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Abstract We consider the problem of dominating set-based virtual backbone
used for routing in asymmetric wireless ad-hoc networks. These networks have
non-uniform transmission ranges and are modeled using the well-established
disk graphs. The corresponding graph theoretic problem seeks a strongly con-
nected dominating-absorbent set of minimum cardinality in a digraph. A sub-
set of nodes in a digraph is a strongly connected dominating-absorbent set if
the subgraph induced by these nodes is strongly connected and each node in
the graph is either in the set or has both an in-neighbor and an out-neighbor
in it.

Distributed algorithms for this problem are of practical significance due
to the dynamic nature of ad-hoc networks. We present a first distributed ap-
proximation algorithm, with a constant approximation factor and O(Diam)
running time, where Diam is the diameter of the graph. Moreover we present a
simple heuristic algorithm and conduct an extensive simulation study showing
that our heuristic outperforms previously known approaches for the problem.
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1 Introduction

Ad-hoc networks are local area networks built spontaneously as devices con-
nect. Rather than relying on base stations to coordinate the flow of messages
between nodes of the network, individual network nodes forward packets to
and from each other without the use of pre—existing network infrastructure.
Due to their self-dependent characteristic, ad-hoc networks have been largely
deployed in many applications that preclude physical access such as disaster
recovery and environmental monitoring. The main reason behind their effi-
ciency has been the reliance on a virtual backbone formed by a subset of
nodes in the network and acting as an underlying infrastructure. One of the
most significant successes of virtual backbones has been in routing. Virtual
backbones efficiently narrow down the search space of a route to the nodes
in the backbone such that routing tables are maintained only by those nodes,
which significantly reduces message overhead associated with routing updates
([3-5, 10, 11, 18]).

1.1 Dominating Set-based Virtual Backbones

To allow efficient routing, a virtual backbone is expected to be connected, as
small as possible, and one hop away from all nodes of the network. If the de-
vices forming a network use omnidirectional antennas, then the network can
be modeled as a disk graph such that nodes represent the devices and disks
represent the transmission ranges of nodes. An edge from node u to node v
is added if v lies in the disk of u. A wireless ad-hoc network is symmetric if
all of its nodes have the same transmission range and asymmetric otherwise.
A symmetric network is modeled as a Unit Disk Graph (UDG) and the un-
derlying virtual backbone is a connected dominating set (CDS). A CDS is
a subset of nodes in an undirected graph such that each node in the graph
is either in the subset or has a neighbor in it and the subgraph induced by
the subset is connected. An asymmetric network is modeled as a Disk Graph
(DG) and the underlying virtual backbone is a Strongly Connected Dominat-
ing Absorbent Set (SCDAS). An SCDAS is a subset of nodes in a directed
graph such that each node in the graph is either in the subset or has both an
in-neighbor and an out-neighbor in it and the subgraph induced by the subset
is strongly connected.

In practice, nodes in a network often differ in power, control, or functional-
ity and thus do not necessarily have the same transmission range. For example,
nodes in power control schemes adjust their transmission power to save en-
ergy and reduce collisions. This results in unidirectional links between devices
and hence asymmetry in the network. Therefore, in this paper, we will mainly
focus on asymmetric wireless ad-hoc networks in which nodes have different
transmission ranges.
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1.2 Algorithmic Challenges

Algorithms constructing a virtual backbone are often faced with a number of
challenges. The most important ones are due to the dynamic nature of a wire-
less ad-hoc network. Nodes in such a network constantly change: some leave
the network, new ones are added, and others change location. Hence, an algo-
rithm constructing a virtual backbone should be able to adapt to these changes
without losing its functionality. To this end, it must avoid any centralized com-
putation where nodes are required to be aware of the entire network. This is
especially essential in large networks in which by the time nodes gather infor-
mation about the entire network, changes might have already been occurred.
Thus, an algorithm for a virtual backbone is expected to be distributed or
local. In a local algorithm, each node is able to identify whether it belongs to
the backbone or not based on information it gathers only from nodes constant
number of hops away from it. Moreover, when a failure occurs in some part of
the network, only nodes in the vicinity of the failure get involved and locally
fix the failure without affecting the whole network.

In addition to being distributed, an algorithm for a virtual backbone must
use as few resources as possible while at the same time producing a good
quality solution (i.e., a small SCDAS). One of the most well-studied of these
resources is time.

In light of the above, we are interested in algorithms that are distributed,
fast, and output a good quality solution. The best possible solution would
clearly be a smallest virtual backbone (i.e., smallest SCDAS). Finding a
smallest SCDAS (and CDS), however, is NP-hard even in UDGs [25], which
explains why heuristic methods have been mainly used in the literature.

1.3 Our contribution

We propose two distributed algorithms for the SCDAS problem in Disk
Graphs. The first is an approximation algorithm with a constant approxi-
mation factor and an O(Diam) running time, where Diam is the diameter of
the input graph. As of the writing of this paper, this is the first distributed
algorithm with an approximation guarantee in DGs. When applied to Disk
graphs with bidirectional edges (DGBs), our algorithm yields a constant ap-
proximation factor with O(log*n) running time that is optimal following the
£2(log*n) lower bound by Lenzen et al. [28]. The second is a heuristic that
outperforms all existing approaches in terms of SCDAS size for DGs.

2 Preliminaries

Throughout this paper, basic graph theoretic notation such as degree of a node,
mazximum degree A in a graph, and diameter Diam of a graph, are adopted.
In a disk graph G = (V, E), each node v € V is fixed on the Euclidean plane
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and has a transmission range 7, € [Fmin, "'maz], Where rp, and rpq. denote
the minimum and maximum transmission range, respectively. For two disjoint
nodes u,v € V, there is a directed edge (u, v) if and only if d,, ,, < r,, where d,,
is the Euclidean distance between v and v. An edge (u,v) € E is unidirectional
if (v,u) ¢ E and bidirectional if (v,u) € E. We say G is (strongly) connected
if for any two nodes u,v € V, there exists a (directed) path from u to v. An
independent set (IS) in G is a subset S of V' such that there is no bidirectional
edge between any two nodes of S: we say S does not violate independence.
A subset of V' is a mazimal independent set (MIS) if it is an independent set
to which no node can be added without violating independence. Let (u,v)
be a unidirectional edge. Then, u is absorbed by v and v is dominated by
u. A dominating set is a subset of V' that dominates every node v € V and
an absorbent set is a subset of V that absorbs every node v € V. An r-
neighborhood of a node v is the set of nodes in the graph that are within r
hops of v (not including v itself). We say a graph is growth-bounded if there
is a polynomial function f(r) such that every r-neighborhood in the graph
contains at most f(r) independent nodes.

In this paper, we adopt the model in which communication among nodes
of a graph is done in synchronous rounds such that in each round, each node
sends a message of size O(logn) bits to its neighbors.

Initial work on dominating set-based virtual backbones focused on undi-
rected general graphs and UDGs. There has been a lot of centralized [6-8] as
well as distributed [10-20] approaches to construct a C'DS in the literature.
The results were then extended to DGBs, subgraphs of DGs consisting of only
bidirectional edges [21-23].

DGs were first studied by Wu [24], who introduced the SCDAS prob-
lem and gave a simple distributed algorithm with no approximation guar-
antee. In [26], Clark et al. gave the first approximation algorithm, having a
constant approximation factor, and two other heuristics outperforming the
heuristic in [24]. The two heuristics are (i) Dominating Absorbent Spanning
Trees (DAST) and (ii) Greedy Strongly Connected Component Merging Algo-
rithm (G-CMA). DAST constructs two spanning trees and outputs the union
of the two trees as an SCDAS. G-CMA first finds a dominating absorbent
set and then uses additional nodes to make the set strongly connected, using
shortest paths between strongly connected components. A distributed heuris-
tic for DGs by Kassaei et al. [33] was later shown to outperform the heuristics
in [26] in terms of the SCDAS size through simulations.

As for general directed graphs, the only work done is by Li et al. [27] who
proposed a centralized algorithm for SCDAS with a logarithmic approxima-
tion factor, which is the best possible for general graphs [9] unless P = N P.

3 An Approximation Algorithm

In this section, we propose an approximation algorithm for SCDAS in Disk
Graphs and prove its constant approximation factor in O(Diam) rounds. We
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Fig. 1: a) The original graph G = (V, E), b) The dotted edges are the unidi-
rectional edges that were removed from G and the black nodes form the MIS
nodes.

also show that our algorithm results in constant approximation for C'DS in
DGBs in O(log*n) rounds.

3.1 The Algorithm

Given a strongly connected directed graph G = (V, E), our algorithm deletes
all unidirectional edges from G and then outputs an MIS I (Figure 1). Note
that since G is left with only bidirectional edges, we may apply any distributed
algorithm for computing an MIS in undirected graphs, e.g. Luby’s algorithm
in [29]. We will later present a faster algorithm to compute an MIS in DGs.
Clearly, I forms a dominating-absorbent set DAS in G = (V, E). To strongly
connect I in G, the algorithm constructs G' = (I, E’) from G such that a
directed edge from u to v is added if there is a path from u to v of length at
most three whose (at most two) inner nodes are in V' \ I. This construction
may lead to multiple edges from u to v. In such a case, we remove all but one
of them (without loss of generality). The nodes in I along with the inner nodes
in G corresponding to the remaining edges of G’ form an SCDAS (Figure 2).

Distributed Implementation: The algorithm above is implemented as fol-
lows. All nodes are assigned IDs. (Step 1) In each round, each node runs a
distributed MIS algorithm and decides whether it belongs to an MIS I or not.
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Fig. 2: ¢) G’ = (I, E’') where the node set I is in black. d) G’ = (I, E’), the
gray edges are those that were removed in Step 2.2, and the nodes on the black
edges form the set C.

Algorithm 1 (Approximation Algorithm)

Input: A strongly connected directed graph G = (V, E)

Output: An SCDAS SCV

Step 1: Delete all unidirectional edges from G and then find an MIS I.
Step 2: Construct G’ = (I, E’) from G = (V, E) as follows.

2.1: For each pair u, v of nodes from I, E’ contains a directed edge from u to v if
there is a path from u to v of length at most three whose (at most two) inner nodes are
in V'\ I. This construction may lead to multiple edges from u to v.

2.2: For each pair (u,v) of nodes from I such that G’ contains multiple edges from
u to v, remove all but one of these edges.

Output I UC, where C' is the set of the inner nodes in G corresponding to the remaining
edges of G'.

(2.1) Each node in I sends an edgeRequest packet, a packet requesting to form
an edge. The edgeRequest packet includes a source that contains the ID of
the node requesting to form an edge. If a non-MIS node in V'\ I receives such
a request, it adds its ID to the packet and forwards the packet. Note that a
node in V' \ I ignores all future edgeRequest packets from a source w if it has
previously received a packet from w. (2.2) A node in I may receive multiple
edgeRequests with the same source. For each source, it ignores all but the first
edgeRequest. Thus with each source, it forms an edge consisting of the nodes
with the IDs on the packet. Each node in I informs the source nodes about its
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edge formations with them that in turn inform the participating nodes, i.e.,
nodes on the selected packets (edges).

3.2 Analysis

In what follows, we show that the algorithm above is correct and yields a
constant approximation factor in O(Diam) rounds.

3.2.1 Correctness.

Given a strongly connected directed graph G = (V, E), Algorithm 1 outputs
an SCDAS.

Proof The algorithm outputs I UC, where I is a maximal independent set and
therefore a dominating absorbent set. Thus, it remains to show that I U C' is
strongly connected. In what follows, we show that if G is strongly connected,
then G’ is strongly connected. Let G be a strongly connected graph and I an
MIS in G. Then, the following two properties hold.

i) If there is a path P = (u,v,w) with w,v,w € V \ I then v must be
dominated and absorbed by a node y € I. This follows directly from the
definition of a maximal independent set.

ii) For each pair of nodes (u,w) there exists a walk W = (u = vy, ...v5s = w)
(v; not necessarily distinct) such that each node in I N W is followed by
at most two nodes of V'\ I. Assume for contradiction that this does not
hold. Let A be the set including all walks W from u to w in G. For a walk
W € A let my be the maximum length of a subpath given by consecutive
nodes of V' \ I and ¢(mw ) be the number of those subpaths with length
mw in W. We choose a walk W' = (u = vy,...vs = w) € A such that my
and c(my) is minimum. Let v;, v;11,v,42 (i = 1..s — 2) be three nodes
of a longest subpath with nodes in V' \ I. Due to i, v;11 is dominated and
absorbed by a node y € I. Thus, W = (v1, ..., U3, Vi1, Y, Vit1, Vit2, -..Vs) 18
a walk from u to w. If ¢(my) = 1 then my = my» —1 and if ¢(my) > 1
then ¢(mw) = c¢(mw-) — 1, contradicting the choice of W’.

Let I be the underlying MIS of G and u, w € I. It follows from ii) that we can
find a walk W such that each node in I N W is followed by at most two nodes
of V\I. Thus, W corresponds to a path P in G’ from u to w. This implies that
G’ constructed in Step 2.1 is strongly connected. Since Step 2.2 only removes
edges from E’ whose deletion does not affect the strong connectivity of G,
the resulting I U C' is strongly connected in G. ]

3.2.2 Approximation Ratio & Running Time.

The theorem below shows that Algorithm 1 yields a constant approximation
factor in O(Diam) rounds.
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Theorem 1 Given a DG G = (V, E) with transmission ratio k = == Algo-

min

rithm 1 gives O(k*)-approzimation factor for SCDAS in O(Diam) rounds.

Proof We show that at the end of Step 2.2, the degree of each node in G’
is upper bounded by L49k2 — 1J. To prove the latter, observe that at the
end of Step 2.2, each node in G’ has at most one out-going edge for each
neighbor. Therefore, the degree of each node in G’ is bounded by the num-
ber of independent nodes in w’s 3-hop neighborhood in G. Since the distance
between any two independent nodes u,v in G’ is greater than r,,;, (other-
wise v and v must be connected in both directions), d,, , is thus bounded by
Trmin < yu < 3Tmaeg- The maximum area that may be covered by the disks of
the independent nodes in u’s 3-hop neighborhood in G is given by the differ-
ence of the areas between two disks with radii 3.57,q, and =2, respectively.
Furthermore, the minimum area of a disk is 7r(’"’"T")2 It follows that u has at

2 Tmin )2
most {(3’5%("?},”;(2 5 J = [49k% — 1] neighbors in G'.
2
Moreover, we have that the size of any independent set in G is upper
bounded by 2.4(k+ )2+ |SCDAS | 4 3.7(k + 5)?, where SCDAS,,; denotes
an optimal SCDAS (proved in [30]).
Now we can conclude the bound on the approximation factor as follows.

The size of the SCDAS constructed by the algorithm is bounded by

ISCDAS| < |IS|(1+ 2A(G")), (1)

because Step 2 of the algorithm adds for each node in I at most 2A(G’) nodes
from V'\ I in order to strongly connect I. Plugging in the bounds from lemmas
3 and 4 yields:

1 1
|ISCDAS| < (2.4(k + 5)2 |SCDAS, | + 3.7(k + 2)2> (142 [49%% - 1))

(2)
This implies:
|ISCDAS| = O(k*) - |SCDAS | 3)

It remains to show that Algorithm 1 takes O(Diam) rounds. To compute
an MIS in Step 1, we use Luby’s O(logn) time randomized algorithm to con-
struct an MIS for directed general graphs. As for DGs, there is a deterministic
O(log" n) time algorithm to find an MIS in bounded-growth graphs [32]. If the
transmission ratio k = a4 /"min 1S bounded, DGs become bounded-growth
graphs with f(r) = O(r?k?). Therefore, for DGs, rather than using Luby’s
O(logn) time randomized algorithm, we use the deterministic O(log" n) time
algorithm for bounded-growth graphs in [32] which when applied to DGs takes
O(k®log" n) time. In Step 2, constructing G’ = (I, E’) from G = (V, E) needs
only three broadcasts because the edgeRequest packets stop after at most two
inner nodes. Once ‘connecting’ nodes are selected, it remains to inform them.
Informing the participating nodes takes O(Diam) rounds where each source
node informs other source nodes about the selected edges and consequently
the selected nodes. Note that the number of nodes to be informed are at most
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2k?, thus bounding the number of propagated messages by O(k?).Therefore,
the total running time is bounded by O(Diam). O

3.3 Discussion

Here we show that a slight modification of Algorithm 1 yields a constant
approximation for CDS in DGBs in O(log" n) rounds.

Given a connected undirected graph G = (V, E), the algorithm constructs
an MIS I in G that clearly forms a dominating set in G. To connect I in G,
each node in I ignores all edgeRequest packets from all source nodes except
the first one it receives. Since the graph is undirected, it is enough for each
node in I to connect to one other node in I.

Theorem 2 Given a DGB G = (V, E) with transmission ratio k = Imez

Tmin

Algorithm 1 gives O(In k)-approzimation factor for CDS in O(log" n) rounds.

Proof The size of any independent set in G is at most O(ln k) (proved in [31]).
Hence, since each node in I adds at most two nodes from V' \ I to connect,
the approximation factor holds.

To compute an MIS in G, we use the same deterministic O(log* n) time
algorithm to find an MIS in bounded-growth graphs [32] which when applied to
DGBs, takes O(k®log™ n) time. Moreover, since the graph is undirected, O(1)
time is needed to connect the constructed MIS, thus completing the proof. O

4 A Simple Heuristic Approach

In this section, we propose a heuristic for SCDAS in DGs and show through
extensive simulations that it outperforms all existing approaches for DGs in
terms of SCDAS size.

4.1 The Algorithm

We first give the intuitive ideas behind our algorithm and then describe it
formally.

A high-degree node is more likely to dominate and absorb other nodes
than nodes of lower degree. Thus, a ‘good’ solution will most likely contain
many high-degree nodes. However, since the solution set must also be strongly
connected, some low-degree nodes might also be used as intermediary nodes
to connect the nodes in an optimal solution set. Instead of discovering the
low-degree nodes in that are needed only to guarantee strong connectivity,
our algorithm starts by deleting a low-degree node that does not contribute
to the strong connectivity property. This can easily be done by removing a
low-degree node from the graph and checking if the graph remains strongly
connected. If so, the just-removed node can be deleted (i.e., not counted in the
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solution). When such a node is deleted, it has to be dominated and absorbed by
a subset of the remaining nodes. Therefore, high-degree in- and out-neighbors
are selected (i.e., added to the solution) to dominate and absorb the deleted
node. Once a node is selected, it can never be deleted.

More formally, we color the nodes of the graph in green, red, or white as
follows. Initially, all nodes are white and form an SCDAS. A green node is one
that is decided to be in the solution, while a red one is a deleted node (decided
not to be in). A white node is not yet decided. At any subsequent stage, the
white and green nodes induce an SCDAS. The algorithm ends when the set
of white nodes becomes empty. In addition to the above procedure, when the
number of non-red in-neighbors (or out-neighbors) of a white node v drops to
one, the only one in-neighbor (or out-neighbor) of v is automatically placed in
the solution (if not already green), being the only node that can absorb (or,
respectively, dominate) v.

Algorithm 2 (LDHD: Low-Degree Elimination and High-Degree Selection)

Input: A strongly connected directed graph G = (V, E)
Output: An SCDAS SCV
Initially all nodes are in S and colored white. While S has white nodes,
Select a white node v of minimum degree.
If G[S\v] is not strongly connected
Color v green
Else
Color v red and update the degrees of its neighbors
If none of v’s in-neighbors is green
Select in-neighbor u of maximum degree
Color u green
If none of v’s out-neighbors is green
Select out-neighbor w of maximum degree
Color w green
Update the degrees

Distributed Implementation: The algorithm LDHD above is implemented
as follows. All nodes are assigned IDs. After all nodes acquire information
about the degrees and IDs of their in- and out- neighbors, a node v with
minimum degree among its neighbors initiates the algorithm (ties are broken
by smaller ID first). To check if removing v disconnects G, it is enough to
check if the subgraph induced by the neighbors (in- and out- neighbors) of v
is disconnected in which case v goes into the solution. Otherwise, the in- and
out- neighbors with highest degree (ties are again broken by smaller ID first)
go into the solution to dominate and absorb v, respectively (if not already
dominated and/or absorbed). Information about the degrees are broadcasted
after being updated.

Running Time: LDHD requires O(Diam) rounds every time nodes gather
information about their neighborhood. Each node waits for lower degree nodes
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at most O(A) = O(n) rounds until it is its turn. Therefore, the overall running
time of the algorithm is at most O(n - Diam).

4.2 Experimental Analysis

In this section, we present the results of our extensive simulations conducted
to evaluate the performance of LDHD.

LDHD is compared to the exact solution produced by a brute force op-
timization algorithm as well as to two well known approaches in the liter-
ature: Dominating Absorbent Spanning Trees (DAST) and Greedy Strongly
Connected Component Merging algorithm (G-CMA) proposed by [26]. The
quality measure is the size of the SCDAS constructed.

To generate a random asymmetric network, we follow the same approach
adopted in previously published work (e.g., in [26]). N nodes with distinct
identity numbers between 1 and N are located (randomly) in a limited square
area of the Euclidean plane. Each node chooses a random transmission range
that is bounded by some specified minimum and maximum values. A directed
edge is added from a node u to node v if the Euclidean distance between u and
v is less than the transmission range of u. If the generated graph is strongly
connected, we use it as a test instance, otherwise we discard it. We measure
the performance of each approach under the effect of two network parameters:

(a) Network Density, which we vary in two ways:
(i) Different numbers of nodes in a fixed area
(ii) Different area sizes for a fixed number of nodes

(b) Transmission ratio: k& = Trmaz/ Trmin, where Trpmae and T, are the
maximum and minimum transmission ranges respectively.

Simulation for each performance measure is repeated 100 times for each in-
stance and the average result is taken.

4.2.1 Network Density: Different Number of Nodes

To compare the size of the solution constructed by each of the four algorithms,
we deploy NV nodes in a 1000m x 1000m area. N changes between 10 and 130
with an increment of 10. The nodes select their transmission ranges from the
interval [Trmin » Trmaz |- Figure 3 shows the performance of each approach.

4.2.2 Network Density: Different area size

To study the effect of varying the area on the performance of each approach, we
deploy a fixed number of nodes, N = 50. The nodes select their transmission
ranges from the interval [Trmin , Trmaz]. The area varies from 600m x 600m
to 1400m x 1400m. Figure 4 shows the performance of each approach.
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Effect of Number of Nodes
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Fig. 3: Network Density: Different number of nodes

4.2.8 Transmission ratio

We also study the effect of varying the transmission ratio k = Trmaxz/ Trmin
on the size of the solutions constructed by each of the four approaches. We
conducted two experiments. In the first, we randomly locate 50 nodes in a fixed
1000m x 1000m area and let k& varies as follows: We fix T4 = 1000m and
vary Trmin between 200m and 1000m with an increment of 200 for £ = 1 to 5.
In the second experiment, we measure the performances on a larger network
and randomly locate 100 nodes in a fixed 1200m x 1200m area and vary k
as follows: we fix Tyrmer = 1200m and vary T, between 200m and 1200m
with an increment of 200 for £ = 1 to 6. Figure 5 and Figure 6 show the
performance of each approach in each of the experiments, respectively.

4.3 Discussion

As shown in the four charts, there is a notable difference in the size of the
SCDAS constructed by each of the four approaches. Obviously, LDHD is the
closest to optimum in all the different experimental setups. In fact, the size of
our computed solution was never larger than 1.75 times the optimum, while
the sets constructed by the two other heuristics were in the range: 2.5 to 5
times the optimum.

The main strength of LDHD is its efficiency, simplicity as well as the quality
of delivered solutions: despite being very simple, LDHD can deliver solutions
whose size is much closer to optimum than those produced by other algorithms
found in the literature. In fact, one cannot neglect the need for highly efficient
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Effect of Area Size
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Effect of Transmission Range Ratio
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Fig. 5: Different Transmission Ratios; N=50

simple algorithms considering the limited computational resources, especially
in wireless networks.

Another remarkable feature of LDHD is that it maintains a feasible so-
lution at any point during the search for a best-possible solution. Therefore,
a solution can be delivered whenever needed, should time be the most criti-
cal measure. Note that the algorithm proposed by [33] can be characterized
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Effect of Transmission Range Ratio
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Fig. 6: Different Transmission Ratios; N=100

with the same feature of maintaining a feasible solution at any point but in-
volves more computation compared to LDHD. Our algorithm considers the
role played by both low- and high- degree nodes, whereas the algorithm in
[33] considers only low-degree nodes v and includes two more tests in addition
to strong connectivity test (whether removing v disconnects the graph): dom-
ination test (whether all nodes dominated by v can be dominated by another
node) and absorbency test (whether all nodes absorbed by v can be absorbed
by another node). A low-degree node v is then added to the solution if it passes
the three tests. An important observation here is that if v does not disconnect
the remaining graph (i.e., passes the strong connectivity test), this means all of
v’s neighbors can reach and be reached by all other nodes and must therefore
be absorbed and dominated by other nodes (i.e., this means v automatically
passes the two other tests too and there is no point of taking them).

5 Concluding Remarks

This paper provides distributed algorithms for the problem of dominating
set-based virtual backbone used for routing in asymmetric wireless ad-hoc
networks. The techniques and ideas developed in this paper can be of inde-
pendent interest and can be used in other extensions of the problem, thus
capturing more challenges faced by these networks. For example, nodes in the
virtual backbone are often subject to failure, thus leaving fault tolerance un-
avoidable. Symmetric networks have been extensively studied with the fault
tolerant consideration, whereas only few heuristics have studied the problem in
asymmetric networks [37, 38]. Hence, it will be interesting to give approxima-
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tion guarantees and better heuristics for the underlying problem in asymmetric
networks.

Another interesting direction is to explore the virtual backbone problem
under the effect of unknown future. Previous work in the literature has mainly
addressed the problem with the assumption that the entire network is known
in advance. It will be interesting to model the problem in an online setting in
which nodes are revealed with time and an online algorithm has to construct an
efficient virtual backbone at each point of time without knowing future nodes.
Within this context, there has been some work on the equivalent problem
of dominating set in general graphs: the online set cover problem by Alon
et al.[35]. To the best of our knowledge, no one has considered the online
dominating set problem in Disk Graphs. Nevertheless, similar problems such
as finding large independent sets in Disk Graphs have been studied in an online
setting [36] and might give some insights to solve the online dominating set
problem in Disk Graphs.
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