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Abstract. We assume that a message may be delivered by packets through multiple hops and investi-
gate the feasibility and efficiency of an implementation of the Omega Failure Detector under such an
assumption. To motivate the study, we prove that the existence and sustainability of a leader is expo-
nentially more probable in a multi-hop Omega implementation than in a single-hop one.

An implementation is: message efficient if all but finitely many messages are sent by a single process;
packet efficient if the number of packets used to transmit a message in all but finitely many messages is
linear w.r.t the number of processes, packets of different messages may potentially use different chan-
nels, thus the number of used channels is not limited; super packet efficient it the number of channels
used by packets to transmit all but finitely many messages is linear.

We present the following results for deterministic algorithms. If reliability and timeliness of one mes-
sage does not correlate with another, i.e., there are no channel reliability properties, then a packet
efficient implementation of Omega is impossible. If eventually timely and fair-lossy channels are con-
sidered, we establish necessary and sufficient conditions for the existence of a message and packet
efficient implementation of Omega. We also prove that the eventuality of timeliness of channels makes
a super packet efficient implementation of Omega impossible. On the constructive side, we present
and prove correct a deterministic packet efficient implementation of Omega that matches the necessary
conditions we established.

1 Introduction

The asynchronous system model places no assumptions on message propagation delay or
relative process speeds. This makes the model attractive for distributed algorithm research
as the results obtained in the model are applicable to an arbitrary network and computer
architecture. However, the fully asynchronous system model is not well suited for fault
tolerance studies. An elementary problem of consensus, where processes have to agree
on a single value, is unsolvable even if only one process may crash [9]: the asynchrony of
the model precludes processes from differentiating a crashed and a slow process.

A failure detector [[6]] is a construct that enables the solution to consensus or related
problems in the asynchronous system model. Potentially, a failure detector may be very
powerful and, therefore, hide the solution to the problem within its specification. Con-
versely, the weakest failure detector specifies the least amount of synchrony required to
implement consensus [3]. One such detector is Omeg:ﬂ

Naturally, a failure detector may not be implemented in the asynchronous model itself.
Hence, a lot of research is focused on providing the implementation of a detector, espe-
cially Omega, in the least restrictive communication model. These restrictions deal with

4 In literature, the detector is usually denoted by the Greek letter. However, we use the letter to denote low complexity
bound. To avoid confusion, we spell out the name of the failure detector in English.



timeliness and reliability of message delivery. Aguilera et al. [1] provide a remarkable
Omega implementation which requires only a single process to have eventually timely
channels to the other processes and a single process to have so called fair-lossy channels
to and from all other processes. Aguilera et al. present what they call an efficient im-
plementation where only a single process sends infinitely many messages. In their work,
Aguilera et al. consider a direct channel as the sole means of message delivery from one
process to another. In this paper, we consider a more general setting where a message
may arrive to a particular process through several intermediate processes. Otherwise, we
preserve model assumptions of Aguilera et al.

Our contribution. We study Omega implementation under the assumption that a message
may come to its destination through other processes.

To motivate this multi-hop Omega implementation approach, we consider a fixed
probability of channel timeliness and study the probability of leader existence in a clas-
sic single-hop and in multi-hop implementations. We prove that the probability of leader
existence tends to zero for single-hop implementations and to one for multi-hop ones as
network size grows. Moreover, probability of leader persisting while the timeliness of
channel changes tends to zero for single-hop and to infinity for multi-hop implementa-
tions.

If we consider deterministic algorithms, we study three classes of Omega implementa-
tions: message efficient, packet efficient and super packet efficient. In a message efficient
implementation all but finitely many messages are sent by a single process. In a packet
efficient implementation, the number of packets in all but finitely many transmitted mes-
sages is linear w.r.t. the number of processes in the network. However, in a (simple) packet
efficient implementation, packets of different messages may use different channels such
that potentially all channels in the system are periodically used. In a super packet efficient
implementation, the number of channels used in all but finitely many messages is also
linear w.r.t. to the number of processes.

Our major results are as follows. If timeliness of one message does not correlate with
the timeliness of another, i.e., there are no timely channels, we prove that any imple-
mentation of Omega has to send infinitely many messages whose number of packets is
quadratic w.r.t to the number of processes in the network. This precludes a packet effi-
cient implementation of Omega. If eventually timely and fair-lossy channels are allowed,
we establish the necessary and sufficient conditions for the existence of a packet efficient
implementation of Omega. We then prove that this eventuality of timely and channels
precludes the existence of a super packet efficient implementation of Omega. We present
an algorithm that uses these necessary conditions provides a message and packet efficient
implementation of Omega

Related work. The implementation of failure detectors is a well-researched area [2/38 1101201 314)15/16J17]
Refer to [1.2] for detailed comparisons of work related to the kind of Omega implementa-

tion we are proposing. We are limiting our literature review to the most recent and closest

to ours studies.



Delporte-Gallet et al. [8] describe algorithms for recognizing timely channel graphs.
Their algorithms are super packet efficient and may potentially be used to implement
Omega. However, their solutions assume non-constant size messages and perpetually re-
liable channels. That is Delporte-Gallet et al. deviate from the model of Aguilera et al.
and the algorithms of Delporte-Gallet et al. do not operate correctly under fair-lossy and
eventually timely channel assumptions.

A number of papers consider Omega implementation under various modifications of
Aguilera et al model. Hutle et al. [[11] implement Omega assuming a send-to-all message
transmission primitive where f processes are guaranteed to receive the message timely.
Fernandez and Raynal [2] assume a process that is able to timely deliver its message to
a quorum of processes over direct channels. This quorum and channels may change with
each message. A similar rotating set of timely channels is used by Malkhi et al. [[14].
Larrea et al. [13] give an efficient implementation of Omega but assume that all channels
are eventually timely. In their Omega implementation, Mostefaoui et al. [15] rely on a
particular order of message interleaving rather than on timeliness of messages. Biely and
Widder [3]] consider message-driven (i.e., non-timer based) model and provide an efficient
Omega implementation.

There are several recent papers on timely solutions to problems related to Omega im-
plementation. Charron-Bost et al. [7] use a timely spanning tree to solve approximate con-
sensus. Lafuente et al. [12] implement eventually perfect failure detector using a timely
cycle of processes.

2 Notation and Definitions

Model specifics. To simplify the presentation, we use an even more general model than
what is used in Aguilera et al. [1]]. The major differences are as follows. We use infinite
capacity non-FIFO channels rather than single packet capacity channels. Our channel
construct makes us explicitly state the packet fairness propagation assumptions that are
somewhat obscured by the single capacity channels.

In addition, we do not differentiate between a slow process and a slow channel since
slow channels may simulate both. Omega implementation code is expressed in terms of
guarded commands, rather than the usual more procedural description. The operation of
the algorithm is a computation which is a sequence of these command executions. We
express timeouts directly in terms of computation steps rather than abstract or concrete
time. This simplifies reasoning about them.

Despite the differences, the models are close enough such that all of the results in this
paper are immediately applicable to the traditional Omega implementation model.

Processes and computations. A computer network consists of a set N of processes. The
cardinality of this set is n. Each process has a unique identifier from O to n—1. Processes in-
teract by passing messages through non-FIFO unbounded communication channels. Each
process has a channel to all other processes. That is, the network is fully connected. A
message 1s constant size if the data it carries is in O(logn). For example, a constant size
message may carry several process identifiers but not a complete network spanning tree.



Each process has variables and actions. The action has a guard: a predicate over the
local variables and incoming channels of the process. An action is enabled if its guard
evaluates to true. A computation is a potentially infinite sequence of global network states
such that each subsequent state is obtained by executing an action enabled in the previous
state. This execution is a computation step. Processes may crash. Crashed process stops
executing its actions. Correct process does not crash.

Messages and packets. We distinguish between a packet and a message. Message is
particular content to be distributed to processes in the network. Origin is the process that
initiates the message. The identifier of the origin is included in the message. Messages
are sent via packets. Packet is a portion of data transmitted over a particular channel. A
message is the payload of a packet. A process may receive a packet and either forward
the message it contains or not. A process may not modify it: if a process needs to send
additional information, the process may send a separate message. A process may forward
the same message at most once. In effect, a message is transmitted to processes of the
network using packets. A particular process may receive a message either directly from
the origin, or indirectly possibly through multiple hops.

Scheduling and fairness. We express process synchronization in terms of an adversar-
ial scheduler. The scheduler restrictions are as follows. We do not distinguish slow pro-
cesses and slow packet propagation. A scheduler may express these phenomena through
scheduling process action execution in a particular way. A packet transmission imme-
diately enables the packet receipt action in the recipient process. A packet is lost if the
receipt action is never executed. A packet is not lost if it is eventually received.

Timers. Timer is a construct with the following properties. A timer can be reset, stopped
and increased. It can also be checked whether the timer is on or off. It has a timeout
integer value and a timeout action associated with it. A timer is either a receiver timer or
a sender timer. If a sender timer is on, timeout action is executed once the computation
has at most the timeout integer steps without executing the timer reset. If a receiver timer
is on, the timeout action is executed once the computation has at least the timeout integer
steps without executing the timer reset. Increasing the timer, adds an arbitrary positive
integer value to the timeout integer. An off timer can be set to on by resetting it.

Reliable and timely messages and packets. A packet is reliable if it is received. A
message is reliable if it is received by every correct process. A channel is reliable if every
packet transmitted over this channel is reliable.

A channel is fair-lossy if it has the following properties. If there is an infinite number
of packet transmissions over a particular fair-lossy channel of a particular message type
and origin, then infinitely many are received. We assume that a fair-lossy channel is not
type discriminating. That is, if it is fair-lossy for one type and origin, it is also fair-lossy
for every pair of message type and origin.

Observe that if there is an infinite number of message transmissions of a particular
message type and origin over a path that is fair-lossy, then infinitely many succeed. There



converse is true as well: if there is an infinite number of successful message transmissions,
there must be a fair-lossy path between the origin an the destination.

A packet is timely if it is received within a bounded number of computation steps.
Specifically, there is a finite integer B such that the packet is received within B steps.
Naturally, a timely packet is a reliable packet. A message is timely if it is received by
every process via a path of timely packets. A channel is timely if every packet transmitted
over this channel is timely. A channel is eventually timely if the number of non-timely
packets it transmits is finite. Note that a channel that transmits a finite number of packets
is always eventually timely.

The timely channel definition is relatively clear. The opposite, non-timely channel, is
a bit more involved. A channel that occasionally delays or misses a few packets is not non-
timely as the algorithm may just ignore the missed packets with a large enough timeout.
Hence, the following definition.

A channel is strongly non-timely if the following holds. If there is an infinite number of
packet transmissions of a particular type and origin over a particular non-timely channel,
then, for any fixed integer, there are infinitely many computation segments of this length
such that none of the packets are delivered inside any of the segments.

Similarly, the non-timeliness has to be preserved across multiple channels, a message
may not gain timeliness by finding a parallel timely path, then, for example, the two paths
may alternate delivering timely messages. Therefore, we add an additional condition for
non-timeliness.

All paths between a pair of processes x and y are strongly non-timely if x sends an
infinite number of messages to y, yet regardless of how the message is forwarded or what
path it takes, for any fixed integer, there are infinitely many computation segments of this
length such that none of the messages are delivered inside any of the segments. Unless
otherwise noted, when we discuss non-timely channels and paths, we mean strongly non-
timely channels and paths.

Communication models. To make it easier to address the variety of possible commu-
nication restrictions, we define several models. The dependable (channel) model allows
eventually or perpetually reliable timely or fair-lossy channels. In the dependable model,
an algorithm may potentially discover the dependable channels by observing packet prop-
agation. The general propagation model does not allow either reliable or timely channels.
Thus, one message propagation is not related to another message propagation.

Message propagation graph. Message propagation graph is a directed graph over net-
work processes and channels that determines whether packet propagation over a particular
channel would be successful. This graph is connected and has a single source: the origin
process. This concept is a way to reason about scheduling of the packets of a particular
message.

Each message has two propagation graphs. In reliable propagation graph R, each edge
indicates whether the packet is received if transmitted over this channel. In timely propa-
gation graph T each edge indicates whether the packet is timely if transmitted over this
channel. Since a timely packet is a reliable packet, for the same message, the timely prop-



agation graph is a subgraph of the reliable propagation graph. In general, a propagation
graph for each message is unique. That is, even for the same source process, the graphs
for two messages may differ. This indicates that different messages may take divergent
routes.

If a channel from process x to process y is reliable, then edge (x,y) is present in the
reliable propagation graph for every message where process x is present. In other words,
if the message reaches x and x sends it to y, then y receives it. A similar discussion applies
to a timely channel and corresponding edges in timely propagation graphs.

Propagation graphs are determined by the scheduler in advance of the message trans-
mission. That is, the recipient process, depending on the algorithm, may or may not for-
ward the received message along a particular outgoing channel. However, if the process
forwards the message, the presence of an edge in the propagation graph determines the
success of the message transmission. Note that the process forwards a particular message
at most once. Hence, the propagation graph captures the complete possible message prop-
agation pattern. A process may crash during message transmission. This crash does not
alter propagation graphs.

Proposition 1. A message is reliable only if its reliable propagation graph R is such that
every correct process is reachable from the origin through non-crashed processes.

Proposition 2. A message is timely only if its timely propagation graph T is such that
every correct process is reachable from the origin through non-crashed processes.

Omega implementation and its efficiency. An algorithm that implements the Omega
Failure Detector (or just Omega) is such that in a suffix of every computation, each correct
process outputs the identifier of the same correct process. This process is the leader.

An implementation of Omega is message efficient if the origin of all but finitely many
messages is a single correct process and all but finitely many messages are constant size.
An implementation of Omega is packet efficient if all but finitely many messages are
transmitted using O(n) packets.

An omega implementation is super packet efficient if it is packet efficient and the
packets of all but finitely many messages are using the same channels. In other words, if a
packet of message m; is forwarded over some channel, then a packet of another message
m, is also forwarded over this channel. The intent of a super packet efficient algorithm is to
only use a limited number of channels infinitely often. Since a packet efficient algorithm
uses O(n) packets infinitely often, a super packet efficient algorithm uses O(n) channels
infinitely often.

3 Probabilistic Properties

In this section, we contrast a multi-hop implementation of Omega and a classic single-
hop, also called direct channel, implementation. We assume each network channel is
timely with probability p. The timeliness probability of one channel is independent of
this probability of any other channel.



Leader existence probability. We assume that the leader may exist only if there is a
process that has timely paths to all processes in the network. In case of direct channel
implementation, the length of each such path must be exactly one.

As n grows, Omega implementations behave radically differently. Theorems [I] and [2]
state the necessary conditions for leader existence and indicate that the probability of
leader existence for direct channel implementation approaches zero exponentially quickly,
while this probability for multi-hop implementation approaches one exponentially quickly.
In practical terms, a multi-hop omega implementation is far more likely to succeed in es-
tablishing the leader.

Theorem 1. If the probability of each channel to be timely is p < 1, then the proba-
bility of leader existence in any direct channel Omega implementation approaches zero
exponentially fast as n grows.

Proof: Let D, be the probability that some process x does not have direct timely chan-
nels to all processes in the network. This probability is P(D,) = 1 — p"~!. For two distinct
processes x and y, D, and D, are disjoint since channels are oriented. Thus, if p < 1, the

n—+co

probability that no leader exists is P((,ey D) = (1 — p" )" " = 1. O

Theorem 2. If the probability of each channel to be timely is p < 1, then the probability
of leader existence in any multi-hop Omega implementation approaches 1 exponentially
fast as n grows.

Proof: A channel is bitimely if it is timely in both directions. The probability that there
exists at least one process such that there exist timely paths from this process to all other
processes is greater than the probability to reach them through bitimely paths. We use the
probability of the latter as a lower bound for our result. If p is the probability of a channel
to be timely, = p? is the probability that it is bitimely. Consider graph G where the
edges represent bitimely channels. It is an Erdos-Renyi graph where an edge exists with

—+00

probability p. It was shown (see [10]) that P(G is connected) ~ 1 — n(1 — p)"! "5 1.o

Leader stability. As in previous subsection, we assume the leader has timely paths to
all other processes in the network. If channel timeliness changes, this process may not
have timely paths to all other processes anymore. Leader stability time is the expected
number of rounds of such channel timeliness change where a particular process remains
the leader.

Again, direct channel and multi-hop implementations of Omega behave differently.
Direct channel leader stability time approaches zero as n increases and cannot be lim-
ited from below by fixing a particular value of channel timeliness probability. Multi-hop
leader stability goes to infinity exponentially quickly. In a practical setting, a leader is
significantly more stable in a multi-hop Omega implementation than in a direct channel
one.



Theorem 3. In any direct channel Omega implementation, if the probability of each
channel to be timely is p < 1, leader stability time goes exponentially fast to 0 as n
grows. If leader stability time is to remain above a fixed constant E > 0, then the channel
timeliness probability p must converge to 1 exponentially fast as n grows.

Proof:  Ata given time, a given process has timely channels to all other processes with
probability p"~!. The number of rounds X a given process retains timely paths to all other
processes follows a geometric distribution P(X = r) = ¢'(1 — q), where ¢ = p"~'. Thus,
the expected number of rounds a process retains timely channels to all other processes is

n—1

9 _ _P

~ p"~!, which tends exponentially fast toward 0 if p is a constant less than 1.
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Assume E(X) converges towards a given fixed number E as n tends towards infinity.
That is, we need lim,_,., P(G is connected) = ﬁ Then, p"! tends to ﬁ, which implies
that p converges towards 1 exponentially fast. O

Theorem 4. In any multi-hop Omega implementation, if the probability of each channel
to be timely is p < 1, leader stability time goes to infinity exponentially fast as n grows.
If leader stability time is to remain above a fixed constant E > 0, then channel timeliness
probability may converge to 0 exponentially fast as n grows.

Proof: If we fix p,0 < p < 1, we have P(G is connected) ~ 1 —n(1 — p)"! (see [10]).

Then, the expected number of rounds a given process retains timely paths to all other
n
processes is asymptotically n~! (ﬁ) , which increases exponentially fast.
Assume E(X) converges towards a given fixed number E as n tends to infinity. This

means that
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Using well-known results of random graph theory [4]], we can take

_ Inn ¢ Inn Inin(l+E)
pn=—+-=—-—
n n n n

4 Necessity and Sufficiency Properties

We now explore the properties of deterministic Omega implementation.

Model independent properties. The below Omega implementation properties are appli-
cable to both general propagation and dependable channel model.

Theorem S. In an implementation of Omega, at least one correct process needs to send
infinitely many timely messages.

Proof:  Assume A is an implementation of Omega where every correct process sends a
finite number of timely messages. Start with a network where all but two processes x and
y crash, wait till all timely messages are sent. Since A is an implementation of Omega,



eventually x and y need to agree on the leader. Let it be x. Since all timely messages are
sent, the remaining messages may be delayed arbitrarily. If x now crashes, process y must
eventually elect itself the leader. Instead, we delay messages from x to y. The crash and
the delay are indistinguishable to y so it elects itself the leader. We now deliver messages
in an arbitrary manner. Again, since ‘A implements Omega, x and y should agree on the
leader. Let it be y. The argument for x is similar. We then delay messages from y to x
forcing x to select itself the leader. We continue this procedure indefinitely. The resultant
sequence is a computation of A. However at least one process, either x or y, oscillates in
its leader selection infinitely many times. To put another way, this process never elects the
leader. This means that, contrary to the initial assumption, (A is not an implementation of
Omega. This proves the theorem. O

If single process sends an infinite number of messages in a message efficient imple-
mentation of Omega, this process must be the leader. Otherwise processes are not able to
recognize the crash of the leader. Hence, the corollary of Theorem [5

Corollary 1. In a message efficient implementation of Omega, the leader must send in-
finitely many timely messages.

General propagation model properties.

Lemma 1. To timely deliver a message in the general propagation model, each recipient
process needs to send it across every outgoing channel, except for possibly the channels
leading to the origin and the sender.

Proof:  Assume the opposite. There exists an algorithm A that timely delivers message
m from the origin x to all processes in the network such that some process y receives it
timely yet does not forward it to some process z # X.

Consider the propagation graph 7T for m to be as follows.

x — y — z — rest of the processes

That is, the timely paths to all processes lead from x to y then to z. If A is such that x
sends m to y, then, by assumption, y does not forward m to z. Therefore, no process except
for y gets m through timely packets. By definition of the timely message, m is not timely
received by these processes. If x does not send m to y, then none of the processes receive
a timely message. In either case, contrary to the initial assumption, A does not timely
deliver m to all processes in the network. O

The below corollary follows from Lemmal/I]

Corollary 2. It requires Q(n?) packets to timely deliver a message in the general propa-
gation model.

Combining Corollary 2] and Theorem [5| we obtain Corollary



Corollary 3. In the general propagation model, there does not exist a message and packet
efficient implementation of Omega.

Proposition 3. There exists a message efficient implementation of Omega in the general
propagation model where each correct process can send reliable messages to the leader.

The algorithm that proves the above proposition is a straightforward extension of the
second algorithm in Aguilera et al. [1]] where every process re-sends received messages
to every outgoing channel.

Dependable channel model properties.

Lemma 2. In any message efficient implementation of Omega, each correct process must
have a fair-lossy path to the leader.

Proof:  Assume there is a message-efficient implementation ‘A of Omega where there
is a correct process x that does not have a fair-lossy path to the leader. According to
Corollary 1} x itself may not be elected the leader. Assume there is a computation o; of
A where process y # x is elected the leader. Note that fair-lossy channels are not type
discriminating. That is, if x does not have a fair-lossy path to y, but has a fair lossy path to
some other process z, then z does not have a fair-lossy path to y either. Thus, there must
be a set of processes S C N such that x € § and y ¢ S that do not have fair-lossy paths to
processes outside S'.

Since A is message efficient, processes of S only send a finite number of messages to
y. Consider another computation o, which shares prefix with o, up to the point were the
last message from processes of S is received outside of S. After that, all messages from y
to processes in S and all messages from S to outside are lost. That is in 0, y does not have
timely, or every fair-lossy, paths to processes of §. It is possible that some other process
w is capable of timely communication to all processes in the network. However, since A
is efficient, no other processes but y is supposed to send infinitely many messages.

Since all messages from S are lost, oy and o, are indistinguishable for the correct
processes outside S . Therefore, they elect y as the leader. However, processes in S receive
no messages from y. Therefore, they have to elect some other process u to be the leader.
This means that A allows correct processes to output different leaders. That is, A is not
an implementation of Omega. O

We define a source to be a process that does not have incoming timely channels.

Lemma 3. To timely deliver a message in the dependable channel model, each recipi-
ent needs to send it across every outgoing channel to a source, except for possibly the
channels leading to the origin and the sender.

The proof of the above lemma is similar to the proof of Lemma [I| Observe that
Lemma (3| states that the timely delivery of a packet requires n messages per source. If
the number of sources is proportional to the number of processes in the network, we
obtain the following corollary.



Corollary 4. It requires Q(n*) packets to timely deliver a message in the dependable
channel model where the number of sources is proportional to n.

Theorem 6. In the dependable channel model, the following conditions are necessary
and sufficient for the existence of a packet and message efficient implementation of Omega:
(i) there is at least one process | that has an eventually timely path to every correct process
(ii) every correct process has a fair-lossy path to L.

Proof: = We demonstrate sufficiency by presenting, in the next section, an algorithm that
implements Omega in the dependable channel model with the conditions of the theorem.

We now focus on proving necessity. Let us address the first condition of the theo-
rem. Assume there is a message and packet efficient implementation ‘A of Omega in the
dependable channel model even though no process has eventually timely paths to every
correct process. Let there be a computation of A where some process x is elected the
leader even though x does not have a timely path to each correct process. According to
Corollary [T x needs to send infinitely many timely messages. According to Corollary [4]
each such message requires Q(n?) packets. That is, A may not be message and packet ef-
ficient. This proves the first condition of the theorem. The second condition immediately
follows from Lemma 2l mi

The below theorem shows that (plain) efficiency is all that can be achieved with the
necessary conditions of Theorem [6] That is, even if these conditions are satisfied, supper
packet efficiency is not possible.

Theorem 7. There does not exist a message and super packet efficient implementation
of Omega in the dependable communication model even if there is a process | with an
eventually timely path to every correct process and every correct process has a fair-lossy
path to L.

Proof:  Assume the opposite. Suppose there exists a super packet efficient algorithm
A that implements Omega in the network where some process [ has an eventually timely
path to all correct processes and every correct process has fair-lossy paths to /.

Without loss of generality, assume the number of processes in the network is even.
Divide the processes into two sets S| and S, such that the cardinality of both sets is n/2.
Refer to Figure (1] for illustration. §'; is completely connected by timely channels. Simi-
larly, S, is also completely connected by timely channels. The dependability of channels
between S| and S, is immaterial at this point.

Consider a computation o; of A on this network where all processes in §; are cor-
rect and all processes in S, crashed in the beginning of the computation. Since ‘A is an
implementation of Omega, one process /; € S is elected the leader. Since A is message
efficient, only /; sends messages infinitely often. Since A is super packet efficient, only
O(n) channels carry theses messages infinitely often. Since the network is completely
connected, there are (1/2)* channels leading from S, to S,. This is in O(n?). Thus, there
is least one channel (x,y) such that x € §; and y € §, that does not carry messages from
[; infinitely often.
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Fig. 1. Network for o3 computation of Theorem

Let us consider a computation o, of A where all processes S, are correct and all
processes in S| crash in the beginning of the computation. Similar to o, there is a process
I, € S, that is elected the leader in 0, and there is a channel (z, w) such that z € S, and
w € § that carries only finitely many messages of /,.

We construct a computation o3 of A as follows. All processes are correct. Channel
dependability inside S| and S, is as described above. All channels between S| and S,
are completely lossy, i.e., they lose every transmitted message. An exception is channel
(x,y) that becomes timely as soon as it loses the last message it is supposed to transmit.
Similarly, channel (z, w) becomes reliable as soon as it loses the last message.

To construct o3, we interleave the actions of o and o, in an arbitrary manner. Ob-
serve that to processes in S| computations o; and o3 are indistinguishable. Similarly, to
processes in S ,, the computations o, and o3 are indistinguishable.

Let us examine the constructed computation closely. Sets S, and S, are completely
connected by timely channels, and (x, y), connecting S| and S, is eventually timely. This
means that /; has an eventually timely path to every correct process in the network. More-
over, due to channel (z, w), every process has a fair-lossy path to /;. That is, the conditions
of the theorem are satisfied. However, the processes of S| elect /; as their leader while the
processes of S, elect [,. This means that the processes do not agree on the single leader.
That is, contrary to the initial assumption, A is not an implementation of Omega. The
theorem follows. O

5 M®PO: Message and Packet Efficient Implementation of Omega

In this section we present an algorithm we call M%PO that implements Omega in the fair-
lossy channel communication model. As per Theorem [6] we assume that there is at least
one process that has an eventually timely path to every correct process in the network and
every correct process has a fair-lossy path to this process.

Algorithm outline. The code of the algorithm is shown in Figure 2, The main idea of
MPO is for processes to attempt to claim the leadership of the network while discover-
ing the reliability of its channels. Each process weighs each channel by the number of
messages that fail to come across it. The lighter channel is considered more reliable. If a
process determines that it has the lightest paths to all processes in the network, the process
tries to claim leadership of the network.



constants
p // process identifier
N // set of network process identifiers, cardinality is n
timers[p] length is TO
variables
leader, initially L //local leader
phases[n], initially zero // current phase number
edges[n][n], initially zero // edge fault weights
arbs[n], initially arbitrary // arborescences
timers[n], initially timers[p] on, others off
length of timers[x] : x # p is arbitrary // timer to send/receive a message
shout, initially zero // process id to send alive to all neighbors

actions
timeout(timers[q]) —
if p = ¢ then // own/sender timeout, compute arb rooted in p based on edges
newArb = arborescence(edges, p)
newLeader := minWeight((arbs[r] : r # p : on(timers[r])), newArb))
if leader # newLeader then // leadership changes
if newLeader = p then // p gains leadership
arbs[p] := newArb
send startPhase(p, phases[p], arbs[p]) to N/p
if leader = p then // p loses leadership
phases|p] := phases[p] + 1
send stopPhase(p, phases[p]) to N/p
leader := newLeader
else // leadership persists
if leader = p then
shout := shout + 1 mod n
if shout # p then
send alive(p, phases|pl, shout) to arbs|p](p.children)
else // my turn to shout
send alive(p, phases|p], shout) to N/p
reset(timers[p]) // own timer never off
else // neighbor timeout/receiver timeout, assume failed, increase, do not reset
send failed(q, p,arbs[q]l(p.parent)) to N/p
increase(timers[q])

receive startPhase(q, phase, arb) for the first time —
// if new phase, propagate message, reset timer
if p # q A phases|[q] < phase then
arbslq] := arb
phases|ql := phase
send startPhase(q, phase,arb) to N/p
reset(timers[q])

receive stopPhase(q, phase) for the first time —
if p # q A phaselq] < phase then
phases|q] := phase
send stopPhase(q, phase) to N/p
stop(timers[q])

receive alive(q, phase, sh) for the first time from r —
if p # g A phaselq] = phase then
if r = arbs[q](p.parent) then // received through arborescence
if sh # p then
send alive(q, phase, sh) to arbs[ql(p.children)
else // my turn to shout
send alive(q, phase, sh) to N/p
reset(timers[q])
else // received from elsewhere
if off (timers[q]) then
reset(timers[q])

receive failed(q, r, s) for the first time —
if p = g then // if p’s alive failed
edges[s][r] := edges[s][r] + 1 // increase weight of edge from parent
else
send failed(q,r, s)to N/p

Fig. 2. Message and packet efficient implementation of Omega MPO.



The leadership is obtained in phases. First, the leader candidate sends startPhase mes-
sage. Then, the candidate periodically sends alive message. In case an alive fails to reach
one of the processes on time, the recipient replies with failed. The size of startPhase
depends on the network size. The size of the other message types is constant.

The routes of the messages vary. Messages that are only sent finitely many times
are broadcast: sent across every channel in the network. Once one process receives such
a message for the first time, the process re-sends it along all of its outgoing channels.
Specifically, startPhase, stopPhase and failed are broadcast. The leader sends alive in-
finitely often. Hence, for the algorithm to be packet efficient, alive has to be sent only
along selected channels. Message alive is routed through the channels that the origin be-
lieves to be the most reliable.

Specifically, alive is routed along the channels of a minimum weight arborescence: a
directed tree rooted in the origin reaching all other processes. The arborescence is com-
puted by the origin once it claims leadership. It is sent in the startPhase that starts a
phase. Once each process receives the arborescence, the process stores it in the arbs array
element for the corresponding origin. After receiving alive from a particular origin, the
recipient consults the respective arborescence and forwards the message to the channels
stated there.

In addition to routing alive along the arborescence, each process takes turns sending
the leader’s alive to all its neighbors. The reason for this is rather subtle: see Theorem
for details. Due to crashes and message losses, arbs for the leader at various processes
may not reach every correct process. For example, it may lead to a crashed process. Thus,
some processes may potentially not receive alive and, therefore, not send failed. Since
failed are not sent, the leader may not be able to distinguish such a state from a state with
correct arbs.

To ensure that every process receives alive, each process, in turn, sends alive to its
every neighbor rather than along most reliable channels. Since only a single process sends
to all neighbors a particular alive message, the packet complexity remains O(n).

Message failed is sent if a process does not receive a timely alive. This message carries
the parent of the process which was supposed to send the alive. That is, the sender of failed
blames the immediate ancestor in the arborescence. Once the origin of the missing alive,
receives failed, it increments the weight of the appropriate edge in edges that stores the
weights of all channels. If a process has timely outgoing paths to all processes in the
network, its arborescence in edges convergences to these paths.

Action specifics. The algorithm is organized in five actions. The first is a timeout action,
the other four are message-receipt actions.

The timeout action handles two types of timers: sender and receiver. Process p’s own
timer (¢ = p) is a sender timer. It is rather involved. This timer is always on since the
process resets it after processing. First, the process computes the minimum weight of the
arborescence for each leader candidate. A process is considered a leader candidate if its
timer is on. Note that since p’s own timer is always on, it is always considered.

The process with the minimum weight arborescence is the new leader. If the lead-
ership changes (leader # newLeader), further selection is made. If p gains leadership



(newLeader = p), then p starts a new phase by updating its own minimum-weight ar-
borescence and broadcasting startPhase. If p loses leadership, it increments its phase and
broadcasts stopPhase bearing the new phase number.

If the leadership persists (leader = newLeader) and p is the leader, it sends alive.
Process p keeps track of whose turn it is to send alive to all its neighbors in the shout
variable. The variable’s value rotates among the ids of all processes in the network.

The neighbor timer (¢ # p) is a receiver timer. If the process does not get alive on
time from ¢, then p sends failed. In case the process sends failed, it also increases the
timeout value for the timer of ¢ thus attempting to estimate the channel delay.

For our algorithm, the timer integers are as follows. The sender timer is an arbitrary
constant integer value TO. This value controls how often alive is sent. It does not affect
the correctness of the algorithm. Receiver timers initially hold an arbitrary value. The
timer integer is increased every time there is a timeout. Thus, for an eventually timely
channel, the process is able to estimate the propagation delay and set the timer integer
large enough that the timeout does not occur. For untimely channels, the timeout value
may increase without bound.

The next four actions are message receipt handling. Note that a single process may
receive packets carrying the same message multiple times across different paths. However,
every process handles the message at most once: when it encounters it for the first time.
Later duplicate packets are discarded.

The second action is startPhase handling. The process copies the arborescence and
phase carried by the message, rebroadcasts it and then resets the alive receiver timer
associated with the origin process. The third action is the receipt of stopPhase which
causes the recipient to stop the appropriate timer.

The forth action is alive handling. If alive is the matching phase, it is further con-
sidered. If alive comes through the origin’s arborescence, the receiver sends alive to its
children in the origin’s arborescence or broadcasts it. The process then resets the timer
to wait for the next alive. If alive comes from elsewhere, that is, it was the sender’s turn
to send alive to all its neighbors, then p just resets the timeout and waits for an alive to
arrive from the proper channel. This forces the process to send failed if alive does not
arrive from the channel of the arborescence.

The last action is failed handling. If failed is in response to an alive originated by this
process (p = g) then the origin process increments the weight of the edge from the parent
of the reporting process to the process itself according to the message arborescence. If
failed is not destined to this process, p rebroadcasts it.

6 MPO Correctness Proof

Correctness proof definitions. Throughout this section, / is the identifier of the process
that has eventually timely paths to all other processes. For simplicity, we assume that [ is
the single such process. Denote B as the maximum number of steps in any timely channel
propagation delay. Process p is a local leader if leader, = p, i.e., the process elected itself
the leader. A process may be a local leader but not the global leader. That is, several pro-
cesses may be local leaders in the same state. Let realArbs(x) for the origin process x be



the relation defined by arbs[x](y.children) at every process y. That is, realArbs(x) is the
distributed relation that determines how alive messages are routed if they are originated
by x.

Lemma 4. For any local leader process x and another correct process y such that y is not
reachable from x through timely channels over correct processes in realArbs(x), either (i)
realArbs(x) changes or (ii) x loses leadership, changes phase or receives infinitely many
failed messages.

Proof:  To prove the lemma, it is sufficient to show that if realArbs(x) does not change
and x does not lose the leadership or change phase, then x receives infinitely many failed.

Let S be a set of correct processes that are reachable from x through timely channels
and through correct processes in realArbs(x). Since y is not reachable from x, S # N.
Recall that every process has fair-lossy paths to all processes in the network. Therefore,
there is such a path from x to y. This means that there is a process z € S such that it has a
fair-lossy channel tow ¢ S.

Let us examine process w closer. The network is completely connected. Therefore,
all other processes from S have channels to w. Note that at least one channel, from z is
fair-lossy. Moreover, since w does not belong to S, if realArbs(x) reaches w, the path to
w is not timely.

Since x is a local leader and does not lose its leadership, it sends infinitely many alive
messages. Other processes forward these alive along realArbs(x). Also, by the design of
the algorithm, every process takes turn sending alive to all of its neighbors rather than
forwarding it along realArbs(x). Let us examine the receipt of these messages by w.

Process z belongs to S. That is, the path from x to z in realArbs(x) is timely. This
means that it receives and sends infinitely many alive originated by x. Since the channel
from z to w is fair-lossy, infinitely many of these alive are delivered to w. In addition, w
possibly receives alive from other processes of S. Since, none of these channels are part
of realArbs(x), when w receives alive from processes in S, it resets the corresponding
receive timer only when the timer is off. The timer is turned off only when the timeout is
executed and failed is broadcast.

The only possible way this receive timer is reset without the timeout action execu-
tion is when w receives alive through realArbs(x). However, the path from x to w in
realArbs(x) is not timely. By the definition of non-timely paths, there are infinitely many
computation segments of arbitrary fixed length where no alive from x is delivered to w.
This means that, regardless of the timeout variable value at w, the alive messages gener-
ate receiver timeouts. That is, infinitely many timeouts are executed at w. Each timeout
generates a failed message broadcast by w. Since there are infinitely many broadcasts,
infinitely many succeed in reaching x. Hence, the lemma. O

Lemma 5. If each process x # lis a local leader in infinitely many states then it receives
infinitely many failed messages.

Proof: Let x # [ be a local leader in infinitely many states of a particular computation
of the algorithm. Once a process assumes local leadership, it may lose it either by (i) in-



creasing the weight of its minimum weight arborescence (ii) by recording an arborescence
arbs[y] for a process y with lower weight than arbs|x].

A process increases the weight of its arborescence only when it gets a failed message.
Thus, to prove the lemma we need to consider the second case only.

Since x is a local leader in infinitely many states, it must gain local leadership back
after losing it to another process y. By the design of the algorithm, the weight of the ar-
borescence of any process in arbs may only increase. This means that once x gains the
leadership back from y, x may not lose it to y again without increasing the weight of its
own minimum weight arborescence. Thus, either x increases the weight of its arbores-
cence or, eventually, it has the lightest arborescence among the leader candidates.

In case x has the lightest arborescence, it either becomes heavier than some other
leader candidate’s or x gets infinitely many failed. However, only the latter part of the
statement needs to be proven since x gains leadership infinitely often.

If x is a local leader, it does not send startPhase or stopPhase. Let us consider the
state where all startPhase packets are delivered. In this case realArbs(x) does not change.
Since x # [, even if all correct processes are reachable from x in realArbs(x), some links
in realArbs(x) are not timely. Then, according to Lemma[] x gets infinitely many failed.

To summarize, if x # [ is a local leader in infinitely many states, it receives infinitely
many failed. O

Lemma 6. Process [ is a local leader in infinitely many states.

Proof:  According to Lemma 5]either each process x # [ stops gaining local leadership
or the weight of its minimum arborescence grows infinitely high. If the latter is the case,
x has to gain and lose local leadership infinitely often. In this case, it sends startPhase
infinitely may times. Message startPhase is broadcast. Since every process x has fair-
lossy paths to [, by the definition of fair-lossy paths, infinitely many broadcasts succeed.
This means that the weight of arbs[x] at [ grows without bound. Therefore, if / loses local
leadership, it gains it back infinitely often. O

The below lemma follows immediately from the operation of the algorithm.

Lemma 7. The timer length of timers[l] at every process either stops increasing or it
reaches TO + B+ (n—1)

And the below lemma follows from the assumption that the leader has an eventually
timely path to every correct process.

Lemma 8. In every computation, there is a suffix where each broadcast message sent by
[ is timely delivered to every correct process.

Lemma 9. An edge leading to process x in a timely path in realArbs(l) at | generates
only finitely many failed.

Proof:  The origin starts every phase with startPhase, then periodically sends zero or
more alive and then possibly ends the phase with a stopPhase that carries the phase num-
ber greater than alive and startPhase.



Message failed is generated only when the timer expires at the receiving process. The
timer is reset by startPhase and alive. The timer is stopped by stopPhase.

We prove the lemma by showing that the timer reset by messages of a particular
phase expires only finitely many times. We start our consideration from the point of the
computation where the conditions of Lemmas (/| and |8 hold.

Only alive and startPhase may reset the timeout. Since the conditions of Lemma [§]
hold, startPhase 1s delivered within B(n — 1) computation steps to all processes. Message
alive may be received earlier than startPhase. However, since such alive carries a phase
number that differs from the number stored at the recipient process, the message is ig-
nored. If alive arrives after startPhase, the reasoning is similar to the case where alive is
sent after startPhase which is to be considered next.

Every alive sent after startPhase delivery, travels over the timely path in realArbs(l).
At most every 70 number of steps, either another alive or stopPhase is sent. Since the
path in realArbs(l) is timely, alive arrives at most after TO + B(n — 1) steps. Due to
Lemma [§] the same is true of stopPhase. That is, after alive is received, either another
alive or stopPhase is received within TO + B(n — 1) steps. The receipt of alive resets the
timeout. The receipt of stopPhase stops it. Due to Lemma 7], the timer does not expire.

Moreover, after the receipt of stopPhase, the subsequent alive messages are ignored
since stopPhase carries a greater phase number. That is, after stopPhase is received, the
timer is never reset or expires due to the messages of this phase. m|

Lemma 10. Every untimely edge in realArbs(l) leading to a correct process either gets
removed or | gets infinitely many failed messages.

Proof:  Due to Lemmal6] process [ is a local leader in infinitely many states. Through
the argument similar to that of Lemma 5] we can show that eventually either [ gets failed
and increases the weight of its minimum arborescence or its minimum arborescence be-
comes the lightest among the leader candidates. Then, / can lose leadership only if it gets
failed.

In this case, according to Lemma 4] / receives infinitely many failed messages or ei-
ther loses leadership, changes phase or changes realArbs(l). Observe that [ may change
phase only when it receives failed. It loses leadership only if it gets failed. The change of
realArbs(l) happens only when / broadcasts startPhase after changing phase and, there-
fore, getting failed. Due to Lemma ] it gains the leadership back infinitely often.

That is, in any case, as long as realArbs(l) contains an untimely edge leading to a
correct process, [ gets infinitely many failed. O

The below lemma follows from Lemmas [9] and [TOL

Lemma 11. Every computation of MPO contains a suffix where each channel of realArbs(l)
is timely.

Lemma 12. Every computation of MPO contains a suffix where realArbs(l) is the same
as arbs|l] in process l.



Proof: = We start our consideration from the point where the conditions of Lemma
hold. Suppose realArbs(l) and arbs[!] differ for some process x. By the design of the
algorithm, this may happen only if arbs[l] in process x has an earlier phase than in /.
However, since phases differ, alive sent by [ are ignored by x. This leads to either x
sending fail to [ or claiming leadership. In either case, [ sends startPhase. According to
Lemma 8] this broadcasts succeeds which synchronizes arbs[l] and realArbs(l). O

Theorem 8. Algorithm MPO is a message and packet efficient implementation of Omega
in the fair-lossy channel model.

Proof:  First, we prove that MPO implements Omega. Indeed, lemma [6] shows that /
is a local leader in infinitely many states. Lemmas [9]and [I0]show that / gets finitely many
failed. According to Lemma(5] every process x # [ either stops being a local leader or gets
infinitely many failed. This means that at any process the arborescence of / will eventually
be lighter than any other leader contender.

According to Lemma [6] / sends infinitely many alive messages along realArbs(l).
Due to Lemma [I0] realArbs(l) eventually has no untimely channels. Since /, according
to Lemma 10} receives only finitely many failed, due to Lemma] realArbs(l) eventually
has timely paths from / to every correct process. According to Lemma(I2] realArbs(l) and
arbs[l] are eventually the same.

This means that / will be a leader contender in every correct process. Since it has
the lightest arborescence, it becomes the leader at every correct process. In other words,
M®PO is a correct implementation of Omega.

By the design of the algorithm, once / has the lightest arborescence and all correct pro-
cesses drop out of leadership contention, / is the only process that sends alive messages.
By definition, M%O is message efficient.

The messages are routed along arbs[l]. It is an arborescence. Hence, the number of
such messages is in O(n). In addition, each process takes a turn sending alive to its neigh-
bors. This is another O(n) packets. Therefore, the packet complexity of MPQ is in O(n).
O

7 Algorithm Extensions

We conclude the paper with several observations about M%PO. The algorithm trivially
works in a non-completely connected network provided that the rest of the assumptions
used in the algorithm design, such as eventually timely paths from the leader to all correct
processes, are satisfied. Similarly, the algorithm works correctly if the channel reliability
and timeliness is origin-related. That is, a channel may be timely for some, not necessarily
incident, process x, but not for another process y.

Algorithm M%PO may be modified to use only constant-size messages. The only non-
constant size message is startPhase. However, the message type is supposed to be timely.
So, instead of sending a single large message, the modified M%PO may instead send a
sequence of fixed-size messages with the content to be re-assembled by the receivers.
If one of the constituent messages does not arrive on time, the whole large message is
considered lost.
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