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Abstract
We study the complexity of enumerating the answers of Conjunctive Queries (CQs) in the presence
of Functional Dependencies (FDs). Our focus is on the ability to list output tuples with a constant
delay in between, following a linear-time preprocessing. A known dichotomy classifies the acyclic
self-join-free CQs into those that admit such enumeration, and those that do not. However, this
classification no longer holds in the common case where the database exhibits dependencies among
attributes. That is, some queries that are classified as hard are in fact tractable if dependencies
are accounted for. We establish a generalization of the dichotomy to accommodate FDs; hence,
our classification determines which combination of a CQ and a set of FDs admits constant-delay
enumeration with a linear-time preprocessing.

In addition, we generalize a hardness result for cyclic CQs to accommodate a common type
of FDs. Further conclusions of our development include a dichotomy for enumeration with linear
delay, and a dichotomy for CQs with disequalities. Finally, we show that all our results apply
to the known class of “cardinality dependencies” that generalize FDs (e.g., by stating an upper
bound on the number of genres per movies, or friends per person).
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1 Introduction

When evaluating a non-boolean Conjunctive Query (CQ) over a database, the number of
results can be huge. Since this number may be larger than the size of the database itself, we
need to use specific measures of enumeration complexity to describe the hardness of such a
problem. In this perspective, the best we can hope for is to constantly output results, in
such a way that the delay between them is unaffected by the size of the database instance.
For this to be possible, we need to allow a precomputation phase before printing the first
result, as linear time preprocessing is necessary to read the input instance.
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11:2 Enumeration Complexity of CQs with FDs

A known dichotomy determines when the answers to self-join-free acyclic CQs can be
enumerated with constant delay after linear time preprocessing [3]. This class of enumeration
problems, denoted by DelayClin, can be regarded as the most efficient class of nontrivial
enumeration problems and therefore current work on query enumeration has focused on this
class [10, 15, 5]. Bagan et al.[3] show that a subclass of acyclic queries, called free-connex,
are exactly those that are enumerable in DelayClin, under the common assumption that
boolean matrix multiplication cannot be solved in quadratic time. An acyclic query is called
free-connex if the query remains acyclic when treating the head of the query as an additional
atom. This and all other results in this paper hold under the RAM model [16].

The above mentioned dichotomy only holds when applied to databases with no additional
assumptions, but oftentimes this is not the case. In practice, there is usually a connection
between different attributes, and Functional Dependencies (FDs) and Cardinality Dependen-
cies (CDs) are widely used to model situations where some attributes imply others. As the
following example shows, these constraints also have an immediate effect on the complexity
of enumerating answers for queries over such a schema.

I Example 1. For a list of actors and the production companies they work with, we have
the query: Q(actor, production)← Cast(movie, actor),Release(movie, production). At first
glance, it appears as though this query is not in DelayClin, as it is acyclic but not free-connex.
Nevertheless, if we take the fact that a movie has only one production company into account,
we have the FD Release : movie→ production, and the enumeration problem becomes easy:
we only need to iterate over all tuples of Cast and replace the movie value with the single
production value that the relation Release assigns to it. This can be done in linear time by
first sorting (in linear time [12]) both relations according to movie. J

Example 1 shows that the dichotomy by Bagan et al. [3] does not hold in the presence of
FDs. In fact, we believe that dependencies between attributes are so common in real life, that
ignoring them in such dichotomies can lead to missing a significant portion of the tractable
cases. Therefore, to get a realistic picture of the enumeration complexity of CQs, we have to
take dependencies into account. The goal of this work is to generalize the dichotomy to fully
accommodate FDs.

Towards this goal, we introduce an extension of a query Q according to the FDs. The
extension is called the FD-extended query, and denoted Q+. In this extension, each atom,
as well as the head of the query, contains all variables that can be implied by its variables
according to some FD. This way, instead of classifying every combination of CQ and FDs
directly, we encode the dependencies within the extended query, and use the classification
of Q+ to gain insight regarding Q. This approach draws inspiration from the proof of a
dichotomy in the complexity of deletion propagation, in the presence of FDs [13]. However,
the problem and consequently the proof techniques are fundamentally different.

The FD-extension is defined in such a way that if Q is satisfied by an assignment, then
the same assignment also satisfies the extension Q+, as the underlying instance is bound
by the FDs. In fact, we can show that enumerating the solutions of Q under FDs can be
reduced to enumerating the solutions of Q+. Therefore, tractability of Q+ ensures that Q
can be efficiently solved as well. By using the positive result in the known dichotomy, Q+ is
tractable w.r.t enumeration if it is free-connex. Moreover, it can be shown that the structural
restrictions of acyclicity and free-connex are closed under taking FD-extensions. Hence, the
class of all queries Q such that Q+ is free-connex is an extension of the class of free-connex
queries, and this extension is in fact proper. We denote the classes of queries Q such that
Q+ is acyclic or free-connex as FD-acyclic respectively FD-free-connex.
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To reach a dichotomy, we now need to answer the following question: Is it possible that
Q can be enumerated efficiently even if Q+ is not free-connex? To show that an enumeration
problem is not within a given class, enumeration complexity has few tools to offer. One such
tool is a notion of completeness for enumeration problems [9]. However, this notion focuses
on problems with a complexity corresponding to higher classes of the polynomial hierarchy.
So in order to deal with this problem, Bagan et al. [3] reduced the matrix multiplication
problem to enumerating the answers to any query that is acyclic but not free-connex. This
reduction fails, however, when dependencies are imposed on the data, as the constructed
database instance does not necessarily satisfy the underlying dependencies.

As it turns out, however, the structure of the FD-extended query Q+ allows us to
extend this reduction to our setting. By carefully expanding the reduced instance such that
on the one hand, the dependencies hold and on the other hand, the reduction can still be
performed within linear time, we establish a dichotomy. That is, we show that the tractability
of enumerating the answers of a self-join-free query Q in the presence of FDs is exactly
characterized by the structure of Q+: Given an FD-acyclic query Q, we can enumerate the
answers to Q within the class DelayClin iff Q is FD-free-connex.

The resulting extended dichotomy, as well as the original one, brings insight to the case
of acyclic queries. Concerning unrestricted CQs, providing even a first solution of a query in
linear time is impossible in general. This is due to the fact that the parameterized complexity
of answering boolean CQs, taking the query size as the parameter, is W[1]-hard [14]. This
does not imply, however, that there are no cyclic queries with the corresponding enumeration
problems in DelayClin. The fact that no such queries exist requires an additional proof, which
was presented by Brault-Baron [6]. This result holds under a generalization of the triangle
finding problem, which is considered not to be solvable within linear time [17]. As before,
this proof does no longer apply in the presence of FDs. Moreover, it is possible for Q to
be cyclic and Q+ acyclic. In fact, Q+ may even be free-connex, and therefore tractable
in DelayClin. We show that, under the same assumptions used by Brault-Baron [6], the
evaluation problem for a self-join-free CQ in the presence of unary FDs where Q+ is cyclic
cannot be solved in linear time. As linear time preprocessing is not enough to achieve the
first result, a consequence is that enumeration within DelayClin is impossible in that case.
This covers all types of CQs and shows a full dichotomy, at least for the case of unary FDs.

The results we present here are not limited to FDs. CDs (Cardinality Dependencies)
[7, 2] are a generalization of FDs, denoted (Ri : A→ B, c). Here, the right-hand side does
not have to be unique for every assignment to the left-hand side, but there can be at most
c different values to the variables of B for every value of the variables of A. FDs are in
fact a special case of CDs where c = 1. Constraints of that form appear naturally in many
applications. For example: a movie has only a handful of directors and there are at most 200
countries. We show that all results described in this paper also apply to CDs. Moreover, we
show how our results can be easily used to yield additional results, such as a dichotomy for
CQs with disequalities, and a dichotomy to evaluate CQs with linear delay.

Contributions. Our main contributions are as follows.
We extend the class of queries that can be evaluated in DelayClin by incorporating the
FDs. This extension is the class of FD-free-connex CQs.
We establish a dichotomy for the enumeration complexity of self-join-free FD-acyclic CQs.
Consequently, we get a dichotomy for self-join-free acyclic CQs under FDs.
We show a lower bound for FD-cyclic CQs. In particular, we get a dichotomy for all
self-join-free CQs in the presence of unary FDs.
We extend our results to CDs.

ICDT 2018
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This work is organized as follows: In Section 2 we provide definitions and results that we
will use. Section 3 introduces FD-extended queries and establishes the equivalence between a
query and its FD-extension. The generalized version of the dichotomy is shown in Section 4.
In Section 5, a lower bound for cyclic queries under unary FDs is shown, and Section 6 shows
that all results from the previous sections extend to CDs. Concluding remarks are given in
Section 7. All missing proof details can be found in the full version of this article [8].

2 Preliminaries

In this section we provide preliminary definitions as well as state results that we will use
throughout this paper.

Schemas and Functional Dependencies. A schema S is a pair (R,∆) where R is a finite
set {R1, . . . , Rn} of relational symbols and ∆ is a set of Functional Dependencies (FDs).
We denote the arity of a relational symbol Ri as arity(Ri). An FD δ ∈ ∆ has the form
Ri : A→ B, where Ri ∈ R and A,B are non-empty with A,B ⊆ {1, . . . , arity(Ri)}.

Let dom be a finite set of constants. A database I over schema S is called an instance of S,
and it consists of a finite relation RIi ⊆ domarity(Ri) for every relational symbol Ri ∈ R, such
that all FDs in ∆ are satisfied. An FD δ = Ri : A→ B is said to be satisfied if, for all tuples
u, v ∈ RIi that are equal on the indices of A, u and v are equal on the indices of B. Here
we assume that all FDs are of the form Ri : A→ b, where b ∈ {1, . . . , arity(Ri)}, as we can
replace an FD of the form Ri : A→ B where |B| > 1 by the set of FDs {Ri : A→ b | b ∈ B}.
If |A| = 1, we say that δ is a unary FD.

Conjunctive Queries. Let var be a set of variables disjoint from dom. A Conjunctive Query
(CQ) over a schema S = (R,∆) is an expression of the form Q(~x)← R1(~v1), . . . , Rm(~vm),
where R1, . . . , Rm are relational symbols of R, the tuples ~x,~v1, . . . , ~vm hold variables, and
every variable in ~x appears in at least one of ~v1, . . . , ~vm. We often denote this query as Q(~x)
or even Q. Define the variables of Q as var(Q) =

⋃m
i=1 ~vi, and define the free variables of

Q as free(Q) = ~x. We call Q(~x) the head of Q, and the atomic formulas Ri(~vi) are called
atoms. We further use atoms(Q) to denote the set of atoms of Q. A CQ is said to contain
self-joins if some relation symbol appears in more than one atom.

For the evaluation Q(I) of a CQ Q with free variables ~x over a database I, we define Q(I)
to be the set of all mappings µ|~x such that µ is a homomorphism from R1(~v1), . . . , Rm(~vm)
into I, where µ|~x denotes the restriction (or projection) of µ to the variables ~x. The problem
Decide∆〈Q〉 is, given a database instance I, determining whether such a mapping exists.

Given a query Q over a schema S = (R,∆), we often identify an FD δ ∈ ∆ as a
mapping between variables. That is, if δ has the form Ri : A→ b for A = {a1, . . . , a|A|}, we
sometimes denote it by Ri : {~vi[a1], . . . , ~vi[a|A|]} → ~vi[b], where ~u[k] is the k-th variable of ~u.
To distinguish between these two representations, we usually denote subsets of integers by
A,B,C, . . ., integers by a, b, c, . . ., and variables by letters from the end of the alphabet.

Hypergraphs. A hypergraph H = (V,E) is a pair consisting of a set V of vertices, and
a set E of non-empty subsets of V called hyperedges (sometimes edges). A join tree of a
hypergraph H = (V,E) is a tree T where the nodes are the hyperedges of H, and the running
intersection property holds, namely: for all u ∈ V the set {e ∈ E | u ∈ e} forms a connected
subtree in T . A hypergraph H is said to be acyclic if there exists a join tree for H. Two
vertices in a hypergraph are said to be neighbors if they appear in the same edge. A clique of
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a hypergraph is a set of vertices, which are pairwise neighbors in H. A hypergraph H is said
to be conformal if every clique of H is contained in some edge of H. A chordless cycle of H
is a tuple (x1, . . . , xn) such that the set of neighboring pairs of variables of {x1, . . . , xn} is
exactly {{xi, xi+1} | 1 ≤ i ≤ n− 1}∪{{xn, x1}}. It is well known (see [4]) that a hypergraph
is acyclic iff it is conformal and contains no chordless cycles.

A pseudo-minor of a hypergraph H = (V,E) is a hypergraph obtained from H by a finite
series of the following operations: (1) vertex removal: removing a vertex from V and from all
edges in E that contain it. (2) edge removal: removing an edge e from E provided that some
other e′ ∈ E contains it. (3) edge contraction: replacing all occurrences of a vertex v (within
every edge) with a vertex u, provided that u and v are neighbors.

Classes of CQs. To a CQ Q we associate a hypergraph H(Q) = (V,E) where the vertices
V are the variables of Q and every hyperedge E is a set of variables occurring in a single
atom of Q, that is E = {{v1, . . . , vn}} | Ri(v1, . . . , vn) ∈ atoms(Q)}. With a slight abuse of
notation, we also identify atoms of Q with edges of H(Q). A CQ Q is said to be acyclic if
H(Q) is acyclic, and it is said to be free-connex if both Q and (V,E ∪ {free(Q)}) are acyclic.

A head-path for a CQ Q is a sequence of variables (x, z1, . . . , zk, y) with k ≥ 1, such that:
(1) {x, y} ⊆ free(Q) (2) {z1, . . . , zk} ⊆ V \ free(Q) (3) It is a chordless path in H(Q), that is,
two succeeding variables appear together in some atom, and no two non-succeeding variables
appear together in an atom. Bagan et al. [3] showed that an acyclic CQ has a head-path iff
it is not free-connex.

Enumeration Complexity. Given a finite alphabet Σ and binary relation R ⊆ Σ∗ × Σ∗, we
denote by Enum〈R〉 the enumeration problem of given an instance x ∈ Σ∗, to output all
y ∈ Σ∗ such that (x, y) ∈ R. In this paper we adopt the Random Access Machine (RAM)
model (see [16]). Previous results in the field assume different variations of the RAM model.
Here we assume that the length of memory registers is linear in the size of value registers,
that is, the accessible memory is polynomial. For a class C of enumeration problems, we
say that Enum〈R〉 ∈ C, if there is a RAM that – on input x ∈ Σ∗– outputs all y ∈ Σ∗ with
(x, y) ∈ R without repetition such that the first output is computed in time p(|x|) and the
delay between any two consecutive outputs after the first is d(|x|), where:

For Enum〈R〉 ∈ DelayClin, we have p(|x|) ∈ O(|x|) and d(|x|) ∈ O(1).
For Enum〈R〉 ∈ DelayLin, we have p(|x|), d(|x|) ∈ O(|x|).

Let Enum〈R1〉 and Enum〈R2〉 be enumeration problems. We say that there is an exact
reduction from Enum〈R1〉 to Enum〈R2〉, written as Enum〈R1〉 ≤e Enum〈R2〉, if there
are mappings σ and τ such that for every x ∈ Σ∗ the mapping σ(x) is computable in
O(|x|), for every y ∈ Σ∗ with (σ(x), y) ∈ R2, τ(y) is computable in constant time and
{τ(y) | y ∈ Σ∗ with (σ(x), y) ∈ R2} = {y′ ∈ Σ∗ | (x, y′) ∈ R1} in multiset notation.
Intuitively, σ is used to map instances of Enum〈R1〉 to instances of Enum〈R2〉, and τ

is used to map solutions to Enum〈R2〉 to solutions of Enum〈R1〉. An enumeration class
C is said to be closed under exact reduction if for every Enum〈R1〉 and Enum〈R2〉 such
that Enum〈R1〉 ≤e Enum〈R2〉 and Enum〈R2〉 ∈ C, we have Enum〈R1〉 ∈ C. Bagan et
al. [3] proved that DelayClin is closed under exact reduction. The same proof holds for any
meaningful enumeration complexity class that guarantees generating all unique answers with
at least linear preprocessing time and at least constant delay between answers.

Enumerating Answers to CQs. For a CQ Q over a schema S = (R,∆), we denote by
Enum∆〈Q〉 the enumeration problem Enum〈R〉, where R is the binary relation between

ICDT 2018
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instances I over S and sets of mappings Q(I). We consider the size of the query as well as
the size of the schema to be fixed. Bagan et al. [3] showed that a self-join-free acyclic CQ is
in DelayClin iff it is free-connex:

I Theorem 2 ([3]). Let Q be an acyclic CQ without self-joins over a schema S = (R, ∅).
1. If Q is free-connex, then Enum∅〈Q〉 ∈ DelayClin.
2. If Q is not free-connex, then Enum∅〈Q〉 6∈ DelayClin, assuming the product of two n× n

boolean matrices cannot be computed in time O(n2).

3 FD-Extended CQs

In this section, we formally define the extended query Q+. We then discuss the relationship
betweenQ andQ+: their equivalence w.r.t. enumeration and the possible structural differences
between them. As a result, we obtain that if Q+ is in a class of queries that allows for
tractable enumeration, then Q is tractable as well.

We first define Q+. The extension of an atom R(~v) according to an FD S : A→ b where
S(~u) ∈ atoms(Q) is possible if ~u[A] ⊆ ~v but ~u[b] /∈ ~v. In that case, ~u[b] is added to the
variables of R. The FD-extension of a query is defined by iteratively extending all atoms
as well as the head according to every possible dependency in the schema, until a fixpoint
is reached. The schema extends accordingly: the arities of the relations increase as their
corresponding atoms extend, and dummy variables are added to adjust to that change in
case of self-joins. The FDs apply in every relation that contains all relevant variables.

I Definition 3. [(FD-Extended Query)] Let Q(~w) ← R1(~v1), . . . , Rm( ~vm) be a CQ over a
schema S = (R,∆). We define two types of extension steps:

The extension of an atom Ri(~vi) according to an FD Rj : A→ b.
Prerequisites: ~vj [A] ⊆ ~vi and ~vj [b] /∈ ~vi.
Effect: The arity of Ri increases by one, and Ri(~vi) is replaced by Ri(~vi, ~vj [b]). In
addition, every Rk( ~vk) such that Rk=Ri and k 6= i is replaced with Rk( ~vk, tk), where tk
is a fresh variable.
The extension of the head Q(~w) according to an FD Rj : A→ b.
Prerequisites: ~vj [A] ⊆ ~w and ~vj [b] /∈ ~w.
Effect: The head is replaced by Q(~w, ~vj [b]).

The FD-extension of Q is the query Q+(~y)← R+
1 ( ~um), . . . , R+

m( ~um), obtained by performing
all possible extension steps on Q according to FDs of ∆ until a fixpoint is reached. The
extension is defined over the schema S+ = (R+,∆Q+), where R+ is R with the extended
arities, and ∆Q+ = {R+

i : C → d | ∃(Rj : A→ b) ∈ ∆ s.t. ~ui[C] = ~vj [A] and ~ui[d] = ~vj [b]}.

Given a query, its FD-extension is unique up to a permutation of the added variables,
and renaming of the new variables. As the order of the variables and the naming make no
difference w.r.t. enumeration, we can treat the FD-extension as unique.

I Example 4. Consider a schema with ∆ = {R1 : 1 → 2, R3 : 2, 3 → 1}, and the query
Q(x) ← R1(x, y), R2(x, z), R2(u, z), R3(w, y, z). As the FDs are x → y and yz → w, the
FD-extension is Q+(x, y) ← R+

1 (x, y), R+
2 (x, z, y, w), R+

2 (u, z, t1, t2), R+
3 (w, y, z). We first

apply x → y on the head, and then x → y and consequently yz → w on R2(x, z). These
two FDs now appear in the schema also for R2, and the FDs of the extended schema are
∆Q+ = {R+

1 : 1→ 2, R+
2 : 1→ 3, R+

2 : 3, 2→ 4, R+
3 : 2, 3→ 1}. J

We later show that the enumeration complexity of a CQ Q over a schema with FDs only
depends on the structure of Q+, which is implicitly given by Q. Therefore, we introduce the
notions of acyclic and free-connex queries for FD-extensions:
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I Definition 5. Let Q be a CQ over a schema S = (R,∆), and let Q+ be its FD-extension.
We say that Q is FD-acyclic, if Q+ is acyclic.
We say that Q is FD-free-connex, if Q+ is free-connex.
We say that Q is FD-cyclic, if Q+ is cyclic.

The following proposition shows that the classes of acyclic queries and free-connex queries
are both closed under constructing FD-extensions.

I Proposition 6. Let Q be a CQ over a schema S = (R,∆).
If the query Q is acyclic, then it is FD-acyclic.
If the query Q is free-connex, then it is FD-free-connex.

Example 1 shows that the converse of the proposition above does not hold. This means
that, by Theorem 2, there are queries Q such that we can enumerate the answers to Q+ in
DelayClin, but we cannot enumerate the answers to Q with the same complexity, if we do
not assume the FDs. The following lemma shows that enumerating the answers of Q (when
relying on the FDs) is in fact equally hard as enumerating the answers of Q+.

I Theorem 7. Let Q be a CQ over a schema S = (R,∆), and let Q+ be its FD-extended
query. Then Enum∆〈Q〉 ≤e Enum∆Q+ 〈Q+〉 and Enum∆Q+ 〈Q+〉 ≤e Enum∆〈Q〉.

Proof Sketch. We first sketch the reduction Enum∆〈Q〉 ≤e Enum∆Q+ 〈Q+〉. Given an
instance I for the problem Enum∆〈Q〉, we set σ(I) = I+ as described next. We start
by removing tuples that interfere with the extended dependencies. For every dependency
Rj : X → y and every atom Rk( ~vk) that contains the variables X ∪ {y}, we only keep tuples
of RIk that agree with some tuple of RIj over the values of X ∪ {y}. Next, we follow the
extension of the schema, and in each step we extend some RIi to RI′

i according to some FD
Rj : X → y. For each tuple t ∈ RIi , if there is no tuple s ∈ RIj that agrees with t over the
values of X, then we remove t altogether. Otherwise, we copy t to RI′

i and assign y with the
same value that s assigns it. Given an answer µ ∈ Q+(σ(I)), we set τ(µ) to be the projection
of µ to free(Q). To show that Enum∆Q+ 〈Q+〉 ≤e Enum∆〈Q〉, we describe the construction
of an instance σ(I+) by “reversing” the extension steps. If an atom was extended, we simply
remove the added attribute. If the head was extended using some Rj : X → y, then for each
tuple in RIi+1

j that assigns y and X with the values y0 and ~x0 respectively, we add the value
y0 to a lookup table with pointer (X,~x0, y). For every µ ∈ Q(σ(I+)), τ(µ) is defined as µ
extended by the values from the lookup table. J

The direction Enum∆〈Q〉 ≤e Enum∆Q+ 〈Q+〉 of Theorem 7 proves that FD-extensions
can be used to expand tractable enumeration classes, as the following corollary states.

I Corollary 8. Let C be an enumeration class that is closed under exact reduction. Let Q be
a CQ and let Q+ be its FD-extended query. If Enum∆Q+ 〈Q+〉 ∈ C, then Enum∆〈Q〉 ∈ C.

Since free-connex queries are in DelayClin and DelayClin is closed under exact reduction, if
Q is an FD-free-connex query, then the corresponding enumeration problem is in DelayClin.
This follows from Theorem 2 and the fact that Enum∆Q+ 〈Q+〉 ≤e Enum∅〈Q+〉.

I Corollary 9. Let Q be a CQ over a schema S = (R,∆). If Q is FD-free-connex, then
Enum∆〈Q〉 ∈ DelayClin.

We can now revisit Example 1. The query Q(x, y)← R1(z, x), R2(z, y) is not free-connex.
Therefore, disregarding the FDs, according to Theorem 2 it is not in DelayClin. However, given
R2 : z → y, the FD-extended query is Q+(x, y)← R+

1 (z, y, x), R+
2 (z, y). As it is free-connex,

enumerating Q+ is in DelayClin by Corollary 9.

ICDT 2018
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4 A Dichotomy for Acyclic CQs

In this section, we characterize which self-join-free FD-acyclic queries are in DelayClin. We use
the notion of FD-extended queries defined in the previous section to establish a dichotomy
stating that enumerating the answers to an FD-acyclic query is in DelayClin iff the query is
FD-free-connex. We will prove the following theorem:

I Theorem 10. Let Q be an FD-acyclic CQ without self-joins over a schema S = (R,∆).
If Q is FD-free-connex, then Enum∆〈Q〉 ∈ DelayClin.
If Q is not FD-free-connex, then Enum∆〈Q〉 6∈ DelayClin, assuming that the product of
two n× n boolean matrices cannot be computed in time O(n2).

The positive case for the dichotomy was described in Corollary 9. Note that the restric-
tion of considering only self-joins-free queries is required only for the negative side. This
assumption is standard [3, 6, 13], as it allows to assign different atoms with different relations
independently. The hardness result described here builds on that of Bagan et al. [3] for
databases that are assumed not to have FDs, and it relies on the hardness of the boolean
matrix multiplication problem. This problem is defined as the enumeration Enum∅〈Π〉 of the
query Π(x, y)← A(x, z), B(z, y) over the schema ({A,B}, ∅) where A,B ⊆ {1, . . . , n}2. It is
strongly conjectured that this problem is not computable in O(n2) time and currently, the
best known algorithms require O(nω) time for some 2.37 < ω < 2.38 [11, 1].

The original proof describes an exact reduction Enum∅〈Π〉 ≤e Enum∅〈Q〉. Since Q is
acyclic but not free-connex, it contains a head-path (x, z1, . . . , zk, y). Given an instance
of the matrix multiplication problem, an instance of Enum∅〈Q〉 is constructed, where the
variables x,y and z1, . . . , zk of the head-path respectively encode the variables x, y and z of
Π, while all other variables of Q are assigned constants. This way, A is encoded by an atom
containing x and z1, and B is encoded by an atom containing zk and y. Atoms containing
some zi and zi+1 only propagate the value of z. Since x and y are in free(Q), but zi are
not, the answers to Q correspond to those of Π. As no atom of Q contains both x and y, the
instance can be constructed in linear time. Constant delay enumeration for Q after linear
time preprocessing would result in the computation of the answers of Π in O(n2) time.

FDs restrict the relations that can be assigned to atoms. This means that the reduction
cannot be freely performed on databases with FDs, and the proof no longer holds. The
following example illustrates where the reduction fails in the presence of FDs.

I Example 11. The CQ from Example 1 has the form Q(x, y)← R1(z, x), R2(z, y) with the
single FD ∆ = {R2 : z → y}. In the previous section, we show that it is in DelayClin, so the
reduction should fail. Indeed, it would assign R2 with the same relation as B of the matrix
multiplication problem, but this may have two tuples with the same z value and different y
values. Therefore, the construction does not yield a valid instance of Enum∆〈Q〉. J

We now give a detailed sketch of a modification of this construction that shows that
Enum∅〈Π〉 ≤e Enum∆Q+ 〈Q+〉. Any violations of the FDs are fixed by carefully pick-
ing more variables other than those of the head-path to take the roles of x,y and z of the
matrix multiplication problem. This is done by introducing the sets Vx,Vy and Vz which are
subsets of var(Q). We say that a variable β plays the role of α, if β ∈ Vα.

To clarify the explanation of the reduction, we start by describing a restricted case, where
all FDs are unary. The basic idea in the case of general FDs will remain the same, but it
will require a more involved construction of the sets Vα.
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4.1 Unary Functional Dependencies
For the unary case, we define the sets Vx, Vy and Vz to be the sets of variables that iteratively
imply x, y and some zi respectively. That is, for α ∈ {x, y, z1, . . . , zk} we first set Vα := {α},
and then apply Vα := Vα ∪ {γ ∈ var(Q) | γ → β ∈ ∆Q+ ∧ β ∈ Vα} until a fixpoint is reached.
We then define Vz := Vz1 ∪ · · · ∪ Vzk

.

The Reduction. Let I = (AI , BI) be an instance of Enum∅〈Π〉. In order to define σ(I), we
describe how to construct the relation RI for every atom R(~v) ∈ atoms(Q+). If var(R)∩Vy =
∅, then every tuple (a, c) ∈ AI is copied to a tuple in RI . Variables in Vx get the value a,
variables in Vz get the value c, and variables that play no role are assigned a constant ⊥.
That is, we define Rσ(I) = {(f(v1, a, c), . . . , f(vk, a, c)) | (a, c) ∈ AI}, where:

f(vi, a, c) =


a if vi ∈ Vx \ Vz,
c if vi ∈ Vz \ Vx,
(a, c) if vi ∈ Vx ∩ Vz,
⊥ otherwise.

Otherwise, var(R) ∩ Vy 6= ∅, and we show that var(R) ∩ Vx = ∅. In this case we define the
relation similarly with BI . Given a tuple (c, b) ∈ BI , the variables of Vy get the value b, and
those of Vz are assigned with c.

I Example 12. Consider the FD-extended query Q+(x, y, v) ← R(u, x, z), S(v, y, z) with
∆Q+ = {R : u → x,R : u → z, S : y → v}. Using the head-path (x, z, y), the reduction will
set Vx = {x, u}, Vy = {y}, Vz = {z, u}. Given an instance of the matrix multiplication
problem with relations A and B, every tuple (a, c) ∈ A will result in a tuple ((a, c), a, c) ∈ R,
and every tuple (c, b) ∈ B will result in a tuple (⊥, b, c) ∈ S. J

We now outline the correctness of this reduction:
Well-defined reduction: For an atom R, either we have var(R)∩Vy = ∅ or var(R)∩Vx = ∅.

That is, no atom contains variables from both Vx and Vy. Due to the definition of Q+,
this atom would otherwise also contain both x and y. However, they cannot appear in
the same relation according to the definition of a head-path. The reduction is therefore
well defined, and it can be constructed in linear time via copy and projection.

Preserving FDs: The construction ensures that if an FD γ → α exists, then γ has all the
roles of α. Therefore, either α has no role and corresponds to the constant ⊥, or every
value that appears in α also appears in γ. In any case, all FDs are preserved.

1-1 mapping of answers: If a variable of Vz would appear in the head of Q+, then by the
definition of Q+, some zi will be in the head as well. This cannot happen according to
the definition of a head-path. Therefore, the head only encodes the x and y values of
the matrix multiplication problem, so two different solutions to Enum∆Q+ 〈Q+〉 must
differ in either x or y, and correspond to different solutions of Enum∅〈Π〉. For the other
direction, the head necessarily contains the variables x and y. Therefore, two different
solutions to Enum∅〈Π〉 also correspond to different solutions of Enum∆Q+ 〈Q+〉.

4.2 General Functional Dependencies
Next we show how to lift the idea of this reduction to the case of general FDs. In the case of
unary FDs, we ensure that the construction does not violate a given FD γ → α, by simply
encoding the values of α to γ. In the general case, when allowing more than one variable on
the left-hand side of an FD γ1, . . . , γk → α, we must be careful when choosing the variables
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Tx TyTmid

e(x, z1) . . . sepx . . . e(z1, z2) . . . e(zk−1, zk) . . . sepy . . . e(zk, y)

Figure 1 Join tree T of H(Q+) for head-paths of length greater than 3. The subtrees Tx, Ty and
Tmid are disjoint, and are separated by the nodes sepx and sepy.

γj to which we copy the values of α. Otherwise, as the following example shows, we will not
be able to construct the instance in linear time.

I Example 13. Consider the query Q(x, y)← R1(x, z, t1), R2(z, y, t1, t2) over a schema with
the FD R2 : t1t2 → y. Note that Q = Q+ is acyclic but not free-connex, and that (x, z, y)
is a head-path in H(Q+). To repeat the idea shown in the unary case and ensure that the
FDs still hold, the variable on the right-hand side of every FD is encoded to the variables on
the left-hand side. If we encode y to t1, then R1 would contain the encodings of x, y and z.
This means that its size will not be linear in that of the matrix multiplication instance, and
we cannot hope for linear time construction. On the other hand, if we choose to encode y
only to t2, the reduction works. J

In the following central lemma, we describe a way of carefully picking the variables to
which we assign roles, such that all FDs hold and yet the instance can be constructed in
linear time. The idea is that we consider the join-tree of Q+ and define Vx and Vy to hold
variables that appear only in disjoint parts of this tree. This ensures that no atom contains
variables of each. The property of a join-tree is used to guarantee that Vx and Vy are inclusive
enough to correct all FD violations.

I Lemma 14. Let Q be a CQ with no self-joins over a schema S = (R,∆), such that Q+ is
acyclic but not free-connex. Denote a head-path of Q+ by (x, z1, . . . , zk, y). Then there exist
sets of variables Vx, Vy, Vz such that:
1. x ∈ Vx, y ∈ Vy, {z1, . . . zk} ⊆ Vz.
2. For all U → v ∈ ∆Q+ such that v ∈ Vα with α ∈ {x, y, z}, we have U ∩ Vα 6= ∅.
3. For every R ∈ atoms(Q+), we have var(R) ∩ Vy = ∅ or var(R) ∩ Vx = ∅.
4. Vz ∩ free(Q+) = ∅

Proof Sketch. We first define a partition of the atoms of Q into three sets: Tx, Ty and Tmid,
where Tmid may be empty. Let T be a join tree of H(Q+), and denote the hyperedges on the
head-path by e(x, z1), . . . , e(zk, y). Note that, by definition, each hyperedge of the head-path
is a vertex of T . By the running intersection property of T , we can conclude that there
is a simple path P from e(x, z1) to e(zk, y) in T , such that e(z1, z2), . . . , e(zk−1, zk) lie on
that path in the order induced by the head-path. Let sepx be the first node on the path P
that does not contain x. This exists because e(zk, y) does not contain x, as the head-path is
chordless. Similarly, let sepy be the last node on P that does not contain y. Let Tx be the
set of nodes v in T such that the unique path from v to e(x, z1) does not go through sepx.
Similarly, let Ty be the set of nodes w in T such that the unique path from w to e(zk, y)
does not go through sepy. Next set Tmid = V (T ) \ (Tx ∪ Ty). Note that the nodes of T are
exactly Tx ∪ Tmid ∪ Ty, and we can show that this union is disjoint (see Figure 1). Also note
that e(x, z1) ∈ Tx and e(zk, y) ∈ Ty, but Tmid may be empty if the head-path is of length
three. Therefore, we established a partition of the atoms to two or three sets.
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Next we define the sets of variables Vx, Vy and Vz. To do so, for w ∈ var(Q), denote
Implies(w) = {u ∈ var(Q) | u ∈ U with U → w ∈ ∆Q+}. Intuitively, Implies(w) is the set
of all variables on the left-hand side of FDs that have w on the right-hand side. We now
define Vx to contain x, and recursively to contain variables that imply those of Vx, but we
do not take variables that appear outside of Tx. Vy is defined symmetrically. Vz is defined to
contain z1, . . . , zk, and recursively contain variables that imply those of Vz, but now we do
not take variables that appear in the head of the query.

More formally, we recursively define:
Vx: Base Vx := {x}; Rule Vx := Vx ∪ {t ∈ Implies(w) | w ∈ Vx} \ var(Ty ∪ Tmid)
Vy: Base Vy := {y}; Rule Vy := Vy ∪ {t ∈ Implies(w) | w ∈ Vy} \ var(Tx ∪ Tmid)
Vz: Base Vz := {z1, . . . zk}; Rule Vz := Vz ∪ {t ∈ Implies(w) | w ∈ Vz} \ free(Q+)

We now prove that Vx, Vy and Vz meet the requirements of the lemma.
1. The first claim is immediate from the definition of the sets.
2. We first show the claim for α = x. Let δ = U → v ∈ ∆Q+ , and let e(U, v) be an atom

containing all variables of δ. As v ∈ Vx, we know that e(U, v) /∈ Ty ∪ Tmid, therefore
e(U, v) ∈ Tx. Assume by contradiction that U ∩ Vx = ∅. Let u ∈ U . By definition of Vx,
this means that u ∈ var(eu) for some eu ∈ Ty ∪ Tmid. As Tx, Ty and Tmid are disjoint,
we have that eu /∈ Tx, which means that the path between eu and e(x, z1) goes through
sepx. This means that the path from eu to e(U, v) goes through sepx too, otherwise
the concatenation of this path with the path from e(U, v) to e(x, z1) would result in a
path from eu to e(x, z1) not going through sepx. By the running intersection property,
u ∈ var(sepx). Since this is true for all for all u ∈ U , it follows that v ∈ var(sepx) by
definition of Q+, contradicting the fact that v ∈ Vx. The case α = y is symmetric.
Now for the case where α = z. If U ∩ Vz = ∅, then U ⊆ free(Q+), and by the definition
of Q+, zi ∈ free(Q+), which is a contradiction to the fact that v ∈ var(Q) \ free(Q+).

3. Let R ∈ atoms(Q+). If R ∈ Tx, then by definition of Vy we have that var(R) ∩ Vy = ∅.
Otherwise, R ∈ Ty ∪ Tmid, and similarly var(R) ∩ Vx = ∅.

4. By definition of Vz, it does not contain any variables of free(Q+). J

With the sets Vx, Vy, Vz at hand, we can now perform the reduction between the two
problems for general FDs. The reduction is based on the case of unary FDs, but with the sets
defined according to Lemma 14. Requirements 1 and 4 on the sets guarantee a one-to-one
mapping between the results of the two problems, requirement 2 guarantees that all FDs are
preserved, and requirement 3 guarantees linear time construction.

I Lemma 15. Let Q be a CQ with no self-joins over a schema S = (R,∆). If Q+ is acyclic
and not free-connex, then Enum∅〈Π〉 ≤e Enum∆Q+ 〈Q+〉.

This lemma, along with Theorem 7, establishes the hardness result in Theorem 10. This
result does not contradict the dichotomy given in Theorem 2: If for a given query Q we have
that Q+ is acyclic but not free-connex, then Q cannot be free-connex by Proposition 6.

Note that Theorem 10, just like the dichotomy presented by Bagan et al. [3], also applies
for CQs with disequalities. The extension for such a query is performed as before, ignoring
the disequalities. The equivalence described in Theorem 7 still holds, and the proof remains
intrinsically the same. The proof of the hardness result presented here also remains similar,
with the sole difference that during the construction we take a different and disjoint domain
for each variable. This guarantees that all possible disequalities are preserved.
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5 Cyclic CQs

In the previous section, we established a classification of FD-acyclic CQs, but we did not
consider FD-cyclic queries. A known result states that, under certain assumptions, self-
join-free cyclic queries are not in DelayClin [6]. In this section, we therefore explore how
FD-extensions can be used to obtain some insight on the implications of this result in the
presence of FDs. We show that (under the same assumptions) self-join-free FD-cyclic queries
that contain only unary FDs cannot be evaluated in linear time. For schemas containing
only unary FDs, this extends the dichotomy presented in the previous section to all CQs,
and also proves a dichotomy for the queries that can be enumerated in linear delay. We will
prove the following theorem:

I Theorem 16. Let Q be a CQ with no self-joins over a schema S = (R,∆), where ∆ only
contains unary FDs. If Q is FD-cyclic, then Decide∆〈Q〉 cannot be solved in linear time,
assuming that the Tetra(k) problem cannot be solved in linear time for any k.

As before, the initial hardness proof for cyclic queries no longer holds in the presence of
FDs, and we modify the reduction to fix any violations of the FDs. We start by describing
the assumption used to obtain the conditional lower bounds. We define Tetra(k) to be
the hypergraph with the vertices {1, . . . , k} and the edges {{1, . . . , k} \ {i} | i ∈ {1, . . . , k}}.
Let H be a hypergraph. With a slight abuse of notation, we also denote by Tetra(k) the
decision problem of whether H contains a subhypergraph isomorphic to Tetra(k). Note
that Tetra(3) is the problem of deciding whether a graph contains a triangle, which is
strongly believed to be not solvable within time linear in the size of the graph [17]. The
generalization of this assumption is that the Tetra(k) problem cannot be solved in time
linear in the size of the graph for any k. This is a stronger assumption than we used in
Section 4, as the Tetra(3) can be reduced to the matrix multiplication problem [17]. We
will show that if Q+ is cyclic and only unary FDs are present, the problem Tetra(k) for
some k can be reduced to Decide∆Q+ 〈Q+〉.

I Definition 17. Let H be a cyclic hypergraph. We denote by Tetpm(H) the pseudo-minors
of H isomorphic to Tetra(k) for some k, which are obtained in one of the following ways:
1. Vertex removal steps followed by all possible edge removals.
2. Vertex and edge removal steps that lead to a chordless cycle, followed by edge contraction

and edge removal steps that result in a Tetra(3).
Given a query Q, we define Tetpm(Q) = Tetpm(H(Q)).

Brault-Baron [6] showed that if H is cyclic, then Tetpm(H) 6= ∅. This proof is provided in
the full version of this paper. For the reduction we will present next, we first need to show
that for an FD-cyclic query Q, no pseudo-minor in Tetpm(Q+) contains all variables of any
FD X → y. Here, we assume that ∆ only contains non-trivial FDs, meaning y /∈ X.

I Lemma 18. Let Q be an FD-cyclic CQ with no self-joins over a schema S = (R,∆). For
every Hpm = (V,E) ∈ Tetpm(Q+) and non-trivial X → y ∈ ∆Q+ , we have X ∪ {y} 6⊆ V .

Proof Sketch. Assume by contradiction that the variables of the FD δ = X → y are all part
of the pseudo-minor Hpm. Note that the variables X ∪ {y} must appear in a common edge
that corresponds to the atom that defines δ. We distinguish between two cases. If Hpm is
obtained only by vertex removal and edge removal steps, then by the definition of Tetra(k)
it also contains an edge e with X ⊆ e and y 6∈ e. However, this contradicts the fact that
Q+ is an FD-extension, as every edge containing X must also contain y. The other case is
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that Hpm is a Tetra(3) obtained by edge contraction steps performed on a cycle C. Then
X ∪ {y} is contained in a single edge in C, as none of the vertices X ∪ {y} have been deleted.
Thus, we have that |X| = 1 and we can denote X = {x}. As C is a cycle, it contains an edge
e with x ∈ e and y 6∈ e, which contradicts the fact that Q+ is an FD-extension. J

We are now ready to establish the reduction. Given a pseudo-minor of Tetpm(Q+)
isomorphic to some Tetra(k), we can reduce the problem of checking whether a hypergraph
contains a subhypergraph isomorphic to Tetra(k) to finding a boolean answer to Q+.

I Lemma 19. Let Q be an FD-cyclic CQ with no self-joins over a schema S = (R,∆), where
∆ only contains unary FDs. Let Hpm ∈ Tetpm(Q+) be a pseudo-minor of H(Q+) isomorphic
to Tetra(k). Then, Tetra(k) ≤m Decide∆Q+ 〈Q+〉, and this reduction can be computed
in linear time.

Proof Sketch. Given an input hypergraph G for the Tetra(k) problem, we define an
instance I of Decide∆Q+ 〈Q+〉. We consider a sequence H(Q+) = H1,H2, . . . ,Ht = Hpm of
pseudo-minors, each one obtained by performing one operation over the previous one. We
define the instance I inductively, by first generating relations that correspond to the edges of
Hpm, and then “reversing” the operations. For every edge e of Hpm, we define a relation Rte
that contains all edges of G that have the same size as e. We then construct the relations
Rie of Hi given the relations Ri+1

e of Hi+1. We make the following case distinction: If an
edge e was removed as some e′ contains it, then the relation Re is added as a projection
of Re′ . If Hi+1 is obtained from Hi by an edge contraction in which a vertex v is replaced
by u, then the values corresponding to u in every tuple are copied to the index of v. If a
vertex v is removed, then it is assigned with a constant value, and then the following steps
are performed on every tuple to correct any FD violations. First, the values of all variables
implied by v are concatenated to its value, and then the new value of v is concatenated to all
variables implying it. Since Q+ is an FD-extension, and since only unary FDs are present,
we can conclude that whenever a vertex is removed, if x implies y, then y is present in every
edge containing x. This fact guarantees that the FD-correction steps can be performed. This
construction defines relations that correspond to H(Q+), which form I in such a way that G
has a subhypergraph isomorphic to Hpm iff Q+(I) 6= ∅. Compliance to any FDs included
in Hi is shown by induction on the sequence, and the induction base holds trivially due to
Lemma 18. J

Theorem 16 is an immediate consequence of Lemma 19. As in the previous section, by
taking a disjoint domain for every variable in the proof of Lemma 19, Theorem 16 also holds
for CQs with disequalities. In terms of enumeration complexity, Theorem 16 means that any
enumeration algorithm for the answers of such a query cannot output a first solution (or
decide that there is none) within linear time, and we get the following corollary.

I Corollary 20. Let Q be a CQ with no self-joins over a schema S = (R,∆), where ∆
only contains unary FDs. If Q is FD-cyclic, then Enum∆〈Q〉 6∈ DelayClin, assuming that the
Tetra(k) problem cannot be solved in linear time for any k.

Less restrictive than constant delay enumeration, the class DelayLin consists of enumeration
problems that can be solved with a linear delay between solutions. A lower bound for this
class can be achieved similarly to Corollary 20. Regarding tractability, as acyclic CQs are
in DelayLin [3], we conclude from Corollary 8 that FD-acyclic CQs are in this class as well.
Thus, we obtain a dichotomy stating that CQs are in DelayLin iff they are FD-acyclic.
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I Theorem 21. Let Q be a CQ with no self-joins over a schema S = (R,∆), where ∆ only
contains unary FDs.

If Q is FD-acyclic, then Enum∆〈Q〉 ∈ DelayLin.
Otherwise (if Q is FD-cyclic), Enum∆〈Q〉 6∈ DelayLin, assuming that the Tetra(k)
problem cannot be solved in linear time for any k.

We conclude this section with a short discussion about the extension of our results to
general FDs. The following example shows that the proof for Theorem 16 that was provided
here cannot be lifted to general FDs. Exploring this extension is left for future work.

I Example 22. Consider the query Q() ← R1(x, y, u), R2(x,w, z), R3(y, v, z), R4(u, v, w),
over a schema with all possible two-to-one FDs in the relations R1, R2 and R3. That is,
∆ = {xy → u, yu → x, ux → y, zy → v, yv → z, vz → y, xz → w, zw → x,wx → z}. Note
that Q+ = Q. The hypergraph H(Q+) is cyclic, yet it is unclear whether Q can be solved
in linear time, and whether Tetra(3) can be reduced to answering Q+. Using Lemma 18,
H(Q+) has triangle pseudo-minors that do not contain all variables of any FD. Consider for
example the one obtained by removing all vertices other than x, y, z. A construction similar
to that of Lemma 19 would assign u with the values of x and y, assign v with the values of y
and z, and assign w with the values of x and z. This results in the edge {u, v, w} containing
all three values of any possible triangle, meaning that this edge cannot be constructed in
linear time. Other choices of triangle pseudo-minors lead to similar encoding problems. J

6 Cardinality Dependencies

In this last section, we show that the results of this paper also apply to CQs over schemas
with cardinality dependencies. Cardinality Dependencies (CDs) [2, 7] are a generalization of
FDs, where the left-hand side does not uniquely determine the right-hand side, but rather
provides a bound on the number of distinct values it can have. Formally, ∆ is the set of
CDs of a schema S = (R,∆). Every δ ∈ ∆ has the form (Ri : A→ B, c), where Ri : A→ B

is an FD and c is a positive integer. A CD δ is satisfied by an instance I over S, if every set
of tuples S ⊆ (Ri)I that agrees on the indices of A, but no pair of them agrees on all indices
of B, contains at most c tuples. It follows from the definition that δ is an FD if c = 1.

Denote by ∆FD the FDs obtained from a set of CDs ∆ by setting all c values to one. Given
a query Q over S = (R,∆), we define the CD-extended query Q+ of Q to be the FD-extended
query of Q over S = (R,∆FD). The schema S+ is defined with the original c values, and the
CDs are ∆Q+ = {(R+

i : A→ b, c) | ∃(Rj : A→ B, c) ∈ ∆, b ∈ B,A ∪ {b} ⊆ var(R+
i )}. Note

that FD-extensions are indeed a special case of CD-extensions.
The hardness results extend to CDs because FDs are a special case of CDs. Since

every instance that preserves the FDs ∆FD also preserves the CDs ∆, we can conclude that
Enum∆FD〈Q〉 ≤e Enum∆〈Q〉. When only FDs are present we can apply Theorem 7, and get
Enum∆FD

Q+
〈Q+〉 ≤e Enum∆FD〈Q〉. Combining the two we get the following lemma.

I Lemma 23. Let Q be a CQ over a schema S = (R,∆), where ∆ is a set of CDs, and let
Q+ be the corresponding CD-extension. Then Enum∆FD

Q+
〈Q+〉 ≤e Enum∆〈Q〉.

Lemma 23 implies that all negative results presented in this paper hold for CDs. In order
to extend the positive results, we need to show that the CD-extension is at least as hard as
the original query w.r.t. enumeration. We use a slight relaxation of exact reductions: For
Enum〈R1〉 ≤e′ Enum〈R2〉, instead of a bijection between the sets of outputs, one output of
Enum〈R1〉 corresponds to at most a constant number of outputs of Enum〈R2〉.
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I Lemma 24. Let Q be a CQ over a schema S = (R,∆), where ∆ is a set of CDs, and let
Q+ be the corresponding CD-extension. Then Enum∆〈Q〉 ≤e′ Enum∆Q+ 〈Q+〉.

Proof Sketch. When dealing with FDs, we assume that the right-hand side has only one
variable, as we can use such FDs to describe all possible ones. With CDs this no longer holds.
Nonetheless, every instance of the schema S = (R,∆) is also an instance of S1 = (R,∆1),
where ∆1 = {(Ri : A→ b, c) | (Ri : A→ B, c) ∈ ∆, b ∈ B}. Therefore, we can conclude that
Enum∆〈Q〉 ≤e Enum∆1〈Q〉.

We now show that Enum∆1〈Q〉 ≤e′ Enum∆+〈Q+〉. The proof remains the same as in
Theorem 7, except now, for each tuple extended from RIi to RI+

i we can have at most c new
tuples. Since this process is only done a constant number of times, the construction still
only requires linear time, and the rest of the proof holds. Note that now one solution of
Enum∆+〈Q+〉 may correspond to several solutions of Enum∆1〈Q〉, as some variables were
possibly added to the head. However, as the possible values of the added head variables are
bounded by CDs, the number of solutions of Q+ that correspond to one solution of Q is
bounded by a constant. J

DelayClin is closed under this type of reduction. To avoid printing duplicates, we store
the printed results. This requires a polynomial amount of memory, where the power of
the polynomial is | free(Q)|. Defining the classes of CD-acyclic and CD-free-connex queries
similarly to the case with FDs, we can use Lemma 23 and Lemma 24 with Theorem 10 to
generalize the dichotomy presented in Section 4 to accommodate CDs.

I Theorem 25. Let Q be a CD-acyclic CQ with no self-joins over a schema S = (R,∆),
where ∆ is a set of CDs.

If Q is CD-free-connex, then Enum∆〈Q〉 ∈ DelayClin.
If Q is not CD-free-connex, then Enum∆〈Q〉 6∈ DelayClin, assuming that the product of
two n× n boolean matrices cannot be computed in time O(n2).

Similarly, we conclude the hardness of self-join-free CD-cyclic CQs over schemas that
contain only unary CDs, of the form (A→ B, c) with |A| = 1. Combining Lemma 23 with
Theorem 16, we have that such queries cannot be evaluated in linear time, assuming that
the Tetra(k) problem cannot be solved in linear time for any k.

7 Concluding Remarks

Previous hardness results regarding the enumeration complexity of CQs no longer hold in the
presence of dependencies. In this paper, we have shown that some of the queries which where
previously classified as hard are in fact tractable in the presence of FDs, and that the others
remain intractable. We have classified the enumeration complexity of self-join-free CQs
according to their FD-extension. Under previously used complexity assumptions: a query is
in DelayClin if its extension is free-connex, it is not in DelayClin if its extension is acyclic but
not free-connex, and it is not even decidable in linear time if the schema has only unary FDs
and its extension is cyclic. In addition to our results on constant delay enumeration of CQs
with FDs, the tools provided here have immediate implications in other settings, such as for
CQs with disequalities, schemas with CDs, and other enumeration classes such as DelayLin.

This work opens up quite a few directions for future work. Our proof for the hardness of
FD-cyclic CQs assumes that all FDs are unary. The question of whether this result holds
for general FDs, along with the classification of Example 22, remains open. This result, as
well as the original one given by Brault-Baron [6] assumes the hardness of the Tetra(k)
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problem for every k. It will be interesting to see whether we can get the same result based on
a weaker assumption. Another possible direction involves CDs. To show that enumerating
CD-free-connex CQs can be done in DelayClin, we require polynomial space to store all printed
results. It is unclear whether there exists a solution that requires less space. Finally, we wish
to explore how the tools provided here can be used to extend other known results on query
enumeration, such as a dichotomy for enumerating CQs [6] with negation, to accommodate
FDs.
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