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Abstract

We present a fast combinatorial4-approximation algorithm for the maximum asymmetric
TSP with weights zero and one. The approximation factor isfalgorithm matches the currently
best one given by Blaser in 2004 and based on linear progragi@iur algorithm first computes
a maximum size matching and a maximum weight cycle coverawithertain cycles of length two
but possibly withhalf-edges - a half-edge of a given edgses informally speaking a half of that
contains one of the endpoints @f Then from the computed matching and cycle cover it extracts
a set of paths, whose weight is large enough to be able torcehsttraveling salesman tour with
the claimed guarantee.

1 Introduction

We study the maximum asymmetric traveling salesman proliétm weights zero and one (Max
(0,1)-ATSP), which is defined as follows. Given a completepless directed grap&’ with edge
weights zero and one, we wish to compute a traveling salesouarof maximum weight. Traveling
salesman problems with weights one and two are an imporfetia case of traveling salesman
problems with triangle inequality. Max (0,1)-ATSP is contexl to Min (1,2)-ATSP (the minimum
asymmetric traveling salesman problem wth weights one aod in the following way. It has been
shown by Vishvanathan [14] that(@ — «)-approximation algorithm for Max (0,1)-ATSP vyields a
(1 + «)-approximation algorithm for Min (1,2)-ATSP by replacingight two with weight zero.

Approximating Max (0,1)-ATSP with the ratib/2 is easy — it suffices to compute a maximum
weight matching of the grapfd and patch the edges arbitrarily into a tour. The first noiariapprox-
imation of Max (0,1)-ATSP was given by Vishvanathanl|[14] & the approximation factar/12.
It was improved on by Kosaraju, Park, and Stein [8] in 19940 \ghve ai8/63-approximation algo-
rithm that also worked for Max ATSP with arbitrary nonnegatweights. Later, Blaser and Siebérit [4]
obtained ai/3-approximation algorithm for Min (1,2)-ATSP , which can bedified to give &2/3-
approximation algorithm for Max (0,1)-ATSR/3-approximation algorithms are also known for the
general Max ATSP and have been given’in [6] and [11]. The atigrdest published approximation
algorithm for Max (0,1)-ATSP achieving raty4 is due to Bléser [2]. It uses linear programming to
obtain a multigraply; of weight at leas8 /2 times the weight of an optimal traveling salesman tour
(OPT) such thatz; can bepath-2-colored. A multigraph is calledpath-2-colorable if its edges can
be colored with two colors so that each color class consistertex-disjoint paths. The algorithm by
Bléser has a polynomial running time but the degree of thgnawohial is high. A3/4-approximation
algorithm for Max ATSP with arbitrary nonnegative weightshbeen given ir_[12]. The presented
here algorithm for Max (0,1)-ATSP is much simpler than the an[12].

Karpinski and Schmied have shown (in [7] that it is NP-harddpraximate Min (1,2)-ATSP with
an approximation factor less thaa7/206 and for the general Max ATSP that it is NP-hard to obtain
an approximation better tha3,/204.
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Our approach and results We present a simple combinatorigl4-approximation algorithm for
Max (0,1)-ATSP. First we compute a maximum weight matchifig,, of G. By a matching of7 we
mean any vertex-disjoint collection of edges. The weightff,.. is clearly at least OPT/2, where
OPT denotes the weight on an optimal tour. Next, we computexdmum weightcycle cover that
evades the matching M,,,.... A cycle cover of a directed graph is such a collection of directed cycles
that each vertex belongs to exactly one cycle of the cotlacth cycle cover of a graph G that evades
a matching M is a cycle cover oty which does not contain any length two cycle (calleg-eycle)
going through two vertices that are connected by some eddé @t it may containhalf-edges -

a half-edge of a given edgeis informally speaking a half of that contains one of the endpoints
of e. Half-edges have already been introduced_in [11].The t&s$kding a maximum weight cycle
cover Cy,q, that evades a matchinly/ can be reduced to finding a maximum size matching in an
appropriately constructed graph. The weighthf,.. is an upper bound on OPT. Further on we show
that a maximum weight matchiniy,,,... and a maximum weight cycle cover that evadés,,, can be
easily transformed into a path-2-colorable multigrapht ¢gampleteness we give also our own linear
time procedure of path-2-coloring. This method takes athgnof the fact that the edge weights are
zero and one. A more general algorithm for path-2-colorhrag tuns inO(n?) has been given in[2].

This way the main results of this paper can be stated as

Theorem 1 There exists a combinatorial 3/4-approximation algorithm for Max (0,1)-ATSP. Its run-
ning timeis O(n'/?m), where n and m denote the number of respectively vertices and edges of weight
onein the graph.

Corollary 1 There exists a combinatorial 5/4-approximation algorithm for Min (1,2)-ATSP. Its run-
ning time is O(n'/?m)

2 Cycle cover that evades matching/

The algorithm for Max (0,1)-ATSP starts from computing a inaxm weight perfect matching/,,, ...
of G. By a0-edge and al-edge we will mean an edge of weight, respectively, zero or one(GBywe
denote the subgraph 6f consisting of all 1-edges @f. In order to obtain a maximum weight perfect
matchingM,,,., of G, it is enough to compute a maximum size matchidgin G and, if necessary,
complete it arbitrarily with 0-edges so that the resultingtching is perfect.

Next, we would like to find a maximum weight cycle cover®that does not contain ard¢cycle
in G1, whose one edge belongs 1d,,.,.. Since computing such a cycle cover is NP-hard, which
follows from a similar result proved by Blaser [], we are gpito relax the notion of a cycle cover
and allow it to contairhalf-edges - a half-edge of edgéu, v) is informally speaking “half of the edge
(u, v) that contains either a head or a tail(ef v)".

Now, we are going to give a precise definition of a cycle comat evades a matchingy/. We
say that @-cycle ¢ in G, is M-hit if one of the edges of belongs to)M. We introduce a graphy.
G = (V, E) is the graph obtained from¥ by splitting each edgéu, v) belonging to a\/-hit 2-cycle
of G with a vertexz,, . into two edgesu, (,,,y) and(z(, ), v), each with weightw(u,v), where
w(u,v) denotes the weight of the edge,v). Each of the edgeéu, z(, .)), (Z (), v) is calleda
half-edge (of (u,v)). For any subset of edgds C E by w(E') we meany_ . ., w(e).

Definition 1 A cycle cover that evades a matching M isa subset C C E such that

(i) each vertexin V has exactly one outgoing and one incoming edge in C;



(i) for each M-hit 2-cycle of G; connecting vertices v and v C' contains either zero or two edges
from
{1 2wy (T )y (U, To0))s (T(o,u), w) }- Moreover, if C contains only one half-edge of
(u,v) , then it also contains one half-edge of (v, u), and one of these half-edges is incident with
u and the other with v.

To compute a cycle cover; that evaded/,,,, we construct the following undirected graph =
(V') E’). For each vertex of G we add two vertice®;,,, v, to V’'. For each edgéu,v) € E we
add vertices. , 2, , an edgegel,, e2,) of weight0 and edgesuous, el,), (vin, €2,), €ach of weight

%w(u, v). Next we build so-called gadgets.
For eachM -hit 2-cycle inG;y on vertices: andv we add verticesy,, ., by, .} and edgesay, ., el),

(agu0h> €ous (bfuwys €0u)> (Bguwt, €2,) having weight.

Theorem 2 Any perfect matching of G’ yields a cycle cover C that evades M,,4... A maximum weight
perfect matching of G’ yields a cycle cover C,,,,,. that evades M, such that w(Ciez) > OPT.

Proof. The proof of the first statement is very similar to the proot.efmma 2 in[11]. The second
statement follows from the fact that a traveling salesmanitoalso a cycle cover that evades,, ... O

A cycle cover that evades a matching consists of directed cycles and/or directed paths, where
each of the directed paths begins and ends with a half-edgehel following by a half-edge of a
cycle coverC' we will mean such a half-edge of a certain edgmntained inC' thatC' contains only
one half-edge ot. From a matching\/,,.... and a maximum weight cycle covét,,... that evades
M. we build a multigraph7,,, as follows. Basically&,,, consists of one copy a¥/,,.. and one
copy of C,..:- However, we do not want,,, to contain half-edges. Therefore we moddy,.,. by
replacing each pair of half-edges of edges connectingeesttiandv that are contained i@, With
an edg€(u, v), if M,,q, contains(v,«) and otherwise with an edge, »). As a resultG,,, contains a
2-cycle on each such pair of verticesv. After this modificationC),,,, contains only whole edges and
may contain directed paths with a common endpoint i.e., seenices may have indegree two and
outdegree zero or vice versa. However, the overall weigldt,gf,. is unchanged. Now,, is going
to contain two copies of an edgeif e belongs both ta\/,,,., and C,,.,, and one copy of an edge
if e belongs either td\,,,, or to C,,... This way we obtain a multigraph that satisfies the following
conditions:

e each vertex ir5,, has degree three,
e each vertex ir5,, has indegree at most two and outdegree at most two,
e for each pair of vertices andv, G,,, contains at most two edges connectingnd.

In [2] Blaser shows how to slightly modify such a multigraphtkat it has the same number of
1-edges and is path-2-colrable. Path-2-coloring of theifiodgraph is based on a variant of the
path2-coloring lemma given by Lewenstein and Sviridenko [9], evhin turn is a reduction to the
path2-coloring lemma of Kosaraju, Park, and Stein, whose prodf grgen in [1]. The running time
of the path2-coloring algorithm isO(n?).

If the number of vertices in the graph is odd, then the aboyaageh does not give 8/4-
approximation. We can either add a new additional verteat ith connected to every other vertex
by a 0-edge and obtain3/4(1 — 1/n)-approximation, or guess two consecutive edges of an opti-
mal traveling salesman tour and contract them. In the latse, the running time of the algorithm
becomes) (n®/%m).



3 Path-2-coloring

FromG,,, we are going to obtain another multigraph that contains @ingesnumber of 1-edges &%,
and and additionally allows a simple method of path-2-dnfpr

First we deal with2-cycles on cycles and paths ©6f,,,,. For any 1-edge = (u,v) contained in
a cyclec of C,,,, such thatM,,,,,. contains al-edgee’ = (v, u), we replace the edgé with another
copy ofe. Similarly, for any 1-edge = (u,v) contained in a path of C,,,, such that is not an
ending edge op and M., contains a-edgee’ = (v, u), we replace the edgé with another copy of
e. So far, clearly, we have not diminished the number of 1-sedgatained irf5,,,. Next, we are going
to discard alb-edges fronGG,,,. This way, some cycles df,,,, may disintegrate into paths and some
paths ofC,,,,.. may also give rise to shorter or new paths. In what followsalsycle ofC,,, .. we will
mean a cycle of’,,,,. consisting solely of 1-edges and by a path(gf,.. we will mean a maximal
(under inclusion) directed path, whose every edge belan@$.t. and has weight one.

Lete = (u,v) be an edgeg a cycle andp a path ofC,,.,. Then we say that is aninray of ¢
(corr. p)if u ¢ candv € ¢ (corr. u ¢ p andv € p). If u € candv ¢ ¢ (corr. u € p andv ¢ p), then
we say that is anoutray of ¢ (corr. p). A ray of ¢ (p) is any inray or outray of (p). If both endpoints
of e belong toc (corr. p) ande does not belong te (corr. p), thene is called achord of ¢ (corr. p). If
e is a copy of some edge belongingdgcorr. p), thene is called arichord.

Let us notice that ang-cycle which is present at this stage@f, is either a2-cycle of C,,,,, or
a 2-cycle obtained from a pair of half-edges @f,... and an edge ab/, ... Now, if ¢ is a2-cycle of
Cmaz ON Verticesu andv that has an inray incident @ and an outray incident to, then we replace
the edge(v, ) with another copy of edgéu, v) and shrink the two copies of an edge v) into a
single vertex. Every remaining-cycle of C,,., or a2-cycle obtained from a pair of half-edges of
Cimaz @and an edge ab/,,,... is also shrunk into a single vertex.

Let us call the multigraph obtained fro,, by shrinking all suck2-cyclesG’,,. We make the
following observation.

Observation 1 From any path-2-coloring of G/, we can obtain a path-2-coloring of G,,, without
changing the color of any edge of G/,..

Next we are going to further flip some of the edges=f to make the task of its path-2-coloring
very easy.

For each cycle: of C,,.., we are going to flip either its inrays and chords or outrays @mtds
so thatc has either only outrays and ichords or only inrays and ichotaebtc be any cycle ot} ...
Let us notice that its length is at least three. Suppose hieatimber of inrays af is not smaller than
the number of outrays af. Then the inrays are left as they are and the outrays and clubrdare
flipped so that they become ichords, i.e. each inray and abioeds replaced with a copy of some
edge ofc. The flipping is done in such a way that the indegree and otggegf each vertex aof is at
most two. Now, however, it may happen that some vertexiwds both indegree and outdegree equal
to two. More precisely the process of flipping looks as fobowet . be a subset of edges ekuch
that an edgéu, v) of ¢ belongs toFE. if no inray of ¢ is incident withuv. The number of edges iR, is
not smaller than the number of outrays and chords dfloreover, the number of outrays and chords
of c is not bigger thanc| — 2, where|c| denotes the length ef It is so because the number of chords
of ¢ is not greater thafr|/2 and the number of outrays ofis not bigger than the number of inrays of
c. Each chord and outray ofis replaced with a copy of some edgeyf. If the number of outrays of
¢ outnumbers the number of inrays @fthen we flip the inrays and chords @fo that they become
ichords in an analogous way as above.

Fact 1 Let ¢ be any cycle that has either only inrays and/or ichords or only outrays and/or ichords.
Moreover, (1) the number of rays of ¢ is at least two or ¢ has at most |¢| — 2 ichords and (2) the
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indegree and outdegree of each vertex of ¢ isat most two. If ¢ has at least two rays, then it is possible
to path-2-color the edges and ichords of ¢ if two rays of ¢ are colored differently. If ¢ has at most one
ray, then it is always possible to path-2-color the edges and ichords of c.

Proof. Any two copies of the same edge must be colored differentiyil&ly any two outgoing edges
of some vertex ot or any two incoming edges of some vertexcahust be colored differently. I
has two rays that are colored differently, then it followattive are unable to create a monochromatic
cycle out of the edges or ichords oflf ¢ has exactly one ray colored with, saythen we must see to

it that not for every edgéu, v) of c it is that at least one copy df, v) is colored with2. Sincec has

at most|c| — 2 ichords, there exists an edgef ¢ such thatz], contains only one copy efand which
can be colored with. If ¢ has no rays, then we can easily patbelor its edges and ichords. O

The situation with paths is a little bit more complicated. e going to distinguish paths that
arebound andfree. A path ofC,,,; is said to be bound if it shares at least one of its endpoints wi
another path of’,,,.. A path of C,,,, that is not bound is said to be free. A bound path can be
1-bound — if exactly one of its endpoints is also an endpoint of anopiah ofC,,,,, or 2-bound — if
each of its endpoints is an endpoint of another patty,gf... We say that an edge= (u, v) of p of
Chmaz 1S arayter if u is incident with an outray gb andw is incident with an inray op.

We are going to flip the rays and chords of each bound pathsuch a way that besides possible
ichordsp either has at most one ray or exactly exactly two rays in¢itiea rayter. As for free paths
we are going to flip the rays and chords of each free pathsuch a way that besides possible ichords
p either has only inrays or only outrays or exactly two raysdant to a rayter.

Let p be any path of’,,,, with endpointsu andv. By |p| we denote the length qof, i.e., the
number of edges gf. An endpoint ofp which is not an endpoint of any other path@f,,. is said
to be aborder vertex of p. If an endpointu of p belongs also to some other path@f,..., then the
edge ofp incident tou is called aborder edge of p. The endpoint of a border edge pthat is not an
endpoint of any path of’,,,,. different fromp is also called dorder vertex of p. It may happen that
a pathp of C),,, does not have any border vertex 4if = 1 and both endpoints gf belong also to
some other path(s) af.,... We say that a path has agood ray if it has a raye incident to a border
vertexwv of p such that either (1) is an endpoint op ande together withp form a directed path of
length|p| + 1 or (2) v is not an endpoint gf ande forms a directed path of length two with, where
¢’ is an edge op incident tov and is not a border edge pf For example, lep be a2-bound path
(u,v1,v9,v) directed fromu to v and suppose thathas a ray = (vy,v3) . Thene is a good ray op.
Let us notice that the maximum number of edged£f,,.. incident to a path of C,,, is: (1) |p| — 1,
if pis 2-bound, (2)p|, if p is 1-bound and (3)p| + 1, if pis free. Itis so because no edgeMdf, .. is
incident to a vertex which is an endpoint of two differenthgadfC,,,.,, — because such an endpoint is
in fact a shrunk-cycle.

The flipping of rays and ichords of paths proceeds as follodvihe number of edges ai/,,q.
incident to a given path is (1) fewer thanp| — 1 andp is 2-bound or (2) fewer thatp| andp is
1-bound or (3) fewer thatp| + 1 andp is free, then we flip all chords and raysoéo that they become
ichords and so that no ichord is a copy of any border edge ilso, of course, no edge of is
allowed to occur in more than two copies.) Otherwise, if dagahas a good ray, we leave any one
good ray ofp as it is and flip all the other rays and chordspo$o that they become ichords and no
ichord is a copy of any border edgemfIn the reamining case, we leave some two rays thfat are
incident to a rayter and flip the rest of rays and chords s that they become ichords.

Suppose that; ande, are good rays of paths , po having a common endpoint such that both
e1 andes is incident to the border edge (of respectivelyor p,) incident withu. Then the rayg; and
eo are said to ballied.



We make the following two observations.

Fact 2 In any path-2-coloring of G/, the rays incident to the same rayter are colored with the same
color.

Proof. Lete = (u,v) be a rayter op. Then in any patt2-coloring of G/, the edge: must be colored
with a different color than an outray gfincident tou and also with a different color than an inray of
p incident tov. Since there are only two colors, it follows that the rayddeat toe must be colored
with the same color. O

Fact 3 In any path-2-coloring of G/, the allied rays are colored with different colors.

Proof. Let v be a vertex which is an endpoint of two different paghsp, of C,,... and letey, e be
two border edges incident to Then, clearlye; andes must be colored with different colors as either
both are the incoming edges ofr both are the outgoing edgeswf The ray incident t@; must be
colored differently thar;. Similarly the ray incident tes must be colored differently thag. O

After all the flipping, the multigrapldz/, is quite easy to patB-color. In fact, it suffices to appro-
priately color the rays and then the coloring of the rest efatiges is straightforward. From the rays in
G, we build the following graphd. At the beginningH has the same vertex set@s, and contains
allthe raysinG! ,i.e.,(u,v) is an edge irf if and only if (u, v) is a ray of some path or cycle 6f,,,.
in G/, after the flipping. Next, for each cycteof C,,,,, we choose two arbitrary rays, e, of ¢ and
glue together their endpoints belonging-toe., if u; € e; Ncandus € es N e, then we replace; and
uo With one vertex and as a resuitande, have (at least) one common endpoint. Further, each pair of
rays incident to the same rayter is replaced with one edgellas/s. Lete; = (uj,v1), e = (ug,v2)
be a pair of rays incident to some edge- (us,v1) in G,. Theney, e; are replaced ir{ with one
edgee = (u1,v2). Such replacements are done exhaustively. We also gluéhtyghe endpoints of
certain pairs of good rays. Suppose thaandes are allied rays of paths; , po. Then we glue together
the endpoint ok, belonging tap; with the endpoint ok, belonging taps.

At this stage, ignoring the directiond consists of paths, cycles and isolated vertices, i.e. each
vertex is either isolated or belongs to exactly one path diecyMoreover, if some cycle I# is of odd
length, then it contains at least two consecutive edgesfohat a directed path. We color the edges
of each path and cycle dff alternately withl and2 in such a way that no two incoming edges of
any vertex are colored with the same color or no two outgodgeef any vertex are colored with the
same color. In other words, we patkzolor H.

Lemma 1 Any path-2-coloring of H can be extended to a path-2-coloring of G,,.

Proof. Each ray inGz},, is colored with the same color as #h. In the case when some edgim H was
obtained from several rays i@/, each such ray id-}, is colored in the same way asn H. Thus,
by the way we constructed, each pair of rays incient to one rayter is colored in the samg allied
rays are colored with different colors and for each cyclef C,,,,, that has at least two rays, there
exist two rays of: colored differently. By Fadtl1 we already know how to colce #dges and ichords
of each cycle ofC),,,. Any edgee = (u,v) of any path ofC,,,, which is incident to an outray,;
incident tow is colored differently tham,. Similarly any edge: = (u, v) of any path ofC,,,,, which

is incident to an inray-, incident towv is colored differently tham,. Also two border edges of two
different paths oiC,,,., incident to the same vertex are colored differently. Twoiesmf the same

edge are clearly colored differently. The remaining edgeshe colored arbitrarily.
O
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