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Abstract

We study the problem of rotating a simple polygon to contain the
maximum number of elements from a given point set in the plane. We
consider variations of this problem where the rotation center is a given
point or lies on a line segment, a line, or a polygonal chain. We also
solve an extension to 3D where we rotate a polyhedron around a given
point to contain the maximum number of elements from a set of points
in the space.

Keywords: Points covering, rotation, geometric optimization, polygon,
polyhedron.

1 Introduction

Given a simple polygon P on the plane, the Polygon Placement Problem
consists in finding a function τ, usually consisting of the composition of
a rotation and a translation, such that τpP q satisfies some geometric con-
straints. In the literature, τpP q is known as a placement of P . The oldest
problem of this family who, given two polygons P and Q, explored the prob-
lem of finding, if it exists, a placement of P that contains Q. The most recent
contribution to these problems, in 2014, can be found in [2] (see Section 1.4
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there for a summary of previous work). Among other results, for a point
set S and a simple polygon P , they show how to compute a placement of P
that contains as many points of S as possible. If n and m are the sizes
of S and P respectively, their algorithm runs in Opn3m3 logpnmqq time and
Opnmq space.

Although translation-only problems have also been considered [1, 4], sur-
prisingly enough there are no previous results with τ being only a rotation. It
is important to note that existing results with τ being a composition of a
rotation, a translation, and even a scaling, cannot be adapted to solve the
rotation-only problem considered here: All those previous results reduce
the search space complexity by considering only placements where a con-
stant number of points from S lie on the boundary of P (see for example
references [2] and [6] for algorithms based respectively, on two-point and
one-point placements). Rotation-only adaptations of these results would not
allow the rotation center to be fixed or restricted to lie on a given curve and
therefore, cannot be applied to the problems we deal with in this paper. This
is why the following Maximum Cover under Rotation (MCR) problems are
considered in this paper:

Problem 1 (Fixed MCR). Given a point r, a polygon P , and a point set S
in the plane, compute an angle θ P r0, 2πq such that, after clockwise rotating
P around r by θ, the number of points of S contained in P is maximized.

Problem 2 (Segment-restricted MCR). Given a line segment `, a poly-
gon P , and a point set S in the plane, find a point r on ` and an an-
gle θ P r0, 2πq such that, after a clockwise rotating of P around r by θ, the
number of points of S contained in P is maximized.

In addition, we complete the scene opening a path towards the study of
these problems in 3D, by presenting a three-dimensional version of Prob-
lem 1:

Problem 3 (3D Fixed MCR). Given a point r, a polyhedron P , and a point
set S in R3, compute the azimuth and altitude pθ, ϕq P r0, 2πsˆr´π, πs giving
the direction in the unit sphere such that, after rotating a polyhedron P by
taking the z-axis to that direction, the number of points of S contained in P
is maximized.

Applications of polygon placement problems include global localization
of mobile robots, pattern matching, and geometric tolerance; see the refer-
ences in [2]. Rotation-only problems arise, e.g., in robot localization using
a rotating camera [8], with applications to quality control of objects manu-
factured around an axis [10].

We first show that Problem 1 is 3SUM-hard, i.e., solving it in sub-
quadratic time would imply an affirmative answer to the open question
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of whether a subquadratic time algorithm for 3SUM exists, which is un-
likely [7]. Then, we present two algorithms to solve Problem 1: The first one
requires Opnm logpnmqq time and Opnmq space, for n and m being the sizes
of S and P , respectively. The second one takes Oppn`kq log n`m logmq time
and Opn`m`kq space, for k in Opnmq being the number of certain events.
We also describe an algorithm that solves Problem 2 in Opn2m2 logpnmqq
time and Opn2m2q space. This algorithm can be easily extended to solve
variations of Problem 2 where r lies on a line or a polygonal chain. Fur-
thermore, our techniques for Problem 1 can be extended to 3D to solve
Problem 3 within the same time and space complexities as Problem 2.

2 Fixed MCR (Problem 1)

Given a point r on the plane and a point p P S, let Cpprq be the circle
with center r and radius |rp|. If we rotate S in the counterclockwise direc-
tion around r, Cpprq is the curve described by p during a 2π rotation of S
around r. The endpoints of the circular arcs resulting from intersecting P
and Cpprq determine the rotation angles where p enters (in-event) and leaves
(out-event) the polygon P . In the worst case, the number of such events per
element of S is Opmq, see Figure 1. If we consider all the points in S we
could get Opnmq events.

p

Figure 1: A comb-shaped simple polygon can generate Ωpmq in- and out-
events per point in S.

2.1 A 3SUM-hard reduction

We show next that Problem 1 is 3SUM-hard, by a reduction from the
Segments Containing Points Problem that was proved to be 3SUM-hard
in [3]: Given a set A of n real numbers and a set B of m “ Opnq pairwise-
disjoint intervals on the real line, is there a real number u such that A`u Ď
B?

Theorem 4. The Fixed MCR problem is 3SUM-hard.

Proof. Let I be an interval of the real line that contains the set A of points,
and the set B of intervals of an instance of the Segments Containing Points
Problem. Wrap I on a circle C whose perimeter has length at least twice
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the length of I. This effectively maps the points in A and the intervals in B
into a set A1 of points and a set B1 of intervals on C.

Clearly, finding a translation (if it exists) of the elements of A such
that A ` u Ď B, is equivalent to finding a rotation of the set of points A1

around the center of C such that all of the elements of A1 are mapped to
points contained in the intervals of B1. To finish our reduction, construct a

(a)

(b)

Figure 2: Wrapping I from (a) the real line to (b) a circle C. Intervals
forming B and B1 are highlighted with blue. Elements of A and A1 are
represented by white points. Additional vertices forming the polygon are
the intersection points between the tangents to C at the endpoints of each
interval in B1.

polygon as shown in Figure 2.

2.2 An Opnm logpnmqq algorithm

Here we present an Opnm logpnmqq algorithm for Problem 1 (note that, by
Theorem 4, this complexity is close to be optimal):

1. Intersect rotation circles. Given a fixed point r, compute the in-
tersection points of Cpj prq and P , for all pj P S. Each of these points
determines an angle of rotation of pj around r when pj enters or
leaves P , see Figure 3. These angles, in turn, determine a set of inter-
vals Ij “ tIj,1, . . . , Ij,mju whose endpoints correspond to the rotation
angles in which pj enters or leaves P and, hence, specify the rotation
angles on the unit circle for which pj belongs to P , see again Fig-
ure 3. Let I “ I1Y ¨ ¨ ¨ Y In. The set of endpoints of the intervals in I
can be sorted in Opmn logpmnqq time.

2. Compute the angle of maximum coverage. Using standard tech-
niques, we can now perform a sweep on the set I “ I1 Y ¨ ¨ ¨ Y In as
depicted in Figure 4. During the sweeping process, we maintain the
number of points of S lying in P . If an in-event or an out-event occurs,
that number is increased or decreased by one, respectively. At the end
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x
y

Figure 3: An in-event at x (left turn), and an out-event at y (right turn).

0 2π

p1

pn

`

...

pj

... Ij,1 Ij,ij· · ·

Figure 4: The events sequence and the sweeping line at angle θ. Highlighted
with a red circle, the intersection of line ` with an interval corresponding
to p1 (where p1 is inside P ). Highlighted with a blue circle, the intersection
of line ` with one of the endpoints of an interval corresponding to pn (an
in-event).

of the sweeping process, we report the angular interval(s) where the
number is maximized.

Since the complexity of our algorithm is dominated by Step 1, which
takes Opnm logpnmqq time, we conclude the following result.

Theorem 5. The Fixed MCR problem can be solved in Opnm logpnmqq time
and Opnmq space.

2.3 An output-sensitive algorithm

We now show that, performing a plane sweep using a sweeping circle centered
at r whose diameter increases continuously, it is possible to intersect P and
the set of rotation circles in a more efficient way. The idea is to maintain
a list of the edges intersecting the sweeping-circle, ordered by appearance
along the sweeping-circle. Using the same technique shown in Figure 3, the
edges are labeled as defining in- or out- events. The algorithm is outlined
next.
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1. Normalize P . In the following steps, we consider P to have no edges
intersecting any circle centered at r more than once. This can be guar-
anteed by performing a preprocessing step on P : For every edge e “ uv
of P , let pe be the intersection point between the line ` containing e
and the line perpendicular to ` passing through r. If pe belongs to the
relative interior of e, subdivide this edge into the edges upe and pev. In
the worst case, each edge of P gets subdivided into two parts. See Fig-
ure 5.

u

r
v

Figure 5: Splitting an edge of P .

2. Process a vertex of P . Sort first the vertices of P and S according
to their distance from r. This is the order in which an expanding
sweeping circle centered at r will reach them.

As the sweeping-circle increases in size, we stop at each vertex pj
of P . Each time this happens, the number of intersections of Cpj prq
with the boundary of P will increase or decrease by two. We can main-
tain and update the ordered list of edges intersected by Cpj prq, using
a red-black tree, in logarithmic time. This enables us to calculate the
intersections of Cpj prq in time proportional to their number. It suffices
to walk along the ordered list of edges intersected by the sweeping-
circle. Each time the sweeping circle reaches an element of S, the num-
ber and order of intersections of the sweeping circle with the edges of P
remains unchanged. However, since the points of intersection change,
we need to recalculate them each time we reach a point of P or S.

3. Compute the intervals sequence for each element of S. We can
now compute, within the same time complexity, the intervals in which
Cpj prq intersects the interior of P . Note that these intervals are not
the elements of Ij , they have to be rotated according to the position
of pj with respect to r.

4. Construct the events sequence. Since for each point pj in S we
have computed the corresponding sequence of sorted intervals Ij , all
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we need to do is to merge these (at most n) sequences into a complete
sequence of events.

The normalization process takes Opmq time. Sorting the points in S
and the vertices of P by distance from r takes Opn log nq and Opm logmq
time, respectively. The ordered list of edges intersecting the sweep-line is
maintained in an Opmq-size red-black tree, so we can process all the vertices
of P in Opm logmq time. On the other hand, processing all the points in S
takes Opkq time, where k denotes the total number of in- and out-events in a
Fixed MCR problem. Finally, merging the Opnq sequences of sorted intervals
takes Opk log nq time. We then sweep the merged list of I1 Y ¨ ¨ ¨ Y In in
Opkq time to obtain a solution to our problem. The total time complexity
is Opn log n`m logm` k log nq. The space complexity is Opn`m` kq. We
have thus proved:

Theorem 6. The Fixed MCR problem can be solved in Oppn ` kq log n `
m logmq time and Opn`m` kq space.

3 Segment-restricted MCR (Problem 2)

Our approach to solve Problem 2 is to characterize, for each p in S, the
intersection between the polygon P and the rotation circle Cpprq while the
center r of Cpprq moves along a line segment ` “ ab from a to b. For simplic-
ity, we assume that a lies on the origin p0, 0q and b on the positive x-axis.
For each edge e “ uv of P , we parameterize the intersection between Cpprq
and e using a function ω “ fpxq, where x is the x-coordinate of r (ranging
from 0 to the x-coordinate b.x of b) and ω is the counterclockwise angle
swept by the ray ÝÑrp until it coincides with the ray emanating from r and
passing through the current point of intersection q of Cpprq and e (assume
for the moment that there exists exactly one such point of intersection). See
Figure 12.

Leaving the details for Section 3.4, we obtain the following expression
of ω as a function of x:

ω “ arccos

˜

γpxq ˘
a

δpxq

εpxq

¸

, (1)

where γpxq, δpxq, and εpxq are polynomials of degrees 2, 4, and 2, respec-
tively. The motion of r along ` thus corresponds to a set of points px, ωq for
which p hits the boundary of P . For each point p P S, these points form
Opmq curves bounding a collection of simple regions in the x-ω plane; each
point px, ωq of any such region corresponds to a rotation of p, by a counter-
clockwise angle of size ω with respect to a rotation center at px, 0q, for which
p belongs to P . Note that each pair of such regions have disjoint interiors,
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whereas their boundaries may intersect at most at a common vertex due to
the simplicity of P .

3.1 Subdividing the Edges of the Polygon

We mentioned earlier that, for convenience, we subdivide the edges of the
polygon P about their points of intersection (if any) with the x-axis; so, in
the following, we assume that each edge has no points on either side of the
x-axis. We further subdivide the edges in order to simplify the computation
of the angle ω in terms of the x-coordinate of the rotation center r as it
moves along the segment ab.

Theoretical Framework. Let us consider that we process the point p P
S, and denote by Dpprq the closed disk bounded by Cpprq, where r is a
point in ab. In Figure 7, p is taken to lie above the x-axis where either
a.x ď p.x ď b.x (top figure) or b.x ă p.x (bottom figure). The cases where
p.x ă a.x or where p lies below the x-axis are symmetric, whereas the case
where p lies on the x-axis is similar (see figures 9 and 10). Moreover, let p1

be the mirror image of p with respect to the x-axis; clearly, p1 coincides with
p if p lies on the x-axis. Finally, let HL

p (HR
p , resp.) be the open halfplane

to the left (right, resp.) of the line perpendicular to the x-axis that passes
through p.

Then, it is useful to observe the following properties.

Lemma 7. Let p be a point, and let HL
p , HR

p , Cpprq, and Dpprq, for r P ab,
be as defined above.

(i) Consider any two points r, r1 P ab with r ‰ r1. If the point p lies on the
x-axis, then the circles Cpprq, Cppr

1q intersect only at p. If the point p
does not lie on the x-axis, the circles Cpprq, Cppr

1q intersect at p and at
p’s mirror image p1 about the x-axis, and the line segment pp1 belongs
to both Dpprq, Dppr

1q.

(ii) Ź For every point s in the interior of HL
p X Dpprq, there exists a

unique circle centered on the x-axis that passes from p and s and
its center lies to the right of r;

Ź for every point t in HL
p ´Dpprq, there exists a unique circle cen-

tered on the x-axis that passes from p and t and its center lies to
the left of r.

Symmetrically,

Ź for every point s1 in the interior of HR
p X Dpprq, there exists a

unique circle centered on the x-axis that passes from p and s1 and
its center lies to the left of r;
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Figure 1: For the proof of Lemma ??. (left) The perpendi
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Bqp, Btp interse
t the x-axis at points r′, r, r′′, respe
tively. (right) The lines

through p that are perpendi
ular to the tangent at p and to tp interse
t the

x-axis at points r, r′′, respe
tively.

Figure 6: For the proof of Lemma 7. (left) The perpendicular bisectors Bsp,
Bqp, Btp intersect the x-axis at points r1, r, r2, respectively. (right) The lines
through p that are perpendicular to the tangent at p and to tp intersect the
x-axis at points r, r2, respectively.

Ź for every point t1 in HR
p ´ Dpprq, there exists a unique circle

centered on the x-axis that passes from p and t1 and its center
lies to the right of r.

Proof.

(i) From the definition of the circles Cpprq for all r P ab, p belongs to each
such circle.

Next, assume that p lies on the x-axis and suppose for contradiction
that two circles Cpprq, Cppr

1q with r ‰ r1 intersect at a point p1 ‰ p as
well. Then, both r, r1 would belong to the perpendicular bisector of the line
segment pp1; thus, the perpendicular bisector should coincide with the x-axis.
Then, since p lies on the x-axis, p1 would coincide with p, in contradiction
to the assumption that p1 ‰ p. Therefore, if p lies on the x-axis, any two
circles Cpprq, Cppr

1q with r ‰ r1 intersect only at p.
Now, assume that p does not lie on the x-axis. Then, since p1 is the

mirror image of p with respect to the x-axis, the x-axis is the perpendicular
bisector of the segment pp1. Thus, p1 belongs to all the circles centered
on the x-axis that pass from p. The fact that pp1 belongs to each of the
disks Dpprq, for all r P ab, follows from the fact that each disk Dpprq is a
convex set containing p and p1.

(ii) Let q be the point of intersection of Cpprq with the line L through p
and s; see Figure 6(left). The line L is well defined since s ‰ p. In fact,
s.x ă p.x (because s belongs to HL

p ), and thus L is not perpendicular to
the x-axis, which implies that the perpendicular bisector Bqp of the line
segment qp intersects the x-axis at a single point; this point of intersection
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is precisely the center r of Cpprq. Since the perpendicular bisector of the
line segment sp is parallel to Bqp and lies to the right of Bqp (because s is an
interior point of qp), it intersects the x-axis at a single point r1 to the right
of r; r1 is the center of the circle centered on the x-axis that passes from p
and s.

Now, consider t P HL
p ´Dpprq, and let Tpprq be the open halfplane that

is tangent to the circle Cpprq at p and contains r. If t P Tpprq, then the
line L through p and t intersects Cpprq at p and at another point q, and
q P tp. Then, as above, the perpendicular bisector Bqp of qp intersects the
x-axis at r, whereas the perpendicular bisector of tp is parallel and to the
left of Bqp (since q is an interior point of tp), and thus intersects the x-axis
at a point r2 to the left of r; see Figure 6(left). It is important to observe
that the proof so far applies no matter whether p lies on the x-axis or not.

Next, let us consider the case in which t R Tpprq; this case is not possible
if p lies on the x-axis since then Tpprq “ HL

p . Then, the line through p
perpendicular to the tangent to the circle Cpprq at p intersects the x-axis at
r. Since t R Tpprq, the line perpendicular to the line through t and p is not
parallel to the x-axis and thus intersects the x-axis at a single point r2. In
fact, since the angle xtpr of the triangle with t, p, r as vertices is larger than
π{2, r2 is to the left of r; see Figure 6(right).

The results for points s1 in the interior of HR
p XDpprq and t1 P HR

p ´Dpprq
are obtained in a fashion left-to-right symmetric to the one we used in order
to obtain the results for the points s in the interior of HL

p X Dpprq and

t P HL
p ´Dpprq, respectively.

Statement (ii) of Lemma 7 directly implies that the union of all the
circles Cpprq forms precisely the closure of the symmetric difference Dppaq‘
Dppbq of the disks Dppaq and Dppbq centered at a and b, respectively (see
Figure 7); note that any point in the interior of

´

`

Dppaq ´Dppbq
˘

XHL
p

¯

Y

´

`

Dppbq ´Dppaq
˘

XHR
p

¯

lies on a circle Cpprq with r in the interior of ab, whereas no other point
does so. Lemma 7(ii) also implies the following corollary.

Corollary 8.

(i) For any r, r1 P ab with r to the left of r1:

Ź
`

CpprqXDppr
1q
˘

XHL
p “ H and Dppr

1qXHL
p Ă DpprqXH

L
p ;

Ź
`

Cppr
1qXDpprq

˘

XHR
p “ H and DpprqXH

R
p Ă Dppr

1qXHR
p .

(ii) Suppose that a line segment I intersects a circle Cpprq, where r P
ab, at points w1, w2 such that the line segment w1w2 lies entirely in
the closure of

`

Dppaq ´ Dppbq
˘

. Then, the segment I is tangent to
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a circle Cppr
1q for some r1 P ab and the point of tangency belongs to

w1w2. Symmetrically, the same result holds if the segment w1w2 lies
entirely in the closure of

`

Dppbq ´Dppaq
˘

.

Proof.

(i) We prove the propositions for the halfplane HL
p ; the proofs for HR

p are
left-to-right symmetric.

Since r is to the left of r1, Lemma 7(ii) implies that Cppr
1qXHL

p lies in the

interior of DpprqXH
L
p . This in turn implies that (i)

`

CpprqXH
L
p

˘

X
`

Dppr
1qX

HL
p

˘

“ H, i.e.,
`

Cpprq X Dppr
1q
˘

X HL
p “ H, and (ii)

`

Dppr
1q X HL

p

˘

Ă
`

Dpprq X HL
p

˘

since the disk Dppr
1q is bounded by Cppr

1q and since each
such disk is a convex set; we have a proper subset relation because the
points in Cpprq XH

L
p do not belong to Dppr

1q XHL
p .

(ii) Below, we prove the statement for the case that w1w2 lies entirely
in the closure of

`

Dppaq ´ Dppbq
˘

; the proof for the case that w1w2 P

closure
`

Dppbq ´Dppaq
˘

is left-to-right symmetric.

Since w1 ‰ w2 and w1w2 P closure
`

Dppaq´Dppbq
˘

, then r ‰ b; let t P ab
be a point infinitesimally to the right of r. Then, according to statement (i),
`

CpprqXDpptq
˘

XHL
p “ H and

`

DpptqXH
L
p

˘

Ă
`

DpprqXH
L
p

˘

, which together
imply that

`

Dpptq X I
˘

Ă w1w2; note that at least one of w1, w2 (which
belong to Cpprq) belongs to HL

p , for otherwise, either w1w2 degenerates to a

single point, in contradiction to the fact that w1 ‰ w2, or w1w2 “ pp1 with
p ‰ p1, in contradiction to the fact that w1w2 lies entirely in the closure
of

`

Dppaq ´Dppbq
˘

. Since the rotation center moves continuously along ab

there exists a point r1 P rb such that Dppr
1qXI is a single point, i.e., the line

segment I is tangent to the circle Cppr
1q; moreover, since Dppr

1qXI Ă w1w2,
the point of tangency belongs to the line segment w1w2.

The Subdivision Procedure. Our subdivision procedure for the poly-
gon edges while processing point p P S works in two phases: in Phase 1, we
ensure that each circle Cpprq intersects each resulting sub-edge in at most
one point; in Phase 2, we ensure that for each sub-edge either 0 ď ω ď π or
π ď ω ď 2π implying that the value of ω is uniquely determined from the
value of its cosine.

Phase 1: If an edge uv of the polygon P does not intersect Dppaq YDppbq
or if at least one of its endpoints belongs to Dppaq X Dppbq, then we need
not do anything, otherwise:

• If uv does not intersect the interior of DppaqXDppbq, then uv is tangent
to at most two of the circles Cpprq and we subdivide it at these points
of tangency; see edges u1v1 and u2v2 in Figure 7.
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Figure 7: Subdividing the polygon edges so that each sub-edge is intersected
at most once by each of the circles Cpprq (white disks denote points of edge
subdivision).

• If uv intersects the interior of Dppaq XDppbq, then it crosses Dppaq X
Dppbq. If uv intersects the segment pp1, then we subdivide uv at its
point of intersection with pp1 (see edge u3v3 in Figure 7); if not, then
the points of intersection of uv with the boundary of Dppaq X Dppbq
both belong to either Cppaq or Cppbq (see edge u4v4 in Figure 7), in
which case we subdivide uv at its closest point to a or b, respectively.

It is not difficult to see that if the edge uv has two points of intersection with
a circle Cpprq, these two points of intersection end up belonging to different
parts of the subdivided edge.

After Phase 1 has been complete, we apply Phase 2 on the resulting
sub-edges. Let a1 and b1 be points such that a and b are the midpoints of
segments pa1 and pb1, respectively; see Figure 8. Then, Phase 2 involves the
following subdivision steps.

Phase 2:

• If a sub-edge intersects a1b1, we subdivide it at this point of intersection
(in Figure 8, see sub-edges u1v1 and sub-edge u2v2 in the top figure).

• Additionally, if the sub-edge is tangent to two circles, we subdivide it
at its point of intersection with the line through p perpendicular to
the x-axis (see sub-edges u2v2 in Figure 8).
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either to r0, πs or to rπ, 2πs (white disks denote points of edge subdivision).

By taking into account that each of Phase 1 and Phase 2 may introduce
at most two subdivision points on a polygon edge, we conclude that each
edge ends up subdivided into at most 5 sub-edges.

Finally, it is important to note that the above described edge subdivision
is introduced precisely for the processing of the current point p P S being
processed; that is, for the next element of S, we ignore the subdivision
points introduced and start working again with the edges of the polygon P
(subdivided only about the x-axis).

Correctness. Before proving Theorem 10 which establishes the correct-
ness of the subdivision procedure, we show the following useful lemma.

Lemma 9. Let p be an element of the point set S and p1 be the mirror image
of p with respect to the x-axis.

(i) If the point p is such that 0 “ a.x ď p.x ď b.x, then p1 belongs to the
line segment a1b1.

(ii) For any point q P a1b1 such that q ‰ p1, there is a point r P ab for
which Cpprq has the segment qp as its diameter.

Proof.

(i) First, assume that p lies on the x-axis. Then, p1 “ p. The assumption
a.x ď p.x ď b.x implies that p P ab, which in turn implies that ab Ă a1b1; see
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Figure 10. Thus, p P a1b1, i.e., p1 “ p P a1b1. Now, consider the case that p
does not lie on the x-axis. Let c be the (vertical) projection of p onto the x-
axis. Since a.x ď p.x ď b.x, c P ab. The line defined by p, c (note that p ‰ c)
is perpendicular to the x-axis and let d be its point of intersection with the
line supporting a1b1. Since c P ab, we conclude that d P a1b1. Moreover, by
its construction, the line segment a1b1 is parallel to the x-axis, and since
|pa| “ |aa1|, the similarity of the triangles with vertices p, a, c and p, a1, d
implies that |pc| “ |cd|. Thus, p1 “ d and hence p1 P a1b1.

(ii) Assume that p lies on the x-axis. Let q P a1b1 with q ‰ p, and suppose
without loss of generality that q is to the left of p (the case where q is to the
right of p is symmetric). Then, the midpoint of qp lies in ap and it is the
center of the unique circle Cpprq passing through q. Therefore, Cpprq has qp
as its diameter.

Now assume that p does not lie on the x-axis. Consider any point q P a1b1

with q ‰ p1. Let z be the point of intersection of the line segment pq with
the x-axis (z exists because p and a1b1, and hence p and q, lie on opposite
sides of the x-axis). Note that z P ab since q P a1b1. Then, by the similarity
of the triangles 4paz and 4pa1q we have that |pz| “ |zq|; i.e., the point z
is the midpoint of pq. Therefore, z belongs to the perpendicular bisector of
pq and in fact, it is the only point of intersection of such bisector and the x-
axis. Note that, since q ‰ p1, the line passing through p and q (remember that
p ‰ q) is not perpendicular to the x-axis. This implies that the center r of
any circle Cpprq passing through q coincides with z, that is, qp is a diameter
of Cpprq.

Lemma 9(ii) implies that for any point q ‰ p1 belonging to a1b1, the cor-
responding angle ω “ yprq is equal to π, where r P ab is the center of the
circle Cpprq passing from q.

Now we are ready to prove Theorem 10 which establishes that the sub-
division steps of Phases 1 and 2 achieve the set goals.

Theorem 10.

(i) After the completion of Phase 1, no resulting sub-edge intersects any
circle Cpprq for some r P ab in more than one point.

(ii) After the completion of Phase 2, for any two points q, q1 (lying on
circles Cpprq and Cppr

1q, respectively) of each resulting sub-edge, the

counterclockwise angles yprq and zpr1q1 either both belong to r0, πs or
both belong to rπ, 2πs.

Proof.

14



(i) Suppose for contradiction that there exists a sub-edge cd and a cir-
cle Cpprq with r P ab that intersect in two points w1 and w2. The point p
and its mirror image p1 subdivide the circle Cpprq into two arcs, AL

p and AR
p ,

the former to the left of the line through p perpendicular to the x-axis and
the latter to the right (note that if p lies on the x-axis, one of these arcs
degenerates into a single point). Then, w1, w2 should belong to the same
arc; otherwise, p would not lie on the x-axis and the line segment w1w2

would intersect the line segment pp1, and thus the sub-edge cd would have
been subdivided in Phase 1 about its point of intersection with pp1. Suppose
without loss of generality that w1, w2 belong to the arc AL

p . But then, no
matter whether the segment w1w2 intersects the interior of DppaqXDppbq or
not, we have a contradiction. In the former case, the sub-edge cd would have
been subdivided in Phase 1 about the perpendicular projection of b onto cd;
b’s projection onto cd belongs to DppaqXDppbq and thus is an interior point
of w1w2. In the latter case, the sub-edge cd would have been subdivided in
Phase 1 about its point of tangency with a circle Cpptq with t P ab; this point
of tangency belongs to w1w2 as shown in Corollary 8(ii). Therefore, after
Phase 1, no resulting sub-edge intersects any circle Cpprq for some r P ab in
more than one point.

(ii) Suppose without loss of generality that the point p lies above or on
the x-axis and it holds that p.x ě a.x; the case where it holds that p.x ă a.x
is left-to-right symmetric (the corresponding angles are equal to 2π minus
the corresponding angles when p.x ą b.x), whereas the case where p lies
below the x-axis is top-down symmetric (in this case too, the corresponding
angles are equal to 2π minus the corresponding angles when p lies above the
x-axis).

Let R1 (R3, respectively) be the subsets of points in the closure of the
symmetric difference DP paq ‘ Dppbq that are on or to the left of the line
through p that is perpendicular to the x-axis and are on or above (on or
below, respectively) a1b1; symmetrically, let R2 (R4, respectively) be the
subsets of points in the closure of the symmetric difference DP paq ‘Dppbq
that are on or to the right of the line through p that is perpendicular to
the x-axis and are on or above (on or below, respectively) a1b1; see Figure 9
and Figure 10. Consider a point w lying on a circle Cpptq with t P ab.
Since according to Lemma 9(ii), for any point q P a1b1, the segment qp
is a diameter of the circle centered on the x-axis and passing from p, q,
if w P R1, the counterclockwise angle yptw belongs to r0, πs. Similarly, if
w P R2 then yptw P rπ, 2πs, if w P R3 then yptw P rπ, 2πs, and if w P R4 then
yptw P r0, πs. Since no sub-edge resulting after Phase 2 contains points in
more than one of the regions R1, R2, R3, R4, the statement of the theorem
follows.
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Figure 9: The partition of the closure of the symmetric difference Dppaq ‘
Dppbq about the line segment a1b1 and the line defined by p, p1 into regions
R1, R2, R3, R4 when the point p does not lie on the x-axis. Note that the
line segments ps, ps1, pt, pt1 are diameters.

3.2 The Algorithm

We are now ready to outline our algorithm for Problem 2:

1. Subdivide the edges of polygon P about the x-axis.

2. Process each point p P S. For each point p, we subdivide each edge
of polygon P (resulting from the previous step) into sub-edges (see the
edge subdivision process described earlier). Next, for each sub-edge,
we compute the curve of the angle ω with respect to the x-coordinate x
of the rotation center as it moves along ab (see Equation 1), and finally
we form the regions bounded by these curves.

3. Construct and traverse the arrangement of all the regions.
Using standard techniques, we construct the arrangement of all the
regions of all the elements of S. Next, we traverse the dual graph of
the resulting arrangement looking for a sub-region of maximum depth;
any point in this sub-region determines a position px, 0q of r and a
rotation angle ω that constitute a solution to the problem.

3.3 Time and Space Complexity

Step 1 clearly takes Opmq time and space, resulting into at most 2m sub-
edges. The edge subdivision while processing a point p P S in Step 2 takes
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Figure 10: The partition of the closure of the symmetric difference Dppaq ‘
Dppbq about the line segment a1b1 and the line that is perpendicular to the
x-axis at p into regions R1, R2, R3, R4 when the point p lies on the x-axis.
Note that the line segments ps, ps1, pt, pt1 are diameters.

Opmq time and space, producing Opmq sub-edges: For each sub-edge uv,
Op1q time suffices to determine whether its endpoints belong to the disks
Dppaq and Dppbq, and whether uv intersects the circles Cppaq, Cppbq, the
segment pp1, or the line supporting pp1, as well as to compute any points
of intersection. Moreover, the centers of the circles Cpprq, for r P ab, to
which uv is tangent are precisely the points of intersection of the segment ab
with the parabola that is equidistant from point p and the line supporting
uv. Then, processing p yields Opmq curves bounding Opmq regions. Thus,
processing all the points in S in Step 2 takes a total of Opnmq time and
produces a set of Opnmq regions bounded by Opnmq curves in the x-ω
plane. From Step 1, we can show the following lemma:

Lemma 11. Any two (ω-x)-curves as in Equation 1 have at most 32 points
of intersection.

Proof. The idea is based on the fact that a polynomial of constant degree has
a constant number of roots. In our case, we have a square root which needs
to be squared in order to be removed. Let us consider the two (ω-x)-curves

ω “ arccos

˜

γ1pxq ˘
a

δ1pxq

ε1pxq

¸

and ω “ arccos

˜

γ2pxq ˘
a

δ2pxq

ε2pxq

¸

.

Since a point of intersection of these curves belongs to both of them, we
have:

ω “ arccos

˜

γ1pxq ˘
a

δ1pxq

ε1pxq

¸

“ arccos

˜

γ2pxq ˘
a

δ2pxq

ε2pxq

¸
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ùñ γ1pxq ε2pxq ´ γ2pxq ε1pxq “ ˘

´

ε2pxq
a

δ1pxq ´ ε1pxq
a

δ2pxq
¯

(2)

from which, by squaring twice to get rid of the square roots, we get

´

γ1pxq ε2pxq ´ γ2pxq ε1pxq
¯2

“

´

ε2pxq
a

δ1pxq ´ ε1pxq
a

δ2pxq
¯2

ùñ

´

γ1pxq ε2pxq ´ γ2pxq ε1pxq
¯2
´ ε22pxq δ1pxq ´ ε

2
1pxq δ2pxq

“ ´2 ε1pxq ε2pxq
a

δ1pxq δ2pxq

ùñ

ˆ

´

γ1pxq ε2pxq ´ γ2pxq ε1pxq
¯2
´ ε22pxq δ1pxq ´ ε

2
1pxq δ2pxq

˙2

“ 4 ε21pxq ε
2
2pxq δ1pxq δ2pxq. (3)

The last equality is a polynomial of degree at most 16 and, thus, it has
at most 16 real roots for x (it is important to note that the value of x in
any pair pω, xq satisfying Equation 2 satisfies the polynomial in Equation 3,
although the reverse does not necessarily hold, i.e., not every root of the
polynomial satisfies Equation 2). Thus, if we substitute the real roots of the
polynomial in Equation 3 into Equation 1, we get at most 32 possible points
of intersection, due to the ˘ operand.

Hence, the total number of intersection points of all the curves isOpn2m2q. Us-
ing standard techniques, in Opn2m2 logpnmqq time the arrangement of all
these regions can be computed, and the dual graph of the resulting arrange-
ment can be traversed looking for a sub-region of maximum depth. Any
point in this sub-region determines a position of the rotation center r and
a rotation angle ω that constitute a solution to the problem. The space
complexity is Opn2m2q. Then:

Theorem 12. The Segment-restricted MCR problem can be solved in
Opn2m2 logpnmqq time and Opn2m2q space.

Note that Problem 2 can also be solved in Opn2m2 logpnmqq time even
when the rotation center is restricted to lie on a line L: Compute the Voronoi
diagram of P Y S, and apply the algorithm we just described to a segment
of L containing all the intersection points of L and the Voronoi edges. More-
over, if we restrict the rotation center to lie on a polygonal chain with s
line segments, we can trivially obtain the optimal placement of P using
Opsn2m2 logpnmqq time. In both cases, the space complexity is Opn2m2q.

3.4 Equation 1: expressing w as a function of x

In order to simplify the exposition leading to Equation 1, for each point s in
the plane other than the current rotation center r, we define a corresponding
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angle ϑs with respect to r. In particular, let H è be the set of points above
the x-axis or on the x-axis and to the right of r and let H

è
be the set of

points below the x-axis or on the x-axis and to the left of r (clearly, the sets
H è and H

è
partition R2 ´ tru). Then,

• if s P H è , ϑs is the angle swept by the rightward horizontal ray ema-
nating from r as it moves in counterclockwise direction around r until
it coincides with the ray ÝÑrs (see Figure 11, left);

• if s P H
è

, ϑs is the angle swept by the leftward horizontal ray ema-
nating from r as it moves in counterclockwise direction around r until
it coincides with the ray ÝÑrs (see Figure 11, right).

(Note that for all points s on the x-axis, ϑs “ 0.) From the definition of ϑs,
it follows that in all cases

0 ď ϑs ă π (4)

(we consider counterclockwise and clockwise angles being positive and neg-
ative, respectively) and

cosϑs “
s.x´ r.x

dps, rq
sgnps.yq sinϑs “

|s.y|

dps, rq
“

s.y

dps, rq
sgnps.yq (5)

where dps, rq denotes the distance of point s from the rotation center r, p.x
and p.y are respectively the x´ and y´coordinates of a point p, and sgnps.yq
is the sign of s.y.

Now, we distinguish two main cases:

• Point p and the intersection point q of the circle Cpprq and the edge e “
uv of P both belong to either H è or H

è
(see Figure 12(a)): if ϑp ď ϑq

then
ω “ ϑq ´ ϑp (6)

otherwise

ω “ pπ ´ ϑpq ` π ` ϑq “ 2π ` ϑq ´ ϑp. (7)
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• Point p and the intersection point q of the circle Cpprq and the edge e “
uv of P do not both belong to either H è or H

è
(see Figure 12(b)): in

this case,
ω “ pπ ´ ϑpq ` ϑq “ π ` ϑq ´ ϑp. (8)

It is important to observe that the definition of H è and H
è

ensures that
the above expressions for ω hold for all special cases in which at least one
of p, q lies on the x-axis, as summarized in the following table.

p P H è p P H
è

p on x-axis p above x-axis p on x-axis p below x-axis

ϑp “ 0 0 ă ϑp ă π ϑp “ 0 0 ă ϑp ă π

q P H è

q on x-axis
ω “ 0 ω “ 2π ´ ϑp ω “ π ω “ π ´ ϑpϑq “ 0

q above x-axis
ω “ ϑq Eq. (6), (7) ω “ π ` ϑq Eq. (8)

0 ă ϑq ă π

q P H
è

q on x-axis
ω “ π ω “ π ´ ϑp ω “ 0 ω “ 2π ´ ϑpϑq “ 0

q below x-axis
ω “ π ` ϑq Eq. (8) ω “ ϑq Eq. (6), (7)

0 ă ϑq ă π

In all cases, cospωq “ cospϑq´ϑpq “ cospϑqq cospϑpq` sinpϑqq sinpϑpq
which, due to Equation 5 and to the fact that dpq, rq “ dpp, rq, implies that

cospωq “
pq.x´ xq pp.x´ xq ` q.y p.y

d2pp, rq
sgnpq.yq sgnpp.yq

“
pq.x´ xq pp.x´ xq ` q.y p.y

pp.x´ xq2 ` pp.yq2
sgnpq.yq sgnpp.yq

“
x2 ´ pq.x` p.xqx` q.x p.x` q.y p.y

x2 ´ 2 p.x x` pp.xq2 ` pp.yq2
sgnpq.yq sgnpp.yq. (9)

For convenience, we subdivide each edge that intersects the x-axis at this
point of intersection so that the value of sgnpq.yq is fixed at each sub-edge
no matter where q is.

The coordinates q.x, q.y of intersection point q can be expressed in terms
of x by taking into account that q belongs to the line supporting the edge uv
and that r is equidistant from q and p. The former implies that there exists
a real number λ with 0 ď λ ď 1 such that the vector ÝÑuq is λ times the
vector ÝÑuv, which yields

pq.x´ u.xq “ λ pv.x´ u.xq ðñ q.x “ λ pv.x´ u.xq ` u.x (10)

and

pq.y ´ u.yq “ λ pv.y ´ u.yq ðñ q.y “ λ pv.y ´ u.yq ` u.y, (11)

whereas the latter implies
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Figure 12: Parameterizing the intersection between the circle Cpprq and the
edge uv while r moves along segment ab when point p and the intersection q
of Cpprq and uv are (a) in the same halfplane and (b) in opposite halfplanes
(with respect to the x-axis).

d2pq, rq “ d2pp, rq

ðñ pq.x´ xq2 ` pq.yq2 “ pp.x´ xq2 ` pp.yq2

ðñ pq.xq2 ´ 2x q.x` pq.yq2 ´ pp.xq2 ` 2x p.x´ pp.yq2 “ 0. (12)

By substituting q.x, q.y from equations 10 and 11 into Equation 12, we
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get
“

λ pv.x´ u.xq ` u.x
‰2
´ 2x

“

λ pv.x´ u.xq ` u.x
‰

`
“

λ pv.y ´ u.yq ` u.y
‰2
´ pp.xq2 ` 2x p.x´ pp.yq2 “ 0

ðñ λ2
“

pv.x´ u.xq2 ` pv.y ´ u.yq2
‰

´ 2λ
“

x pv.x´ u.xq ´ u.x pv.x´ u.xq ´ u.y pv.y ´ u.yq
‰

´ 2x pu.x´ p.xq ` pu.xq2 ` pu.yq2 ´ pp.xq2 ´ pp.yq2 “ 0,

which has at most 2 roots for λ in terms of x of the form

λ “ αpxq ˘
a

βpxq, (13)

where αpxq and βpxq are polynomials of degrees 1 and 2, respectively.
Then, by substituting q.x, q.y, and λ from equations 10, 11 and 13 re-

spectively, into Equation 9, we get:

cospωq “
γpxq ˘

a

δpxq

εpxq
ùñ ω “ arccos

˜

γpxq ˘
a

δpxq

εpxq

¸

, (14)

where γpxq, δpxq, and εpxq are polynomials of degrees 2, 4, and 2, respec-
tively.

4 3D Fixed MCR (Problem 3)

In this section we extend our techniques to the 3D-equivalent of Problem 1.
We consider a set S of n points in 3D, a rotation center r, and a non
self-intersecting polyhedron P with complexity m, i.e., with m facets. We
identify rotations around r with points in a sphere with center r. The fol-
lowing shows how to extend the algorithm we used to solve the Fixed MCR
problem:

1. Compute the inclusion regions. For each pj P S, the intersection
of the sphere Cpj prq with center at r and radius |rpj | with the polyhe-
dron P results in a set of regions on the boundary of the sphere. These
regions consist of the rotated copies of pj that lie in the interior of P .

• Regardless of P being convex or not, each facet can contribute
to those regions a constant number of times. Hence, the over-
all complexity is Opmq. Moreover, notice that a region can have
many holes, even in the case that P is convex.

• The sides of these regions on the sphere Cpj prq are arcs of circles,
since they are the intersection of the sphere with a planar facet of
the polyhedron. Then, these sides can be computed in constant
time each, as the intersection of the planes containing the faces
of the polyhedron with Cpj prq.
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• Thus the total time and space complexities of computing all the
Opnmq regions is Opnmq.

2. Normalize inclusion regions. Let Rpj be the set of inclusion regions
of pj P S. Consider the unit sphere S2 to be centered at r and project
the regions to S2. Choose a point N in S2 as reference and compute
the rotation τj required to send pj to N . Then compute τjpRpj q to set
the same reference for all the inclusion regions.

3. Computing the depth of N . For later use, we need to compute
how many of the above regions contain the point N (in its interior or
boundary), what we call the depth of N . In order to compute it, we
perform point location in the planar subdivision on the sphere, i.e.,
we check whether the point N belongs to each of the Opnmq regions
with a cost of Oplogmq per region, for a total time complexity of
Opnm logmq.

4. Stereographic projection. We use the well-known stereographic
projection from the point N , considered as the north pole, to the tan-
gent plane at the antipodal south pole. The fact that this projection
is conformal implies that circles in the sphere are mapped to circles
in the plane [9]. Therefore, the projections of the inclusion regions
τjpRpj q have boundaries composed by circular arcs. Because any two
sides (arcs of circles) of the regions can intersect at most two times,
the arrangement A of projected regions can be computed in Opn2m2q

time and space, since the total number of intersection points between
arcs is Opn2m2q. Notice that for computing the projected arc we pro-
ceed as follows: We compute the projection of the two endpoints of
the arc, and also the projection of a third point of the arc (for example
the corresponding to the midpoint of the arc); with these three pro-
jected points, we compute the circle containing the projected arc and
the projected arc itself.

5. Computing the region in A with largest depth. To do this
computation we work on the dual graph of the arrangement A, just
knowing that the exterior (unbounded) face of A is the face which was
containing the point N , and hence we know its depth. Starting in this
face, we perform a traversal of the dual graph, computing the depth
of each region and maintaining the region with maximum depth, in a
total Opn2m2q time.

Computing an interior point of the region with maximum depth, we
compute its corresponding point in the unit sphere and then we know
the two parameters θ, ϕ giving such direction, which is the solution of
our problem.
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Theorem 13. The Fixed MCR problem in 3D can be solved in Opn2m2 logpnmqq
time and Opn2m2q space.

5 Concluding Remarks

We studied the problem of finding a rotation of a simple polygon that covers
the maximum number of points from a given point set. We described algo-
rithms to solve the problem when the rotation center is fixed, or lies on a line
segment, a line, or a polygonal chain. Without much effort, our algorithms
can also be applied when the polygon has holes, and can be easily modified
to solve minimization versions of the same problems. We also solved the
problem with a fixed rotation center in 3D, leaving as open problem the
3D-analogue of Problem 2.
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