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Abstract

We present a fast combinatorial3/4-approximation algorithm for the maximum asymmetric
TSP with weights zero and one. The approximation factor of this algorithm matches the currently
best one given by Bläser in 2004 and based on linear programming. Our algorithm first computes
a maximum size matching and a maximum weight cycle cover without certain cycles of length two
but possibly withhalf-edges - a half-edge of a given edgee is informally speaking a half ofe that
contains one of the endpoints ofe. Then from the computed matching and cycle cover it extracts
a set of paths, whose weight is large enough to be able to construct a traveling salesman tour with
the claimed guarantee.

1 Introduction

We study the maximum asymmetric traveling salesman problemwith weights zero and one (Max
(0,1)-ATSP), which is defined as follows. Given a complete loopless directed graphG with edge
weights zero and one, we wish to compute a traveling salesmantour of maximum weight. Traveling
salesman problems with weights one and two are an important special case of traveling salesman
problems with triangle inequality. Max (0,1)-ATSP is connected to Min (1,2)-ATSP (the minimum
asymmetric traveling salesman problem wth weights one and two) in the following way. It has been
shown by Vishvanathan [14] that a(1 − α)-approximation algorithm for Max (0,1)-ATSP yields a
(1 + α)-approximation algorithm for Min (1,2)-ATSP by replacing weight two with weight zero.

Approximating Max (0,1)-ATSP with the ratio1/2 is easy – it suffices to compute a maximum
weight matching of the graphG and patch the edges arbitrarily into a tour. The first nontrivial approx-
imation of Max (0,1)-ATSP was given by Vishvanathan [14] andhas the approximation factor7/12.
It was improved on by Kosaraju, Park, and Stein [8] in 1994, who gave a48/63-approximation algo-
rithm that also worked for Max ATSP with arbitrary nonnegative weights. Later, Bläser and Siebert [4]
obtained a4/3-approximation algorithm for Min (1,2)-ATSP , which can be modified to give a2/3-
approximation algorithm for Max (0,1)-ATSP.2/3-approximation algorithms are also known for the
general Max ATSP and have been given in [6] and [11]. The currently best published approximation
algorithm for Max (0,1)-ATSP achieving ratio3/4 is due to Bläser [2]. It uses linear programming to
obtain a multigraphGM of weight at least3/2 times the weight of an optimal traveling salesman tour
(OPT) such thatGM can bepath-2-colored. A multigraph is calledpath-2-colorable if its edges can
be colored with two colors so that each color class consists of vertex-disjoint paths. The algorithm by
Bläser has a polynomial running time but the degree of the polynomial is high. A3/4-approximation
algorithm for Max ATSP with arbitrary nonnegative weights has been given in [12]. The presented
here algorithm for Max (0,1)-ATSP is much simpler than the one in [12].

Karpinski and Schmied have shown in [7] that it is NP-hard to approximate Min (1,2)-ATSP with
an approximation factor less than207/206 and for the general Max ATSP that it is NP-hard to obtain
an approximation better than203/204.
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Our approach and results We present a simple combinatorial3/4-approximation algorithm for
Max (0,1)-ATSP. First we compute a maximum weight matchingMmax of G. By a matching ofG we
mean any vertex-disjoint collection of edges. The weight ofMmax is clearly at least OPT/2, where
OPT denotes the weight on an optimal tour. Next, we compute a maximum weightcycle cover that
evades the matching Mmax. A cycle cover of a directed graph is such a collection of directed cycles
that each vertex belongs to exactly one cycle of the collection. A cycle cover of a graph G that evades
a matching M is a cycle cover ofG which does not contain any length two cycle (called a2-cycle)
going through two vertices that are connected by some edge ofM but it may containhalf-edges -
a half-edge of a given edgee is informally speaking a half ofe that contains one of the endpoints
of e. Half-edges have already been introduced in [11].The task of finding a maximum weight cycle
coverCmax that evades a matchingM can be reduced to finding a maximum size matching in an
appropriately constructed graph. The weight ofCmax is an upper bound on OPT. Further on we show
that a maximum weight matchingMmax and a maximum weight cycle cover that evadesMmax can be
easily transformed into a path-2-colorable multigraph. For completeness we give also our own linear
time procedure of path-2-coloring. This method takes advantage of the fact that the edge weights are
zero and one. A more general algorithm for path-2-coloring that runs inO(n3) has been given in [2].

This way the main results of this paper can be stated as

Theorem 1 There exists a combinatorial 3/4-approximation algorithm for Max (0,1)-ATSP. Its run-
ning time is O(n1/2m), where n and m denote the number of respectively vertices and edges of weight
one in the graph.

Corollary 1 There exists a combinatorial 5/4-approximation algorithm for Min (1,2)-ATSP. Its run-
ning time is O(n1/2m)

2 Cycle cover that evades matchingM

The algorithm for Max (0,1)-ATSP starts from computing a maximum weight perfect matchingMmax

of G. By a0-edge and a1-edge we will mean an edge of weight, respectively, zero or one. ByG1 we
denote the subgraph ofG consisting of all 1-edges ofG. In order to obtain a maximum weight perfect
matchingMmax of G, it is enough to compute a maximum size matchingM1 in G1 and, if necessary,
complete it arbitrarily with 0-edges so that the resulting matching is perfect.

Next, we would like to find a maximum weight cycle cover ofG that does not contain any2-cycle
in G1, whose one edge belongs toMmax. Since computing such a cycle cover is NP-hard, which
follows from a similar result proved by Bläser [], we are going to relax the notion of a cycle cover
and allow it to containhalf-edges - a half-edge of edge(u, v) is informally speaking “half of the edge
(u, v) that contains either a head or a tail of(u, v)”.

Now, we are going to give a precise definition of a cycle cover that evades a matchingM . We
say that a2-cycle c in G1 is M -hit if one of the edges ofc belongs toM . We introduce a graph̃G.
G̃ = (Ṽ , Ẽ) is the graph obtained fromG by splitting each edge(u, v) belonging to aM -hit 2-cycle
of G1 with a vertexx(u,v) into two edges(u, x(u,v)) and(x(u,v), v), each with weight12w(u, v), where
w(u, v) denotes the weight of the edge(u, v). Each of the edges(u, x(u,v)), (x(u,v), v) is calleda
half-edge (of (u, v)). For any subset of edgesE′ ⊆ E by w(E′) we mean

∑
e∈E′ w(e).

Definition 1 A cycle cover that evades a matching M is a subset C̃ ⊆ Ẽ such that

(i) each vertex in V has exactly one outgoing and one incoming edge in C̃;
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(ii) for each M -hit 2-cycle of G1 connecting vertices u and v C̃ contains either zero or two edges
from
{(u, x(u,v)), (x(u,v), v), (v, x(v,u)), (x(v,u), u)}. Moreover, if C̃ contains only one half-edge of
(u, v) , then it also contains one half-edge of (v, u), and one of these half-edges is incident with
u and the other with v.

To compute a cycle coverC1 that evadesMmax we construct the following undirected graphG′ =
(V ′, E′). For each vertexv of G we add two verticesvin, vout to V ′. For each edge(u, v) ∈ E we
add verticese1uv, e

2
uv , an edge(e1uv , e

2
uv) of weight0 and edges(uout, e1uv), (vin, e

2
uv), each of weight

1
2w(u, v). Next we build so-called gadgets.

For eachM -hit 2-cycle inG1 on verticesu andv we add verticesa{u,v}, b{u,v} and edges(a{u,v}, e
1
uv),

(a{u,v}, e
2
vu, (b{u,v}, e

1
vu), (b{u,v}, e

2
uv) having weight0.

Theorem 2 Any perfect matching of G′ yields a cycle cover C1 that evades Mmax. A maximum weight
perfect matching of G′ yields a cycle cover Cmax that evades Mmax such that w(Cmax) ≥ OPT .

Proof. The proof of the first statement is very similar to the proof ofLemma 2 in [11]. The second
statement follows from the fact that a traveling salesman tour is also a cycle cover that evadesMmax. ✷

A cycle cover that evades a matchingM consists of directed cycles and/or directed paths, where
each of the directed paths begins and ends with a half-edge. In the following by a half-edge of a
cycle coverC we will mean such a half-edge of a certain edgee contained inC thatC contains only
one half-edge ofe. From a matchingMmax and a maximum weight cycle coverCmax that evades
Mmax we build a multigraphGm as follows. BasicallyGm consists of one copy ofMmax and one
copy ofCmax. However, we do not wantGm to contain half-edges. Therefore we modifyCmax by
replacing each pair of half-edges of edges connecting verticesu andv that are contained inCmax with
an edge(u, v), if Mmax contains(v, u) and otherwise with an edge(v, u). As a resultGm contains a
2-cycle on each such pair of verticesu, v. After this modificationCmax contains only whole edges and
may contain directed paths with a common endpoint i.e., somevertices may have indegree two and
outdegree zero or vice versa. However, the overall weight ofCmax is unchanged. Now,Gm is going
to contain two copies of an edgee if e belongs both toMmax andCmax and one copy of an edgee
if e belongs either toMmax or toCmax. This way we obtain a multigraph that satisfies the following
conditions:

• each vertex inGm has degree three,

• each vertex inGm has indegree at most two and outdegree at most two,

• for each pair of verticesu andv, Gm contains at most two edges connectingu andv.

In [2] Bläser shows how to slightly modify such a multigraph so that it has the same number of
1-edges and is path-2-colrable. Path-2-coloring of the modified graph is based on a variant of the
path-2-coloring lemma given by Lewenstein and Sviridenko [9], which in turn is a reduction to the
path-2-coloring lemma of Kosaraju, Park, and Stein, whose proof was given in [1]. The running time
of the path-2-coloring algorithm isO(n3).

If the number of vertices in the graph is odd, then the above approach does not give a3/4-
approximation. We can either add a new additional vertex, that is connected to every other vertex
by a 0-edge and obtain a3/4(1 − 1/n)-approximation, or guess two consecutive edges of an opti-
mal traveling salesman tour and contract them. In the lattercase, the running time of the algorithm
becomesO(n5/2m).
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3 Path-2-coloring

FromGm we are going to obtain another multigraph that contains the same number of 1-edges asGm

and and additionally allows a simple method of path-2-coloring.
First we deal with2-cycles on cycles and paths ofCmax. For any 1-edgee = (u, v) contained in

a cyclec of Cmax such thatMmax contains a1-edgee′ = (v, u), we replace the edgee′ with another
copy of e. Similarly, for any 1-edgee = (u, v) contained in a pathp of Cmax such thate is not an
ending edge ofp andMmax contains a1-edgee′ = (v, u), we replace the edgee′ with another copy of
e. So far, clearly, we have not diminished the number of 1-edges contained inGm. Next, we are going
to discard all0-edges fromGm. This way, some cycles ofCmax may disintegrate into paths and some
paths ofCmax may also give rise to shorter or new paths. In what follows, bya cycle ofCmax we will
mean a cycle ofCmax consisting solely of 1-edges and by a path ofCmax we will mean a maximal
(under inclusion) directed path, whose every edge belongs toCmax and has weight one.

Let e = (u, v) be an edge,c a cycle andp a path ofCmax. Then we say thate is an inray of c
(corr. p) if u /∈ c andv ∈ c (corr. u /∈ p andv ∈ p). If u ∈ c andv /∈ c (corr. u ∈ p andv /∈ p), then
we say thate is anoutray of c (corr. p). A ray of c (p) is any inray or outray ofc (p). If both endpoints
of e belong toc (corr. p) ande does not belong toc (corr. p), thene is called achord of c (corr. p). If
e is a copy of some edge belonging toc (corr. p), thene is called anichord.

Let us notice that any2-cycle which is present at this stage ofGm is either a2-cycle ofCmax or
a 2-cycle obtained from a pair of half-edges ofCmax and an edge ofMmax. Now, if c is a2-cycle of
Cmax on verticesu andv that has an inray incident tou and an outray incident tov, then we replace
the edge(v, u) with another copy of edge(u, v) and shrink the two copies of an edge(u, v) into a
single vertex. Every remaining2-cycle ofCmax or a 2-cycle obtained from a pair of half-edges of
Cmax and an edge ofMmax is also shrunk into a single vertex.

Let us call the multigraph obtained fromGm by shrinking all such2-cyclesG′
m. We make the

following observation.

Observation 1 From any path-2-coloring of G′
m we can obtain a path-2-coloring of Gm without

changing the color of any edge of G′
m.

Next we are going to further flip some of the edges ofG′
m to make the task of its path-2-coloring

very easy.
For each cyclec of Cmax we are going to flip either its inrays and chords or outrays andchords

so thatc has either only outrays and ichords or only inrays and ichords. Letc be any cycle ofCmax.
Let us notice that its length is at least three. Suppose that the number of inrays ofc is not smaller than
the number of outrays ofc. Then the inrays are left as they are and the outrays and chords of c are
flipped so that they become ichords, i.e. each inray and chordof c is replaced with a copy of some
edge ofc. The flipping is done in such a way that the indegree and outdegree of each vertex ofc is at
most two. Now, however, it may happen that some vertex ofc has both indegree and outdegree equal
to two. More precisely the process of flipping looks as follows. LetEc be a subset of edges ofc such
that an edge(u, v) of c belongs toEc if no inray of c is incident withv. The number of edges inEc is
not smaller than the number of outrays and chords ofc. Moreover, the number of outrays and chords
of c is not bigger than|c| − 2, where|c| denotes the length ofc. It is so because the number of chords
of c is not greater than|c|/2 and the number of outrays ofc is not bigger than the number of inrays of
c. Each chord and outray ofc is replaced with a copy of some edge ofEc. If the number of outrays of
c outnumbers the number of inrays ofc, then we flip the inrays and chords ofc so that they become
ichords in an analogous way as above.

Fact 1 Let c be any cycle that has either only inrays and/or ichords or only outrays and/or ichords.
Moreover, (1) the number of rays of c is at least two or c has at most |c| − 2 ichords and (2) the
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indegree and outdegree of each vertex of c is at most two. If c has at least two rays, then it is possible
to path-2-color the edges and ichords of c if two rays of c are colored differently. If c has at most one
ray, then it is always possible to path-2-color the edges and ichords of c.

Proof. Any two copies of the same edge must be colored differently. Similarly any two outgoing edges
of some vertex ofc or any two incoming edges of some vertex ofc must be colored differently. Ifc
has two rays that are colored differently, then it follows that we are unable to create a monochromatic
cycle out of the edges or ichords ofc. If c has exactly one ray colored with, say1, then we must see to
it that not for every edge(u, v) of c it is that at least one copy of(u, v) is colored with2. Sincec has
at most|c|− 2 ichords, there exists an edgee of c such thatG′

m contains only one copy ofe and which
can be colored with1. If c has no rays, then we can easily path-2-color its edges and ichords. ✷

The situation with paths is a little bit more complicated. Weare going to distinguish paths that
arebound andfree. A path ofCmax is said to be bound if it shares at least one of its endpoints with
another path ofCmax. A path ofCmax that is not bound is said to be free. A bound path can be
1-bound – if exactly one of its endpoints is also an endpoint of another path ofCmax or 2-bound – if
each of its endpoints is an endpoint of another path ofCmax. We say that an edgee = (u, v) of p of
Cmax is arayter if u is incident with an outray ofp andv is incident with an inray ofp.

We are going to flip the rays and chords of each bound pathp in such a way that besides possible
ichordsp either has at most one ray or exactly exactly two rays incident to a rayter. As for free paths
we are going to flip the rays and chords of each free pathp in such a way that besides possible ichords
p either has only inrays or only outrays or exactly two rays incident to a rayter.

Let p be any path ofCmax with endpointsu andv. By |p| we denote the length ofp, i.e., the
number of edges ofp. An endpoint ofp which is not an endpoint of any other path ofCmax is said
to be aborder vertex of p. If an endpointu of p belongs also to some other path ofCmax, then the
edge ofp incident tou is called aborder edge of p. The endpoint of a border edge ofp that is not an
endpoint of any path ofCmax different fromp is also called aborder vertex of p. It may happen that
a pathp of Cmax does not have any border vertex – if|p| = 1 and both endpoints ofp belong also to
some other path(s) ofCmax. We say that a pathp has agood ray if it has a raye incident to a border
vertexv of p such that either (1)v is an endpoint ofp ande together withp form a directed path of
length|p|+ 1 or (2) v is not an endpoint ofp ande forms a directed path of length two withe′, where
e′ is an edge ofp incident tov and is not a border edge ofp. For example, letp be a2-bound path
(u, v1, v2, v) directed fromu to v and suppose thatp has a raye = (v2, v3) . Thene is a good ray ofp.
Let us notice that the maximum number of edges ofMmax incident to a pathp of Cmax is: (1) |p| − 1,
if p is 2-bound, (2)|p|, if p is 1-bound and (3)|p|+ 1, if p is free. It is so because no edge ofMmax is
incident to a vertex which is an endpoint of two different paths ofCmax – because such an endpoint is
in fact a shrunk2-cycle.

The flipping of rays and ichords of paths proceeds as follows.If the number of edges ofMmax

incident to a given pathp is (1) fewer than|p| − 1 andp is 2-bound or (2) fewer than|p| andp is
1-bound or (3) fewer than|p|+1 andp is free, then we flip all chords and rays ofp so that they become
ichords and so that no ichord is a copy of any border edge ofp. (Also, of course, no edge ofp is
allowed to occur in more than two copies.) Otherwise, if a path p has a good ray, we leave any one
good ray ofp as it is and flip all the other rays and chords ofp so that they become ichords and no
ichord is a copy of any border edge ofp. In the reamining case, we leave some two rays ofp that are
incident to a rayter and flip the rest of rays and chords ofp so that they become ichords.

Suppose thate1 ande2 are good rays of pathsp1, p2 having a common endpointu such that both
e1 ande2 is incident to the border edge (of respectivelyp1 or p2) incident withu. Then the rayse1 and
e2 are said to beallied.
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We make the following two observations.

Fact 2 In any path-2-coloring of G′
m the rays incident to the same rayter are colored with the same

color.

Proof. Let e = (u, v) be a rayter ofp. Then in any path-2-coloring ofG′
m the edgee must be colored

with a different color than an outray ofp incident tou and also with a different color than an inray of
p incident tov. Since there are only two colors, it follows that the rays incident toe must be colored
with the same color. ✷

Fact 3 In any path-2-coloring of G′
m the allied rays are colored with different colors.

Proof. Let v be a vertex which is an endpoint of two different pathsp1, p2 of Cmax and lete1, e2 be
two border edges incident tov. Then, clearlye1 ande2 must be colored with different colors as either
both are the incoming edges ofv or both are the outgoing edges ofv. The ray incident toe1 must be
colored differently thane1. Similarly the ray incident toe2 must be colored differently thane2. ✷

After all the flipping, the multigraphG′
m is quite easy to path-2-color. In fact, it suffices to appro-

priately color the rays and then the coloring of the rest of the edges is straightforward. From the rays in
G′

m we build the following graphH. At the beginningH has the same vertex set asG′
m and contains

all the rays inG′
m, i.e.,(u, v) is an edge inH if and only if (u, v) is a ray of some path or cycle ofCmax

in G′
m after the flipping. Next, for each cyclec of Cmax we choose two arbitrary rayse1, e2 of c and

glue together their endpoints belonging toc i.e., if u1 ∈ e1∩ c andu2 ∈ e2 ∩ c, then we replaceu1 and
u2 with one vertex and as a resulte1 ande2 have (at least) one common endpoint. Further, each pair of
rays incident to the same rayter is replaced with one edge as follows. Lete1 = (u1, v1), e2 = (u2, v2)
be a pair of rays incident to some edgee = (u2, v1) in G′

m. Thene1, e2 are replaced inH with one
edgee = (u1, v2). Such replacements are done exhaustively. We also glue together the endpoints of
certain pairs of good rays. Suppose thate1 ande2 are allied rays of pathsp1, p2. Then we glue together
the endpoint ofe1 belonging top1 with the endpoint ofe2 belonging top2.

At this stage, ignoring the directionsH consists of paths, cycles and isolated vertices, i.e. each
vertex is either isolated or belongs to exactly one path or cycle. Moreover, if some cycle inH is of odd
length, then it contains at least two consecutive edges thatform a directed path. We color the edges
of each path and cycle ofH alternately with1 and2 in such a way that no two incoming edges of
any vertex are colored with the same color or no two outgoing edge of any vertex are colored with the
same color. In other words, we path-2-colorH.

Lemma 1 Any path-2-coloring of H can be extended to a path-2-coloring of G′
m.

Proof. Each ray inG′
m is colored with the same color as inH. In the case when some edgee in H was

obtained from several rays inG′
m, each such ray inG′

m is colored in the same way ase in H. Thus,
by the way we constructedH, each pair of rays incient to one rayter is colored in the sameway, allied
rays are colored with different colors and for each cyclec of Cmax that has at least two rays, there
exist two rays ofc colored differently. By Fact 1 we already know how to color the edges and ichords
of each cycle ofCmax. Any edgee = (u, v) of any path ofCmax which is incident to an outrayr1
incident tou is colored differently thanr1. Similarly any edgee = (u, v) of any path ofCmax which
is incident to an inrayr2 incident tov is colored differently thanr2. Also two border edges of two
different paths ofCmax incident to the same vertex are colored differently. Two copies of the same
edge are clearly colored differently. The remaining edges can be colored arbitrarily.

✷
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