
ar
X

iv
:1

70
5.

04
58

7v
1

 [
cs

.C
C

]
 1

2
M

ay
 2

01
7

Complexity and Inapproximability Results for Parallel Task

Scheduling and Strip Packing∗

Sören Henning, Klaus Jansen, Malin Rau, Lars Schmarje

Institut für Informatik, Christian-Albrechts-Universität zu Kiel, Germany

{stu114708,kj,mra,stu115194}@informatik.uni-kiel.de

August 26, 2018

Abstract

We study the Parallel Task Scheduling problem Pm|sizej |Cmax with a constant number

of machines. This problem is known to be strongly NP-complete for each m ≥ 5, while it

is solvable in pseudo-polynomial time for each m ≤ 3. We give a positive answer to the

long-standing open question whether this problem is strongly NP -complete for m = 4. As a

second result, we improve the lower bound of 12

11
for approximating pseudo-polynomial Strip

Packing to 5

4
. Since the best known approximation algorithm for this problem has a ratio of

4

3
+ ε, this result narrows the gap between approximation ratio and inapproximability result

by a significant step. Both results are proven by a reduction from the strongly NP -complete

problem 3-Partition.

1 Introduction

In the Parallel Task Scheduling problem, we have given m machines and a set of jobs J . Each job
j ∈ J has a processing time p(j) ∈ N and a number of required machines q(j) ∈ N. A schedule σ
is a combination of two functions σ : J → N and ρ : J → {M |M ⊆ {1, . . . ,m}}. The function σ
maps each job to a start point in the schedule, while ρ maps each job to the set of machines it is
processed on. A schedule is feasible if each machine processes at most one job at the time and each
job is processed on the required number of machines. The objective is to find a feasible schedule σ
minimising the makespan T := maxi∈J σ(i) + p(i). This problem is denoted with P |sizej|Cmax. If
the number of machines is constant we write Pm|sizej|Cmax. For a given job j ∈ J we define its
work as w(j) := p(j) · q(j). For a subset J ′ ⊆ J we define its total work as w(J ′) :=

∑

j∈J′ w(j).
In the Strip Packing problem we have given a strip with a width W ∈ N and infinite height

as well as a set of rectangular items I. Each item i ∈ I has a width wi ∈ N≤W and a height
hi ∈ N. The objective is to find a feasible packing of the items I into the strip, which minimizes
the packing height. A packing of the items I into the strip is a function ρ : I → Q0 × Q0,
which assigns the left bottom corner of an item to a position in the strip, such that for each item
i ∈ I with ρ(i) = (xi, yi) we have xi + wi ≤ W . An inner point of i is a point from the set
inn(i) := {(x, y) ∈ R× R|xi < x < xi + wi, yi < y < yi + hi}. We say two items i, j ∈ I overlap if
they share an inner point (i.e if inn(i)∩ inn(j) 6= ∅). A packing is feasible if no two items overlap.
The height of a packing is defined as H := maxi∈I yi + hi.

A well known and interesting fact is that, in this setting, we can transform feasible packings
to packings where all positions are integral, without enlarging the packing height [5]. This can be
done by shifting all items downwards until they touch the upper border of an item or the bottom
of the strip. Now all y-coordinates of the items are integral since each is given by the sum of
some item heights, which are integral. The same can be done for the x-coordinate by shifting all
items to the left as far as possible. Therefore we can assume that we have packings of the form
ρ : I → N0 × N0.

∗This work was partially supported by German Research Foundation (DFG) project JA 612 /14-2.

1

http://arxiv.org/abs/1705.04587v1

Strip packing is closely related to Parallel Task Scheduling. If we demand that jobs from the
Parallel Task Scheduling are processed on contiguous machines, the resulting problem is equivalent
to the Strip Packing problem. Although these problems are closely related, there are some instances
that have a smaller optimal value on non-contiguous machines than on contiguous machines [30].

Related Work

Parallel Task Scheduling: In 1989 Du and Leung [9] proved the problem Pm|sizej|Cmax to
be strongly NP -complete for all m ≥ 5, while Pm|sizej|Cmax is solvable by a pseudo-polynomial
algorithm for all m ≤ 3. Amoura et al. [2], as well as Jansen and Porkolab [18], presented a
polynomial time approximation scheme (in short PTAS) for the case that m is a constant. A
PTAS is a family of algorithms that finds a solution with an approximation ratio of (1 + ε) for
any given value ε > 0. If m is polynomially bounded by the number of jobs, a PTAS still exists
[21]. Nevertheless, if m is arbitrarily large, the problem gets harder. By a simple reduction from
the Partition problem, one can see that there is no polynomial algorithm with approximation ratio
smaller than 3

2 . Furthermore, there is no asymptotic algorithm with approximation ratio αOPT+β,
where α < 3/2 and β polynomial in n [22]. Parallel Task Scheduling with arbitrarily large m has
been widely studied [12, 30, 24, 10]. The algorithm with the best known absolute approximation
ratio of 3

2 + ε was presented by Jansen [17].

Strip Packing: The Strip Packing problem was first studied in 1980 by Baker et al. [4].
They presented an algorithm with an absolute approximation ratio of 3. This ratio was improved
by a series of papers [8, 27, 26, 28, 16]. The algorithm with the best known absolute approximation
ratio by Harren, Jansen, Prädel and van Stee [15] achieves a ratio of 5

3 + ε. By a simple reduction
from the Partition problem, one can see that it is impossible to find an algorithm with better
approximation ratio than 3

2 , unless P = NP .
However, asymptotic algorithms can achieve asymptotic approximation ratios better than 3

2 and
have been studied in various papers [8, 14, 3]. Kenyon and Rémila [23] presented an asymptotic fully
polynomial approximation scheme (in short AFPTAS) with additive term O(hmax/ε

2), where hmax

is the largest occurring item height. An approximation scheme is fully polynomial if its running
time is polynomial in 1/ε as well. This algorithm was simultaneously improved by Sviridenko [29]
and Bougeret et al. [6] to an algorithm with an additive term of O(log(1/ε)/ε)hmax. Furthermore,
at the expense of the running time, Jansen and Soils-Oba [20] presented an asymptotic PTAS with
an additive term of hmax.

Recently the focus shifted to pseudo-polynomial algorithms. Jansen and Thöle [21] presented
an pseudo-polynomial algorithm with approximation ratio of 3

2 + ε. Since the partition problem is
solvable in pseudo-polynomial time, the lower bound of 3

2 for polynomial time Strip Packing can
be beaten by pseudo-polynomial algorithms. The first such algorithm with a better approximation
ratio than 3

2 was given by Nadiradze and Wiese [25]. It has an absolute approximation ratio of
7
5 + ε. Its approximation ratio was independently improved to 4

3 + ε by Galvez, Grandoni, Ingala,
and Khan [11] and by Jansen and Rau [19]. All these algorithms have a polynomial running time
if the width of the strip W is bounded by a polynomial in the number of items.

In contrast to Parallel Task Scheduling, Strip Packing can not be approximated arbitrarily close
to 1, if we allow pseudo-polynomial running time. Adamaszek, Kociumaka, Pilipczuk and Pilipczuk
[1] proved this by presenting a lower bound of 12

11 . This result also implies that Strip Packing admits

no quasi-polynomial time approximation scheme, unless NP ⊆ DTIME(2polylog(n)). Christensen,
Khan, Pokutta, and Tetali [7] list 10 major open problems related to multidimensional Bin Packing.
As the 10th problem they name pseudo polynomial Strip Packing and underline the importance of
finding tighter pseudo-polynomial time results for lower and upper bounds.

New Results In this paper, we present two hardness results. The first result answers the long-
standing open question whether the problem P4|sizej|Cmax is strongly NP -complete.

Theorem 1. The Parallel Tasks Scheduling problem on 4 machines P4|sizej|Cmax is strongly
NP-complete.

2

1

[1]

12/11 5/4 [19],[11]

4/3 + ε

[25]

7/5 + ε

[21]

3/2 + ε
improvement open

Figure 1: The upper and lower bounds for the best possible approximation for pseudo-polynomial
Strip Packing achieved so far

The second result concerns pseudo-polynomial Strip Packing. We manage to adapt our re-
duction for P4|sizej|Cmax to Strip Packing, by transforming the optimal schedule into a packing
of rectangles interpreting the makespan as the width of the strip. This adaptation leads to the
following result:

Theorem 2. For each ε > 0 it is NP-Hard to approximate Strip Packing with a ratio of 5
4 − ε in

pseudo-polynomial time.

This improves the so far best lower bound of 12
11 to 5

4 . In Figure 1 we display the results for
pseudo-polynomial Strip Packing achieved so far.

Notation For a given schedule σ we define for i ∈ J and any set of jobs J ′ ⊆ J the value #iJ
′

as the number of jobs in J ′, which finish before σ(i) (e.i. #iJ
′ = |{j ∈ J ′ : σ(j) + p(j) ≤ σ(i)}|).

If the job is clear from the context we write #J ′ instead of #iJ
′. Furthermore, we will use a

notation defined in [9] for swapping a part of the content of two machines. Let i ∈ J be a job, that
is processed by at least two machines M̃ and M̃ ′ with start point σ(i). We can swap the content
of the machines M̃ and M̃ ′ after time σ(i) without violating any scheduling constraint. We define
this swapping operation as SWAP (σ(i), M̃ , M̃ ′).

Organization of this Paper In Section 2 we will prove that P4|sizej|Cmax is strongly NP-
complete by a reduction from the strongly NP-complete Problem 3-Partition. First, we describe
the jobs to construct for this reduction. Afterward, we prove: if the 3-Partition instance is a
Yes-instance, then there is a schedule with a specific makespan, and if there is a schedule with this
specific makespan then the 3-Partition instance has to be a Yes-instance. While the first can be
seen directly, the proof of the second is more involved. Proving the second claim, we first show
that it can be w.l.o.g. supposed that each machine contains a certain set of jobs. In the next step,
we prove some implications on the order in which the jobs appear on the machines which finally
leads to the conclusion that the 3-Partition instance has to be a Yes-instance. In Section 3 we
discuss the implications for the inapproximability of pseudo-polynomial Strip Packing.

2 Hardness of Scheduling Parallel Tasks

In the following, we will prove Theorem 1 by a reduction from the 3-Partition problem. In the 3-
Partition problem we have given a list I = (ι1, . . . , ι3z) of 3z positive integers, such that

∑3z
i=1 ιi =

zD and D/4 < ιi < D/2 for each 1 ≤ i ≤ 3z. The problem is to decide whether there exists a
partition of the set I = {1, . . . , 3z} into sets I1, . . . Iz , such that

∑

i∈Ij
ιi = D for each 1 ≤ j ≤ z.

We define SIZE(I) =
∑3z

i=1 log(ιi) as the input size of the problem. 3-Partition is strongly NP-
complete [13]. Therefore, it can not be solved in pseudo-polynomial time, unless P = NP .

Construction First, we will describe how we generate an instance of P4|sizej|Cmax from a
given 3-Partition instance I in polynomial time. Let I = (ι1, . . . , ι3z) be a 3-Partition instance

with
∑3z

i=1 ιi = zD. If D ≤ 4z(7z + 1), we scale each number with 4z(7z + 1) such that we
get a new instance I ′ := (4z(7z + 1) · ι1, . . . , 4z(7z + 1) · ι3z). For this instance, it holds that
D′ = 4z(7z+1)D > 4z(7z+1) and SIZE(I ′) ∈ poly(SIZE(I)). Furthermore, I is a Yes-instance
if and only if I ′ is a Yes-instance. Therefore, we can w.l.o.g. assume that D > 4z(7z + 1).

3

p(i) =























































































D2 i ∈ A

D3 i ∈ B

D4 +D6 + 3zD7 i ∈ a,

D5 +D6 + 3zD7 i ∈ b,

(z + j)D7 +D8 i = cj ∈ c, j ∈ {0, . . . , z}

D3 +D5 + 4zD7 +D8 i ∈ α

D2 +D4 + (4z − 1)D7 +D8 i ∈ β

D5 + (3z − j)D7 −D i = γj ∈ γ, j ∈ {1, . . . , z}

D4 + (3z − j)D7 i = δj ∈ δ, j ∈ {1, . . . , z}

D3 + zD7 +D8 i = λ1

D2 + 2zD7 +D8 i = λ2

Figure 2: Overview of the structure jobs

In the following, we describe the jobs constructed for the reduction; see Figure 2 for an overview.
We generate two sets A and B of 3-processor jobs. A contains z + 1 jobs with processing time
pA := D2 and B contains z + 1 jobs with processing time pB := D3. Furthermore, we generate
three sets a, b and c of 2-processor jobs, such that a contains z jobs with processing time pa :=
D4 +D6 + 3zD7, b contains z jobs with processing time pb := D5 +D6 + 3zD7 while c contains
one job cj for each 0 ≤ j ≤ z, having processing time (z + j)D7 + D8 resulting in z + 1 jobs
total in c. Last we define five sets α, β, γ, δ, and λ of 1-processor jobs, such that α contains z
jobs with processing time pα := D3 + D5 + 4zD7 + D8, β contains z jobs with processing time
pβ := D2 + D4 + (4z − 1)D7 + D8, γ contains for each 1 ≤ j ≤ z one job γj with processing
time D5 + (3z − j)D7 − D resulting in |γ| = z, δ contains for each 1 ≤ j ≤ z one job δj with
processing time D4 + (3z − i)D7 resulting in |δ| = z, and λ contains two jobs λ1 and λ2 with
processing times p(λ1) := D3 + zD7 + D8 and p(λ2) := B + c0 = D2 + 2zD7 + D8. We call
these jobs structure jobs. Additionally, we generate for each i ∈ {1, . . . , 3z} one 1-processor job,
called partition job, with processing time ιi. We name the set of partition jobs P . Last, we define
W := (z+1)(D2+D3+D8)+z(D4+D5+D6)+z(7z+1)D7. Note that the work of the generated
jobs adds up to 4W .

If we add the processing times of all generated jobs, the largest coefficient before a Di is at most
4z(7z+1). Since 4z(7z+ 1) < D, it can never happen that in the total processing time of a set of
jobs the value Di, together with its coefficient, influences the coefficient of Di+1. Furthermore, if
the processing times of a set of jobs add up to a value where one of the coefficients is larger than
the coefficients in W , it is not possible that in a schedule with no idle time one of the machines
contains this set.

In the following sections, we will prove that there is a schedule with makespan W if and only
if the 3-Partition instance is a Yes-instance.

Partition to Schedule Let I be a Yes-instance with partition I1, . . . , Iz . One can easily verify
that the structure jobs can be scheduled as shown in Figure 3. After each job γj, for each 1 ≤ j ≤ z,
we have a gap with processing time D. We schedule the partition jobs with indices out of Ij directly
after γj . Their processing times add up to D, and therefore they fit into the gap. The resulting
schedule has a makespan of W .

Schedule to Partition In this section, we will show that if there is a schedule with makespan
W , then I is a Yes-instance. Let a schedule S with makespan W be given. We will now step by
step describe why I has to be a Yes-instance. In the first step, we will show that we can transform
the schedule, such that certain machines contain certain jobs.

Lemma 1. We can transform the schedule S into a schedule, where M1 contains the jobs A∪ a∪
α∪ λ1, M2 contains the jobs A∪B ∪ c∪ ǎ∪ b̌∪ γ̌ ∪ δ̌, M3 contains the jobs A∪B ∪ c∪ â∪ b̂∪ γ̂ ∪ δ̂

4

λ1

β1

A0 a1

b1
B0 δ1

γ1

α1

c0

β2

A1 a2

b2
B1 δ2

γ2

α2

c1
. . .

βz−1

A
z
−
2

az−1

bz−1
B

z
−
2

αz−1

cz−2

βz

A
z
−
1

az

bz

B
z
−
1

αz

cz−1
Bzδz

γz
cz

Az

δz−1

γz−1

λ2

. . .

M1

M2

M3

M4

Figure 3: An optimal schedule, for a Yes-instance for ai ∈ a, bi ∈ b, Aj ∈ A, Bj ∈ B, αi ∈ α and
βi ∈ β.

and M4 contains the jobs B ∪ b ∪ β ∪ λ2, with ǎ ⊆ a, â = a \ ǎ, b̌ ⊆ b, b̂ = b \ b̌, γ̌ ⊆ γ, γ̂ = γ \ γ̌,

and δ̌ ⊆ δ, δ̂ = δ \ δ̌. Furthermore, if the jobs are scheduled in this way, it holds that |ǎ| = |γ̌| and
|b̌| = |δ̌|.

Proof. First, we will show that the content of the machines can be swapped without enlarging the
makespan, such that M2 and M3 each contain all the jobs in A ∪ B. Let x ∈ A ∪ B be the job
with the smallest starting point in this set. We can swap the complete content of the machines
such that M2 and M3 contain x. Let us suppose that, after some swapping operations, M2 and
M3 contain the first i jobs in A ∪B. Let M̃ ∈ {M1,M4} be the third machine containing the i-th
job xi ∈ A ∪ B. Let M̃ ′ be the machine not containing the (i + 1)-th job. If M̃ ′ ∈ {M2,M3}, we
transform the schedule such thatM2 andM3 contain it, by performing one more swapping operation
SWAP (σ(xi), M̃ , M̃ ′). Therefore, we can transform the given schedule without increasing its
makespan such that M2 and M3 each contain all the jobs in A ∪B.

In the next step, we will determine the set of jobs contained by the machines M1 and M4.
The machines M2 and M3 contain besides the jobs in A ∪ B jobs with total processing time of
zD4 + zD5 + zD6 + z(7z+1)D7 + (z +1)D8. Hence, M2 or M3 can not contain jobs in α ∪ β ∪ λ,
since their processing times contain D2 or D3. Therefore, each job in A ∪ B ∪ α ∪ β ∪ λ is either
processed on M1 or on M4. In addition to these jobs, M1 and M4 contain further jobs with a
total processing time of zD4 + zD5 + 2zD6 + 6z2D7 total. The only jobs with a processing time
containing D6 are the jobs in the set a ∪ b. Therefore, each machine processes z jobs from the set
a∪b. Hence, a total processing time of 3z2D7 is used by jobs in the set a∪b on each machine. This
leaves a processing time of (4z2+z)D7 for the jobs in α∪β∪λ on M1 and M4 corresponding to D7.
All the 2(z+1) jobs in α∪β ∪λ contain D8 in their processing time. Therefore, each machine M1

and M4 processes z+1 of them. We will swap the content of M1 and M4 such that λ1 is scheduled
on M1. As a consequence, M1 processes z jobs from the set α ∪ β ∪ {λ2}, with processing times,
which sum up to 4z2D7 in the D7 component. The jobs in α have with 4zD7 the largest amount of
D7 in their processing time. Therefore, M1 processes all of them since z ·4zD7 = 4z2D7, while M4

contains the jobs in β∪{λ2}. Since we have p(α∪{λ1}) = (z+1)D3+zD5+z(4z+1)D7(z+1)D8,
jobs from the set A∪B∪a∪b with total processing time of (z+1)D2+zD4+zD6+3z2D7 have to
be scheduled on M1. In this set, the jobs in A are the only jobs with processing times containing
D2, while the jobs in a are the only jobs with a processing time containing D4. As a consequence,
M1 processes the jobs A ∪ a ∪ α ∪ {λ1}. Analogously we can deduce that M4 processes the jobs
B ∪ b ∪ β ∪ {λ2}.

In the last step, we will determine which jobs are scheduled on M2 and M3. As shown before,
each of them contains the jobs A ∪ B. Furthermore, since no job in c is scheduled on M1 or
M4, and they require two machines to be processed, machines M2 and M3 both contain the set
c. Additionally, each job in γ ∪ δ has to be scheduled on M2 or M3 since they are not scheduled
on M1 or M4. Each job in a ∪ b occupies one of the machines M1 and M4. The second machine
they occupy is either M2 or M3. Let ǎ ⊆ a be the set of jobs, which is scheduled on M2 and
â ⊆ a be the set which is scheduled on M3. Clearly ǎ = a \ â. We define the sets b̂, b̌, δ̂, δ̌, γ̂, and
γ̌ analogously. By this definition, M2 contains the jobs A ∪B ∪ ǎ ∪ b̌ ∪ δ̌ ∪ γ̌ ∪ c and M3 contains

5

M1 M2 M3 M4

x2 #iA #iA #A #iβ +#i{λ2}
x3 #iα+#i{λ1} #iB #iB #iB

x4 #ia #iǎ+#iδ̌ #iâ+#iδ̂ #iβ

x5 #iα #ib̌+#iγ̌ #ib̂+#iγ̂ #ib

x6 #ia #iǎ+#ib̌ #iâ+#ib̂ #ib
x8 #iα+#i{λ1} #ic #ic #iβ +#i{λ2}

Table 1: Overview of the values of the coefficients at the start point of a job i, if i is scheduled on
machine Mj.

the jobs A ∪B ∪ â ∪ b̂ ∪ δ̂ ∪ γ̂ ∪ c.
We still have to show that |ǎ| = |γ̌| and |b̌| = |δ̌|. First, we notice that |ǎ|+ |b̌| = z since these

jobs are the only jobs with a processing time containing D6. So besides the jobs in A∪B∪c∪ ǎ∪ b̌,
M2 contains jobs with total processing time of (z − |ǎ|)D4 + (z − |b̌|)D5 +

∑z

i=1(3z − i)D7 =
|b̌|D4 + |ǎ|D5 +

∑z

i=1(3z − i)D7. Since the jobs in δ are the only jobs in δ ∪ γ having a processing
time containing D4, we have |δ̌| = |b̌| and analogously |γ̌| = |ǎ|.

In the next steps, we will prove that it is possible to transform the order in which the jobs
appear on the machines to the order in Figure 3. Notice that, since there is no idle time in the
schedule, each start point of a job i is given by the sum of processing times of the jobs on the same
machine scheduled before i. So the start position σ(i) of a job i has the form

σ(i) = x0 + x2D
2 + x3D

3 + x4D
4 + x5D

5 + x6D
6 + x7D

7 + x8D
9

for −zD ≤ x0 ≤ zD and 0 ≤ xj ≤ 4z(7z + 1) ≤ D for each 2 ≤ j ≤ 8. This allows us to make
implications about the correlation between the number of jobs scheduled on different machines
when a job from the set A ∪ B ∪ a ∪ b ∪ c starts. For example, let us look at the coefficient x2.
This value is just influenced by jobs with processing times containing D2. The only jobs with these
processing times are the jobs in the set A ∪ β ∪ {λ2}. The jobs in β ∪ {λ2} are just processed on
M4, while the jobs in A each are processed on the three machines M1, M2, and M3. Therefore,
we know that at the starting point σ(i) of a job i scheduled on machines M1, M2 or M3 we have
that x2 = #iA. Furthermore, if i is scheduled on M4 we know that x2 = #iβ +#i{λ2}. In Table
1 we present which sets influences which coefficients in which way when job i is started on the
corresponding machine.

Let us consider the start point σ(i) of a job i, which uses more than one machine. We know
that σ(i) is the same on all the used machines and therefore the coefficients are the same as well.
In the following, we will study for each of the sets A, B, a, b, c what we can conclude for the
starting times of these jobs. For each of the sets, we will present an equation, which holds at the
start of each item in this set. These equations give us a strong set of tools for our further arguing.

First, we will consider the start points of the jobs in A. Each jobA′ ∈ A is scheduled on machines
M1, M2 and M3. Therefore, we know that at s(A′) we have #A′B =x3

#A′α+#A′{λ1} =x8
#A′c.

Furthermore, we know that #A′a =x6
#A′ ǎ +#A′ b̌ = #A′ â +#A′ b̂. Since #A′a = #A′ ǎ +#A′ â

and #A′b = #A′ b̌+#A′ b̂, we can deduce that #A′a = #A′b. Additionally, we know that #A′α =x5

#b̌ +#γ̌ =x5
#b̂ +#γ̂. Thanks to this equality, we can show that #A′α = #A′b. First, we show

#A′α ≥ #A′b. Let b′ ∈ b be the last job in b scheduled before A′ if there is any. Let us w.l.o.g
assume that b ∈ b̂. It holds that #A′b = #b′b + 1 =x5

#b′ b̂ +#b′ γ̂ + 1 ≤ #A′ b̂ +#A′ γ̂ =x5
#A′α.

If there is no such b′ we have #A′b = 0 ≤ #A′α. Next, we show #A′α ≤ #A′b. Let b′′ ∈ A be
the first job in b scheduled after A if there is any. Let us w.l.o.g assume that b ∈ b̌. It holds
that #A′b = #b′′b =x5

#b′′ b̌ + #b′′ γ̌ ≥ #A′ b̌ + #A′ γ̌ =x5
#A′α. If there is no such b′′, we have

#A′b = z ≥ #A′α. As a consequence we have #A′α = #A′b. In summary, we can deduce that

#A′c−#A′{λ1} = #A′B −#A′{λ1} = #A′α = #A′b = #A′a. (1)

Analogously, we can deduce that at the start of each B′ ∈ B we have that

#B′c−#B′{λ2} = #B′A−#B′{λ2} = #B′β = #B′a = #B′b. (2)

6

Each item a′ ∈ a is scheduled on machine M1 and on one of the machines M2 or M3. For each
possibility, we can deduce the equation

#a′B =x3
#a′α+#a′{λ1} =x8

#a′c. (3)

Analogously, we deduce for each b′ ∈ b that

#b′A =x2
#b′β +#b′{λ2} =x8

#b′c. (4)

Last, each item c′ ∈ c is scheduled on M2 and M3. Let a′ ∈ a be the job with the smallest
σ(a′) ≥ σ(c′). Let us w.l.o.g assume that a′ ∈ â. It holds that #c′ ǎ + #c′ b̌ =x6

#c′ â + #c′ b̂ ≤

#a′ â + #a′ b̂ =x6
#a′a = #a′ â + #a′ ǎ = #c′ â + #c′ ǎ. As a consequence, we have #c′ b̌ ≤ #c′ â

and #c′ b̂ ≤ #c′ ǎ. Analogously, let b′ ∈ b be the job with the smallest σ(b′) ≥ σ(c′). Let us

w.l.o.g assume that b′ ∈ b̌. It holds that #c′ â +#c′ b̂ =x6
#c′ ǎ+#c′ b̌ ≤ #b′ ǎ +#b′ b̌ =x6

#b′b =

#b′ b̂ + #b′ ǎ = #c′ b̂ +#c′ b̌. Therefore, #c′ ǎ ≤ #c′ b̂ and #c′ â ≤ #c′ b̌. As a consequence, we can
deduce that

#c′b = #c′a (5)

These equations give us the tools to analyze the given schedule with makespanW . First, we will
show that in this schedule the first and last jobs have to be elements from the set A∪B, (see Lemma
2). After that, we will prove that the jobs in A and jobs in B have to be scheduled alternating,
(see Lemma 3). With the knowledge gathered in the proofs of Lemma 2 and Lemma 3, we can
prove that the given schedule can be transformed such that all jobs are scheduled continuously,
and that I has to be a Yes-instance (see Lemma 3).

Lemma 2. The first and the last job on M2 and M3 are elements of A ∪B.

Proof. Let i := argmini∈A∪B si be the job with the smallest start point in A∪B, (i.e. #iA = 0 =
#iB). We have to consider each case i ∈ A and i ∈ B and to show that its starting time has the
value si = 0.

If i ∈ A it holds that 0 = #iB =(1) #iα + #i{λ1} =(1) #ia + #i{λ1} and therefore #ia =

#iα = 0 = #i{λ1}. The jobs a ∪ α ∪ {λ1} ∪ A are the only jobs, which are contained on machine
M1. Since #iA = 0 as well, it has to be that si = 0 and therefore i is the first job on M2 and M3.

If i ∈ B it holds that 0 = #iA =(2) #iβ + #i{λ2} =(2) #ib + #i{λ2} and therefore #ib =

#iβ = 0 = #i{λ2}. The jobs b ∪ β ∪ {λ2} ∪ B are the only jobs, which are contained on machine
M4. Since #iB = 0 as well, it has to be that si = 0 and therefore i is the first job on M2 and M3.

We have shown that the first job on M2 and M3 hast to be a job from the set A ∪ B. Since
the schedule stays valid, if we mirror the schedule such that the new start points are s′(i) =
W − s(i)− p(i) for each job i, the last job has to be in the set A ∪B as well.

Next, we will show that the items in the sets A and B have to be scheduled alternating. Let
(A0, . . . , Az) be the set A and (B0, . . . , Bz) be the set B each ordered by increasing size of the
starting points.

Lemma 3. If the first item on M2 is the job B0 ∈ B it holds for each item i ∈ {0, . . . , z} that

#Ai
B −#Ai

{λ1} = #Ai
A (6)

with #Ai
{λ1} = 1.

Proof. We will prove this claim inductively and per contradiction.
Assume #A0

B − #A0
{λ1} > #A0

A = 0. Therefore, we have 1 ≤ #A0
B − #A0

{λ1}. Let
a′ ∈ a, b′ ∈ b and c′ ∈ c be the first started jobs in their sets. Since #A0

b =(1) #A0
a =(1)

#A0
c −#A0

{λ1} =(1) #A0
B −#A0

{λ1} ≥ 1, the jobs a′, b′ and c′ start before A0. It holds that

#b′c =(4) #b′A = 0. Therefore, c′ has to start after b′ resulting in #c′b ≥ 1. Furthermore, we

have #a′c =(3) #a′B ≥ 1. Hence, c′ has to start before a′ resulting in #c′a = 0. In total we have

1 ≤ #c′b =(5) #c′a = 0 contradicting the assumption #A0
B −#A0

{λ1} > #A0
A = 0. Therefore,

we have #A0
B−#A0

{λ1} ≤ #A0
A = 0. As a consequence, it holds that 1 ≤ #A0

B ≤ #A0
{λ1} ≤ 1

and we can conclude #A0
B = 1 = #A0

{λ1} as well as #A0
B −#A0

{λ1} = #A0
A.

7

Choose i ∈ {0, . . . , z} such that #Ai′
B − #Ai′

{λ1} = #Ai′
A for all i′ ∈ {0, . . . i}. As a

consequence, we have #Bi
B = i = #Ai

A = #Ai
B − 1. Therefore Bi has to be scheduled before

Ai. Additionally, we have #Bi
B − 1 = #Bi−1

B = i− 1 = #Ai−1
A = #Ai−1

B − 1, so Bi has to be
scheduled after Ai−1. Therefore, we have #Bi

B = #Bi
A and as a consequence

i = #Bi
B = #Bi

A = #B′c = #B′β +#B′{λ2} = #B′a+#B′{λ2} = #B′b+#B′{λ2}. (7)

We will now prove our claim for Ai+1.

Claim. #Ai+1
B −#Ai+1

{λ1} ≤ #Ai+1
A

Assume for contradiction that #Ai+1
B − #Ai+1

{λ1} > #Ai+1
A. As a consequence, we have

#Ai+1
B−#Ai+1

{λ1}−#Ai
B+#Ai

{λ1} ≥ 2. Therefore, there are jobs Bi+1, Bi+2 ∈ B, a′, a′′ ∈ a,
b′, b′′ ∈ b and c′, c′′ ∈ c, that are scheduled between Ai and Ai+1 since equality (1) holds. Let us
suppose that σ(a′) ≤ σ(a′′), σ(b′) ≤ σ(b′′) and σ(c′) ≤ σ(c′′).

Next, we will deduce in which order the jobs a′, a′′, b′, b′′, c′, c′′, Bi+1, and Bi+2 appear in the
schedule. It holds that #b′′c =(4) #b′′A = #Ai

A + 1 = #Ai
B =(1)= #Ai

c. Therefore, b′ and b′′

have to start before c′. Furthermore we have #c′a =(5) #c′b ≥ #Ai
b + 2 =(1) #Ai

a + 2. Hence,

a′′ hast to start before c′ as well. Additionally, it holds that #Bi+2
c =(2) #Bi+2

A = #Ai
A + 1 =

#Ai
B =(1) #Ai

c. As a consequence, Bi+2 has to start before c′. Additionally, a′′ has to start
before Bi+1, since #a′′B =(3) #a′′c = #Ai

c =(1) #Ai
B.

To this point, we have deduced that the jobs have to appear in the following order in the
schedule: Ai, a

′, a′′, Bi+1, Bi+2, c
′, c′′, Ai+1. This schedule is not feasible, since we have #Ai

a+2 ≤S

#Bi+1
a≤(2)#Bi+1

A =S #Ai
A + 1=(1)#Ai

a + 1, a contradiction to the assumption #Ai+1
B −

#Ai+1
{λ1} > #Ai+1

A. Therefore, it holds that #Ai+1
B −#Ai+1

{λ1} ≤ #Ai+1
A

Claim. #Ai+1
B −#Ai+1

{λ1} ≥ #Ai+1
A

Assume for contradiction that #Ai+1
B−#Ai+1

{λ1} < #Ai+1
A. It follows that #Ai+1

B = #Ai
B

since #Ai
B − #Ai

{λ1} ≤ #Ai+1
B − #Ai+1

{λ1} ≤ #Ai+1
A − 1 = #Ai

A = #Ai
B − #Ai

{λ1}.
Furthermore, there has to be at least one job Bi+1 ∈ B that starts after Ai+1 since |A| = |B|.
Therefore, we have #Bi+1

c − #Bi
c = #Bi+1

A − #Bi
A ≥ 2. As a consequence, there are jobs

c′, c′′ ∈ c which are scheduled between Bi and Bi+1. Let c′ be the first job in c scheduled after
Bi ans c′′ be the next. Since we do not know the value of #Bi

{λ2} or #Bi+1
{λ2}, we can just

deduce from equation (2) that #Bi+1
a−#Bi

a ≥ 1. Therefore, there has to be a job a′ ∈ a that is
scheduled between Bi and Bi+1.

We will now look at the order in which the jobs Ai, Ai+1, c
′, c′′ and a′ have to be scheduled.

First, we know that Ai and Ai+1 have to be scheduled between c′ and c′′, since #Ai
c =(1) #Ai

B =S

#Bi
B+1 =(7) #Bi

A+1 =(2) #Bi
c+1 and #Ai+1

c =(1) #Ai+1
B =S #Bi

B+1 =(7) #Bi
A+1 =(2)

#Bi
c + 1. Furthermore, we know that a′ has to be scheduled between c′ and c′′ as well, since

#a′c =(3) #a′B =S #Bi
B+1 =(7) #Bi

A+1 =(2) #Bi
c+1. As a consequence, we can deduce that

there is a job b′ ∈ b which is scheduled between c′ and c′′, since #c′′b =(5) #c′′a ≥S #c′a+ 1 =(5)
#c′b+ 1. We know about this b′ that #b′A =(4) #b′c =S #Bi

c+ 1 =(2) #Bi
A+ 1, so b′ has to be

scheduled between Ai and Ai+1.
In summary, the jobs are scheduled as follows: Bi, c

′, Ai, b
′, Ai+1, c

′′, Bi+1. However, this sched-
ule is infeasible since #Ai

b =(1) #Ai
B − #Ai

{λ1} =S #Ai+1
B − #Ai+1

{λ1} =(1) #Ai+1
b =S

#Ai
b + 1. This contradicts the assumption #Ai+1

B −#Ai+1
{λ1} < #Ai+1

A. Altogether, we have
shown that #Ai+1

B −#Ai+1
{λ1} = #Ai+1

A.

A direct consequence of Lemma 3 is that the last job on M2 is a job in A. Since the equations
(1) and (2), as well as (3) and (4), are symmetric, we can deduce an analogue statement if the
first job on M2 is in A. More precisely in this case we can show that #iA −#i{λ2} = #iB and
#i{λ2} = 1 for each i ∈ B. This would imply that the last job on M2 is a job in B. Since we can
mirror the schedule such that the last job is the first job, we can suppose that the first job on M2

is a job out of B. In this case a further direct consequence of Lemma 3 and equation (1) is the
equation

i = #Ai
A = #Ai

B − 1 = #Ai
c− 1 = #Ai

α = #Ai
b = #Ai

a (8)

8

Lemma 4. I is a Yes-instance and we can transform the schedule such that all jobs are scheduled
on continuous machines.

Proof. First, we will show that λ2 is scheduled after the last job in B. Assume there is an i ∈
{0, . . . , z} with #Bi

{λ2} > 0. Let i be the smallest of these indices. We know that

i− 1 =(7) #Bi
A− 1 = #Bi

A−#Bi
{λ2} =(2) #Bi

a.

Since #Ai
b =(1) #Ai

a =(8) i = #Bi
a + 1 =(2) #Bi

b + 1 there has to be an unique a′ ∈ a and an

unique b′ ∈ b scheduled between Bi and Ai. Furthermore, since #Ai
c =(8) i + 1 and #Bi

c =(7) i,

there has to be a c′ ∈ c scheduled between Bi and Ai as well. At the start of b′ it holds that
#b′c =(4) #b′A = #Ai−1

A+ 1 =(1) #Ai−1
c, so b′ has to start before c′. Additionally, at the start

of a′ we have #a′c =(4) #a′B = #Bi
B+1 =(7) #Bi

c+1 and therefore a′ hast to start after c′. In

total, the jobs appear in the following order: Bi, b
′, c′, a′, Ai. But this can not be the case, since

we have #Bi−1
a =S #c′a =(5) #c′b =S #Bi−1

b + 1 = #Bi−1
a + 1. Hence, we have contradicted

that assumption. As a consequence, we have #Bi
{λ2} = 0 for all i ∈ {0, . . . , z} and therefore

#Bi
b = #Bi

a = #Bi
c = #Bi

β = #Bi
A = #Bi

B = i. (9)

In the next step, we will prove that M1 processes the jobs A ∪ a ∪ α ∪ {λ1} in the order
λ1, A0, a1, α1, A1, a2, α2, A2, . . . , az, αz, Az , where ai ∈ a and αi ∈ α for each i ∈ {1, . . . z}. Equa-
tion (8) and Lemma 3 ensure that the first job on M1 is the job λ1 and the second job is A0. For
each i ∈ {1, . . . , z} it holds that #Ai

α =(8) #Ai−1
α + 1 and #Ai

a =(8) #Ai−1
a + 1. Therefore,

there is scheduled exactly one job ai ∈ a and one job αi ∈ α between the jobs Ai−1 and Ai. It
holds that #Ai−1

a+ 1 =(8) i =(9) #Bi
a. Therefore, ai has to be scheduled between Ai−1 and Bi.

As a consequence, we have #ai
α+1 = #ai

α+#ai
{λ1} =(3) #ai

B = #Bi
B =(9) #Bi

a = #a′a+1.
Therefore, ai has to be scheduled before αi and the jobs appear in machine M1 in the described
order. As a result, we know about the start point of Ai that

σ(Ai) = p(λ1) + i · pa + i · pα + i · pA

= D3 + zD7 +D8 + i(D4 +D6 + 3zD7) + i(D3 +D5 + 4zD7 +D8) + iD2

= iD2 + (i+ 1)D3 + iD4 + iD5 + iD6 + (7zi+ z)D7 + (i + 1)D8.

Now, we will show, that the machine M4 processes the jobs B ∪ b ∪ β ∪ {λ2} in the order
B0, β1, b1, B1, β2, b2, B2, . . . , βz, bz, Bz , λ2, where bi ∈ b and βi ∈ β for each i ∈ {1, . . . z}. The first
job on M4 is the job B0. Equation (9) ensures that between the jobs Bi and Bi+1 there is scheduled
exactly one job bi+1 ∈ b and exactly one job βi+1 ∈ β. It holds that #Ai

b + 1 =(8) i + 1 =(9)
#Bi+1

b. Therefore, bi+1 has to be scheduled between Ai and Bi+1. As a consequence, it holds that
#bi+1

β = #bi+1
β +#bi+1

{λ2} = #bi+1
A = #Bi+1

A = #Bi+1
b = #bi+1

b+ 1. Hence, bi+1 has to be
scheduled after βi+1 and the jobs on machine M4 appear in the described order. As a result, we
know about the start point of Bi that

σ(Bi) = ipb + ipβ + ipB

= iD2 + iD3 + iD4 + iD5 + iD6 + (i(7z − 1))D7 + iD8.

Next, we can deduce, that the jobs in c are scheduled as shown in Figure 3. We have #Bi
c =(9)

i =(8) #Ai
c−1. Therefore, there exists an c′ ∈ c for each i ∈ {0, . . . , z}, which is scheduled between

Bi and Ai. The processing time between Bi and Ai is exactly σ(Ai)−σ(Bi)−p(Bi) = (z+i)D7+D8.
As a consequence, one can see with an inductive argument that ci ∈ c with p(ci) = (z+ i)D7 +D8

has to be positioned between Bi and Ai, since the job in c with the largest processing time cz only
fits between Bz and Az .

In this step, we will transform the schedule, such that all jobs are scheduled on continuous
machines. To this point, this property is obviously fulfilled by the jobs in A ∪ B ∪ c. However,
the jobs in a ∪ b might be scheduled on nonconsecutive machines. We know that the ai and bi are
scheduled between Ai−1 and Bi. One part of ai is scheduled onM1 and one part of bi is scheduled on
M4, while each second part is scheduled either onM2 or onM3 but both parts on different machines,

9

because σ(Bi)−σ(Ai−1)−p(Ai) = D4+D5+D6+(6z−i)D7 < D4+D5+2D6+6zD7 = p(ai)+p(bi)
for each i ∈ {0, . . . , z}. Since Ai and Bi+1 both are scheduled on machinesM2 and M3, we can swap
the content of the machines between these jobs such that the second part of ai is scheduled on M2

and the second part of bi is scheduled onM3. We do this swapping step for all i ∈ {0, . . . , z−1} such
that all second parts of jobs in a are scheduled on M2 and all second part of jobs in b are scheduled
on M3 respectively. After this swapping step, all jobs are scheduled on continuous machines.

Now, we will show that I is a yes-instance. To this point we know that M2 contains the jobs
A ∪ B ∪ a ∪ c. Since ǎ = a, it has to hold by Lemma 1, using |ǎ| = |γ̌|, that γ̌ = γ implying that
M2 contains all jobs in γ. Furthermore, since b̌ = ∅ and |b̌| = |δ̌|, we have δ̌ = ∅ and therefore
M2 does not contain any job in δ. Besides the jobs A ∪ B ∪ a ∪ c ∪ γ, M2 processes further jobs
with total processing time zD. Therefore, all the jobs in P are processed on M2. We will now
analyse where the jobs in γ are scheduled. The only possibility where these jobs can be scheduled
is the time between ai and Bi for each i ∈ {1, . . . , z} since at each other time the machine is
occupied by other jobs. The processing time between the end of ai and the start of Bi is exactly
σ(Bi)−σ(Ai−1)−p(Ai−1)−p(ai) = D5+(3z− i)D7. The job in γ with the largest processing time
is the job γ1 with p(γ1) = D5 +(3z− 1)D7 −D. This job only fits between ai and B1. Inductively
we can show that γi ∈ γ with p(γi) = D5 + (3z− i)D7 −D has to be scheduled between ai and Bi

on M2. Furthermore, since p(γi) = D5+(3z−i)D7−D and the processing time between the end of
ai and the start of Bi is D

5 +(3z− i)D7, there is exactly D processing time left. These processing
time has to be occupied by the jobs in P since this schedule has no idle times. Therefore, we have
for each i ∈ {1, . . . , z} a disjunct subset Pi ⊆ P containing jobs with processing times adding up
to D. As a consequence I is a Yes-instance.

3 Hardness of Strip Packing

In the transformed schedule, all jobs are scheduled on contiguous machines. As a consequence,
we have proven that this problem is strongly NP -complete even if we restrict the set of feasible
solutions to those where all jobs are scheduled on continuous machines. We will now describe
how this insight delivers a lower bound of 5

4 for the best possible approximation ratio for pseudo-
polynomial Strip Packing and in this way prove Theorem 2.

To show our hardness result for Strip Packing, let us consider the following instance. We define
W := (z+1)(D2+D3+D8)+z(D4+D5+D6)+z(7z+1)D7 as the width of the considered strip,
so it is the same as the considered makespan in the scheduling problem. For each job j defined in
the reduction above, we define an item i with w(i) = p(j) and height h(i) = q(j). Now, we can
show analogously that if the 3-Partition instance is a Yes-instance there is a packing of height 4
(one example is the packing in Figure 3) and if there is a packing with height 4 then the 3-Partition
instance has to be a Yes-instance. If the 3-Partition instance is a No-instance, the optimal packing
has a height of at least 5 since the optimal height for this instance is integral. Therefore, we can
not approximate Strip Packing in pseudo-polynomial time better than 5

4 .

4 Conclusion

In this paper, we positively answered the long standing open question whether P4|sizej|Cmax is
strongly NP -complete. Now, for each number of machines m it is known whether the problem
Pm|sizej|Cmax is strongly NP -complete. Furthermore, we have improved the lower bound for
pseudo-polynomial Strip Packing to 5

4 . Since the best known algorithm has an approximation
ratio of 4

3 , this still leaves a gap between the lower bound and the best known algorithm. With the
techniques used in this paper, a lower bound of 4

3 for pseudo-polynomial Strip Packing can not be
proven, since P3|sizej|Cmax is solvable in pseudo-polynomial time and in the generated solutions
all jobs are scheduled contiguously. Moreover, we believe that it is possible to find an algorithm
with approximation ratio 5

4 + ε.

10

References

[1] Anna Adamaszek, Tomasz Kociumaka, Marcin Pilipczuk, and Michal Pilipczuk. Hard-
ness of approximation for strip packing. CoRR, abs/1610.07766, 2016. URL:
http://arxiv.org/abs/1610.07766.

[2] Abdel Krim Amoura, Evripidis Bampis, Claire Kenyon, and Yannis Manoussakis.
Scheduling independent multiprocessor tasks. Algorithmica, 32(2):247–261, 2002.
doi:10.1007/s00453-001-0076-9.

[3] Brenda S. Baker, Donna J. Brown, and Howard P. Katseff. A 5/4 algo-
rithm for two-dimensional packing. Journal of Algorithms, 2(4):348–368, 1981.
doi:10.1016/0196-6774(81)90034-1.

[4] Brenda S. Baker, Edward G. Coffman Jr., and Ronald L. Rivest. Orthogonal packings in two
dimensions. SIAM Journal on Computing, 9(4):846–855, 1980. doi:10.1137/0209064.

[5] Nikhil Bansal, José R. Correa, Claire Kenyon, and Maxim Sviridenko. Bin packing in multiple
dimensions: Inapproximability results and approximation schemes. Mathematics of Operations
Research, 31(1):31–49, 2006. doi:10.1287/moor.1050.0168.

[6] Marin Bougeret, Pierre-François Dutot, Klaus Jansen, Christina Robenek, and Denis Trys-
tram. Approximation algorithms for multiple strip packing and scheduling parallel jobs
in platforms. Discrete Mathematics, Algorithms and Applications, 3(4):553–586, 2011.
doi:10.1142/S1793830911001413.

[7] Henrik I. Christensen, Arindam Khan, Sebastian Pokutta, and Prasad Tetali. Approximation
and online algorithms for multidimensional bin packing: A survey. Computer Science Review,
2017. doi:10.1016/j.cosrev.2016.12.001.

[8] Edward G. Coffman Jr., Michael R. Garey, David S. Johnson, and Robert Endre Tarjan.
Performance bounds for level-oriented two-dimensional packing algorithms. SIAM Journal on
Computing, 9(4):808–826, 1980. doi:10.1137/0209062.

[9] Jianzhong Du and Joseph Y.-T. Leung. Complexity of scheduling parallel task systems. SIAM
Journal on Discrete Mathematics, 2(4):473–487, 1989. doi:10.1137/0402042.

[10] Anja Feldmann, Jiŕı Sgall, and Shang-Hua Teng. Dynamic scheduling on parallel machines.
Theoretical Computer Science, 130(1):49–72, 1994. doi:10.1016/0304-3975(94)90152-X.

[11] Waldo Gálvez, Fabrizio Grandoni, Salvatore Ingala, and Arindam Khan. Improved pseudo-
polynomial-time approximation for strip packing. In 36th IARCS Annual Conference on Foun-
dations of Software Technology and Theoretical Computer Science (FSTTCS), pages 9:1–9:14,
2016. doi:10.4230/LIPIcs.FSTTCS.2016.9.

[12] Michael R. Garey and Ronald L. Graham. Bounds for multiprocessor scheduling with resource
constraints. SIAM Journal on Computing, 4(2):187–200, 1975. doi:10.1137/0204015.

[13] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, 1979.

[14] Igal Golan. Performance bounds for orthogonal oriented two-dimensional packing algorithms.
SIAM Journal on Computing, 10(3):571–582, 1981. doi:10.1137/0210042.

[15] Rolf Harren, Klaus Jansen, Lars Prädel, and Rob van Stee. A (5/3 + ǫ)-
approximation for strip packing. Computational Geometry, 47(2):248–267, 2014.
doi:10.1016/j.comgeo.2013.08.008.

[16] Rolf Harren and Rob van Stee. Improved absolute approximation ratios for two-dimensional
packing problems. In Approximation, Randomization, and Combinatorial Optimization. Algo-
rithms and Techniques,, volume 5687 of Lecture Notes in Computer Science, pages 177–189.
Springer, 2009. doi:10.1007/978-3-642-03685-9_14.

11

http://arxiv.org/abs/1610.07766
http://dx.doi.org/10.1007/s00453-001-0076-9
http://dx.doi.org/10.1016/0196-6774(81)90034-1
http://dx.doi.org/10.1137/0209064
http://dx.doi.org/10.1287/moor.1050.0168
http://dx.doi.org/10.1142/S1793830911001413
http://dx.doi.org/10.1016/j.cosrev.2016.12.001
http://dx.doi.org/10.1137/0209062
http://dx.doi.org/10.1137/0402042
http://dx.doi.org/10.1016/0304-3975(94)90152-X
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2016.9
http://dx.doi.org/10.1137/0204015
http://dx.doi.org/10.1137/0210042
http://dx.doi.org/10.1016/j.comgeo.2013.08.008
http://dx.doi.org/10.1007/978-3-642-03685-9_14

[17] Klaus Jansen. A (3/2+ε) approximation algorithm for scheduling moldable and non-moldable
parallel tasks. In 24th ACM Symposium on Parallelism in Algorithms and Architectures,
(SPAA), pages 224–235, 2012. doi:10.1145/2312005.2312048.

[18] Klaus Jansen and Lorant Porkolab. Linear-time approximation schemes for scheduling mal-
leable parallel tasks. Algorithmica, 32(3):507–520, 2002. doi:10.1007/s00453-001-0085-8.

[19] Klaus Jansen and Malin Rau. Improved approximation for two dimensional strip packing
with polynomial bounded width. In WALCOM: Algorithms and Computation, volume 10167
of LNCS, pages 409–420, 2017. doi:10.1007/978-3-319-53925-6_32.

[20] Klaus Jansen and Roberto Solis-Oba. Rectangle packing with one-dimensional resource aug-
mentation. Discrete Optimization, 6(3):310–323, 2009. doi:10.1016/j.disopt.2009.04.001.

[21] Klaus Jansen and Ralf Thöle. Approximation algorithms for scheduling parallel jobs. SIAM
Journal on Computing, 39(8):3571–3615, 2010. doi:10.1137/080736491.

[22] Berit Johannes. Scheduling parallel jobs to minimize the makespan. Journal of Scheduling,
9(5):433–452, 2006. doi:10.1007/s10951-006-8497-6.

[23] Claire Kenyon and Eric Rémila. A near-optimal solution to a two-dimensional
cutting stock problem. Mathematics of Operations Research, 25(4):645–656, 2000.
doi:10.1287/moor.25.4.645.12118.

[24] Walter Ludwig and Prasoon Tiwari. Scheduling malleable and nonmalleable parallel tasks. In
5th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 167–176, 1994.

[25] Giorgi Nadiradze and Andreas Wiese. On approximating strip packing with a better ratio
than 3/2. In 27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
1491–1510, 2016. doi:10.1137/1.9781611974331.ch102.

[26] Ingo Schiermeyer. Reverse-fit: A 2-optimal algorithm for packing rectangles. In 2nd
Annual European Symposium on Algorithms (ESA) - Algorithms, pages 290–299, 1994.
doi:10.1007/BFb0049416.

[27] Daniel Dominic Sleator. A 2.5 times optimal algorithm for packing in two dimensions. Infor-
mation Processing Letters, 10(1):37–40, 1980. doi:10.1016/0020-0190(80)90121-0.

[28] A. Steinberg. A strip-packing algorithm with absolute performance bound 2. SIAM Journal
on Computing, 26(2):401–409, 1997. doi:10.1137/S0097539793255801.

[29] Maxim Sviridenko. A note on the kenyon-remila strip-packing algorithm. Information Pro-
cessing Letters, 112(1-2):10–12, 2012. doi:10.1016/j.ipl.2011.10.003.

[30] John Turek, Joel L. Wolf, and Philip S. Yu. Approximate algorithms scheduling parallelizable
tasks. In 4th annual ACM symposium on Parallel algorithms and architectures (SPAA), pages
323–332, 1992. doi:10.1145/140901.141909.

12

http://dx.doi.org/10.1145/2312005.2312048
http://dx.doi.org/10.1007/s00453-001-0085-8
http://dx.doi.org/10.1007/978-3-319-53925-6_32
http://dx.doi.org/10.1016/j.disopt.2009.04.001
http://dx.doi.org/10.1137/080736491
http://dx.doi.org/10.1007/s10951-006-8497-6
http://dx.doi.org/10.1287/moor.25.4.645.12118
http://dx.doi.org/10.1137/1.9781611974331.ch102
http://dx.doi.org/10.1007/BFb0049416
http://dx.doi.org/10.1016/0020-0190(80)90121-0
http://dx.doi.org/10.1137/S0097539793255801
http://dx.doi.org/10.1016/j.ipl.2011.10.003
http://dx.doi.org/10.1145/140901.141909

	1 Introduction
	2 Hardness of Scheduling Parallel Tasks
	3 Hardness of Strip Packing
	4 Conclusion

