confirm a variant of Conjecture 11 in Theorem 15. To that end,
we need a couple of lemmas.

Lemma 12. Let A denote deterministic automatic complexity. Then A(y) ≤
A(xyz) for all words x, y, z.

Proof. Given an automaton witnessing A(xyz), we merely change the initial
and final states to obtain an automaton witnessing an upper bound on A(y).
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Lemma 13. Let A denote deterministic automatic complexity. Let π :
{0, 1}∗ → {0, 1}∗ be an injective homomorphism with |π(0)| = |π(1)|. Then
A(x) ≤ A(π(x)) for each word x.

Proof. Let M be a witnessing automaton for A(π(x)), with transition func-
tion δ. We can now make an automaton M ′ with the same states as M (and
the same initial and final states) that uniquely accepts x among words of
length |x| as follows. Throw out all the edges of M . Put an edge labeled i
from q1 to q2 in M ′ if δ(q1, π(i)) = q2 in M .

It is clear that M ′ accepts x. We now turn to uniqueness.
Suppose |y| = |x| and M ′ accepts y. Since |π(0)| = |π(1)|, |π(y)| =

|π(x)|. But M only accepts one word of length |π(x)|, so it must be that
π(y) = π(x). Since π is injective, it follows that y = x.

Theorem 14 (Shallit and Wang [10, Theorems 10 and 12]). Let A denote
deterministic automatic complexity. There is a constant n0 such that for
n ≥ n0, √

n− 1 ≤ A(0n1n) ≤ 6
√
n+ 1.

Theorem 15. Let ε > 0, f(x) = x1/2−ε, and

S = {x ∈ {0, 1}∗ : A(x) < f(|x|)}.

Then S 6∈ CFL.

Proof. We assume S ∈ CFL and derive a contradiction using the pumping
lemma (Theorem 7). Let p be any sufficiently large pumping length. (The
meaning of “sufficiently large” is determined below.) We shall build our
unpumpable word as s = rk where

r = 0p1p

and k is sufficiently large relative to p. Consider any decomposition of s as
s = uvwxy where |vwx| ≤ p and |vx| ≥ 1. The main idea of the proof is the
combination of the following two facts.

• r is the shortest contiguous subword R of s such that the simplicity of
s comes from repeating R.

• the “pumpable part” vwx of s is shorter than r.

This means that pumping cannot help but increase the complexity. Thus by
choosing k wisely we will have X1 ∈ S and XN := uvNwxNy 6∈ S for some
N , which will be a contradiction.

The details are as follows.
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• Case 1: vx is all 0s. (We omit the case when vx is all 1s as the
proof is identical.) Then since |vwx| ≤ p and |vx| ≥ 1, the word vwx

is also all 0s. Let N = pk. We have 0N = (0p0p)k/2, and vNwxN

contains 0N as a contiguous subword. Now either at least half of the
occurrences of 1p as contiguous subwords of XN are in u, or at least
half of them are in y. Hence XN contains a contiguous subword of the
form either (0p0p)k/2(1p0p)k/2 or (0p1p)k/2(0p0p)k/2. Then using the
inequality 1 ≤ |vx| ≤ p,

3pk = n1 + pk = n1 +N ≤ nN (2)

and

nN = |uvNwxNy| ≤ n1 +Np = n1 + p2k = 2pk + p2k. (3)

Now,

A(XN ) ≥ A(0k/21k/2) by Lemma 12 and Lemma 13

≥
√

k/2− 1 by Theorem 14

≥
√

nN/(4p + 2p2)− 1 by (3)

≥ f(nN )

provided

(f(nN ) + 1)2/nN ≤ 1

4p + 2p2
.

Since f is monotonically increasing, by (3) it suffices that

(f(2pk + p2k) + 1)2

nN
≤ 1

4p+ 2p2
.

For this, by (2) it suffices that

(f(2pk + p2k) + 1)2

3pk
≤ 1

4p+ 2p2
.

In other words,

(f((2p + p2)k) + 1)2

k
≤ 3p

4p + 2p2
=

3

4 + 2p
.

This is true for large enough k, since

f(x) = o(
√
x).
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In order to guarantee that A(X1) < f(n1), we require

A(X1) ≤ 2p + 1 < f(n1) = f(2pk).

Since f(x) → ∞ as x → ∞, this holds by taking k large enough.

• Case 2: vx contains both 0s and 1s. Then uvNwxNy contains a con-
tiguous subword of the form 0N1N (using the fact that the blocks 0p1p

in s are longer than the pumping length). The analysis is then similar
to Case 1 (but without using Lemma 13).

4 Automatic complexity of equivalence relations

We now go higher in the complexity-theoretic hierarchy, from CFL to NP.
We shall not be able to determine the NP-completeness, or lack thereof, of
problems like “is A(x) ≤ c?” Nevertheless, we obtain results for a general-
ization of automatic complexity.

Definition 16. Given a deterministic finite automaton (DFA)

M = (Q,Σ, δ, q0, F ),

an equivalence relation D on Q induces an equivalence relation E on a subset
S of {0, 1}∗ if

E = {(x, y) ∈ S2 | (δ(q0, x), δ(q0, y)) ∈ D}.

A deterministic finite automaton M = (Q,Σ, δ, q0, F ) coheres with E if
there is an equivalence relation D on Q such that D induces E.

In words, if D induces E then two words x, y ∈ S are E-equivalent iff M
ends in D-equivalent states on input x and on input y.

Note that the set of final states F is irrelevant in Definition 16.

Definition 17. The automatic complexity A(E) of an equivalence relation
E is the least number of states of a DFA that coheres with E.

Remark 18. Automatic complexity of a word x (Shallit and Wang [10]) is
a special case of automatic complexity of equivalence relations. Namely, the
two equivalence classes are {x} and {y : |y| = |x|, y 6= x}.
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4.1 Complexity of equivalence relations is BH2-complete

As usual, let us say that a Boolean formula is CNF if it is in conjunctive
normal form, i.e., it is a conjunction of clauses, each of which is a disjunction
of literals.

Definition 19 (Encoding of literals). For a variable xj, we denote the nega-
tion of xj by xj. We define

¬0xj = xj,

¬1xj = xj.

For a literal l = ¬bxj , where b ∈ {0, 1}, we define the encoding word

t(l) = 1j0b0.

Definition 20 (inspired by [11, Victor Kuncak’s solution to Exercise 7.36]).
Let φ be a CNF formula with m clauses. Let

Qm = {q0, q1, . . . , qm, h, vt, vf , lt, lf , r, s}

be a set of cardinality m+ 8. For each σ ∈ {0, 1}∗ and q ∈ Qm,

σ → q

is the ordered pair 〈σ, q〉.1 Let S be the following set, where 10 = 00 = λ,
the empty word.

S = {1m+1 → q0, 0 → h,

00 → vt, 01 → vf , 000 → lt, 001 → lf , 010 → lf , 011 → lt,

0200 → s, 0201 → r, 0210 → q0, 0
211 → r,

0300 → s, 0301 → s, 0310 → q0, 0
311 → q0}

∪ {1i → qi : 0 ≤ i ≤ m}
∪ {1i011 → r : 1 ≤ i ≤ m}
∪ {t(l1)t(l2)t(l3) → s : (l1 ∨ l2 ∨ l3) is a clause of φ}.

Let Eφ be the intersection of all equivalence relations containing

{(σ, τ) : (∃q ∈ Qm)((σ → q) ∈ A and (τ → q) ∈ S)}.

Remark 21. The elements of Qm in Definition 20 are thought of as states.
The expression σ → q is to be thought of as the statement that δ(q0, σ) = q
where δ is the transition function of a DFA M and q0 is the initial state.
The equivalence relation Eφ identifies two words as equivalent if they lead
us to the same state. Thus such an M will cohere with φ.

10



q0start q1 q2

h

vf vt

lf lt

r s

1 1

1

0

1
0

0

1

1

0

0

1

0, 1

0, 1

1
0

Figure 4: The automaton M ′ from the proof of Theorem 22 is given by the
solid lines. Appropriate choice of two of the dotted lines gives the total DFA
M . The case where the formula φ has m = 2 clauses is shown.
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Theorem 22. {E : A(E) = |E|} is NP-complete.

Proof. It is immediate from the definitions that

{E : A(E) = |E|} = {E : A(E) ≤ |E|}.

We reduce 3-SAT to {E : A(E) ≤ |E|} using the mapping φ 7→ Eφ from
Definition 20. It induces a finite automaton M ′ which is deterministic but
whose transition function δ′ is not total (Figure 4). We see that φ is satisfi-
able iff there is a total DFA M , differing from M ′ only in that its transition
function δ ⊇ δ′ is total, such that M coheres with Eφ. In particular M has
no more states than M ′. The possible extra transitions of M are shown in
dotted lines in Figure 4. Thus

φ is satisfiable =⇒ A(Eφ) ≤ |Eφ|,
φ is unsatisfiable =⇒ A(Eφ) 6≤ |Eφ|.

Theorem 23. {E : A(E) = |E|+ 1} is coNP-hard.

Proof. It suffices to use the same reduction as in Theorem 22 and demon-
strate unconditionally, i.e., without any assumption on satisfiability of φ or
lack thereof, that

A(Eφ) ≤ |Eφ|+ 1.

The question is then how to add one more state to Figure 4 to make the
resulting automaton M+ cohere with Eφ. This is indicated in Figure 5. We
ensure 1j011 → r, i.e., δ(q0, 1

j011) = r, 1 ≤ j ≤ m using a new state e.

In the proof of Theorem 23, the state e is acting duplicitously, in a
sense, copying some of the behavior of the “truth values” vt and vf without
committing to a truth value.

Definition 24 (Wechsung [13]). The first two levels of the Boolean hierarchy
for NP are given by

BH1 = NP,

BH2 = {L1 \ L2 : L1, L2 ∈ NP}.

Definition 25.

SAT(2) = {(φ1, φ2) : φ1 is satisfiable and φ2 is not}.
1See Remark 21 for intuition.
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q0start q1 q2

h

vf vt e

lf lt

r s

1 1

1

0

1
0

0

1

1

0

0

1

0, 1

0, 1

1
0

0 0

0, 1

Figure 5: Automaton M+ used in Theorem 23. At the cost of adding a state
e, we ensure that M+ coheres with Eφ, whether or not φ is satisfiable.
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φ1 satisfiable? φ2 satisfiable? Number of extra states

no no ℓ+ k
no yes ℓ
yes no k
yes yes 0

Table 1: The number of extra states needed for Theorem 27.

Theorem 26. SAT(2) is complete for BH2 with respect to polynomial-time
many-one reductions.

Theorem 26 can be found in Cai et al. [5, Theorem 5.2]. (In their nota-
tion, BH2 = NP(2).) We will use without proof the extension of Theorem
26 from SAT to 3-SAT.

Theorem 27. For each k ≥ 1, {E : A(E) = |E|+ k} is BH2-complete.

Proof. For each k ≥ 1, {E : A(E) = |E|+ k} equals

{E : A(E) ≤ |E| + k} \ {E : A(E) ≤ |E|+ k − 1} ∈ BH2.

It remains to show BH2-hardness. Let M1 and M2 be automata as indicated
in Figure 5 for two 3-SAT instances φ1 and φ2, respectively. Let k and ℓ 6= k
be positive integers and let σ1, . . . , σk+ℓ be incomparable words. We define
M in a natural way so that

L(M) =

ℓ
⋃

i=1

{σi x : x ∈ L(M1)} ∪
k
⋃

i=ℓ+1

{σi x : x ∈ L(M2)}.

Note that the various “e” states for distinct copies of M1 and M2 must be
distinct, since they transition to distinct “lt” states. Thus, we have

φ1 is satisfiable, but φ2 is not

if and only if

we need no extra state for φ1, but k extra states for φ2,

if and only if (by Table 1)

we need k extra states overall,

if and only if A(E) = |E| + k. We make corresponding changes in the
“axioms” (the elements of S in Definition 20) for Eφi

. Applying Theorem
26 completes the proof.
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