
A More General Theory of Static Approximations
for Conjunctive Queries

Pablo Barceló
Millenium Institute for Foundational Research on Data, DCC, University of Chile, Santiago,
Chile
pbarcelo@dcc.uchile.cl

Miguel Romero
University of Oxford, Oxford, UK
miguel.romero@cs.ox.ac.uk

Thomas Zeume
TU Dortmund, Dortmund, Germany
thomas.zeume@cs.tu-dortmund.de

Abstract

Conjunctive query (CQ) evaluation is NP-complete, but becomes tractable for fragments of
bounded hypertreewidth. If a CQ is hard to evaluate, it is thus useful to evaluate an approxima-
tion of it in such fragments. While underapproximations (i.e., those that return correct answers
only) are well-understood, the dual notion of overapproximations that return complete (but not
necessarily sound) answers, and also a more general notion of approximation based on the sym-
metric difference of query results, are almost unexplored. In fact, the decidability of the basic
problems of evaluation, identification, and existence of those approximations, is open.

We develop a connection with existential pebble game tools that allows the systematic study
of such problems. In particular, we show that the evaluation and identification of overapprox-
imations can be solved in polynomial time. We also make progress in the problem of existence
of overapproximations, showing it to be decidable in 2EXPTIME over the class of acyclic CQs.
Furthermore, we look at when overapproximations do not exist, suggesting that this can be al-
leviated by using a more liberal notion of overapproximation. We also show how to extend our
tools to study symmetric difference approximations. We observe that such approximations prop-
erly extend under- and over-approximations, settle the complexity of its associated identification
problem, and provide several results on existence and evaluation.

2012 ACM Subject Classification Information systems→ Structured Query Language, Theory
of computation → Database query languages (principles), Theory of computation → Database
theory → Database query processing and optimization (theory)

Keywords and phrases conjunctive queries, hypertreewidth, approximations, pebble games

Digital Object Identifier 10.4230/LIPIcs.ICDT.2018.7

Acknowledgements Barceló and Romero have been funded by Millennium Nucleus Center for
Semantic Web Research under Grant NC120004. Barceló has also been funded by Fondecyt grant
1170109. Zeume acknowledges the financial support by the European Research Council (ERC),
grant agreement No 683080. Romero and Zeume thank the Simons Institute for the Theory of
Computing for hosting them.

© Pablo Barceló, Miguel Romero, and Thomas Zeume;
licensed under Creative Commons License CC-BY

21st International Conference on Database Theory (ICDT 2018).
Editors: Benny Kimelfeld and Yael Amsterdamer; Article No. 7; pp. 7:1–7:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pbarcelo@dcc.uchile.cl
mailto:miguel.romero@cs.ox.ac.uk
mailto:thomas.zeume@cs.tu-dortmund.de
http://dx.doi.org/10.4230/LIPIcs.ICDT.2018.7
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

7:2 A More General Theory of Static Approximations for Conjunctive Queries

1 Introduction

Context. Due to the growing number of scenarios in which exact query evaluation is
infeasible – e.g., when the volume of the data being queried is very large, or when queries
are inherently complex – approximate query answering has become an important area of
study in databases (see, e.g. [15, 20, 24, 12, 13]). Here we focus on approximate query
answering for the fundamental class of conjunctive queries (CQs), for which exact evaluation
is NP-complete. (Recall that CQ evaluation is the problem of given a CQ q, a database D,
and a tuple ā of constants in D, check if ā belongs to q(D), the result of q over D).

It is known that the complexity of evaluation of a CQ depends on its degree of acyclicity,
which can be formalized using different notions. One of the most general and well-studied
such notions corresponds to generalized hypertreewidth [17]. Notably, the classes of CQs
of bounded generalized hypertreewidth can be evaluated in polynomial time (see [16] for a
survey). Following recent work on approximate query answering for CQs and some related
query languages [5, 6], we study the process of approximating a CQ as one of bounded
generalized hypertreewidth. This provides us with a certificate of efficiency for the cost of
evaluating such an approximation.

It is worth noticing that our approximations are static, in the sense that they depend
only on the CQ q and not on the underlying database D. This has clear benefits in terms of
the cost of the approximation process, as q is often orders of magnitude smaller than D and
an approximation that has been computed once can be used for all databases. Moreover, it
allows us to construct a principled approach to CQ approximation based on the well-studied
notion of CQ containment [8]. Recall that a CQ q is contained in a CQ q′, written q ⊆ q′,
if q(D) ⊆ q′(D) over each database D. This notion constitutes the theoretical basis for the
study of several CQ optimization problems [1].

We denote by GHW(k) the class of CQs of generalized hypertreewidth at most k, for k ≥ 1.
As mentioned above, we look for an approximation of a CQ q in GHW(k). A formalization of
this notion was first introduced in [4], based on the following partial order vq over the set of
CQs in GHW(k): if q′, q′′ ∈ GHW(k), then q′ vq q

′′ iff over every database D the symmetric
difference between q(D) and q′′(D) is contained in the symmetric difference between q(D)
and q′(D). Intuitively, this states that q′′ is a better GHW(k)-approximation of q than q′.
The GHW(k)-approximations of q then correspond to maximal elements with respect to
vq among a distinguished class of CQs in GHW(k). Three notions of approximation were
introduced in [4], by imposing different “reasonable” conditions on such a class. These are:

Underapproximations: In this case we look for approximations in the set of CQs q′ in
GHW(k) that are contained in q, i.e., q′ ⊆ q. This ensures that the evaluation of such
approximations always produce correct (but not necessarily complete) answers to q. A
GHW(k)-underapproximation of q is then a CQ q′ amongst these CQs that is maximal
with respect to the partial order defined by vq. Noticeably, the latter coincides with being
maximal with respect to the containment partial order ⊆ among the CQs in GHW(k)
that are contained in q; i.e., no other CQ in such a set strictly contains q′.
Overapproximations: This is the dual notion of underapproximations, in which we look
for minimal elements in the class of CQs q′ in GHW(k) that contain q, i.e., q ⊆ q′. Hence,
GHW(k)-overapproximations produce complete (but not necessarily correct) answers to q.
Symmetric difference approximations: While underapproximations must be contained
in the original query, and overapproximations must contain it, symmetric difference
approximations do not impose any constraint on approximations with respect to the
partial order ⊆. Thus, a symmetric difference GHW(k)-approximation of q – or simply

P. Barceló, M. Romero, and T. Zeume 7:3

GHW(k)-∆-approximation from now on – is a maximal CQ in GHW(k) with respect to
the partial order vq.

The approximations presented above provide “qualitative” guarantees for evaluation, as
they are as close as possible to q among all CQs in GHW(k) of a certain kind. In particular,
under- and overapproximations are dual notions which provide lower and upper bounds for
the exact evaluation of a CQ, while ∆-approximations can give us useful information when
the quality of the result of the under- and overapproximations is poor. Then, in order to
develop a robust theory of bounded hypertreewidth static approximations for CQs, it is
necessary to have a good understanding of all three notions.

The notion of underapproximation is by now well-understood [5]. Indeed, it is known
that for each k ≥ 1 the GHW(k)-underapproximations have good properties that justify their
application: (a) they always exist, and (b) evaluating all GHW(k)-underapproximations of a
CQ q over a database D is fixed-parameter tractable with the size of q as parameter. This is
an improvement over general CQ evaluation for which the latter is believed not to hold [26].

The notions of GHW(k)-overapproximations and GHW(k)-∆-approximations, while al-
ready introduced in [4], are much less understood. No general tools have been identified so
far for studying the decidability of basic problems such as:

Existence: Does CQ q have a GHW(k)-overapproximation (or GHW(k)-∆-approximation)?
Identification: Is q′ a GHW(k)-overapproximation (or GHW(k)-∆-approximation) of q?
Evaluation: Given a CQ q, a database D, and a tuple ā in D, is it the case that ā ∈ q′(D),
for some GHW(k)-overapproximation (resp., GHW(k)-∆-approximation) q′ of q?

Partial results were obtained in [4], but based on ad-hoc tools. It has also been observed
that some CQs have no GHW(k)-overapproximations (in contrast to underapproximations,
that always exist), which was seen as a negative result.

Contributions. We develop tools for the study of overapproximations and ∆-approximations.
While we mainly focus on the former, we provide a detailed account of how our techniques
can be extended to deal with the latter. In the context of GHW(k)-overapproximations,
we apply our tools to pinpoint the complexity of evaluation and identification, and make
progress in the problem of existence. We also study when overapproximations do not exist
and suggest how this can be alleviated. Our contributions are as follows:
1. Link to existential pebble games. We establish a link between GHW(k)-overapproxima-

tions and existential pebble games [22]. Such games have been used to show that CQs
of bounded width can be evaluated efficiently [11, 9]. Using the fact that the existence
of winning conditions in the existential pebble game can be checked in PTIME [9], we
show that identification and evaluation for GHW(k)-overapproximations are tractable
problems.

2. A more liberal notion of overapproximation. We observe that non-existence of overap-
proximations is due to the fact that in some cases overapproximations require expressing
conjunctions of infinitely many atoms. By relaxing our notion, we get that each CQ
q has a (potentially infinite) GHW(k)-overapproximation q′. This q′ is unique (up to
equivalence). Further, it can be evaluated efficiently – in spite of being potentially infinite
– by checking a winning condition for the existential k-pebble game on q and D.

3. Existence of overapproximations. It is still useful to check if a CQ q has a finite GHW(k)-
overapproximation q′, and compute it if possible. This might allow us to optimize q′
before evaluating it. There is also a difference in complexity, as existential pebble game
techniques are PTIME-complete in general [21], and thus inherently sequential, while
evaluation of CQs in GHW(k) is highly parallelizable (Gottlob et al. [17]).

ICDT 2018

7:4 A More General Theory of Static Approximations for Conjunctive Queries

Table 1 Summary of results on under- and overapproximations of bounded generalized hyper-
treewidth. The complexity of identification coincides with that of evaluation in both cases. New
results are marked with (∗). All remaining results follow from [4, 5].

Existence? Unique? Evaluation Existence check
GHW(k)-underapp. always not always NP-hard N/A
GHW(k)-overapp. not always always PTIME∗ For k = 1:

2Exptime∗

PTIME∗ on binary schemas
For k > 1: Open

By exploiting automata techniques, we show that checking if a CQ q has a (finite) GHW(1)-
overapproximation q′ is in 2Exptime. Also, when such q′ exists it can be computed
in 3Exptime. This is important since GHW(1) coincides with the well-known class of
acyclic CQs [27]. If the arity of the schema is fixed, these bounds drop to Exptime and
2Exptime, respectively. Also, we look at the case of binary schemas, such as the ones used
in graph databases [3] and description logics [2]. In this case, GHW(1)-overapproximations
can be computed efficiently via a greedy algorithm. This is optimal, as over ternary
schemas we prove an exponential lower bound for the size of GHW(1)-overapproximations.
We do not know if the existence problem is decidable for k > 1. However, we show that
it can be recast as an unexplored boundedness condition for the existential pebble game.
Understanding the decidability boundary for such conditions is often difficult [25, 7].

Table 1 shows a summary of these results in comparison with underapproximations.
Our contributions for GHW(k)-∆-approximations are as follows. As a preliminary step, we

show that GHW(k)-under and GHW(k)-overapproximations are particular cases of GHW(k)-
∆-approximations, but not vice versa. Afterwards, as for GHW(k)-overapproximations, we
provide a link between GHW(k)-∆-overapproximations and the existential pebble game, and
use it to characterize when a CQ q has at least one GHW(k)-∆-approximation that is neither
a GHW(k)-underapproximation nor a GHW(k)-overapproximation (a so-called incomparable
GHW(k)-∆-approximation). This allows us to show that the identification problem for
such ∆-approximations is coNP-complete. As for the problem of checking for the existence
of incomparable GHW(k)-∆-approximations, we extend our automata techniques to prove
that it is in 2Exptime for k = 1 (and in Exptime for fixed-arity schemas). In case such
a GHW(1)-∆-approximation exists, we can evaluate it using a fixed-parameter tractable
algorithm. We also provide results on existence and evaluation of infinite incomparable
GHW(1)-∆-approximations.

Organization. Section 2 contains preliminaries. Basic properties of overapproximations are
presented in Section 3, while the existence of overapproximations is studied in Section 4. In
Section 5 we deal with ∆-approximations, and conclude in Section 6 with final remarks.

2 Preliminaries

Relational databases and homomorphisms. A relational schema σ is a finite set of relation
symbols, each one of which has an arity n > 0. A database D over σ is a finite set of atoms of
the form R(ā), where R is a relation symbol in σ of arity n and ā is an n-tuple of constants.
We often abuse notation and write D also for the set of elements in D.

Let D and D′ be databases over σ. A homomorphism from D to D′ is a mapping h
from D to D′ such that for every atom R(ā) in D it is the case that R(h(ā)) ∈ D′. If ā

P. Barceló, M. Romero, and T. Zeume 7:5

and b̄ are n-ary tuples (n ≥ 0) in D and D′, respectively, we write (D, ā)→ (D′, b̄) if there
is a homomorphism h from D to D′ such that h(ā) = b̄. Checking if (D, ā) → (D′, b̄) is a
well-known NP-complete problem.

Conjunctive queries. A conjunctive query (CQ) over schema σ is a formula q of the
form ∃ȳ

∧
1≤i≤m Ri(x̄i), where each Ri(x̄i) is an atom over σ (1 ≤ i ≤ m). We often write

this as q(x̄) to denote that x̄ are the free variables of q, i.e., those that are not existentially
quantified in ȳ. If x̄ is empty, then q is Boolean. We define the evaluation of CQs in terms
of homomorphisms. Recall that the canonical database Dq of a CQ q = ∃ȳ

∧
1≤i≤m Ri(x̄i)

consists precisely of the atoms Ri(x̄i), for 1 ≤ i ≤ m. The result of q over D, denoted q(D),
is the set of all tuples ā such that (Dq, x̄)→ (D, ā). We often do not distinguish between a
CQ q and its canonical database Dq (i.e., we write q for Dq).

Evaluation and tractable classes of CQs. The evaluation problem for CQs is as follows:
Given a CQ q, a database D, and a tuple ā in D, is ā ∈ q(D)? Since this problem corresponds
to checking if (q, x̄)→ (D, ā), it is NP-complete [8]. This led to a flurry of activity for finding
classes of CQs for which evaluation is tractable.

Here we deal with one of the most studied such classes: CQs of bounded generalized hyper-
treewidth [17], also called coverwidth [9]. We adopt the definition of [9] which is better suited
for working with non-Boolean queries. A tree decomposition of a CQ q = ∃ȳ

∧
1≤i≤m Ri(x̄i)

is a pair (T, χ), where T is a tree and χ is a mapping that assigns a subset of the existentially
quantified variables in ȳ to each node t ∈ T , such that:
1. For each 1 ≤ i ≤ m, the variables in x̄i ∩ ȳ are contained in χ(t), for some t ∈ T .
2. For each variable y in ȳ, the set of nodes t ∈ T for which y occurs in χ(t) is connected.

The width of node t in (T, χ) is the minimal size of an I ⊆ {1, . . . ,m} such that
⋃

i∈I x̄i

covers χ(t). The width of (T, χ) is the maximal width of the nodes of T . The generalized
hypertreewidth of q is the minimum width of its tree decompositions.

For a fixed k ≥ 1, we denote by GHW(k) the class of CQs of generalized hypertreewidth
at most k. The CQs in GHW(k) can be evaluated in polynomial time; see [16].

Containment of CQs. A CQ q is contained in a CQ q′, written as q ⊆ q′, if q(D) ⊆ q′(D)
over every database D. Two CQs q and q′ are equivalent, denoted q ≡ q′, if q ⊆ q′ and q′ ⊆ q.

It is known that CQ containment and CQ evaluation are, essentially, the same problem
[8]. In particular, let q(x̄) and q′(x̄) be CQs. Then

q ⊆ q′ ⇐⇒ x̄ ∈ q′(Dq) ⇐⇒ (Dq′ , x̄)→ (Dq, x̄). (1)

Thus, q ⊆ q′ and (q′, x̄)→ (q, x̄) (i.e., (Dq′ , x̄)→ (Dq, x̄)) are used interchangeably.

Approximations of CQs. Fix k ≥ 1. Let q be a CQ. The approximations of q in GHW(k)
are defined with respect to a partial order vq over the set of CQs in GHW(k). Formally, for
any two CQs q′, q′′ in GHW(k) we have

q′ vq q
′′ ⇐⇒ ∆(q(D), q′′(D)) ⊆ ∆(q(D), q′(D)), for every database D,

where ∆(A,B) denotes the symmetric difference between sets A and B. Thus, q′ vq q
′′,

whenever the “error” of q′′ with respect to q – measured in terms of the symmetric difference
between q′′(D) and q(D) – is contained in that of q′ for each database D. As usual, we write
q′ @q q

′′ if q′ vq q
′′ but q′′ 6vq q

′.

ICDT 2018

7:6 A More General Theory of Static Approximations for Conjunctive Queries

q:

Pa

PbPb

q′:

Pa

Pb Pb

Figure 1 The CQ q and its GHW(1)-overapproximation q′ from Example 2.

The approximations of q in GHW(k) always correspond to maximal elements, with respect
to the partial order vq, over a class of CQs in GHW(k) that satisfies certain conditions. The
following three basic notions of approximation were identified in [4]:

Underapproximations: Let q, q′ be CQs such that q′ ∈ GHW(k). Then q′ is a GHW(k)-
underapproximation of q if it is maximal, with respect to vq, among all CQs in GHW(k)
that are contained in q. That is, q′ ⊆ q, and there is no CQ q′′ ∈ GHW(k) such that
q′′ ⊆ q and q′ @q q′′. In particular, the GHW(k)-underapproximations of q produce
correct (but not necessarily complete) answers with respect to q over every database D.
Overapproximations: Analogously, q′ is a GHW(k)-overapproximation of q if it is maximal,
with respect to vq, among all CQs in GHW(k) that contain q. That is, the GHW(k)-
overapproximations of q produce complete (but not necessarily correct) answers with
respect to q over every database D.
∆-approximations: In this case we impose no restriction on q′. That is, q′ is a GHW(k)-
∆-approximation of q if it is maximal with respect to the partial order vq, i.e., there is
no q′′ ∈ GHW(k) such that q′ @q q

′′.

Underapproximations and overapproximations admit an equivalent, but arguably simpler,
characterization as maximal (resp., minimal) elements, with respect to the containment
partial order ⊆, among all CQs in GHW(k) that are contained in q (resp., contain q):

I Proposition 1. [4] Fix k ≥ 1. Let q, q′ be CQs such that q′ ∈ GHW(k). Then:
q′ is a GHW(k)-underapproximation of q iff q′ ⊆ q and there is no CQ q′′ ∈ GHW(k) such
that q′ ⊂ q′′ ⊆ q.
q′ is a GHW(k)-overapproximation of q iff q ⊆ q′ and there is no CQ q′′ ∈ GHW(k) such
that q ⊆ q′′ ⊂ q′.

As mentioned before, GHW(k)-underapproximations are by now well-understood. We
concentrate on GHW(k)-overapproximations and GHW(k)-∆-approximations in this paper.
We start by studying the former.

3 Overapproximations

Recall that GHW(k)-overapproximations are minimal elements (in terms of ⊆) in the set of
CQs in GHW(k) that contain q. We show an example of a GHW(1)-approximation below:

I Example 2. Figure 1 shows a CQ q and its GHW(1)-overapproximation q′. The schema
consists of binary symbols Pa and Pb. Dots represent variables, and an edge labeled Pa

between x and y represents the presence of atoms Pa(x, y) and Pa(y, x). (Same for Pb). All
variables are existentially quantified. Clearly, q ⊆ q′ (as q′ → q). In addition, there is no CQ
q′′ ∈ GHW(1) such that q ⊆ q′′ ⊂ q′. We provide an explanation for this later. J

We start in Section 3.1 by stating some basic properties on existence and uniqueness
of GHW(k)-overapproximations. Later in Section 3.2 we establish a connection between
GHW(k)-overapproximations and the existential pebble game, which allows us to show that

P. Barceló, M. Romero, and T. Zeume 7:7

q: q′:

Figure 2 The CQ q is in GHW(2) but has no GHW(1)-overapproximations, while q′ is in GHW(3)
but has no GHW(`)-overapproximations for ` ∈ {1, 2}.

both the identification and evaluation problems for GHW(k)-overapproximations are tractable.
Finally, in Section 3.4 we look at the case when GHW(k)-overapproximations do not exist,
and suggest how this can be alleviated by allowing infinite overapproximations.

3.1 Existence and uniqueness of overapproximations

As shown in [4], existence of overapproximations is not a general phenomenon. In fact, for
every k > 1 there is a Boolean CQ q in GHW(k) that has no GHW(1)-overapproximation.
Using the characterization given later in Theorem 21, we can strengthen this further:

I Proposition 3. For each k > 1, there is a Boolean CQ q ∈ GHW(k) without GHW(`)-
overapproximations for any 1 ≤ ` < k.

Figure 2 depicts examples of CQs in GHW(k), for k = 2 and k = 3, respectively, without
GHW(`)-overapproximations for any 1 ≤ ` < k.

Interestingly, when GHW(k)-overapproximations do exist, they are unique (up to equival-
ence). This follows since, in this case, GHW(k)-overapproximations are not only the minimal
elements, but also the lower bounds of the set of CQs in GHW(k) that contain q:

I Proposition 4. Let q, q′ be CQs such that q′ ∈ GHW(k). The following are equivalent:
1. q′ is a GHW(k)-overapproximation of q.
2. (i) q ⊆ q′, and (ii) for every CQ q′′ ∈ GHW(k), it is the case that q ⊆ q′′ implies q′ ⊆ q′′.

Proof. We only prove the nontrivial direction (1) ⇒ (2). By contradiction, suppose that
there is a CQ q′′ ∈ GHW(k) such that q ⊆ q′′ but q′ 6⊆ q′′. Note that we can assume that
q′ and q′′ have the same free variables x̄; otherwise we can rename them accordingly. Let
(q′ ∧ q′′) be the conjunction of q′ and q′′, i.e., the CQ which is obtained by first renaming
each existentially quantified variable in q′ and q′′ with a different fresh variable, and then
taking the conjunction of the atoms in q′ and q′′. The tuple of free variables of (q′ ∧ q′′) is
x̄. Observe that (q′ ∧ q′′) is in GHW(k). Also, by the definition of (q′ ∧ q′′) we have that
q ⊆ (q′ ∧ q′′) ⊆ q′. But q′ is a GHW(k)-overapproximation of q, and thus q′ ⊆ (q′ ∧ q′′). On
the other hand, we have that (q′ ∧ q′′) ⊆ q′′, and then q′ ⊆ q′′. This is a contradiction. J

As a corollary, we immediately obtain the following:

I Corollary 5. If a CQ q has GHW(k)-overapproximations q1 and q2, then q1 ≡ q2.

The previous results show the stark difference between GHW(k)-overapproximations and
GHW(k)-underapproximations: GHW(k)-overapproximations do not necessarily exist, but
when they do they are unique; GHW(k)-underapproximations always exist but there can be
exponentially many incomparable ones [5].

ICDT 2018

7:8 A More General Theory of Static Approximations for Conjunctive Queries

3.2 A link with the existential pebble game
We characterize GHW(k)-overapproximations in terms of the existential pebble game. We
use a version of such a game, known as existential cover game, that is tailored for CQs of
bounded generalized hypertreewidth [9]. Let k ≥ 1. The existential k-cover game is played
by Spoiler and Duplicator on pairs (D, ā) and (D′, b̄), where D and D′ are databases and ā
and b̄ are n-ary (n ≥ 0) tuples over D and D′, respectively. The game proceeds in rounds.
In each round, Spoiler places (resp., removes) a pebble on (resp., from) an element of D, and
Duplicator responds by placing (resp., removing) its corresponding pebble on an element of
(resp., from) D′. The number of pebbles is not bounded, but Spoiler is constrained as follows:
At any round p of the game, if c1, . . . , c` (` ≤ p) are the elements marked by Spoiler’s pebbles
in D, there must be a set of at most k atoms in D that contain all such elements (this is why
the game is called k-cover, as pebbled elements are covered by no more than k atoms).

Duplicator wins if she has a winning strategy, i.e., she can indefinitely continue playing the
game in such a way that after each round, if c1, . . . , c` are the elements that are marked by
Spoiler’s pebbles in D and d1, . . . , d` are the elements marked by the corresponding pebbles
of Duplicator in D′, then

(
(c1, . . . , c`, ā), (d1, . . . , d`, b̄)

)
is a partial homomorphism from D

to D′. That is, for every atom R(c̄) ∈ D, where each element c of c̄ appears in (c1, . . . , c`, ā),
it is the case that R(d̄) ∈ D′, where d̄ is the tuple obtained from c̄ by replacing each element c
of c̄ by its corresponding element d in (d1, . . . , d`, b̄). We write (D, ā)→k (D′, b̄) if Duplicator
has a winning strategy.

Notice that →k “approximates” → as follows: → ⊂ · · · ⊂ →k+1 ⊂ →k ⊂ · · · ⊂→1.
These approximations are convenient complexity-wise: Checking whether (D, ā)→ (D′, b̄) is
NP-complete, but (D, ā)→k (D′, b̄) can be solved efficiently.

I Proposition 6. [9] Fix k ≥ 1. Checking whether (D, ā)→k (D′, b̄) is in polynomial time.

Moreover, there is a connection between →k and the evaluation of CQs in GHW(k) that
we heavily exploit in our work:

I Proposition 7. [9] Fix k ≥ 1. Then (D, ā)→k (D′, b̄) iff for each CQ q(x̄) in GHW(k) we
have that if (q, x̄)→ (D, ā) then (q, x̄)→ (D′, b̄).

In particular, if q(x̄) ∈ GHW(k) then for every D and ā:

ā ∈ q(D) ⇐⇒ (q, x̄)→ (D, ā) ⇐⇒ (q, x̄)→k (D, ā). (2)

That is, the “approximation” of→ provided by→k is sufficient for evaluating CQs in GHW(k).
Together with Proposition 6, this proves that CQs in GHW(k) can be evaluated efficiently.

The characterization. Existential cover games can be applied to obtain a semantic charac-
terization of GHW(k)-overapproximations:

I Theorem 8. Fix k ≥ 1. Let q, q′ be CQs with q′ ∈ GHW(k). Then q′(x̄) is the GHW(k)-
overapproximation of q(x̄) iff (q′, x̄)→k (q, x̄) and (q, x̄)→k (q′, x̄).

Proof. Assume that q′(x̄) is the GHW(k)-overapproximation of q(x̄). Then (q′, x̄)→ (q, x̄),
and thus (q′, x̄) →k (q, x̄) since →⊂→k. We prove now that (q, x̄) →k (q′, x̄). From
Proposition 7, we need to prove that if q′′(x̄) is a CQ in GHW(k) such that (q′′, x̄)→ (q, x̄),
then also (q′′, x̄)→ (q′, x̄). This follows directly from Proposition 4.

Assume now that (q′, x̄)→k (q, x̄) and (q, x̄)→k (q′, x̄). Since q′ ∈ GHW(k), we have that
q ⊆ q′ by Equation (2). From Proposition 7, if q ⊆ q′′ and q′′ ∈ GHW(k) then q′ ⊆ q′′, i.e.,
there is no q′′ in GHW(k) such that q ⊆ q′′ ⊂ q′. Hence q′ is a GHW(k)-overapproximation. J

P. Barceló, M. Romero, and T. Zeume 7:9

I Example 9. (Example 2 cont.) It is now easy to see that the CQ q′ in Figure 1 is a
GHW(1)-overapproximation of q. In fact, since q′ → q, we only need to show that q →1 q

′.
The latter is simple and left to the reader. J

Next we show that this characterization allows us to show that the identification and
evaluation problems for GHW(k)-overapproximations can be solved in polynomial time.

3.3 Identification and evaluation of GHW(k)-overapproximations
A direct corollary of Proposition 6 and Theorem 8 is that the identification problem for
GHW(k)-overapproximations is in polynomial time:

I Corollary 10. Fix k ≥ 1. Given CQs q, q′ such that q′ ∈ GHW(k), checking if q′ is the
GHW(k)-overapproximation of q can be solved in polynomial time.

This corresponds to a promise version of the problem, as it is given to us that q′ is in
fact in GHW(k). Checking the latter is NP-complete for every fixed k ≥ 2 [18, 14].

Assume now that we are given the promise that q has a GHW(k)-overapproximation q′
(but q′ itself is not given). How hard is it to evaluate q′ over a database D? We could try to
compute q′, but so far we have no techniques to do that. Notably, we can use existential
cover games to show that GHW(k)-overapproximations can be evaluated efficiently, without
even computing them. This is based on the next result, which states that evaluating q′ over
D boils down to checking (q, x̄)→k (D, ā) for the tuples ā over D.

I Theorem 11. Fix k ≥ 1. Let q(x̄) be a CQ with a GHW(k)-overapproximation q′(x̄). Then
for every D and ā:

ā ∈ q′(D) ⇐⇒ (q′, x̄)→ (D, ā) ⇐⇒ (q, x̄)→k (D, ā).

Proof. Assume first that (q, x̄)→k (D, ā). Since q′ is a GHW(k)-overapproximation of q, we
have that (q′, x̄)→ (q, x̄). Since winning strategies for Duplicator compose and →⊂→k then,
(q′, x̄)→k (D, ā). But q′ ∈ GHW(k), and thus (q′, x̄)→ (D, ā) from Equation (2). Assume
now that (q′, x̄)→ (D, ā). From Theorem 8, we have that (q, x̄)→k (q′, x̄). By composition
and →⊂→k, it follows that (q, x̄)→k (D, ā) holds. J

As a corollary to Theorem 11 and Proposition 6 we obtain:

I Corollary 12. Fix k ≥ 1. Checking if ā ∈ q′(D), given a CQ q that has a GHW(k)-
overapproximation q′, a database D, and a tuple ā in D, can be solved in polynomial time by
checking if (q, x̄)→k (D, ā). Moreover, this can be done without even computing q′.

3.4 More liberal GHW(k)-overapproximations
CQs may not have GHW(k)-overapproximations, for some k ≥ 1. We observe in this
section that this anomaly can be solved by extending the language of queries over which
overapproximations are to be found.

An infinite CQ is as a finite one, save that now the number of atoms is countably infinite.
We assume that there are finitely many free variables in an infinite CQ. The evaluation of an
infinite CQ q(x̄) over a database D is defined analogously to the evaluation of a finite one.
Similarly, the generalized hypertreewidth of an infinite CQ is defined as in the finite case,
but now tree decompositions can be infinite. We write GHW(k)∞ for the class of all CQs,
finite and infinite ones, of generalized hypertreewidth at most k. The next result states a
crucial relationship between the existential k-cover game and the class GHW(k)∞:

ICDT 2018

7:10 A More General Theory of Static Approximations for Conjunctive Queries

I Lemma 13. Fix k ≥ 1. For every CQ q there is a q′ in GHW(k)∞ such that for every
database D and tuple ā of constants in D:

ā ∈ q′(D) ⇐⇒ (q′, x̄)→ (D, ā) ⇐⇒ (q, x̄)→k (D, ā).

This holds even for countably infinite databases D.

The proof of this result follows from techniques in [22]. The basic idea is that q′ has an
(infinite) generalized hypertree decomposition of width k that represents all possible moves
of Spoiler in the existential k-cover game played from q.

Since we now deal with infinite CQs and databases, we cannot apply Proposition 7 directly
in our analysis of GHW(k)∞-overapproximations. Instead, we use the following suitable
reformulation of it, which we obtain by inspection of its proof:

I Proposition 14. Fix k ≥ 1. Consider countably infinite databases D and D′. Then
(D, ā)→k (D′, b̄) iff for each CQ q(x̄) in GHW(k)∞, if (q, x̄)→ (D, ā) then (q, x̄)→ (D′, b̄).

GHW(k)∞-overapproximations. We expand the notion of overapproximation by allowing
infinite CQs. Let q′ ∈ GHW(k)∞. Then q′ is a GHW(k)∞-overapproximation of CQ q, if q ⊆ q′
and there is no q′′ ∈ GHW(k)∞ such that q ⊆ q′′ ⊂ q′. (Here, ⊆ is still defined with respect
to finite databases only). In GHW(k)∞, we can provide each CQ q an overapproximation:

I Theorem 15. Fix k ≥ 1. For every CQ q there is a CQ in GHW(k)∞ that is a GHW(k)∞-
overapproximation of q.

Proof. We prove that q′, as given in Lemma 13, is a GHW(k)∞-overapproximation of q.
Notice that (q′, x̄) → (q, x̄) (by choosing (D, ā) as (q, x̄) in Lemma 13). Therefore, q ⊆ q′

since this direction of Equation (1) continues to hold for countably infinite CQs. Observe
now that (q, x̄)→k (q′, x̄) (by choosing (D, ā) as (q′, x̄) in Lemma 13). Proposition 14 tells
us that for every q′′(x̄) in GHW(k)∞, if (q′′, x̄) → (q, x̄) then (q′′, x̄) → (q′, x̄). But then
q ⊆ q′′ implies that q′ ⊆ q′′, since Equation (1) continues to hold if q (but not necessarily q′)
is finite. Thus, q′ is a GHW(k)∞-overapproximation of q. J

Despite the non-computable nature of GHW(k)∞-overapproximations, we get from Pro-
position 6 and the proof of Theorem 15 that they can be evaluated efficiently:

I Corollary 16. Fix k ≥ 1. Checking whether ā ∈ q′(D), given a CQ q with GHW(k)∞-
overapproximation q′, a database D, and a tuple ā in D, boils down to checking if (q, x̄)→k

(D, ā), and thus it can be solved in polynomial time.

4 Deciding existence of GHW(k)-overapproximations

CQs always have GHW(k)∞-overapproximations, but not necessarily finite ones. Here we
study when a CQ q has a finite overapproximation. We start with the case k = 1, which we
show to be decidable in 2Exptime (we do not know if this is optimal). For k > 1 we leave
the decidability open, but provide some explanation about where the difficulty lies.

4.1 The acyclic case
We start with the case of GHW(1)-overapproximations. Recall that GHW(1) is an important
class, as it consists precisely of the well-known acyclic CQs. Our main result is the following:

P. Barceló, M. Romero, and T. Zeume 7:11

I Theorem 17. There is a 2Exptime algorithm that checks if a CQ q has a GHW(1)-
overapproximation and, if one exists, it computes one in triple-exponential time.

If the arity of the schema is fixed, there is an Exptime algorithm that does this and
computes a GHW(1)-overapproximation of q in double-exponential time.

We sketch the proof for nonfixed arities. From a CQ q we build a two-way alternating
tree automaton [10], or 2ATA, Aq, such that the language L(Aq) of trees accepted by Aq is
nonempty iff q has a GHW(1)-overapproximation. Intuitively, Aq accepts those trees that
encode a GHW(1)-overapproximation q′ of q. Formally:

I Proposition 18. There exists a double-exponential time algorithm that takes as input a
CQ q and returns a 2ATA Aq with exponentially many states, such that q has a GHW(1)-
overapproximation iff L(Aq) 6= ∅. Furthermore, from every tree T in L(Aq) one can construct
in polynomial time a GHW(1)-overapproximation of q.

Proof sketch. For simplicity we assume that q is Boolean. Before describing the construction
of Aq, we explain how input trees for Aq encode CQs in GHW(1). To this end let q′ be a CQ
in GHW(1) and (Tq′ , χ) a tree decomposition of q′. The CQ q′ can have unbounded many
variables. Yet, in each node of Tq′ at most r variables appear, where r is the maximum arity
of an atom in q. Thus, by reusing variables, (Tq′ , χ) can be encoded by using 2r variables in
such a way that it can then be decoded, i.e. a variable name ui is used in two neighboring
nodes v and v′ of the encoding iff the corresponding variables of the tree decomposition also
occur in neighboring nodes. The encoding Enc(Tq′ , χ) of (Tq′ , χ) is a tree labeled by (a) the
variables {u1, . . . , u2r} as described, and (b) the atoms of q′ covered by those variables.

The 2ATA Aq checks that the CQ q′ encoded by T ′ = Enc(Tq′ , χ) is a GHW(1)-
overapproximation of q. From Theorem 8, we need to check: (1) q′ →1 q, and (2) q →1 q

′.
The 2ATA Aq will be defined as the intersection of 2ATAs A1 and A2, that check conditions
(1) and (2), respectively. Condition (1) is equivalent to q′ → q (since q′ ∈ GHW(1)). A
2ATA A1 can guess and verify a homomorphism from q′ to q. In particular, A1 requires no
alternation and has at most exponentially many states.

We now sketch how the automaton A2 works. First, q →1 q
′ can be restated as Duplicator

having a compact winning strategy [9] as follows. The set of variables appearing in an atom
of q constitute a 1-union of q. Then q →1 q

′ iff there is a non-empty family F of partial
homomorphisms from q to q′ such that: (a) the domain of each f ∈ F is a 1-union of q, and
(b) if U and U ′ are 1-unions of q, then each f ∈ F with domain U can be extended to U ′,
i.e., there is f ′ ∈ F with domain U ′ such that f(x) = f ′(x) for every x ∈ U ∩ U ′.

The 2ATA A2 assumes an annotation of T ′ = Enc(Tq′ , χ) that encodes the intended
strategy F . This annotation labels each node t′ of T ′ by the set of partial mappings from q

to q′ whose domain is a 1-union of q, and whose range is contained in the variables from
{u1, . . . , u2r} labeling t′. It can be easily checked from the labelings of T ′ if each mapping in
this annotation is a partial homomorphism. To check condition (2), the 2ATA A2 makes a
universal transition for each pair (U,U ′) of 1-unions and partial mapping g with domain U
annotating a node t′ of T ′. Then it checks the existence of a node t′ in T ′ that is annotated
with a mapping g′ that extends g to U ′. The latter means that, for each x ∈ U ∩ U ′, both
g(x) and g′(x) are the same variable of q′, that is, g(x) and g(x′) are connected occurrences of
the same variable in {u1, . . . , u2r}. Thus to check the consistency of g and g′, the automaton
can store the variables in {g(x) | x ∈ U ∩ U ′}, and check that these are present in the label
of each node guessed before reaching t′. As this is a polynomial amount of information, A2
can be implemented using exponentially many states. J

ICDT 2018

7:12 A More General Theory of Static Approximations for Conjunctive Queries

q3:

x0

x1
1 x2

1

x1
2 x2

2

x1
3 x2

3

q′3:

y0

y1
1

y11
2 y12

2

y111
3 y112

3 y121
3 y122

3

y2
1

y21
2 y22

2

y211
3 y212

3 y221
3 y222

3

Figure 3 Illustration of the CQs q3 and q′3 from Proposition 20. Each triple of variables represents
two atoms in the query; e.g., {y0, y1

1 , y2
1} represents atoms R(y0, y1

1 , y2
1) and R(y0, y2

1 , y1
1) in q′3.

It is easy to see how Theorem 17 follows from Proposition 18. Checking if a CQ q has a
GHW(1)-overapproximation amounts to checking if L(Aq) 6= ∅. The latter can be done in
exponential time in the number of states of Aq [10], and thus in double-exponential time in
the size of q. If L(Aq) 6= ∅, one can construct a tree T ∈ L(Aq) in double-exponential time
in the size of Aq, and thus in triple-exponential time in the size of q. From T one then gets
in polynomial time (i.e., in 3EXPTIME in the size of q) a GHW(1)-overapproximation of q.

The case of binary schemas. For schemas of arity two the existence and computation
of GHW(1)-overapproximations can be solved in polynomial time. This is of practical
importance since data models such as graph databases [3] and description logic ABoxes [2]
can be represented using schemas of this kind. Note that in this context GHW(1) coincides
with the class of CQs of treewidth one [11]. Then:

I Theorem 19. There is a Ptime algorithm that checks if a CQ q over a schema of maximum
arity two has a GHW(1)-overapproximation q′, and computes such a q′ if it exists.

The proof of this result can be found in the appendix.

Size of overapproximations. Over binary schemas GHW(1)-overapproximations are of
polynomial size. This is optimal as over schemas of arity three there is an exponential lower
bound for the size of GHW(1)-overapproximations:

I Proposition 20. There is a schema σ with a single ternary relation symbol and a family
(qn)n≥1 of Boolean CQs over σ, such that (1) qn is of size O(n), and (2) the size of every
GHW(1)-overapproximation of qn is Ω(2n).

Proof. The CQ qn contains the atoms R(x0, x
1
1, x

2
1), R(x0, x

2
1, x

1
1), as well as R(xj

i , x
1
i+1, x

2
i+1)

and R(xj
i , x

2
i+1, x

1
i+1), for each 1 ≤ i ≤ n−1 and j ∈ {1, 2}. Consider now the CQ q′n with the

atoms R(y0, y
1
1 , y

2
1), R(y0, y

2
1 , y

1
1), as well as R(yw

|w|, y
w1
|w|+1, y

w2
|w|+1) and R(yw

|w|, y
w2
|w|+1, y

w1
|w|+1),

for each word w over {1, 2} of length 1 ≤ |w| ≤ n− 1. Figure 3 depicts q3 and q′3.
The query q′n indeed is an overapproximation of qn. The mapping h : q′n → qn defined

as h(y0) = x0 and h(ywj
|w|+1) = xj

|w|+1, for each word w over {1, 2} of length 0 ≤ |w| ≤ n− 1
and j ∈ {1, 2}, is a homomorphism. On the other hand, a compact winning strategy for
Duplicator can be obtained by basically “inverting” the homomorphism h.

The size of q′n is Ω(2n). We claim that q′n is the smallest GHW(1)-overapproximation of qn,
which proves the proposition. A straightforward case-by-case analysis shows that q′n is a core
[8, 19]. Now assume, towards a contradiction, that q′ is a GHW(1)-overapproximation of qn

with fewer atoms than q′n. Then q′n ≡ q′ by Corollary 5. Composing the homomorphisms
h1 : q′n → q′ and h2 : q′ → q′n yields a homomorphism from q′n to a proper subset of the
atoms of q′n. This is a contradiction to q′n being a core. J

P. Barceló, M. Romero, and T. Zeume 7:13

4.2 Beyond acyclicity
Theorem 8 characterizes when a CQ has a GHW(k)-overapproximation. We provide an
alternative characterization in terms of a boundedness condition for the existential cover
game. This helps understanding where lies the difficulty of determining the decidability
status of the problem of existence of GHW(k)-overapproximations, for k > 1.

We write (D, ā) →c
k (D, b̄), for k ≥ 1 and c ≥ 0, if Duplicator has a winning strategy

in the first c rounds of the existential k-cover game on (D, ā) and (D, b̄). The next result
establishes that a CQ q has a GHW(k)-overapproximation iff the existential k-cover game
played from q is “bounded”, i.e., if there is a constant c ≥ 0 that bounds the number of
rounds this game needs to be played in order to determine if Duplicator wins.

I Theorem 21. Fix k ≥ 1. The CQ q(x̄) has a GHW(k)-overapproximation iff there is an
integer c ≥ 0 such that (q, x̄)→k (D, ā) iff (q, x̄)→c

k (D, ā), for each database D and ā ∈ D.

Boundedness conditions are a difficult area of study, with a delicate decidability boundary.
For least fixed point logic (LFP), undecidability results for boundedness abound with the
exception of a few restricted fragments [25, 7]. The existence of winning Duplicator strategies
in existential pebble games is expressible in LFP [23], yet results from this context are not
directly applicable to determine the decidability status of the condition from Theorem 21.

5 Beyond under and overapproximations: ∆-approximations

We now turn to GHW(k)-∆-approximations. Recall that a GHW(k)-∆-approximation of q
is a maximal element in GHW(k) with respect to the order vq, where q′ vq q

′′, for CQs
q′, q′′ ∈ GHW(k), iff ∆(q(D), q′′(D)) ⊆ ∆(q(D), q′(D)) for all databases D. It is not surprising
that GHW(k)-∆-approximations generalize over- and underapproximations.

I Proposition 22. Fix k ≥ 1. Let q, q′ be CQs such that q′ ∈ GHW(k). If q ⊆ q′ (resp., q′ ⊆
q), then q′ is a GHW(k)-∆-approximation of q if and only if q′ is a GHW(k)-overapproximation
(resp., GHW(k)-underapproximation) of q.

Thus, we concentrate on the study of GHW(k)-∆-approximations that are neither GHW(k)-
under- nor GHW(k)-overapproximations. Evaluating such ∆-approximations can give us
useful information when the quality of GHW(k)-under- and GHW(k)-overapproximations
is poor. But, are there GHW(k)-∆-approximations that are neither GHW(k)-under- nor
GHW(k)-overapproximations? In the rest of this section, we settle this question and study
complexity questions associated with such GHW(k)-∆-approximations.

5.1 Incomparable GHW(k)-∆-approximations
Let q be a CQ. In view of Proposition 22, the GHW(k)-∆-approximations q′ of q that are
neither GHW(k)-overapproximations nor GHW(k)-underapproximations must be incomparable
with q in terms of containment; i.e., both q 6⊆ q′ and q′ 6⊆ q must hold. Incomparable GHW(k)-
∆-approximations do not necessarily exist, even when approximating in the set of infinite CQs
GHW(k)∞. A trivial example is any CQ q in GHW(k), as its only GHW(k)-∆-approximation
(up to equivalence) is q itself. The following characterization will help us to find CQs with
incomparable GHW(k)-∆-approximations.

I Theorem 23. Fix k ≥ 1. Let q(x̄), q′(x̄) be CQs such that q′ ∈ GHW(k). Then q′ is an
incomparable GHW(k)-∆-approximation of q iff (q, x̄)→k (q′, x̄), and both q 6⊆ q′ and q′ 6⊆ q.

ICDT 2018

7:14 A More General Theory of Static Approximations for Conjunctive Queries

Proof. Suppose that q′ is an incomparable GHW(k)-∆-approximation of q and assume,
by contradiction, that (q, x̄) 6→k (q′, x̄). By Proposition 7, there is a q′′ ∈ GHW(k) such
that q ⊆ q′′ and q′ 6⊆ q′′. We show that q′ @q (q′′ ∧ q′), which is a contradiction as
(q′′ ∧ q′) ∈ GHW(k). Assume that ā ∈ ∆(q(D), (q′′ ∧ q′)(D)), for some D and ā ∈ D. If
ā 6∈ q(D), then ā ∈ (q′′ ∧ q′)(D) ⊆ q′(D), and thus, ā ∈ ∆(q(D), q′(D)). Otherwise, ā ∈ q(D)
and ā 6∈ (q′′ ∧ q′)(D). Since q ⊆ q′′, we have ā 6∈ q′(D), and then ā ∈ ∆(q(D), q′(D)). Hence
q′ vq (q′′ ∧ q′). Now, since q′ 6⊆ q′′, there is a database D∗ such that q′(D∗) 6⊆ q′′(D∗), i.e.,
ā ∈ q′(D∗) but ā 6∈ q′′(D∗), for some tuple ā in D∗. In particular ā ∈ ∆(q(D∗), q′(D∗)) and
ā 6∈ ∆(q(D∗), (q′′∧ q′)(D∗)), and thus (q′′∧ q′) 6vq q

′. For the converse, we need the following:

I Lemma. Fix k ≥ 1. Let q(x̄), q′(x̄), q′′(x̄) be CQs such that q′′ ∈ GHW(k). Suppose that
(q, x̄)→k (q′, x̄). Then (q′′, x̄)→ (q′ ∧ q, x̄) implies (q′′, x̄)→ (q′, x̄).

Assume that q * q′, q′ * q, and (q, x̄)→k (q′, x̄). By contradiction, suppose that there
is a CQ q′′ ∈ GHW(k) such that q′ @q q

′′. We show that q′ ≡ q′′, which is a contradiction.
Recall that D(q′∧q) denotes the canonical database of (q′ ∧ q). Clearly, x̄ ∈ q(D(q′∧q))
and x̄ ∈ q′(D(q′∧q)). It follows that x̄ 6∈ ∆(q(D(q′∧q)), q′(D(q′∧q))), and by hypothesis,
x̄ 6∈ ∆(q(D(q′∧q)), q′′(D(q′∧q))). Hence, x̄ ∈ q′′(D(q′∧q)). By the lemma above, we have
(q′′, x̄) → (q′, x̄), that is, q′ ⊆ q′′. For q′′ ⊆ q′, note that x̄ 6∈ q(Dq′′); otherwise, q′′ ⊆ q

would hold, implying that q′ ⊆ q, which is a contradiction. Since x̄ ∈ q′′(Dq′′), we have
x̄ ∈ ∆(q(Dq′′), q′′(Dq′′)). This implies that x̄ ∈ ∆(q(Dq′′), q′(Dq′′)), and then x̄ ∈ q′(Dq′′),
i.e., q′′ ⊆ q′. Hence, q′ ≡ q′′. J

I Example 24. Consider again the CQ q = ∃x∃y∃z(E(x, y) ∧ E(y, z) ∧ E(z, x)) from
Figure 2. Then q has a unique GHW(1)-underapproximation q′ = ∃xE(x, x). As mentioned
in Section 3.1, q has no GHW(1)-overapproximations. Does q have incomparable GHW(1)-∆-
approximations? By applying Theorem 23, we can give a positive answer to this question:
the CQ q′′ = ∃x∃y(E(x, y)∧E(y, x)) is an incomparable GHW(1)-∆-approximation of q. J

Therefore, as Example 24 shows, incomparable GHW(k)-∆-approximations may exist for
some CQs. However, in contrast with overapproximations, they are not unique in general:

I Proposition 25. There is a CQ with infinitely many (non-equivalent) incomparable
GHW(1)-∆-approximations. In fact, this holds for the CQ q in Figure 1.

Identification, existence and evaluation. A direct consequence of Theorem 23 is that
the identification problem, i.e., checking if q′ ∈ GHW(k) is an incomparable GHW(k)-∆-
approximation of a CQ q, is in coNP. It suffices to check that q 6⊆ q′ and q′ 6⊆ q – which are
in coNP – and (q, x̄)→k (q′, x̄) – which is in Ptime from Proposition 6. This is optimal:

I Proposition 26. Fix k ≥ 1. Checking if a given CQ q′ ∈ GHW(k) is an incomparable
GHW(k)-∆-approximation of a given CQ q, is coNP-complete.

As in the case of GHW(k)-overapproximations, we do not know how to check existence of
incomparable GHW(k)-∆-approximations, for k > 1. Nevertheless, for k = 1 we can exploit
the automata techniques developed in Section 4 and obtain an analogous decidability result:

I Proposition 27. There is a 2Exptime algorithm that checks if a CQ q has a incomparable
GHW(1)-∆-approximation and, if one exists, it computes one in triple exponential time. The
bounds become Exptime and 2Exptime, respectively, if the arity of the schema is fixed.

P. Barceló, M. Romero, and T. Zeume 7:15

q:
P1

P2

q∗: . . .
P1 P2 P1 P2 P1

q′:

Figure 4 The CQ q ∈ GHW(2) from Example 29. The CQ (q∗∧q′) is an incomparable GHW(1)∞-
∆-approximation of q. On the other hand, q has no incomparable GHW(1)-∆-approximations.

Now we study evaluation. Recall that, unlike GHW(k)-overapproximations, incomparable
GHW(k)-∆-approximations of a CQ q are not unique. In fact, there can be infinitely many
(see Proposition 25). Thus, it is reasonable to start by trying to evaluate at least one of
them. It would be desirable, in addition, if the one we evaluate depends only on q (i.e., it
is independent of the underlying database D). Proposition 27 allows us to do so as follows.
Given a CQ q with at least one incomparable GHW(1)-∆-approximation, we can compute in
3Exptime one such an incomparable GHW(1)-∆-approximation q′. We can then evaluate q′
over a database D in time O(|D| · |q′|) [27], which is O(|D| · f(|q|)), for f a triple-exponential
function. This means that the evaluation of such a q′ over D is fixed-parameter tractable,
i.e., it can be solved by an algorithm that depends polynomially on the size of the large
database D, but more loosely on the size of the small CQ q. (This is a desirable property for
evaluation, which does not hold in general for the class of all CQs [26]). Formally, then:

I Theorem 28. There is a fixed-parameter tractable algorithm that, given a CQ q that
has incomparable GHW(1)-∆-approximations, a database D, and a tuple ā, checks whether
ā ∈ q′(D), for some incomparable GHW(1)-∆-approximation q′ of q that depends only on q.

It is worth noticing that the automata techniques are essential for proving this result,
and thus for evaluating incomparable GHW(1)-∆-approximations. This is in stark contrast
with GHW(k)-overapproximations, which can be evaluated in polynomial time by simply
checking if (q, x̄)→k (D, ā). It is not at all clear whether such techniques can be extended
to allow for the efficient evaluation of incomparable GHW(k)-∆-approximations.

The infinite case. All the previous results continue to apply for the class of infinite CQs in
GHW(k)∞. The following example shows that, as in the case of GHW(k)-overapproximations,
considering GHW(k)∞ helps us to obtain better incomparable GHW(k)-∆-approximations.

I Example 29. Consider the CQ q that asks for the existence of the two oriented paths P1
and P2, as shown in Figure 4. Theorem 23 can be used to show that q has no incomparable
GHW(1)-∆-approximation. However, q has an incomparable GHW(1)∞-∆-approximation.
In fact, let q∗ be the GHW(1)∞-overapproximation of q which is depicted in Figure 4 (a
P1-labeled edge represents a copy of the oriented path P1, similarly for P2). Also, let q′ be
an arbitrary CQ in GHW(1) which is incomparable with q (one such a q′ is shown in Figure
4). Applying the extension of Theorem 23 to the class GHW(k)∞, we can prove that (q∗ ∧ q′)
is an incomparable GHW(1)∞-∆-approximation of q. J

Example 29 also illustrates the following fact: If there is a CQ q′ ∈ GHW(k) which is
incomparable with q, then (q∗ ∧ q′) is an incomparable GHW(k)∞-∆-approximation of q,
where q∗ is the GHW(k)∞-overapproximation of q. Given a database D and a tuple ā in
D, we can check whether ā belongs to the evaluation of such a ∆-approximation (q∗ ∧ q′)
over D as follows: First we compute q′, and then we check both (q, x̄) →k (D, ā) and
ā ∈ q′(D). In other words, we evaluate (q∗ ∧ q′) via the existential k-cover game, as for the

ICDT 2018

7:16 A More General Theory of Static Approximations for Conjunctive Queries

GHW(k)∞-overapproximation, and then use the incomparable CQ q′ to filter out some tuples
in the answer. Interestingly, we can easily exploit automata techniques and compute such an
incomparable q′ (in case one exists). Thus we have the following:

I Theorem 30. Fix k ≥ 1. There is a fixed-parameter tractable algorithm that given a CQ q

that has an incomparable q′ in GHW(k), a database D, and a tuple ā in D, decides whether
ā ∈ q̂(D), for some incomparable GHW(k)∞-∆-approximation q̂ of q that depends only on q.

6 Final Remarks

Several problems remain open: is the existence of GHW(k)-overapproximations decidable
for k > 1? What is the precise complexity of checking for the existence of GHW(1)-
overapproximations? In particular, can we improve the 2Exptime upper bound from
Theorem 17? What is an optimal upper bound on the size of GHW(1)-overapproximations?

In the future we plan to study how our notions of approximation can be combined with
other techniques to obtain quantitative guarantees. One possibility is to exploit semantic
information about the data – e.g., in the form of integrity constraints – in order to ensure
that certain bounds on the size of the result of the approximation hold. Another possibility is
to try to obtain probabilistic guarantees for approximations based on reasonable assumptions
about the distribution of the data.

References
1 Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-

Wesley, 1995.
2 Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Peter F.

Patel-Schneider, editors. The Description Logic Handbook: Theory, Implementation, and
Applications. Cambridge University Press, 2003.

3 Pablo Barceló. Querying graph databases. In PODS, pages 175–188, 2013.
4 Pablo Barceló, Leonid Libkin, and Miguel Romero. Efficient approximations of conjunctive

queries. In PODS, pages 249–260, 2012.
5 Pablo Barceló, Leonid Libkin, and Miguel Romero. Efficient approximations of conjunctive

queries. SIAM J. Comput., 43(3):1085–1130, 2014.
6 Pablo Barceló, Miguel Romero, and Moshe Y. Vardi. Semantic acyclicity on graph data-

bases. SIAM J. Comput., 45(4):1339–1376, 2016.
7 Achim Blumensath, Martin Otto, and MarkWeyer. Decidability results for the boundedness

problem. Logical Methods in Computer Science, 10(3), 2014.
8 Ashok K. Chandra and Philip M. Merlin. Optimal implementation of conjunctive queries

in relational data bases. In STOC, pages 77–90, 1977.
9 Hubie Chen and Víctor Dalmau. Beyond hypertree width: Decomposition methods without

decompositions. In CP, pages 167–181, 2005.
10 Stavros S. Cosmadakis, Haim Gaifman, Paris C. Kanellakis, and Moshe Y. Vardi. Decidable

optimization problems for database logic programs (preliminary report). In STOC, pages
477–490, 1988.

11 Víctor Dalmau, Phokion G. Kolaitis, and Moshe Y. Vardi. Constraint satisfaction, bounded
treewidth, and finite-variable logics. In CP, pages 310–326, 2002.

12 Wenfei Fan, Jianzhong Li, Shuai Ma, Nan Tang, Yinghui Wu, and Yunpeng Wu. Graph
pattern matching: From intractable to polynomial time. PVLDB, 3(1):264–275, 2010.

13 Robert Fink and Dan Olteanu. On the optimal approximation of queries using tractable
propositional languages. In ICDT, pages 174–185, 2011.

P. Barceló, M. Romero, and T. Zeume 7:17

14 Wolfgang Fischl, Georg Gottlob, and Reinhard Pichler. General and fractional hypertree
decompositions: Hard and easy cases. CoRR, abs/1611.01090, 2016. arXiv:1611.01090.

15 Minos Garofalakis and Phillip Gibbon. Approximate query processing: taming the tera-
bytes. In VLDB, page 725, 2001.

16 Georg Gottlob, Gianluigi Greco, Nicola Leone, and Francesco Scarcello. Hypertree decom-
positions: Questions and answers. In PODS, pages 57–74, 2016.

17 Georg Gottlob, Nicola Leone, and Francesco Scarcello. Hypertree decompositions and
tractable queries. J. Comput. Syst. Sci., 64(3):579–627, 2002.

18 Georg Gottlob, Zoltán Miklós, and Thomas Schwentick. Generalized hypertree decomposi-
tions: NP-hardness and tractable variants. J. ACM, 56(6), 2009.

19 Pavol Hell and Jaroslav Nesetril. The core of a graph. Discrete Mathematics, 109(1-3):117–
126, 1992.

20 Yannis Ioannidis. Approximations in database systems. In ICDT, pages 16–30, 2003.
21 Phokion G. Kolaitis and Jonathan Panttaja. On the complexity of existential pebble games.

In CSL, pages 314–329, 2003.
22 Phokion G. Kolaitis and Moshe Y. Vardi. On the expressive power of datalog: Tools and

a case study. J. Comput. Syst. Sci., 51(1):110–134, 1995.
23 Phokion G. Kolaitis and Moshe Y. Vardi. Conjunctive-query containment and constraint

satisfaction. J. Comput. Syst. Sci., 61(2):302–332, 2000.
24 Qing Liu. Approximate query processing. In Encyclopedia of Database Systems, pages

113–119, 2009.
25 Martin Otto. The boundedness problem for monadic universal first-order logic. In LICS,

pages 37–48, 2006.
26 Christos H. Papadimitriou and Mihalis Yannakakis. On the complexity of database queries.

J. Comput. Syst. Sci., 58(3):407–427, 1999.
27 Mihalis Yannakakis. Algorithms for acyclic database schemes. In VLDB, pages 82–94,

1981.

ICDT 2018

http://arxiv.org/abs/1611.01090

7:18 A More General Theory of Static Approximations for Conjunctive Queries

7 Appendix

I Theorem 19 (restated). There is a Ptime algorithm that checks if a CQ q over a schema
of maximum arity two has a GHW(1)-overapproximation q′, and computes such q′ if it exists.

The idea is to show that if a CQ q has a GHW(1)-overapproximation then it can be
extracted from q in a simple way: it is a subquery of q or it is a subquery of a CQ qu#qv

constructed from q and two distinguished variables u, v in q. The algorithm then greedily
searches through the subqueries of q and qu#qv to find an overapproximation of q.

We need to introduce some notation. The Gaifman graph of a CQ q, denoted by G(q), is
the undirected graph whose set of nodes is the set of variables of q and where there is an
edge {z, z′} whenever z and z′ are distinct variables that appear together in an atom of q.
The existential Gaifman graph of q, denoted by G∃(q), is the subgraph of G(q) induced by
the existentially quantified variables of q.

I Claim 31. Let q(x̄) be a CQ. Then q ∈ GHW(1) iff G∃(q) is an acyclic graph.

A CQ q is connected if G(q) is connected. Using Theorem 8, we have the following:

I Lemma 32. Let q be a connected CQ. If q has a GHW(1)-overapproximation, then it has
one that is connected.

We start by proving Theorem 19 for Boolean CQs; thus, until stated otherwise, we assume
all CQs to be Boolean. First we show Theorem 19 for connected CQs, then we extend it to
the non-connected case and finally prove the general non-Boolean statement.

7.1 The connected case
We start with the following technical lemma. Let q be a CQ. We say that u and v are
adjacent if {u, v} is an edge in G(q), that is, if u and v appear together in an atom of q.

I Lemma 33. Let q be a connected CQ in GHW(1). If q is a core then for all variables u
and v in q there is at most one endomorphism of q that maps u to v.

Proof. Assume that there are two distinct endomorphisms h1 and h2 with h1(u) = h2(u) = v.
Recall that, since q is a core, h1 and h2 are isomorphisms. We root G(q) at u. Let x be a
variable in q with h1(x) 6= h2(x) whose distance to u is minimal in G(q). Then there is a
unique y such that h1(x) = h2(y). We claim that x and y have the same parent in G(q). Let
z be the parent of x. Since h1 is an isomorphism, h1(x) and h1(z), and therefore also h2(y)
and h2(z), are adjacent in G(q). Thus, also y and z are adjacent. However, y cannot be the
parent of z since h1 and h2 agree on all variables above z in G(q). Therefore z is the parent
of y.

Construct a new endomorphism h that maps variables w in the subtree G(q) rooted at y
to h2(w), and all other variables w′ to h1(w′). Then h is an endomorphism, but not injective
as both x and y are mapped to h1(x) = h2(y). This is a contradiction to q being a core, and
therefore there are no two distinct endomorphisms h1 and h2 mapping u to v. J

Suppose q ∈ GHW(1) is connected and u, v are adjacent. If we remove all the atoms that
mention u, v, we obtain two connected CQs, one containing u and the other containing v.
We denote these CQs by tqu and tqv, respectively.

Suppose q ∈ GHW(1) is a connected core. If an endomorphism h of q maps u to v where
u and v are adjacent, then it is the case that h(u) = v and h(v) = u, and h swaps the

P. Barceló, M. Romero, and T. Zeume 7:19

subqueries tqu and tqv. We call such an h a swapping endomorphism for u and v. Note that
Lemma 33 tells us that if such a swapping homomorphism for u and v exists, then it is
unique.

I Lemma 34. Let q be a connected core in GHW(1). Then q has at most one endomorphism
besides the identity mapping. If this endomorphism exists, it is a swapping endomorphism.

Proof. Let P = x0, x1, ...xm be a simple path of maximal length in G(q). For each endo-
morphism h of q, the path P ′ = y1 . . . ym where yi = h(xi) is a simple path of the same
length (as q is a core and therefore h is an isomorphism). Furthermore, P and P ′ share a
vertex. Indeed, if this not the case, since q is connected, one can pick w in P and w′ in P ′
such that w and w′ are connected by a path P ′′ vertex-disjoint (except for w and w′) from
P and P ′, and construct a longer path than P .

Now, if |P | is even, then its middle vertex u = xm/2 is in the intersection of P and P ′ (as
otherwise q would contain a path longer than P). But then h(u) = u and then h must be
the identity mapping by Lemma 33.

If |P | is odd, then u = xbm/2c and v = xdm/2e are in the intersection of P and P ′ (again,
as otherwise q would contain a path longer than P). If h(u) = u, again we have that h is
the identity. Otherwise, if h(u) = v, since u and v are adjacent, we have that h must be the
swapping endomorphism for u and v. J

For a CQ q and variables u, v in q the CQ qu#qv is defined as follows. Denote by q \ v the
CQ obtained from q by removing all atoms that contain v. Let qu be the query constructed
from q \ v by replacing each variable z by a fresh variable zu. Similarly let qv be the CQ
where each variable z in q \u is replaced by a fresh variable zv. The CQ qu#qv is the union of
qu and qv plus all atoms R(uu, vv) when R(u, v) is an atom in q. Likewise for atoms R(v, u).
By construction, we have the following:

I Claim 35. For each CQ q and variables u, v in q, it is the case that qu#qv → q.

Before immersing into the proof of Theorem 19 for connected CQs, we need some notation
and properties of GHW(1)-overapproximations. Suppose q̂, q̂′ are CQs and X,Y are set of
variables from q̂ and q̂′, respectively. We denote by (q̂, X)→1 (q̂′, Y) the fact that Duplicator
has a winning strategy in the existential 1-cover game on q̂ and q̂′ with the property that
whenever Spoiler places a pebble on an element of X in q̂, then Duplicator responds with
some element of Y in q̂′. Checking whether (q̂, X)→1 (q̂′, Y) can still be done in polynomial
time.

I Lemma 36. Suppose q is a CQ and suppose q′ is a connected core that is a GHW(1)-
overapproximation of q. Then we have the following:

If the only endomorphism of q′ is the identity, then any homomorphism from q′ to q is
injective. In particular, q′ is a subquery of q.
If q′ has a swapping endomorphism for u′ and v′, then for any homomorphism h from q′

to q, we have that
(q, {h(u′), h(v′)})→1 (q′, {u′, v′}), and
h is “almost” injective, more precisely, h(z′) 6= h(z′′) for all pairs of variables z′, z′′,
except maybe for z′ 6= u′ in tq

′

u′ and z′ 6= v′ in tq
′

v′ . In particular, q′ is a subquery of
qh(u′)#qh(v′).

Proof. Suppose the only endomorphism of q′ is the identity and towards a contradiction,
suppose there is a non-injective homomorphism h from q′ to q. Then we have h(z′) = h(z′′),

ICDT 2018

7:20 A More General Theory of Static Approximations for Conjunctive Queries

for distinct variables z′, z′′ in q′. Using the fact that q →1 q
′, it is easy to see that there is a

Duplicator winning strategy on q′ and q′ such that z′′ is a possible response of Duplicator
when Spoiler starts playing on z′. Since q′ ∈ GHW(1), we can define an endomorphism g of
q′ that maps z′ to z′′. Then g is an endomorphism different from the identity, which is a
contradiction.

Suppose now that q′ has a swapping endomorphism for u′ and v′, and let h be a
homomorphism from q′ to q. First, assume by contradiction that Duplicator’s strategy
witnessing q →1 q′ is such that for h(u′) (the case for h(v′) is analogous), Duplicator
responds with z′ 6∈ {u′, v′}. By composing h with this strategy, and using the fact that
q′ ∈ GHW(1), it follows that there is an endomorphism g of q′ that maps u′ to z′. This
endomorphism is different from the identity and from the swapping endomorphism for u′ and
v′, which contradicts Lemma 34. Finally, suppose towards a contradiction that h(z′) = h(z′′),
where z′ 6= z′′ and z′ = u′ and z′′ is in tq

′

v′ (the other case is analogous). Again by composing
h with the strategy witnessing q →1 q

′ and the fact that q′ ∈ GHW(1), it is easy to derive
an endomorphism of q′ that is neither the identity nor the swapping endomorphism for u′
and v′. J

As a corollary of Lemma 36 and Lemma 34, we have that whenever q′ is a connected
core, and it is a GHW(1)-overapproximation of q, then q′ is a subquery of q or a subquery of
qu#qv, for some variables u, v in q.

Proof of Theorem 19 for connected, Boolean CQs. We assume that the given CQ q is
connected. The algorithm first checks whether a subquery of q is a GHW(1)-overapproximation.
This is Step 1. In Step 2, the algorithm checks whether a subquery of qu#qv is a GHW(1)-
overapproximation, for some u and v in q. If neither step succeed then the algorithm rejects.
Step 1 is as follows:
1. Set q0 to be q.
2. While qi /∈ GHW(1), search for an atom e such that qi →1 qi \ e. If there is no such atom

then continue with Step 2. Otherwise, set qi+1 to be qi \ e.
3. If qi ∈ GHW(1), for some i, then accept and output qi.

For Step 2, let P be an enumeration of the pairs (u, v) such that u, v are adjacent in q
and q →1 qu#qv. Step 2 is as follows:
1. Let (u, v) be the first pair in P.
2. Set q0 to be qu#qv.
3. While qi /∈ GHW(1), search for an atom e that does not mention uu and vv simultaneously

such that (qi, {uu, vv}) →1 (qi \ e, {uu, vv}). If there is no such atom, let (u, v) be the
next pair in P and repeat from item 2. Otherwise, set qi+1 to be qi \ e.

4. If qi ∈ GHW(1), for some i, then accept and output qi.

Notice that the described algorithm can be implemented in polynomial time. Below we
argue that it is correct.

Suppose first that the algorithm, on input q, accepts with output q∗. By construc-
tion q∗ ∈ GHW(1). Assume first that the algorithm accepts in them-th iteration of Step 1, and
thus q∗ = qm. By construction, for each 0 ≤ i < m, we have that qi →1 qi+1 and qi+1 →1 qi.
In particular, q →1 q∗ and q∗ →1 q, and thus q∗ is a GHW(1)-overapproximation of q.
Suppose now that the algorithm accepts in Step 2 for a pair (u, v) ∈ P , in the m-th iteration.
Again we have that qi →1 qi+1 and qi+1 →1 qi, for each 0 ≤ i < m, and thus qu#qv →1 q

∗

and q∗ →1 qu#qv. Since (u, v) ∈ P , it follows that q →1 qu#qv, and then q →1 q
∗. Using the

fact that qu#qv → q, we have that q∗ →1 q. Hence, q∗ is a GHW(1)-overapproximation of q.

P. Barceló, M. Romero, and T. Zeume 7:21

It remains to show that if q has a GHW(1)-overapproximation q′ then the algorithm
accepts. Since q is connected, we can assume that q′ also is. Moreover, we can assume
w.l.o.g. that q′ is a core. By Lemma 34, we have two cases: (1) the only endomorphism of
q′ is the identity, or (2) q′ has two endomorphisms, namely, the identity and the swapping
endomorphism for some variables u′ and v′.

First suppose case (1) applies. We show that the algorithm accepts in Step 1. By
definition, qi →1 qi+1 and qi+1 →1 qi (actually qi+1 → qi), for each 0 ≤ i ≤ m, where m is
the number of iteration in Step 1. It follows that q0 = q →1 qm and qm →1 q. Since the
relation →1 composes, q′ is a GHW(1)-overapproximation of qm and by using Lemma 36, q′
is a subquery of qm. Now for the sake of contradiction assume that the algorithm does not
accept in Step 1. Then qm 6∈ GHW(1) and there is no edge e in qm such that qm →1 qm \ e.
Since q′ is GHW(1)-overapproximation of qm, we have that qm →1 q

′ and, since q′ ∈ GHW(1),
q′ is a proper subquery of qm. It follows that there is an edge e in qm such that qm →1 qm \ e,
which is a contradiction.

Suppose case (2) holds. In this case the algorithm accepts in Step 2. Let h be a
homomorphism from q′ to q, and let u = h(u′) and v = h(v′). By Lemma 36, u 6= v and
then u and v are adjacent. Also, by Lemma 36, q′ is a subquery of qu#qv. Since q →1 q

′, it
follows that q →1 qu#qv, and then (u, v) ∈ P. We claim that the algorithm accepts when
(u, v) is chosen from P. First, note that q′ is a GHW(1)-overapproximation of qm. Indeed,
by definition, qm → qu#qv, qu#qv → q (Claim 35), and q →1 q

′. It follows that qm →1 q
′.

On the other hand, we have that (q′, (u′, v′))→ (qu#qv, (uu, vv)) (q′ is a subquery of qu#qv)
and (qu#qv, {uu, vv}) →1 (qm, {uu, vv}). It follows that (q′, {u′, v′}) →1 (qm, {uu, vv}),
which implies that (q′, (u′, v′)) → (qm, (uu, vv)) via a homomorphism g. Then q′ is a
GHW(1)-overapproximation of qm. By applying Lemma 36 to qm, q

′ and g, we obtain that
(qm, {uu, vv}) →1 (q′, {u′, v′}), and g is “almost” injective. Observe that g(z′) 6= g(z′′) for
all z′ 6= u′ in tq

′

u′ and z′′ 6= v′ in tq
′

v′ , since {uu, vv} is a bridge of G(qm), that is, its removal
disconnect G(qm). We conclude that g is injective and then q′ is a subquery of qm.

Towards a contradiction, assume that the algorithm do not accept when (u, v) is chosen
from P. Then qm 6∈ GHW(1) and there is no edge e that does not mention both uu, vv such
that (qm, {uu, vv})→1 (qm\e, {uu, vv}). Since (qm, {uu, vv})→1 (q′, {u′, v′}), (q′, (u′, v′))→
(qm, (uu, vv)) via the injective homomorphism g and q′ ∈ GHW(1), it follows that there is
an edge e that does not mention both uu, vv such that (qm, {uu, vv})→1 (qm \ e, {uu, vv}).
This is a contradiction. J

7.2 The unconnected case

Now we consider the non-connected case. A connected component of a CQ is a maximal
connected subquery. Given a CQ q with connected components q1, . . . , qm, the algorithm
proceeds as follows:
1. Start by simplifying q: Compute a minimal subset of CQs Q in {q1, . . . , qm} such that

for each 1 ≤ i ≤ m, there is a p ∈ Q with qi →1 p.
2. Check whether each p ∈ Q has a GHW(1)-overapproximation p′ using the algorithm

described for connected CQs. If this is the case then accept and output
∧

p∈Q p
′.

Clearly, the algorithm can be implemented in polynomial time. For the correctness,
suppose first that the algorithm accepts and outputs q′ =

∧
p∈Q p

′. Then q′ →
∧

p∈Q p→ q.
We also have that q →1

∧
p∈Q p (by definition of Q), and

∧
p∈Q p→1 q

′. This implies that q′
is a GHW(1)-overapproximation of q.

ICDT 2018

7:22 A More General Theory of Static Approximations for Conjunctive Queries

Suppose now that q has a GHW(1)-overapproximation q′. Since q →1
∧

p∈Q p and∧
p∈Q p →1 q, it follows that q′ is also a GHW(1)-overapproximation of

∧
p∈Q p. By the

minimality of Q, we have that p 6→1 p̂, for each pair of distinct CQs p, p̂ ∈ Q. Let p be
a CQ in Q. Since p →1 q′ and p is connected, it follows that p →1 p∗, where p∗ is a
connected component of q′. Also, since q′ →

∧
p∈Q p, there is p0 ∈ Q such that p∗ → p0.

In particular, p→1 p0. It follows that p0 = p, and then p∗ is a GHW(1)-overapproximation
of p. We conclude that each p ∈ Q has a GHW(1)-overpproximation, and thus the algorithm
accepts.

7.3 The non-Boolean case
Finally, we consider the general case that includes non-Boolean queries. Let q(x̄) be a CQ.
We denote by qB the Boolean CQ obtained from q(x̄) by existentially quantifying the free
variables x̄. Recall that G(q) is the Gaifman graph of q, while G∃(q) denotes the restriction
of G(q) to the existentially quantified variables of q. Recall also that q(x̄) is connected if G(q)
is connected, and a connected component of q is a maximal connected subquery. If q(x̄) is
connected, q′(x̄) is a part of q if it is a maximal subquery of q with G∃(q′) connected.

Let q(x̄) be a CQ. Let q1 . . . , qm be the connected components of q. Let Cfree be the CQs
in {q1 . . . , qm} that contain a free variable from x̄, and let C∃ be the rest of the CQs. The
algorithm proceeds as follows:
1. Simplify q(x̄): Compute a minimal subset of CQs Q in {q1, . . . , qm} such that Cfree ⊆ Q

and for each 1 ≤ i ≤ m, there is a p ∈ Q with qB
i →1 p

B .
2. Check whether each p ∈ Q has a GHW(1)-overapproximation p′. If this is the case then

accept and output
∧

p∈Q p
′. To check if p ∈ Q has a GHW(1)-overapproximation, for a

p ∈ C∃, we simply apply the algorithm for the Boolean and connected case described
previously. In case p(z̄) ∈ Cfree ∩Q, where z̄ are the free variables from x̄ present in p,
the algorithm does the following:
a. Simplify p(z̄): Compute a minimal subset S of the parts of p(z̄) such that for each

part p′(z̄) of p(z̄) there is a part p′′(z̄) ∈ S such that (p′, z̄)→1 (p′′, z̄).
b. Check whether each part p′(z̄) ∈ S has a GHW(1)-overapproximation p′∗(z̄). If this is

the case then accept and output
∧

p′∈S p
′
∗(z̄).

It remains to explain how the algorithm checks the existence of GHW(1)-overapproxima-
tions for a part p′(z̄) of a connected CQ p(z̄). This is done by applying an adaptation of
the algorithm described for the connected and Boolean case. For p′(z̄) and two existentially
quantified variables u, v adjacent in G∃(p′), we define p′u#p′v(z̄) as the CQ obtained from
p′(z̄) as follows: the free variables are z̄ and the atoms in p′u#p′v(z̄) mentioning only variables
in z̄ are exactly those in p′(z̄). The CQ induced by the existentially quantified variables of
p′u#p′v(z̄) is the Boolean CQ p′′u#p′′v , where p′′ is the subquery of p′ induced by the existential
variables. Finally, if there is an atom in p′ mentioning a free variable and an existential
variable w, then the same atom appears in p′u#p′v(z̄) but replacing w by its “copies”, that is,
by wu or wv, if w = u or w = v respectively, or by wu and wv, if w 6∈ {u, v}.

Observe that Lemma 3–5, Claim 35 and Lemma 36 hold for the non-Boolean case, when
we consider the adapted definition for qu#qv (exactly the same arguments apply). Using
this, we have that the algorithm developed for Boolean and connected CQs still works for
non-Boolean CQs p′(z̄) that are parts of connected CQs.

This finishes the proof of Theorem 19.

	Introduction
	Preliminaries
	Overapproximations
	Existence and uniqueness of overapproximations
	A link with the existential pebble game
	Identification and evaluation of GHW(k)-overapproximations
	More liberal GHW(k)-overapproximations

	Deciding existence of GHW(k)-overapproximations
	The acyclic case
	Beyond acyclicity

	Beyond under and overapproximations: Delta-approximations
	Incomparable GHW(k)-Delta-approximations

	Final Remarks
	Appendix
	The connected case
	The unconnected case
	The non-Boolean case

