Birkbeck

UNIVERSITY OF LONDON

BIROn - Birkbeck Institutional Research Online

Bova, S. and Chen, Hubie (2018) How many variables are needed to express
an existential positive query? Theory of Computing Systems 63 (152), pp.
1573-1594. ISSN 1432-4350.

Downloaded from: https://eprints.bbk.ac.uk/id/eprint/25143/

Usage Guidelines:
Please refer to usage guidelines at https://eprints.bbk.ac.uk/policies.html or alternatively
contact lib-eprints@bbk.ac.uk.



https://eprints.bbk.ac.uk/id/eprint/25143/
https://eprints.bbk.ac.uk/policies.html
mailto:lib-eprints@bbk.ac.uk

How many variables are needed to express an
existential positive query?

Simone Bova'! and Hubie Chen?

1 TU Wien (Austria)

simone.bova@ac.tuwien.ac.at
2  Birkbeck, University of London

—— Abstract

The number of variables used by a first-order query is a fundamental measure which has been
studied in numerous contexts, and which is known to be highly relevant to the task of query
evaluation. In this article, we study this measure in the context of existential positive queries.
Building on previous work, we present a combinatorial quantity defined on existential positive
queries; we show that this quantity not only characterizes the minimum number of variables
needed to express a given existential positive query by another existential positive query, but
also that it characterizes the minimum number of variables needed to express a given existential
positive query, over all first-order queries. Put differently and loosely, we show that for any
existential positive query, no variables can ever be saved by moving out of existential positive
logic to first-order logic. One component of this theorem’s proof is the construction of a winning
strategy for a certain Ehrenfeucht-Fraissé type game.
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1 Introduction

Background. The number of variables used by a first-order query is recognized as a highly
useful and fundamental measure, and has been studied in numerous settings, including
descriptive complexity, finite model theory, and query evaluation. By the number of variables
used by a query, we refer to the total number of variables that appear in the query. Note
that this measure is, in essence, equivalent to the width of a query, which is defined as the
maximum number of free variables over all subformulas of the query: a query having width
k can be rewritten, just by syntactically renaming variables, as a query using k variables;
and, a query using k variables clearly has width at most k. Within this article, all queries
dealt with are relational and first-order.

In the setting of query evaluation, the number of variables is a measure of prime and
crucial interest. A first reason for this is that the natural bottom-up algorithm for evaluating
a first-order query on a finite structure exhibits, in general, an exponential dependence
on the number of variables; it also runs in polynomial-time when a constant bound is
placed on the number of variables [22]. Furthermore, there are complexity classification
theorems [18, 15, 10, 11] on classes of Boolean queries in which the number of variables
emerges as the decisive measure for describing whether or not a class of Boolean queries
enjoys tractable query evaluation; in particular, these classification theorems show that, if a
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class of queries enjoys tractable query evaluation at all, then there exists a constant k > 1
such that each query in the class can be expressed by (that is, is logically equivalent to) a
query using at most k variables. Let us remark that these classification theorems are given
in a parameterized complexity setting in which a query can be preprocessed independently
of the structure on which it is to be evaluated; and, that these theorems concern classes of
queries having bounded arity.! (We refer the reader to the cited articles for precise theorem
statements and more information.)

Given the computational relevance of the number of variables as a query measure,
it is natural to inquire, given a query, to what extent the number of variables can be
minimized; indeed, it is a natural desire to attempt to rewrite/optimize a given query as
one that uses the fewest number of variables (and which retains logical equivalence to the
original query). In this article, we study this question on existential positive queries. They
include and are semantically equivalent to the so-called unions of conjunctive queries, also
known as select-project-join-union queries; these have been argued to be the most common
database queries [1]. Previous work [6] due to the present authors yields a combinatorial
characterization (Theorem 21) of the minimum number of variables needed to express a
given Boolean existential positive query, by another existential positive query. Let FO denote
the class of first-order queries, let EP denote the class of existential positive queries, and let
FO* and EP* denote the restrictions of these classes to queries using at most k variables,
respectively; say that a query ¢ is L-expressible if there exists a query ¥ € L that is logically
equivalent to ¢. Rephrasing, the combinatorial characterization yields, given a Boolean
existential positive query ¢, the minimum value k such that ¢ is EPk—eXpressible. This
characterization thus indicates how to minimize the number of variables within the class of
existential positive queries. However, this characterization does not preclude the possibility
that a query requiring k variables to be expressed as an existential positive query, could be
expressed by a first-order query that uses strictly fewer than k variables.

Contributions. We prove that the just-mentioned possibility can never occur. We generalize
the aforementioned combinatorial quantity so that it is defined on all existential positive
queries (both Boolean and non-Boolean), and dub this quantity the combinatorial width.
Our primary theorem states that, for any existential positive query ¢, when k is set equal to
the combinatorial width,

¢ is can be expressed by an existential positive query using k variables, but

¢ cannot be expressed by any first-order query using a number of variables that is strictly

less than k.
That is, the combinatorial width not only gives the minimum value k£ such that ¢ is EPk-
expressible, it in fact more sharply gives the minimum value & such that ¢ is FOk-eXpressible.
This theorem can be viewed as a collapse result, namely, that for existential positive
queries, FOk—eXpressibility implies (and hence coincides with) EPk—eXpressibility. We want
to emphasize that the theorem applies individually to every single existential positive query;
in our view, the theorem contains a certain element of surprise, since it states (essentially)
that there is no existential positive query whatsoever for which one can save variables by
moving out of existential positive logic to the more general first-order logic.

One corollary of our development is that deciding FO*-expressibility of existential positive
sentences is complete for the class II5 of the polynomial hierarchy (Corollary 25); this follows

LA class of queries has bounded arity if there is a constant upper bound on the arity of all relation

symbols appearing in a query of the class.
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from the present theory in conjunction with a previous theorem on the complexity of deciding
EP*-expressibility of existential positive sentences ([6, Theorem 6]). Let us remark that
FOF-expressibility is undecidable on first-order sentences ([2, Remark 5.3]), and that (to our
knowledge) prior to this work, FOk—expressibility of existential positive sentences was not
even known to be decidable.

To establish the inexpressibility portion of our primary theorem, for each Boolean
existential positive query ¢, we show how to construct two finite structures B, B’ on which
the query differs, but which are not distinguishable from each other by any first-order
query using a number of variables strictly less than the combinatorial width of ¢. To show
this non-distinguishability, we make use of a known Ehrenfeucht-Fraissé type game [5, 20]
designed for showing non-FO™-expressibility. We in fact first perform this construction
for Boolean conjunctive queries (phrased in terms of homomorphisms; see Section 3.1,
Theorem 6); after this, we observe that this result extends to Boolean existential positive
queries (Theorem 22), and then build on this understanding to treat general existential
positive queries (Theorem 23).

The construction of the aforementioned two structures is based on a construction due
to Atserias et al. [3]. This previous work characterized, for each finite structure A, the
number of pebbles needed for the existential pebble game [21] to act as a solution procedure
for deciding if there exists a homomorphism from A to n given structure B (or, equivalently,

if the conjunctive query corresponding to A evaluates to true on a given structure B).

As we show in the present article (see the discussion of Theorem 28 in Section 5), this
previous characterization theorem can be readily derived from our primary theorem, and
hence our primary theorem provides a strengthening of and broader perspective on this
previous theorem.

Let us mention that, in related work, there are numerous articles that investigate the
applicability of pebble games to query evaluation problems, which issue was a motivation
for the Atserias et al. article [3]. As examples, we mention the work of Dalmau et al. on
conjunctive queries and the existential pebble game [16]; the works of Chen and Dalmau on
quantified conjunctive queries [14, 9]; the work of Chen and Dalmau on conjunctive queries
and generalized hypertree width [13]; and, the work of Barcelé et al. [4] on semantically
acyclic query evaluation under database constraints.

A conference version of this article appeared in the proceedings of ICDT 2017 [7].

2 Preliminaries

For an integer k > 0, we use [k] to denote the set {1,..., &k}, with the convention that [0] = 0.

For i = 1,2, we freely let m; denote the ith projection both over pairs and over sets of pairs,
so for instance m;((a1,a2)) = a; and m;(A; X As) = A;. For an integer n, we let n (mod 2)
denote the value b € {0,1} such that n and b are congruent modulo 2, that is, such that
n — b is an integer multiple of 2.

When f: A — B and g: B — C are functions, we use g(f) to denote their composition.

When h is a partial function, we use dom(h) to denote the domain of h.

Graphs, Structures, and Logic

Graphs. All graphs G = (V, F) in this article are undirected and simple, that is, F is a set
of 2-element subsets of V.

A walk in G is a sequence W = (aq,...,a,,) € V™, m > 0, such that ai,...,a,, €V and
{ai,a;,41} € E for all i € [m — 1]. Relative to a walk W = (aq,...,an), we use the following
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terminology. We say that W: contains a € V if a = a; for some i € [m]; is from s € V to
teVifa =sanda, =t is froms eV toT CV if a; = s and a,, € T} is s-cyclic if
a1 = @y = 8. A graph G = (V, E) is connected if for every two vertices v and v’ in V there
exists a walk from v to v’.

A tree decomposition of a graph G = (V, E) consists of a tree T' where each node u is
associated to a nonempty subset B, of V (also called bag) such that the following holds:

For each vertex v € V, the nodes u of T such that v € B, form a non-empty connected

subtree of T'.

For each edge e € F, there exists a node u in T" such that e C B,,.

The width of a tree decomposition T of a graph G is defined as the maximum size attained
by its bags minus 1, that is, max,ecr |By| — 1. The treewidth of a graph G, denoted by tw(G),
is the minimum width over all tree decompositions of G.

Let G = (V, E) be a graph. We say that two subsets U and U’ of V touch if UNU’ # ()
or there exist u € U, «’ € U’ such that {u,u'} € E. A set M of mutually touching connected
subsets of V is called a bramble of G. A subset H of V hits M if H N M # ) for all M € M.
The order of a bramble is the minimum size attained over its hitting sets. We will make use
of the following duality theorem.

» Theorem 1. (refer to [17]) For k > 1, a graph has treewidth > k if and only if it has a
bramble of order > k.

Structures. A relational vocabulary o is a set of relation symbols R, each of which has an
associated natural number ar(R) called its arity.

Let o be a relational vocabulary. A o-structure A is specified by a nonempty set A, called
the universe of A and denoted by the corresponding italic letter, and a relation R C A2r(f)
for each relation symbol R € o. A structure is finite if its universe is finite.

Let A and B be o-structures. A homomorphism from A to B is a mapping h: A -+ B
such that for each symbol R € o: if the tuple (aq,.. .,aar(R)) is in R, then the tuple
(h(a1), ..., h(aar(r))) is in RB. We write A — B to indicate that there exists a homomorphism
from A to B. A and B are homomorphically equivalent if A — B and B — A both hold. An
endomorphism of A is a homomorphism from A to A. An automorphism of A is a bijective
mapping h: A — A such that (a1,...,au(r)) € R* if and only if (h(a1), ..., h(ax(r))) € R*,
for all R € 0 and (ay, ..., aa(r)) € A>(R): note that the inverse of an automorphism is an
automorphism. A structure A is a core if every endomorphism of A is an automorphism of
A.

The structure B is a substructure of the structure A if B C A and RB C R” for all
relation symbols R € 0. When B is a substructure of A, there exists a homomorphism h
from A to B, and h fixes each element b € B, the mapping h is said to be a retraction from
A to B; when there exists a retraction from A to B, it is said that A retracts to B. A
core of a structure A is a structure C such that A retracts to C, but A does not retract
to any proper substructure of C. It is well known that each finite structure has a core and
all cores of a finite structure are isomorphic [19]; we therefore freely refer to the core of a
finite structure A, and denote this object by core(A). The following facts are known and
straightforwardly verified: when A is a core, then A is a core of A; and, when C is a core of
A, then C is a core.

The Gaifman graph of a structure A is the graph with vertex set A and having an edge
{a,a’} if and only if @ # a’ and a and a’ cooccur in a tuple of A. The treewidth of a structure
A denoted by tw(A), is defined as the treewidth of its Gaifman graph.
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Logic. In this article, we deal with first-order logic. An atom (over vocabulary o) is an
equality of variables (z = y) or is a predicate application R(z1,...,x,), where a1, ..., 2, are
variables, and R € o is a relation symbol of arity r. A formula (over vocabulary o) is built
from atoms (over o), negation (—), conjunction (A), disjunction (V), universal quantification
(V), and existential quantification (3). We define free(¢) to be the set of free variables of a
formula ¢. A sentence is a formula having no free variables.

We let FO denote the class of first-order formulas. An existential positive formula (over
vocabulary o) is a formula built from atoms (over o) using conjunction, disjunction, and
existential quantification; we let EP denote the class of existential positive formulas. A
primitive positive formula (over vocabulary o) is a formula built from atoms (over o) using
conjunction and existential quantification; we let PP denote the class of primitive positive
formulas. Let L C FO. A formula ¢ € FO is called an L-formula (respectively, an L-sentence)
if ¢ is in L (respectively, if ¢ is a sentence in L).

When A is a structure, f is an assignment of variables in A, and ¢ is a formula over
the vocabulary of A, we write A, f = ¢ to indicate that ¢ is true in A under f; if ¢ is a
sentence, we simply write A | ¢. Let ¢ and v be formulas over the vocabulary o having the
same free variables. We write ¢ |= ¢ to indicate that ¢ entails v, that is, for all o-structures
A and assignments f in A it holds that, A, f |= ¢ implies A, f = ¢. We say that ¢ and
are logically equivalent (denoted ¢ = v) if ¢ =9 and ¢ = ¢. Let ¢ be an FO-formula and
let L C FO. We say that ¢ is L-expressible if there exists an L-formula ¢’ such that ¢ = ¢'.

For any PP-sentence ¢ over o, we let C[¢] denote the canonical structure induced by ¢.

The canonical structure of ¢ is obtained by first prenexing the quantifiers and eliminating the
equalities in ¢, obtaining a logically equivalent PP-sentence ¢’ in prenex form and equality
free; and second by defining C[¢] to be the structure having a universe element for each
existentially quantified variable in ¢/, and where, for each R € o, the relation R€?! contains
(x1,...,2,) if and only if R(x1,...,x,) appears in the quantifier free part of ¢'.

For a finite o-structure A, we let Q[A] denote the canonical query of A, namely, if
A={ay,...,a,}, then

Q[A] =3a; ... Jay, /\ /\ R(dl,...,a}).

REo (a},...,a})€RA

It is straightforward to verify that any PP-sentence ¢ is logically equivalent to Q[C¢]],
and that every finite structure A is homomorphically equivalent to C[Q[A]]. We will use the
following known fact [8].

» Theorem 2 (Chandra and Merlin [8]). Let ¢ be a PP-sentence and let A be a finite structure,
such that ¢ = Q[A] or A = C[p]. Then, for any structure B, it holds that A — B if and

only if B = ¢.

Finite Variable Logics

For each class L of first-order formulas and each integer k > 1, we let L* denote those
formulas in L that use at most k distinct variable symbols. Fragments of first-order logic
using only finitely many variables, called finite variable logics, are central in finite model
theory. Equivalence in these fragments can be characterized by Ehrenfeucht-Fraissé style
games called pebble games [20], which we now introduce.

» Definition 3. Let o be a relational vocabulary and let A and B be o-structures. A
partial isomorphism from A to B is an injective partial function h from A to B such that
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for all R € 0 and a1, ..., asr) € dom(h) it holds that (a1, ...,a.(r)) € RA if and only if
(h(al), ey h(aar(R))) S RB.

The k-pebble game is played by two players, a spoiler and a duplicator, over two (finite)
relational structures A and B over the same vocabulary. A position of the game is a subset of
A x B of size at most k. The game starts in the empty position and continues in a sequence
of rounds. In each round of the game, the spoiler removes a pair from the current position if
its size is k, and then selects an element a € A or b € B; the duplicator answers by selecting
an element b € B or a € A, respectively. The new position is defined by adding the pair
(a,b) to the old position. The duplicator wins the game if each position occurring along the
rounds is a partial isomorphism from A to B.

» Definition 4. [20] Let & > 0. A duplicator winning strategy in the k-pebble game on A
and B is a family S of partial isomorphisms A from A to B with |[dom(h)| < k such that:
(S1) P =0 isin S.
(S2) If h € S and |dom(h)| < k, then:

(S2.F) For every a € A there exists b € B such that hU {(a,b)} is in S.

(S2.B) For every b € B there exists a € A such that hU {(a,b)} is in S.
(S3) If h € S and a € dom(h), then Algom(n)\{q} 18 in S.

It is clear that the duplicator wins the above described k-pebble game on A and B if
and only if the game admits a duplicator winning strategy.

We say that two structures A, B are indistinguishable by FO*-sentences (in short FO"-
indistinguishable), if for each FOF-sentence ¢ it holds that A = ¢ if and only if B |= ¢.
As anticipated, k-pebble games characterize expressibility in the k-variable fragment of
first-order logic.

» Theorem 5 (Immerman [20]). Let k > 0 and let A and B be relational structures on the
same vocabulary. The following are equivalent.

1. There exists a duplicator winning strategy in the k-pebble game on A and B.

2. A and B are FO"-indistinguishable.

3 Construction of Structures

In this section, we show a theorem implying that certain PP-sentences, namely those
corresponding (via Chandra-Merlin, Theorem 2) to cores of treewidth at least k, cannot be
expressed by FO-sentences using k variables (Theorem 6). This inexpressibility result allows
us to later derive our primary theorem (Theorem 23).

» Theorem 6. Let A be a core on the relational vocabulary o such that tw(A) > k > 1.
There exist o-structures B and B’ such that B— A; A — B’; A 4 B; and, B and B’ are
FO*-indistinguishable.

The remainder of the current section is devoted to the construction (Section 3.1) and the
study (Section 3.2 and Section 3.3) of the structures B and B’ mentioned in Theorem 6. We
remark that the structure B is essentially equal to the structure defined by Atserias et al. in
[3, Section 4].

We give a proof of Theorem 6 that makes forward references; this proof might serve as a
guide to the layout of this section.
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Proof of Theorem 6. It is readily verified that tw(A) > k > 1 implies the existence of a
connected component (C, F) in the Gaifman graph of A such that tw((C, E)) > k > 1. Let s
be an arbitrary but fixed vertex in C. Let B and B’ be the two o-structures defined relative
to A and s in Section 3.1; then B — A by Observation 9 in Section 3.1. In Section 3.2,
Lemma 11 and Lemma 12 show that A — B’ and A 4 B, respectively. In Section 3.3,
Lemma 16 gives a duplicator winning strategy in the k-pebble game on (B, B’), which suffices
to yield the theorem, via Theorem 5. <

» Notation 7. The following names are reserved throughout the current section:
A denotes a core on the relational vocabulary o, with universe A, such that tw(A) > k > 1.
G = (C,FE) denotes a connected component in the Gaifman graph of A such that
tw(G) > k > 1. Note that, in particular, |C] > 2.
s denotes an arbitrary but fixed vertex in C.
M denotes an arbitrary but fixed bramble of G having order > k (such a bramble exists
by Theorem 1). Recall that, therefore, any hitting set for M has size at least k + 1.

3.1 Construction of B and B’

In this section, relative to A and s, we define two o-structures B and B’ as follows.
For all a € A, let E, denote the edges incident on a in the Gaifman graph of A. Let:

1 ifa=s

Uc = {(a7f)

eck,

- {os

Une ={(a,f: Ba — {0}) |a € A\ C}.

Then B and B’ have universes B and B’ defined as follows:

a€C,f: E,— {0,1} is such that 0 = Z f(e) (mod 2)}7

eck,

B:UcUUA\C7
BIZU/CUUA\C.

The vocabulary is interpreted as follows. For all R € o, let (a1, f1),..., (ar, fr) be
elements of B (respectively, of B'), where r = ar(R). Then ((ay, f1), ..., (ar, f;)) is in RB
(respectively, in RB') if and only if

(ai,...,a,) € RA;

for all 4,5 € [r], if e = {ai,a;} € E then f;(e) = f;(e).

For the sake of intuition, suppose that A is a connected graph, so that A is isomorphic to
its Gaifman graph and C' = A. The universes of B and B’ are formed by pairs (a, f) where
a is a vertex of A and f is a Boolean labelling of the edges incident on a. The Boolean
labellings have even parity with the only exception of those paired with s in B which have
odd parity. Moreover there is an edge {(a, f), (¢, f/)} in B (respectively, B’) if and only if
the edge {a,a’} is in A and the labellings f and f’ agree on {a,a’}. A concrete example
follows.

» Example 8. Let A = (A, E#) where A = {a, s} and EA = {(a, s), (s,a)}, that is, A is the
graph formed by the single edge {a, s}. Let f;: {{a,s}} — {0,1} be such that f;({a,s}) =1
for i = 0,1. Then B = (B, EB) where B = {(a, fo), (s, f1)} and EB =), and B = (B, EB')
where B' = {(a, fo), (s, fo)} and EB" = {((a, fo), (s, fo)), ((s, fo). (a, fo))}-

a€C,f:E,—{0,1} is such that > f(e) (modz)_{o ifa;és},

XX:7
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Note that, by construction of B, the map 7 : B — A is a homomorphism from B to A.
We inline this observation for later use.

» Observation 9. B — A.

3.2 A Treats B and B’ Differently

Let B and B’ be the two o-structures defined relative to A and s in Section 3.1. We show
that A maps homomorphically to B’ (Lemma 11) but not to B (Lemma 12).

» Example 10. Let A, B, and B’ be as in Example 8. Then the mapping h defined by
h(a") = (d', fo) for all ' € A is a homomorphism from A to B’, but A has no homomorphisms
to B by direct inspection, as EB = ().

We show that A maps homomorphically to B’.
» Lemma 11. A — B'.

The essence of the proof is to conduct a rather direct inspection of the construction in
Section 3.1; this shows that a copy of A sits inside B’, by looking at the pairs in B’ carrying
an identically 0 labelling.

Proof. Let h: A — B’ be defined as follows. For all a € A, let h(a) = (a, f: E, — {0}) € B'.
We claim that h is a homomorphism from A to B’. Let R € o, ar(R) = r, and let
(a1,...,a,) € RA.

Note that by the definition of Gaifman graph, either {ai,...,a,}NC =P or {ay,...,a,} C
C. In the former case, (h(a1),...,h(a,)) is trivially in RB" because no i,j € [r] satisfy
{a;,a;} € E. In the latter case, let i,j € [r] be such that ¢ # j. Then, {a;,a;} € E;
set e = {a;,a;}. We have mo(h(a;))(e) = 0 = m2(h(a;))(e) by definition of h. Hence
(h(ar),...,h(a,)) is in RB". <

On the other hand, B has no homomorphisms from A.
» Lemma 12. /3, Lemma 1] A /4 B.

For the sake of understanding this lemma intuitively, let A be a connected graph. A
homomorphism from A to B maps A to B preserving all edges. By construction (here we
use that A is a core), the homomorphic image of A in B is a copy of A where all edges
carry two Boolean labels equal to each other. Summing these Boolean labels in two ways,
edgewise and vertexwise, we get the contradiction that the edgewise sum has even parity but
the vertexwise sum, by the contribution of the labels of s, has odd parity.

We give a proof for completeness.

Proof. Assume for a contradiction that h is a homomorphism from A to B. By a standard
argument, we may assume, without loss of generality, that 7 (h(a)) = a for all a € A.?

2 This can be justified as follows. We write g o f = g(f) to denote the composition of g and f, with f
applied first. We have that m; is a homomorphism from B to A. Hence 71 o h is an endomorphism of
A, and since A is a core, 71 o h is an automorphism of A. By associativity of function composition,

ida =(mioh)o(moh) ' =mo(ho(moh) )=moh

that is, if b’ = hoo (m1 0 h) ™%, then m1 (k' (a)) = a for all a € A. Moreover, h’ is a homomorphism from
A to B because (71 o k) "' is an automorphism of A and h is a homomorphism from A to B.
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We claim that for all e = {a/,a”} € E it holds that

ma(h(a’))(e) = ma(h(a”))(e)- (1)
Let e = {a’,a"} € E. Note that e € E,s N E,». By the definition of the Gaifman graph of
A, there exist R € o and (aq,...,ai,...,0a;,...,a,) € R* with a; = @’ and a; = a”. Then,

since A — B via h,

(h(a1), ..., h(ar)) = ((a1, f1); - -, (ar, fr)) € RE.

By construction, for all 4, € [r], if e = {a;,a;} € E, then f;(e) = f;(e). In particular,

ma(h(a))(e) = m2(h(as))(e) = fi(e) = fi(e) = ma(h(a;))(e) = ma(R(a"))(e),

and we have that (1) holds.
We conclude observing that, by construction,

1= m(h(s))(e) (mod 2)
ecEg
and for all a € A\ {s},
0= > m(h(a))(e) (mod 2).

eekl,

Then, letting b. denote the quantity in (1), we have:

1= S mbE)©+ Y Y mlh@)e) (mod 2

eckEs acA\{s} e€E,
=2 Z be (mod 2) by (1)
ecE
= 07

a contradiction. |

3.3 B and B’ are FO*-Indistinguishable

Let B and B’ be the two o-structures defined relative to A and s in Section 3.1. We show
that B and B’ are FO*-indistinguishable (Lemma 16).

We describe informally a winning strategy for the duplicator in the k-pebble game on B
and B’. For the sake of illustration, consider the simple case where B and B’ are constructed
relative to a connected graph A so that A = G (the lemma lifts the idea to arbitrary
relational structures A, whose Gaifman graphs are possibly disconnected). The duplicator
fixes a bramble M of G and maintains along the rounds of the game the following position

(i=0,1,....k):
i pebble pairs are placed on elements (a1, f1),..., (a;, fi) € B and correspondingly on
elements (aq, f1),. .., (ai, f{) € B’ such that for some walk W in G from s to a bramble

set in M avoiding ay, ..., a; it holds that f;(e) equals the parity of f}(e) plus the number

of times e occurs in W (for all j € [i] and e € E,;).
That such a position exists and is a partial isomorphism is the content of Lemma 14; that
the duplicator can maintain such a position along the rounds of the game is the content of
Lemma 16.

We now start proving our statement. Recall Notation 7 for the meaning of G, M, et
cetera. We further prepare the following notation.
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» Notation 13. Let W = (a1, ...,a,,) be a walk in G. For e € E, we let

occw (e) = [{i € [m — 1] | e = {a;, ait1}}]

denote the number of times the edge e is used in W. Moreover, for every S C A, let

avoid (S) = U M
{MeM|MNS=0}

be the union of the bramble sets in M disjoint from S.

» Lemma 14. Let 0 < i < k and let {(a1, f1),-..,(a;, fi)} C B. Let W be a walk in
G from s to avoidym({ar,...,a;}). For all j € [i], let fj : Eqo; — {0,1} be defined by
fi(e) = fj(e) + occw (e) (mod 2). Then the mapping h sending (aj, f;) to (ay, f}) for all
j € [i] is a partial isomorphism from B to B’.

Towards proving Lemma 14, we claim the following.

» Claim 15. Let a € A and let W be a walk in G from s to ¢ # a. Then:
If (a, f) € B and f'(e) = f(e) + occw (e) (mod 2) for all e € E,, then (a, f') € B'.
If (a, f') € B’ and f(e) = f'(e) — occw (e) (mod 2) for all e € E,, then (a, f) € B.

The idea underlying the claim is that, for (a, f) € B with a = s, both the sum of the
labellings of F, under f, and the number of occurrences of edges in F, in a walk W that
starts at a and does not end at a, are odd. For (a, f) € B with a # s both the sum of the
labellings under f of edges incident on a, and the number of occurrences of edges incident
on a in a walk W that neither starts nor ends at a, are even. It follows that (a, f') € B’ by
construction.

Proof of Claim 15. For the first item, let a € A, let (a, f) € B, and let f': E, — {0,1} be
such that f’(e) = f(e) + occw (e) (mod 2) for all e € E,,.

If a € A\ C, then (a, f) € B implies that f(e) = occy(e) = 0 for all e € E,, so that
f'(e) =0 for all e € E,. By construction, (a, f’) € B’. Otherwise, if a € C, we distinguish
two cases.

Case: If a = s, then

1= Z occyy (e) (mod 2)
e€E,
because W starts at s and ends at ¢t # s = a (and G does not contain loops). On the other
hand, by definition of B,
1= Z f(e) (mod 2),
e€Eg
so0=> cp f'(e) (mod 2), and (s, f') = (a, f') € B’ by definition of B'.
Case: If a # s, then
0= Z occyy (e) (mod 2)

because W neither starts nor ends at a (and G does not contain loops). On the other hand,
by definition,
0= Y f(e) (mod 2),
eck,
so0=> cp f'(e) (mod 2) and (a, f') € B’
For the second item, if a € A\ C we similarly have that f is identically 0 on E, and
therefore (a, f) € B. Otherwise, if a € C, let (a,f’) € B’, and let f: E, — {0,1} be
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such that f(e) = f/(e) — occw (e) (mod 2). We distinguish two cases. If a = s, then 1 =
> eer, occw(e) (mod 2) and 0 = >, f’(e) (mod 2), therefore 1 = 3 5 f(e) (mod 2) and
(s,f)=(a,f) € B. Ifa#s,then 0=} _p occyw(e) (mod 2) and 0 =3 p f'(e) (mod 2)
imply 0 =3 . f(e) (mod 2), so that (a, f) € B and we are done. <

We are now ready to prove the lemma. For the sake of intuition, consider the case where A
is a connected graph, so that A = G. If the edge {(a, f), (b, 9)} is in B and h((a, f)) = (a, f'),
h((b,g)) = (b,¢'), then on the one hand f({a,b}) = g({a,b}), which is the content of (4);
and on the other hand f'({a,b}) and ¢'({a, b}) equal the parity of the sum of f({a,b}) and
g9({a,b}), respectively, and the number of occurrences of {a, b} in a fixed walk W, which is
the content of (3). Therefore f'({a,b}) = ¢’({a,b}) and the edge {(a, f), (b,9)} is in B’. The

converse is symmetric.

Proof of Lemma 14. By Claim 15, (aj, f;) € B’ for all j € [i], hence h is a partial function
from B to B’; moreover, h is injective by definition. Let R € o, let ar(R) = r, and let
(b1, f1),- -, (by, frr) € dom(h). Tt is sufficient to show that

(b1, f1)s - (bys fr) € BB <= (h(by, f1),- .., h(br, f;)) € RF'

(=) Assume ((b1, f1),.--, (b., f)) € RB. Then by construction (by,...,b,.) € R*. We
distinguish two cases.

Case: {b1,...,b,} NC = 0. Note that if b; € A\ C, then f;(e) = 0 for all e € Ep, by
construction and occy (e) = 0 for all e € Ejp; because W lies entirely in C. Then fi(e) =0
for all e € Ey,. Therefore, by construction, (h(b1, f1),..., (b, fr)) € RB'.

Case: If {b1,...,b,} C C, then let e = {b;,b;} € E, j,j' € [r]. We claim that
f]{(e) = fj/-,(e). By hypothesis, there exists a walk W in G from s to ¢ € avoid ¢ ({a1,...,a;})
such that for all j € [i] and all e € E,; it holds that

file) = fie) +occw (e) (mod 2). (2)
It follows from (2) that, for all j € [r] and e € E,,
file) = fi(e) + occw (e) (mod 2). (3)

Moreover, by construction, if j, j* € [r] and e = {b;,b;;} € E, then

fi(e) = fj(e). (4)
Therefore,
fi(e) = fj(e) +occw (e) (mod 2) by (3)
= fjr(e) + occw (e) (mod 2) by (4)
= fj(e) by (3)

We conclude that ((b1, f]), ..., (by, f1)) = (h(b1, f1), ..., h(bs, f,)) € RB'.

(=) Assume ((b1, f]), ..., (br, f1)) € RB'. Then (by,...,b.) € RA. If {by,...,b,}NC =
0, then (h(b1, f]),.-.,h(b, f.)) € RP reasoning as above. If {by,...,b.} C C, then let
J,j’ €r] and e = {b;,b;s} € E. We claim that f;(e) = f;/(e). By hypothesis, there exists a
walk W in G from s to ¢t € avoida¢({as,...,a;}) such that for all j € [i] and all e € E,; it
holds that

fi(e) = fj(e) —occw (e) (mod 2). (5)
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By (5) we have that for all j € [r] and e € Ej,
fi(e) = £1(e) — ocewr(e) (mod 2) (6)

Moreover, by construction, if j, j € [r] and e = {b;,b;s} € E, then

file) = fi(e). (7)
Therefore,
fi(e) = £i(e) — occw(e) (mod 2) by (6)
= fj:(e) — occw (e) (mod 2) by (7)
= fj(e) by (6)
We conclude that ((by, f1), ..., (b, f)) € RB. <

We now formalize the strategy informally described above and show that, indeed, it is a
winning strategy for the duplicator in the k-pebble game on B and B'.

» Lemma 16. Let S be the family of partial isomorphisms from B to B’ that contains an
injective map h: B — B’ when |[dom(h)| < k and there exists a walk W in G from s to
avoid pq(m1(dom(R))) such that, for all (a, f) € dom(h), it holds that h((a, f)) = (a, ') where

f'(e) = f(e) + occw (e) (mod 2)
foralle € E,. Then S is a duplicator winning strategy in the k-pebble game on B and B’.

The crux of the proof is the following. Suppose that ¢ < k pebble pairs are placed on
elements (a1, f1),. .., (a;, fi) € B and correspondingly on elements (aq, f1),..., (ai, f/) € B’
such that for some walk W in G from s to t in a bramble set in M avoiding aq,...,a; it
holds that f](e) equals the parity of f;(e) plus the number of times e occurs in W (for all
je€liland e € Ey,).

The spoiler pebbles, say, (a;1+1, fi+1) € B. The duplicator obtains a walk W’ in G from
s to a vertex t' lying in a bramble set of M that avoids aq,...,a;,a;41 (such a set exists
because the bramble has order greater than k > i + 1) by walking from s to ¢t over W and
then from ¢ to ¢’ using only vertices in the bramble sets of ¢ and ¢’ (which is feasible by the
properties of the bramble). The duplicator pebbles (a;11, fi, ;) € B, where f ,(e) equals the
parity of fi1(e) plus the number of times e occurs in W' for all e € E,, ,; thus maintaining
its winning position, because the number of occurrences of edges incident to any of aq,...,a;
does not change in passing from W to W'.

Proof of Lemma 16. We check that S satisfies Definition 4 relative to B and B'.

For (S1), we show that the function h: # — () is in S. Since any hitting set of the bramble
M has size at least k+ 1 > 2, there exists a set M in M such that s € M. Let a € M. Then
a € avoidaq(m1(dom(h))). Moreover, G is connected, hence there is a walk W in G from s to
a. Thus h € S.

We now verify that S satisfies (S2.F) and (S2.B). Let h € S and let |[dom(h)| < k. By
definition of S, there exists a walk W in G from s to t € avoid aq (71 (dom(h))) such that, for
all (a, f) € dom(h) it holds that h((a, f)) = (a, f') where f'(e) = f(e) + occw (e) (mod 2)
for all e € E,.

For (S2.F), let (a, f) € B. Since |[dom(h)| < k, we have that |r;(dom(h)) U {a}| < k. So,
by the observation about any hitting set of the bramble M, there exists a set M’ € M such
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that M’ N (w1(dom(h)) U {a}) = 0. Let t € M € M. Obtain a walk W’ in G from s to
t' € avoid p (71 (dom(h)) U {a}) by concatenating W and a walk in G from t € M to t' € M’
containing only vertices in M and M’. Let (a, f) be such that f'(e) = f(e)+occy(e) (mod 2)
for all e € E,. Now define ' = hU{((a, f), (a, f))}.

We want to show that A’ is in S. We claim that, for all (b, f,) € dom(R'), if A'((b, f)) =
(b, f7), then f(e) = fi(e) + occyw(e) (mod 2) for all all e € Ej,. It follows that b’ is a partial

isomorphism from B to B’ by Lemma 14, so that A’ is in S witnessed by W’. Hence h' € S.

For the claim, let (b, f,) € dom(h') and let A'((b, f)) = (b, f}). If b = a, then (b, fi,) =
(a, f) and h'((a, f)) = (a, f') such that f’'(e) = f(e) + occw(e) (mod 2) for all e € E, by
construction. If b # a, then notice that b € M and b € M’, so that for every e € E} it holds
that occy (€) = occw/(e), and therefore,

fi(e) = fu(e) + occw (e) (mod 2) by hypothesis on h
= fp(e) + occy (e) (mod 2)

and the claim is settled.
For (S2.B), let (a, f’) € B’. Along the lines above, we obtain a walk W’ in G from s to
avoid aq (71 (dom(h))U{a}), and f: E, — {0,1} such that f'(e) = f(e)+occw-(e) (mod 2) for

all e € E,; we put ' = hU{((a, f), (a, f'))}, and show that A’ € S appealing to Lemma 14.

We conclude by verifying that S satisfies (S3). Let h € S and let (a, f) € dom(h). We

want to show that the restriction of i to dom(h)\{(a, f)}, namely, A" = Algom(n)\{(a,f)} i5in S.

Partial isomorphisms are closed under restrictions, hence b’ is a partial isomorphism from B to
B’ of domain size at most k. Let W be a walk in G from s to avoid oq(m1(dom(h))) witnessing
that h is in S. We claim that W also witnesses that b’ is in §. By definition, W is from
s to avoid g (w1 (dom(h))) C avoid g (1 (dom(h’))). Moreover, if 1/ ((a’, f)) = (a/, f"'), then
h((a', f)) = (a/, f"") and for all e € E, it holds that f”(e) = f'(e) + occyy (e) (mod 2). =

4 Existential Positive Logic

In this section, we present combinatorial width, the combinatorial measure on EP-formulas.

While the specialization of this measure to EP-sentences is due (implicitly) to previous work,
we here give a definition that applies to all EP-formulas.

In order to define our measure, we first associate a structure to each PP-formula, as
follows. In the following definition, one should conceive of 1 as a disjunct of an EP-formula
which is a disjunction of PP-formulas and which has free variables vy, ..., vy.

» Definition 17. For each vocabulary ¢ and each integer £ > 1, we fix U, to be a relation
symbol of arity ¢ outside of o.

For each vocabulary o, each list vy,...,v; of variables, and each PP-formula ¢ over
vocabulary o with free(y) C {v1,...,v¢}, we define a structure C[y; o;v1, ..., vy] as follows:

Define 1)’ as the formula obtained from 1 by prenexing 1 and then renaming quantified
variables (if necessary) so that none of the variables vy, ..., vy are quantified.
Define ¥ as Jvy ... ve(Uyp(v1,...,00) AY') if £ >0, and as ¢’ if £ = 0.
Define C[); 03 v1, ..., ve] as C[pT].
Note that, in the case that £ = 0, it holds that C[¢;o;v1, ..., v,] is isomorphic to C[v], since
in this case 1’ and 1 are identical up to renaming variables, and 1+ = ).

In essence, the structure just defined is the canonical structure obtained by conjoining,
to the PP-formula, the atom U, ¢(v1, ..., v¢), where the symbol U, ¢ is a fresh one; and then
existentially quantifying all free variables.
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We now define a notion of normalized EP-formula.

» Definition 18. (extends [6, Definition 3]) Let ¢ be an EP-formula over vocabulary ¢ and
whose free variables are vy, ...,v,. We say that ¢ is normalized if it is equal to a disjunction
Viepm) ¥i (with m > 0) where:

each 1; is a prenex PP-formula,

for each i € [m], the structure C[¢;;0;v1,...,v¢] is a core, and

for each ¢,j € [m] with i # j, it holds that Cly;;0;v1,...,v] 4 Cls;05v1,...,v4].

» Proposition 19. There exists an algorithm that, given as input an EP-formula ¢, outputs a
normalized EP-formula ¢’ = \/ie[m] ¥} that is logically equivalent to ¢, and such that (for

any k > 0) if ¢ is EP*-expressible, then Pl is PPF-expressible for every i € [m].

This proposition was observed in the particular case of sentences by [6, Section 3]; the con-
struction is, in essence, a solution to a classic exercise in database theory [1, Exercise 6.14(c)].

Proof. Let o denote the vocabulary of ¢, and let vy, ..., v, denote the free variables of ¢.
By the proof of [6, Lemma 4(3)], ¢ can be syntactically transformed (while preserving
logical equivalence) to a disjunction \/ie[m] 1; where each v; is a PP-formula, via transfor-

mations that do not introduce variables. Hence, each v; is PP*-expressible assuming that ¢
was EP*-expressible.

For each i € [m], we may further assume (by rewriting 1; if necessary) that v; = 4/,
where 1} is as defined in Definition 17. As this operation preserves logical equivalence, it
does not affect whether or not the disjunction \/ie[m] P; is EPk—eXpressible.

Suppose that 4, j € [m] and h are such that h is a homomorphism from C[t);; o501, ..., vy
to Cly;; 0501, .., ). Due to the interpretation of U, ¢ by these structures as {(v1,...,v/)},
it holds that h fixes each of vy,...,v,. We claim that when B is a structure and when

f:{v,..., v} — B is an assignment, it is straightforward to verify that B, f |= ¢; implies
B, f(h) = 14, which in turn implies B, f |= ;.

In the case that there exists such a homomorphism for i, 5 € [m] with i # j, we have that
1; entails v;, and hence removing 1; from the disjunction preserves logical equivalence of
the disjunction. In the case that there exists such a homomorphism that is not surjective for
1 = j, then set ¥ to be the modification of 1); where one removes all atoms whose variables
are not in the image of h, as well as the quantifications of such variables; then, we have
Cli; o501, ...,v] = Cl;o;v1,...,v; from this, it follows that ¢ and v; are logically
equivalent, and 1); can be replaced with v in the disjunction. By iteratively performing such
removals and replacements until none can be performed, a normalized EP-formula is obtained.
Moreover, these removals and replacements preserve PPk-expressibility of all disjuncts. =

We now define the notion of combinatorial width. Although we only define it directly on
normalized EP-formulas, the definition can be naturally extended to all EP-formulas in light
of Proposition 19.

» Definition 20. Let ¢ = \/ie[m] 1; be a normalized EP-formula with free variables vy, ..., v,
and over vocabulary o. We define comb-width(¢) = max;e[m)(tw(C[; 0501, .., v¢]) + 1).
Note that, in the case that ¢ is a sentence (equivalently, when ¢ = 0), it holds that
comb-width(¢) = max;e[,, (tw(Cle4]) + 1).

The notion of the combinatorial width of a normalized sentence was studied implicitly in
previous work; see Proposition 3.4 of [10] and Section 3 of [6]. The following theorem was
known [16, 6].
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> Theorem 21. Let ¢ = \/,c(,, ¥ be a normalized EP-sentence. Let k = comb-width(¢).
The sentence ¢ is EPk—expressible, but (assuming k > 0) is not EPkil—ezz:pressible.

Proof. We will use the fact, which follows from [16, Theorem 12], that (when w > 1) a
PP-sentence 9 has tw(core(C[¢])) < w if and only if ¢ is PP“-expressible.

We have that ¢ is EP"-expressible via this fact, since each disjunct ¢; has tw(C[t;]) <
comb-width(¢).

For the non-expressibility result, suppose that ¢ is EP"-expressible; we prove that
n > k. It follows from Proposition 19 that ¢ is logically equivalent to a normalized EP-
formula that is a disjunction ;1% of PP"-formulas. We have that each C[¢;] is a
core; by the fact, we obtain that tw(C[¢}]) + 1 < n. By Lemma 4(2) of [6], it follows that
k = max;ep,, (tw(C[¢;]) + 1). We thus have k < n. <

5 Main Theorems and Consequences

We first prove our number-of-variables characterization for EP-sentences.

> Theorem 22. Let ¢ = \/;c(,, ¥i be a normalized EP-sentence; let w = comb-width(¢).

The sentence ¢ is EPY -expressible, but (assuming w > 1) is not FOV ™' -expressible.

This theorem is transparently seen to be a strengthening of Theorem 21 (when the stated
assumption holds).

Proof. That the sentence ¢ is EP"“-expressible follows directly from Theorem 21, so we prove
that ¢ is not FO“~!-expressible. Choose i € [m] such that comb-width(¢) = tw(C[ey;]) + 1;
set A = C[¢);]. By the definition of normalized, we have that A is a core. Let B, B’ be the
structures provided by Theorem 6 relative to A and k = tw(A); note that k = w — 1.

We show in the next paragraph that B’ = ¢ and B = ¢. Then, since B’ and B are
FOk—indistinguishable by Theorem 6, and since ¢ distinguishes between B’ and B, it follows
that ¢ is not FO*-expressible.

We prove the claim. We have that A — B’, hence B’ |= ¢); by Theorem 2, and B’ = ¢.
Now, assume for a contradiction that B |= ¢. Then B = ¢; for some j € [m]. Then
Cl¢j] — B by Theorem 2. We have B — A = C[¢;] by Theorem 6. Hence C[t);] — C[1)],
so i = j by the hypothesis that ¢ is normalized. But we also have A = Clt;] 4 B, hence
i # j, a contradiction. <

We now extend the previous theorem to address all normalized EP-formulas. The following
is our primary theorem.

» Theorem 23 (Primary theorem). Let ¢ = Vie[m] V; be a normalized EP-formula; let
w = comb-width(¢). The formula ¢ is EP"Y-expressible, but (assuming w > 1) is not
FO“~!-expressible.

Proof. Let o denote the vocabulary of ¢. Let vq,...,v, denote the free variables of ¢. We
assume that £ > 1 (otherwise, the theorem follows from Theorem 22).

We first establish that ¢ is EP"-expressible. It suffices to prove that, for each ¢ € [m],
the formula v; is expressible using b = tw(C[¢;; 0501, ..., v]) + 1 variables. By definition
of treewidth, there exists a tree decomposition of Clt);;0;v1,...,v,] where each bag has
size b or less. It is readily verified that this tree decomposition is a tree decomposition
of C[3vy ... Jve]] (where ] is derived from 1); as described in Definition 17) which has
a bag Bs with v1,...,v; € Bs. The result now essentially follows from the argument of
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Lemma 5.11 of [11, 12]. We give an explanation for the sake of completeness. Add a vertex r
adjacent to s to the tree and define B, = {v1,...,v,}. Let T be the resulting object, which
is straightforwardly verified to be a tree decomposition of C[Jvy ... Jvs)}] where each bag
has size b or less.

We now describe how to construct the desired formula. Each variable of ¢}, other than
v1,. .., v, will be existentially quantified exactly once in the formula; and all atoms of ¢},
will appear in the formula. In this way, the constructed formula will be clearly logically
equivalent to ¢}, and hence ;.

Root the tree T at r; note that r has a single child, s.

For each non-root vertex ¢ of T', we define a PP-formula 6; inductively, as follows. Define

0 as Jwy ... wy,0; where wy, ..., wy, is a list of variables that are in the bag B; of t but

not in the bag of ¢’s parent, and 6} is the conjunction of 6, over all children u of ¢ and all

atoms R(z1,...,z;) of ¢, where {z1,..., 21} C Bs.

The desired formula is 6.

Observe (by induction) that, for each non-root vertex ¢ of T', it holds that free(d;) C B; and
free(d,) C B, where p is the parent of t. It follows that each formula 6;, and in particular 6,
has width < b, and is thus PPb—expressible.

We now establish that ¢ is not FO” ™ !-expressible.

If w < £, then it is straightforward to verify that the formula ¢ is not FO“ ™ -expressible,
since w — 1 is strictly lower than the number of free variables of ¢. (We can remark that
w > ¢, since each structure C[y¢;; 0301, ..., v] interprets Uy ¢ as {(v1,...,ve)}, and so the
treewidth of each such structure plus 1 is £ or more.)

We thus assume in the sequel that w > ¢. For each i € [m], we may assume without loss
of generality that each 1); is prenexed and that in each v;, none of the variables vy, ..., vy are
quantified. Define 1/114+ as in Definition 17; we then have 1/11-+ =Juy ... (Uge(v,- .., 00) Ay).
Define ¢™ as Vie[m] Y. We have that C[i;; 0501, ...,v¢ = C[1;]. We have

comb-width(¢) = m[ax(tw(C[z/}i; o501, ..+, vg])+1) = max (tw(C[;])+1) = comb-width(¢™),

i€[m] i€[m]

where the last equality holds by the note in Definition 20.
Observe that

ot =\ ¢f =\ Jor... Fu(Uou(vr,...,00) Aiy)

i€[m] i€[m]
=Jup... v \/ (Use(v1, -y 00) Api) = Fvr ... Fug(Uge(v1, - . 00) A ( \/ Vi)
i€[m)] i€[m]

=Jvy ... Fve(Upe(v1,...,00) A D).

Suppose, for a contradiction, that ¢ is FO*~!-expressible. Then, ¢ can be expressed just
using the variables x1,..., 2,1 (recall the assumption that w > ¢, which gives w — 1 >
0). Since ¢t = Juy ... Fvg(Uss(v1,...,ve) A ¢), this immediately implies that ¢t can be
expressed just using the variables x1,...,Z,_1, and that ¢T is FO“ '-expressible. As
w = comb-width(¢) = comb-width(¢™), this contradicts Theorem 22. <

» Corollary 24. For each k > 1, FO*-expressibility and EP*-expressibility coincide on
existential positive formulas; that is, an existential positive formula is FO®-expressible if and
only if it is EP*-expressible.

Proof. Clearly, EP*-expressibility implies FO*-expressibility. For the other direction, suppose
that an existential positive formula ¢ is FOF-expressible. Let ¢’ be a normalized EP-formula
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that is logically equivalent to ¢ (which exists by Proposition 19). We have that ¢’ is FO*-
expressible. We have that k > comb-width(¢); if not, we would have 1 < k < comb-width(¢’),
contradicting Theorem 23. It follows from Theorem 21 that ¢’ is EPk—expressible. |

» Corollary 25. The problem of deciding FOk—eJ:pressibz'lity of EP-sentences is I15-complete.
By this, we refer to the problem of deciding, given an EP-sentence ¢ and an integer k > 1,
whether ¢ is FOk—expressible.

Proof. The problem of deciding, given an EP-sentence ¢ and an integer k > 1, whether ¢ is
EP*-expressible, is [15-complete by [6, Theorem 6]. The present corollary thus follows from
Corollary 24. |

We conclude the article by explaining how the main result of [3] follows from our
development. We first present the necessary definitions.

» Definition 26. Let o be a relational vocabulary and let A and B be o-structures. A
partial homomorphism from A to B is a partial function h from A to B such that, for
all R € o and all ay,...,a,(r) € dom(h), it holds that (ai,...,aa(r)) € RA implies
(h(al), ceey h(aar(R))) S RB.

» Definition 27. [21] Let k > 0. A duplicator winning strategy in the existential k-pebble

game on (A, B) is a family S of partial homomorphisms h from A to B with |[dom(h)| < k

such that:

(E1) 0 - 0isin S.

(E2) If h € S and |dom(h)| < k, then for every a € A there exists b € B such that hU{(a,b)}
isin S.

(E3) IfheSandac€ dom(h), then h|dom(h)\{a} isin S.

» Theorem 28. (Main theorem of [3]) Let A be a core on the relational vocabulary o such
that tw(A) > k > 1. There exists a o-structure B such that A /4 B and there ezists a
duplicator winning strategy in the existential k-pebble game on (A, B).

To prove Theorem 28, we will make use of the following transitivity property.

» Lemma 29. Let k > 0. If there exist duplicator winning strategies in the existential
k-pebble games on (A,B) and (B, C), then there exists a duplicator winning strategy in the
existential k-pebble game on (A, C).

Proof. Suppose that G is a duplicator winning strategy in the existential k-pebble game
on (A,B), and that H is a duplicator winning strategy in the existential k-pebble game on
(B, C). Let F be the set containing each mapping of the form h(g) where g € G, h € H, and
dom(h) = g(A). It is straightforward to verify that F' is a duplicator winning strategy in the
existential k-pebble game on (A, C). <

We now give a proof of Theorem 28 using the construction of this article.

Proof of Theorem 28. Let A be a o-structure. By hypothesis, A is a core and tw(A) > k;
so, by Theorem 6 there exist o-structures B and B’, such that A 4 B, A — B’, and (via
Theorem 5) the duplicator has a winning strategy in the k-pebble game on B and B'.
Therefore the duplicator has a winning strategy S in the existential k-pebble game on
(B’,B), because duplicator winning strategies in the k-pebble game on B and B’ are also
duplicator winning strategies in the existential k-pebble game on (B’,B). Moreover, there
exists a homomorphism g from A to B’. It is straightforward to verify that the family
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containing each restriction of g to a subset S C A with |S| < k is a duplicator winning
strategy in the existential k-pebble game on (A, B’). It follows, from Lemma 29 that there
exists a duplicator winning strategy existential k-pebble game on (A, B). |
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