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Abstract

We establish connections between parameterized/kernelization complexity of graph
modification problems and expressibility in logic. For a first-order logic formula ϕ,
we consider the problem of deciding whether an input graph can be modified by re-
moving/adding at most k vertices/edges such that the resulting modification has the
property expressible by ϕ. We provide sufficient and necessary conditions on the struc-
ture of the prefix of ϕ specifying when the corresponding graph modification problem
is fixed-parameter tractable (parameterized by k) and when it admits a polynomial
kernel.

Keywords: First-order logic, graph modification, parameterized complexity, descriptive
complexity, kernelization

1 Introduction

A variety of algorithmic graph problems, called modification problems, can be formulated as
problems of modifying a graph such that the resulting graph satisfies some fixed desired
property. The study of graph modification problems is one of the most popular trends
in graph algorithms, and in particular, in parameterized complexity. One of the classic
results about graph modification problems is the work of Lewis and Yannakakis [16],
which provides necessary and sufficient conditions (assuming P 6= NP) of polynomial time
solvability of vertex-removal problems for hereditary properties. For other types of graph
modification problems, like edge-removal problems [21], no such dichotomy is known. For
the past 30 years graph modification problems served as a strong inspiration for developing
new methods and techniques in parameterized/kernelization algorithms and complexity,
see the books [6, 7, 9, 17] for an overview of the area.

In this paper we approach graph modification problems from the perspective of de-
scriptive complexity. Descriptive complexity is the field of logic which studies the relations
between computational complexity and expressibility in logic. The classic example of a
theorem in descriptive complexity is the theorem of Fagin [8] asserting that a property
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of graphs is in NP if and only if it is definable by an existential second-order formula.
We refer to the recent book of Grohe [12] for a modern overview of descriptive complex-
ity. The significant amount of research in descriptive complexity is devoted to the study
of prefix classes of certain logics. A prefix class is a syntactic fragment of first-order or
second-order logic with formulas in prenex normal form and imposed constrains on the
patterns of quantifiers in formulas. For example, the study of prefix classes of first-order
logic is provided in the book of Börger, Grädel, and Gurevich [4], see also the work of
Gottlob, Kolatis and Schwentick [11] on characterizing the computational complexity of
prefix classes of second-order logic.

Our results. Let φ be an FOL formula on (undirected) graphs in prenex normal form.
In particular, φ = Q1x1Q2x2 · · · Qtxtχ, where t is some constant, each Qi ∈ {∀,∃} is a
quantifier, xi is a variable, and χ is a quantifier-free part that depends on the variables
x1, . . . , xt. We consider the following generic problems (we use “−” for the vertex/edge
removal, “+” for the edge addition and “4” for the symmetric difference).

Vertex-Removal to φ Parameter: k
Input: A graph G and an integer k.
Question: Does there exist a vertex set S ⊆ V (G) with |S| ¬ k such that G−S |= φ?

Edge-Removal to φ Parameter: k
Input: A graph G and an integer k.
Question: Does there exist an edge set F ⊆ E(G) with |F | ¬ k such that G−F |= φ?

Edge-Completion to φ Parameter: k
Input: A graph G and an integer k.
Question: Does there exist F ⊆

(V (G)
2

)
\ E(G) with |F | ¬ k such that G+ F |= φ?

Edge-Editing to φ Parameter: k
Input: A graph G and an integer k.
Question: Does there exist F ⊆

(V (G)
2

)
with |F | ¬ k such that G4 F |= φ?

For example, for φ = ∀u∀v¬(u ∼ v), Vertex-Removal to φ is equivalent to Vertex
Cover that is the graph modification problem asking whether one can remove at most
k vertices such that the resulting graph has no edges (we use u ∼ v for the adjacency
predicate). More generally, any vertex-removal problem to a graph class characterized
by a finite set of forbidden subgraphs, can be expressed as Vertex-Removal to φ for
some φ with only ∀ quantifications over variables, where the number of variables is the
maximum number of vertices of a forbidden graph. Clearly, using FOL, we are able to
express other properties. For example, the property that the diameter of a graph is at
most two cannot be expressed using forbidden subgraphs but can easily be written as the
FOL formula ∀u∀v∃w[(u = v)∨ (u ∼ v)∨ ((u ∼ w)∧ (v ∼ w))]. Similarly, the edge variants
of modification problems to φ capture quite a few interesting and well-studied problems
like Cluster Editing, where the task is to change at most k adjacencies in the graph
resulting in a disjoint union of cliques.

We consider modification problems, where the specification of a prefix class of for-
mula φ is defined according to the arithmetic hierarchy (also known as Kleene-Mostowski
hierarchy) used for classifications of the formulas in the first-order arithmetic language
(see, e.g., [18]). We define prefix classes according to alternations of quantifiers, that is,
switchings from ∀ to ∃ or vice versa in the prefix string of the formula. We allow a formula
to have free, i.e., non-quantified, variables. Let Σ0 = Π0 be the classes of FOL-formulas
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without quantifiers. For a positive integer s, the class Σs contains formulas that could be
written in the form

φ = ∃x1∃x2 · · · ∃xtψ,

where ψ is a Πs−1-formula, t is some integer, and x1, . . . , xt are free variables of ψ. Re-
spectively, Πs consists of formulas

φ = ∀x1∀x2 · · · ∀xtψ,

where ψ is a Σs−1-formula and x1, . . . , xt are free variables of ψ. Note that we allow t = 0,
which implies that for s′ > s, Σs ∪Πs ⊆ Σs′ ∩Πs′ .

We establish a number of algorithmic results about modification problems where the
target property is definable in FOL. We complement these results by lower bounds, which
in combination provide a neat dichotomy theorems about the parameterized complexity
of such problems. Hence we establish sufficient and necessary conditions on the prefix
classes of FOL-formulas such that the corresponding graph modification problems are
fixed-parameter tractable and/or admit a polynomial kernel.

Our first result shows the following dichotomy (subject to W[2] 6= FPT) for Vertex-
Removal to φ, depending on the structure of the prefix class of φ.

Theorem 1.

(i) For every φ ∈ Σ3 without free variables, Vertex-Removal to φ is FPT.

(ii) There is φ ∈ Π3 without free variables such that Vertex-Removal to φ is W[2]-
hard.

In other words, if the prefix of an FOL-formula φ has at most two alternations of
quantifiers and, in the case of exactly two alternations, if the first quantifier is ∃, then
Vertex-Removal to φ is FPT. For each other type of quantifier alternations, there
exists a formula for which the problem becomes W[2]-hard.

For kernelization complexity of Vertex-Removal to φ, we establish the following
dichotomy.

Theorem 2.

(i) For every φ ∈ Σ1 ∪ Π1 without free variables, Vertex-Removal to φ admits a
polynomial kernel.

(ii) There is φ ∈ Σ2 (φ ∈ Π2) without free variables such that Vertex-Removal to
φ admits no polynomial kernel unless NP ⊆ coNP/poly.

For edge-modification problems we prove the following.

Theorem 3.

(i) For every φ ∈ Σ2 without free variables, Edge-Removal to φ, Edge-Completion
to φ, and Edge-Editing to φ are FPT.

(ii) There exists φ ∈ Π2 without free varaibles such that Edge-Removal to φ (re-
spectively, Edge-Completion to φ and Edge-Editing to φ) is W[2]-hard.

We observe that if φ ∈ Σ1, then all considered problems can be solved in polynomial
time. Clearly, this means that they are FPT and have trivial polynomial kernels. We
complement this with lower bounds and summarize these results in the following theorem.
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Theorem 4.

(i) For every φ ∈ Σ1 without free variables, Edge-Removal to φ, Edge-Completion
to φ, and Edge-Editing to φ admit polynomial kernels.

(ii) There exists φ ∈ Π1 without free variables such that Edge-Removal to φ (respec-
tively, Edge-Completion to φ and Edge-Editing to φ) admits no polynomial
kernel unless NP ⊆ coNP/poly.

This paper is organized as follows. In Section 2, we introduce basic notions and state
some auxiliary results. In Section 3, we obtain the algorithmic upper bounds, that is, we
show the claims (i) of Theorems 1–4. In Section 4, we complement these results by the
lower bounds given in the claims (ii) of Theorems 1–4. We conclude with Section 5, where
we discuss some possible extension of our results and mention some directions for further
research.

2 Preliminaries

Sets. We use N to denote the set of all non-negative numbers. Given some k ∈ N, we
denote [k] = [1, k]. Given a set A, we denote by 2A the set of all its subsets and we define(A
2

)
:= {e | e ∈ 2A ∧ |e| = 2}. We denote by a = 〈a1, . . . , ar〉 a sequence of elements of a

set A and call a an r-tuple of simply a tuple. Note that the elements of a not necessarily
pairwise distinct. We denote by ab the concatenation of tuples a and b.

Graphs. All graphs in this paper are undirected, loop-less, and without multiple edges
unless it is explicitly specified to be different. Given a graph G, we denote by V (G) its
vertex set and by E(G) its edge set. For an edge e = {x, y} ∈ E(G), we use instead the
notation e = xy, that is equivalent to e = yx. We denote |G| = |V (G)|. Throughout the
paper we use n to denote |G| if it does not create confusion. For a vertex v, dG(v) denotes
the degree of v. For any set of vertices S ⊆ V (G), we denote by G[S] the subgraph of G
induced by the vertices from S. We also define G− S := G[V (G) \ S]. Given an edge set
F ⊆ E(G), we denote G−F = (V (G), E(G) \F ). Also, given a set F ⊆

(V (G
2

)
\E(G), i.e.,

F is a set of pairs of vertices that are not edges of G, we define G+F = (V (G), E(G)∪F ),
and for F ⊆

(V (G
2

)
, we define G4 F = (V (G), E(G)− E(G) ∩ F + F \ E(G)).

Formulas. In this paper we deal with logic formulas on graphs. In particular we will
deal with formulas of first-order logic (FOL). The syntax of FOL-formulas on graphs
includes the logical connectives ∨, ∧, ¬, variables for vertices, the quantifiers ∀, ∃ that are
applied to these variables, the predicate u ∼ v, where u and v are vertex variables and
the interpretation is that u and v are adjacent, and the equality of variables representing
vertices. . It also convenient to assume that we have the logical connectives → and ↔. An
FOL-formula φ is in prenex normal form if it is written as φ = Q1x1Q2x2 · · · Qtxtχ where
each Qi ∈ {∀,∃} is a quantifier, xi is a varible, and χ is a quantifier-free part that depends
on the variables x1, . . . , xt. Then Q1x1Q2x2 · · · Qtxt is referred as the prefix of φ. From now
on, when we mention the term “FOL-formula”, we mean an FOL-formula on graphs that
is in prenex normal form. For an FOL-formula φ without free variables and a graph G, we
write G |= φ to denote that φ evaluates to true on G.

For technical reasons, we extend FOL-formulas on graphs to structures of a special
type. We say that a pair (G,v), where v = 〈v1, . . . , vr〉 is an r-tuple of vertices of G, is an
r-structure. Let φ be an FOL-formula without free variables and let x = 〈x1, . . . , xr〉 be an
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r-tuple of pairwise distinct variables of φ. We denote by φ[x] the formula obtained from
φ by the deletion of the quantification over x1, . . . , xr, that is, these variables become the
free variables of φ[x]. For an r-structure (G,v) with v = 〈v1, . . . , vr〉 and φ[x], we write
(G,v) |= φ[x] to denote that φ[x] evaluates to true on G if xi is assigned vi for i ∈ [r]. If
r = 0, that is, v and x are empty, then (G,v) |= φ[x] is equivalent to G |= φ.

Parameterized Complexity. We refer to the books [6, 7, 9, 17] for the detailed intro-
duction to the field. Here we only briefly review the basic notions.

Parameterized Complexity is a bivariate framework for studying the computational
complexity of computational problems. One variable is the input size n and the other is
a parameter k associated with the input. The main goal is to confine the combinatorial
explosion in the running time of an algorithm for an NP-hard problem to depend only on
k. Thus, a parameterized problem is defined formally as a language L ⊆ Σ∗ × N, where
Σ∗ is a set of string over a finite alphabet Σ. A parameterized problem is said to be fixed
parameter tractable (or FPT) if it can be solved in time f(k) · nO(1) for some computable
function f . Also, we say that a parameterized problem belongs in the class XP if it can be
solved in time O(nf(k)) for some computable function f . The complexity class FPT consists
of all fixed parameter tractable problems. Parameterized complexity theory also provides
tools to disprove the existence of FPT algorithms under plausible complexity-theoretic
assumptions. For this, Downey and Fellows introduced a hierarchy of parameterized com-
plexity classes, namely FPT ⊆ W[1] ⊆ W[2] ⊆ W[3] ⊆ · · · ⊆ XP and conjectured that
it is proper. This conjecture plays a central role in obtaining lower complexity bounds.
The basic way to show that it is unlikely that a parameterized problem admit an FPT
algorithm is to show that it is W[1] or W[2]-hard using a parameterized reduction form a
known W[1] or W[2]-hard problem.

A kernelization for a parameterized problem is a polynomial time algorithm that maps
each instance (I, k) of a parameterized problem with the input I and parameter k to an
instance (I ′, k′) of the same problem such that

(i) (I, k) is a yes-instance if and only if (I ′, k′) is a yes-instance, and

(ii) |I ′|+ k′ is bounded by f(k) for some computable function f .

The output (I ′, k′) is called a kernel. The function f is said to be the size of the kernel.
A kernel is polynomial if f is polynomial. While it can be shown that every decidable
parameterized problem is FPT if and only if it admits a kernel, it is unlikely that every
problem in FPT has a polynomial kernel. In particular, the now standard composition and
cross-composition techniques [2,3] allow to show that certain problems have no polynomial
kernels unless NP ⊆ coNP/poly.

To solve all considered problems, we have to solve the Model Checking problem for
first-order logic on graphs:

Model Checking
Input: A graph G and an FOL-formula φ.
Question: Does G |= φ?

Model Checking is known to be PSPACE-complete [19]. The problem is also hard
from the parameterized complexity viewpoint when parameterized by the size of the for-
mula. It was proved by Frick and Grohe in [10] that the problem is AW[∗]-complete for
this parametrization (see, e.g., the book [9] for the definition of the class). Thus, it is
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unlikely that Model Checking is FPT when parameterized by the formula size. This
immediately implies that the problem Vertex-Removal to φ as well as the problems
Edge-Removal/Completion/Editing to φ are AW[∗]-hard when parameterized by
the size of φ even for k = 0. However, Model Checking is in XP when parameterized
by the number of variables. In particular, if φ has r variables and input size is n, then it
can be solved in time O(nr) by exhaustive search. The currently best algorithm is given
by Williams in [20] who proved the following.

Theorem 5 ([20]). Model Checking can be solved in time Õ(nω) for formulas with 3
variables and if the number of variables r  3, then it can be solved in time Õ(nr−3+ω)
where ω is the matrix-multiplication exponent. Moreover, if r  9, thenModel Checking
can be solved in time nr−1+o(1).

Here Õ(f(n)) is used to denote an upper bound O(f(n) logc n) for some positive con-
stant c. These algorithms are, in fact, asymptotically optimal up to the Strong Exponential
Time Hypothesis (SETH) (see [6, 14] for the definition). It was shown by Williams [20]
that if Model Checking for formulas with r  4 can be solved in time O(nr−1−ε) for
some ε > 0, then SETH is false.

Because of these results, we assume throughout the paper that the FOL-formulas in
the considered modification problems have a constant number of variables and, therefore,
constant sizes. In particular, the exponents of polynomials in running times and the sizes
of kernels should depend on the length |φ| of the formula φ.

We conclude this section by observing that Theorems 3 and 4 claim the same complex-
ity status for Edge-Removal to φ and Edge-Completion to φ. This is not surprising,
because these problems are equivalent in the following sense. Denote by G the complement
of a graph G, that is, the graph with the same vertex set such that every two distinct ver-
tices are adjacent in G if and only if they are nonadjacent in G. For an FOL-formula φ,
denote by φ the formula obtained from φ by replacing each adjacency predicate by the
subformula expressing non-adjacency of distinct vertices, that is, u ∼ v is replaced by
¬(u = v) ∧ ¬(u ∼ v). Then we can make the following straightforward observation.

Observation 1. For every FOL-formula φ, (G, k) is a yes-instance of Edge-Removal
to φ if and only if (G, k) is a a yes-instance of Edge-Completion to φ.

By Observation 1, it is sufficient to show Theorems 3 and 4 for Edge-Removal to φ
and Edge-Editing to φ.

3 Upper bounds

In this section we prove the claims (i) of Theorems 1–4. First, we consider Vertex-
Removal to φ.

Lemma 1. For every φ ∈ Σ3 without free variables, Vertex-Removal to φ can be
solved in time |φ|k · nO(|φ|).

Proof. Consider an instance (G, k) of Vertex-Removal to φ for

φ = ∃x1 · · · ∃xr∀y1 · · · ∀ys∃z1 · · · ∃ztχ,

where r, s, t  0 and χ is quantifier-free. Let x = 〈x1, . . . , xr〉, y = 〈y1, . . . , ys〉, and
z = 〈z1, . . . , zt〉.
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Assume that (G, k) is a yes-instance of Vertex-Removal to φ. This means that
there is S ⊆ V (G) of size at most k such that G− S |= φ. Observe that G− S |= φ if and
only if there is an r-tuple u = 〈u1, . . . , ur〉 of vertices of G−S such that (G−S,u) |= φ[x].

We use this observation, and for each r-tuple u of vertices of G, check whether there
is S ⊆ V (G) of size at most k that has no common vertices with u and it holds that
(G − S,u) |= φ[x]. If we find such a set S, we return this solution for the considered
instance of Vertex-Removal to φ. Otherwise, if we fail to find S for all r-tuples u, we
conclude that (G, k) is a no-instance. From now we assume that u is given.

Suppose that (G,u) |= φ[x] does not hold. Then there is an s-tuple v = 〈v1, . . . , vs〉
of vertices of G such that (G,uv) |= φ[xy] does not hold. Our algorithm is based on the
following crucial claim.

Claim 1.1. For every S ⊆ V (G) such that S is disjoint with u and (G− S,u) |= φ[x], S
contains at least one vertex of v.

The proof is by contradiction. Assume that (G−S,u) |= φ[x] but S and v are disjoint.
Then (G− S,uv) |= φ[xy]. By definition, this means that there is a t-tuple of vertices w
of G − S such that (G − S,uvw) |= φ[xyz]. In other words, χ evaluates to true if the x,
y and z-variables are assigned to u, v and w respectively. This immediately implies that
(G,uvw) |= φ[xyz] and, therefore, (G,uv) |= φ[xy]. This contradicts the assumption that
(G,uv) 6|= φ[xy].

Claim 1.1 leads to the following recursive algorithm that find a solution S for the given
u (if such a solution exist). The algorithm receives as the input the current set S that is
initially set to be empty and finds a solution S∗ ⊇ S as follows.

1. If (G − S,uv) |= φ[xy] for all s-tuples v = 〈v1, . . . , vs〉 of vertices of G − S, then
return S and stop.

2. Otherwise, for an s-tuple v = 〈v1, . . . , vs〉 of vertices of G − S such that (G −
S,uv) 6|= φ[xy], do the following:

(i) if |S| = k or all the vertices of v are in u, then stop;

(ii) else, for each vi ∈ v that is not in u, call the algorithm for S′ = S ∪ {vi}.

The correctness of the algorithm follows from Claim 1.1. Concerning the running time
of the algorithm. At each iteration we check at most ns s-tuples v and for each v we verify
in time nO(|φ|) whether (G−S,uv) |= φ[xv]. Hence, each iteration takes time nO(|φ|). Also
at each iteration we branch into at most s subproblems and the depth of the search tree
produced by the algorithm is at most k. Thus the running time is sk · nO(|φ|). Recall that
we call the algorithm for each r-tuple u. Since there are nr such tuples, we have that the
total running time is sk · nO(|φ|), which can be rewritten as |φ|k · nO(|φ|).

Lemma 1 immediately implies Theorem 1 (i).
We move to Edge-Removal to φ and Edge-Editing to φ.

Lemma 2. For every φ ∈ Σ2 without free variables, Edge-Removal to φ and Edge-
Editing to φ can be solved in time |φ|2k · nO(|φ|).

Proof. The proof is similar to the proof of Lemma 1. We show the claim for Edge-
Removal to φ and then explain how it should be modified for Edge-editing to φ.

Let (G, k) be an instance of Edge-Removal to φ for

φ = ∃x1 · · · ∃xr∀y1 · · · ∀ysχ,
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where χ is quantifier-free. Let x = 〈x1, . . . , xr〉 and y = 〈y1, . . . , ys〉.
We observe that F ⊆ E(G) of size at most k is a solution for an instance (G, k) of

Edge-Removal to φ if and only if there is an r-tuple u = 〈u1, . . . , ur〉 of vertices of G
such that (G − F,u) |= φ[x]. Respectively, for each r-tuple u of vertices of G, we check
whether there is F ⊆ E(G) of size at most k such that (G− F,u) |= φ[x]. If we find such
F , we return this solution and we obtain that (G, k) is a no-instance otherwise. Assume
that u is given.

If the property (G,u) |= φ[x] is not fulfilled, then there is an s-tuple v = 〈v1, . . . , vs〉
of vertices of G such that it does not hold that (G,uv) |= φ[xy]. We use the following
claim.

Claim 2.1. For every F ⊆ E(G) such that (G − F,u) |= φ[x], F contains at least one
edge with both end-vertices in uv.

To obtain a contradiction, assume that (G− F,u) |= φ[x] but every edge of F has at
least one end-vertex outside the tuples u and v. This means that χ evaluates to true on
G − F if the x any y-variables are assigned to u and v respectively. Notice that every
two vertices of uv are adjacent in G − F if and only if they are adjacent in G. Hence, χ
evaluates to true on G if the x any y-variables are assigned to u and v respectively. This
means that (G,uv) |= φ[xy]; a contradiction.

We construct the following recursive branching algorithm that finds a solution F for
the given u if it exists. The algorithm takes as the input the current set F that is initially
empty and finds a solution F ∗ ⊇ F :

1. If (G−F,uv) |= φ[xy] for all s-tuples v = 〈v1, . . . , vs〉 of vertices of G, then return
F and stop.

2. Otherwise, for an s-tuple v = 〈v1, . . . , vs〉 of vertices of G such that (G−F,uv) 6|=
φ[xy], do the following:

(i) set L ⊆ E(G) be the set of edges with both end-vertices in uv,

(ii) if |F | = k or L = ∅, then stop;

(iii) else, and for each e ∈ L, call the algorithm for F ′ = F ∪ {e}.

The correctness of the algorithm follows from Claim 2.1. On each iteration we check
at most ns s-tuples v, and for each v, verify in time nO(|φ|) whether (G−F,uv) |= φ[xv].
Hence, each iteration can be done in time nO(|φ|). Also on each iteration we have at most
|L| ¬

(r+s
2

)
branches and the depth of the search tree produced by the algorithm is at most

k. This implies that the running time is (r+s)2k ·nO(|φ|). Recall that we call the algorithm
for each r-tuple u. Since there are nr such tuples, we have that the total running time is
|φ|2k · nO(|φ|).

For Edge-Editing to φ, the algorithm is essentially the same. The difference is that
in addition to edge removal we allowed to add edges. Respectively, we replace G − F by
G4 F in the above algorithm and modify Steps 2 (i)—(iii):

(i) set L be the set of pairs of distinct vertices of uv,

(ii) if |F | = k or L = ∅, then stop;

(iii) else, and for each e ∈ L, call the algorithm for F ′ = F ∪ {e}.

Notice that the variant of Claim 2.1 , where G − F is replaces by G4 F , holds and this
implies correctness. The time analysis is the same.
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Lemma 2 together with Observation 1 implies Theorem 3(i). Our next aim is show
kernelization upper bounds. First, we observe that for Σ1-formulas, our problems can be
solved in polynomial time.

Lemma 3. For every φ ∈ Σ1 without free variables, Vertex-Removal to φ, Edge-
Removal to φ, and Edge-Editing to φ can be solved in time nO(|φ|).

Proof. Assume that
φ = ∃x1 · · · ∃xrχ

where χ is quantifier-free.
For Vertex-Removal to φ, it is sufficient to observe that (G, k) is a yes-instance of

the problem if and only if G |= φ. We can use Theorem 5 and solve the problem in time
nO|φ|.

For Edge-Removal to φ and Edge-Editing to φ, we can observe that (G, k) is
a yes-instance if and only if there is a set of vertices U of size s = min{r, n} such that
(G[U ], k) is a yes-instance. We can check all such sets U in time nO(|φ|), and for each set, we
use brute force to verify whether (G[U ], k) is a yes-instance. Since the brute force checking
of all subsets of edges or pairs of vertices of G[U ] of size at most k′ = min{k,

(s
2

)
} can be

done in time s2k
′
, the total running time is s2s

2 · nO(|φ|). Because s ¬ |φ|, we can write it
as nO(|φ|).

Because every problem that can be solved in polynomial time has a trivial polynomial
kernel, Lemma 3 together with Observation 1 implies Theorem 4(i). Clearly, the lemma
also implies the claim of Theorem 2 (i) for Σ1-formulas. It remains to prove it for Π1-
formulas. For this, we need the classic result of Lewis and Yannakakis [16]. A graph
property P is said to be hereditary if for each graph G satisfying P , it hold that P holds
for every induced subgraph of G. A property P is nontrivial if it is true for infinitely many
graphs and it is false for infinitely many graphs. Vertex-Removal to P asks, given a
graph G and a positive integer k, whether it is possible to remove at most k vertices of
G to obtain a graph satisfying P . It was proved by Lewis and Yannakakis [16] that the
following dichotomy holds for a hereditary property P that can be tested in polynomial
time: Vertex-Removal to P can be solved in polynomial time if P is trivial, and the
problem is NP-complete otherwise.

Lemma 4. For every φ ∈ Π1 without free variables, Vertex-Removal to φ admits a
polynomial kernel.

Proof. Let (G, k) be an instance of Vertex-Removal to φ for

φ = ∀x1 · · · ∀xrχ

where χ is quantifier-free. Let x = 〈x1, . . . , xr〉. Observe that the graph property G |= φ

is hereditary for Π1-formulas. If this property is trivial, we can solve Vertex-Removal
to φ in polynomial time [16] and conclude that the problem admits a trivial polynomial
kernel. Assume from now that the property G |= φ is not trivial. By the result of Lewis
and Yannakakis [16], Vertex-Removal to φ is NP-complete.

For every tuple v of vertices of G, denote by Uv the set of vertices contained in v. Let

U = {Uv | v is an r-tuple of vertices of G such that (G,v) 6|= φ[x]}.

The crucial observation is that S ⊆ V (G) of size at most k is a solution for (G, k) if and
only if S is a hitting set for U , that is, S ∩ Uv 6= ∅ for every Uv ∈ U . This observation is
proved by the same arguments as Claim 1.1 assuming that u is empty.
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The s-Hitting Set problem that asks, given a family of sets U of size at most s
over some universe and a non-negative integer k, whether there is a hitting set S for U
in known to have a polynomial kernel of size at most (2s − 1)ks−1 + k by the result of
Abu-Khzam [1]. Apparently Hitting Set is in NP. Hence, there is a polynomial reduction
from Hitting Set to the NP-complete problem Vertex-Removal to φ. This implies
that Vertex-Removal to φ admits a polynomial kernel.

4 Lower bounds

Here we prove the hardness claims of Theorems 1–4. In Subsection 4.1, we give the tech-
nical result about reducing Edge-Removal to φ to Vertex-Removal to ψ. In Sub-
section 4.2, we show W[2]-hardness and in Subsection 4.3 we obtain kernelization lower
bounds.

4.1 Reducing Edge Removal to Vertex Removal

In this section we construct a generic reduction of Edge-Removal to φ to Vertex-
Removal to ψ that we use twice in the proofs of our complexity lower bounds.

We say that an FOL-formula φ is ∀-containing if the prefix of φ contains a ∀ quantifier.

Lemma 5. For every ∀-containing FOL-formula φ ∈ Σs ∪ Πs without free variables for
s  1, there is formula ψ ∈ Σs+1 ∪Πs+1 without free variables such that

(i) |ψ| = poly(|φ|),

(ii) if φ ∈ Σs (resp. φ ∈ Πs), then φ ∈ Σs+1 (resp. φ ∈ Πs+1),

(iii) there is a polynomial reduction of Edge-Removal to φ to Vertex-Removal
to ψ that transforms each instance (G, k) of Edge-Removal to φ to an equiv-
alent instance (G′, k) of Vertex-Removal to ψ, i.e., the parameter k remains
the same.

Proof. Let (G, k) be an instance of Edge-Removal to φ. We construct the instance
(G′, k) of Vertex-Removal to ψ from (G, k) and then we construct ψ. The main idea
is to replace edge removals by vertex removals switching to the incidence graph of G or,
equivalently, by subdividing edges of G. Then we have to “label” the vertices of the original
graph that should not be removed. We do it by making them adjacent to sufficiently many
pendant vertices. Formally, we construct G′ as follows.

• Construct a copy of G and subdivide each edge, that is, for each e = xy ∈ E(G),
delete e, construct a new vertex ve and make it adjacent to x and y. We say that
the vertices of G are branching vertices and the vertices obtained by the edge
subdivisions are called subdivision vertices.

• For each branching vertex u, introduce k + 3 new vertices v1, . . . , vk+3 and make
them adjacent to u; we call these vertices pendant.

Notice that every subdivision vertex has degree 2 and every branching vertex has degree at
least 3. Moreover, if H is obtained from G′ by the removal of at most k vertices, then still
every remaining branching vertex has degree at least 3. Observe also that H has isolated
vertices if and only if at least one branching vertex of G is removed in the construction of
H.
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Our next aim is to construct ψ from φ to ensure that (G, k) is a yes-instance of Edge-
Removal to φ if and only if (G′, k) is a yes-instance of Vertex-Removal to ψ. Let

φ = Q1x1 . . . Qpxpχ

where Q1, . . . , Qp are quantifiers, x1, . . . , xp are variables and χ is quantifier-free. We also
assume that χ is written in the conjunctive normal form.

The construction of ψ is done in several steps. First, we take care of adjacencies in
φ. Recall that two verices u and v are adjacent in G if and only if they have a common
neighbor in G′. Respectively, we modify the adjacency predicates in χ.

Let Π = {π1, . . . , πs} be the family (multiset) of all predicates of the form xi ∼ xj that
occur in χ without negations. If the same predicate xi ∼ xj occurs several times, then for
each occurrence, we include it in Π. Similarly, let Π̄ = {π̄1, . . . , π̄t} be the family (multiset)
of all predicates of the form ¬(xi ∼ xj) that occur in χ. Then we do the following.

• Construct s new variables y1, . . . , ys and t variables z1, . . . , zt.

• For each h ∈ {1, . . . , s}, consider πh = xi ∼ xj for some i, j ∈ {1, . . . , p} and
replace it by ¬(xi = xj) ∧ (xi ∼ yh) ∧ (yh ∼ xj).

• For each h ∈ {1, . . . , t}, consider π̄h = ¬(xi ∼ xj) for some i, j ∈ {1, . . . , p} and
replace it by (xi = xj) ∨ ¬(xi ∼ yh) ∨ ¬(yh ∼ xj).

• Denote the formula obtained from χ by χ′. Then

– if Qp = ∃, set σ = ∃y1 . . . ∃ys∀z1 . . . ∀zt χ′, and

– if Qp = ∀, set σ = ∀z1 . . . ∀zt∃y1 . . . ∃ys χ′.

Consider the formula α = Q1x1 . . . Qpxp σ. Observe that we added new quantified variables
in the end of the prefix of φ in such a way that we obtain at most one additional alternation
of quantifiers. That is, we obtain that α ∈ Σs+1 if φ ∈ Σs and α ∈ Πs+1 if φ ∈ Πs. The
crucial property of the above construction is given in the following straightforward claim.

Claim 5.1. G |= φ if and only if G′ |= β where

β = Q1x1 . . . Qpxp σ with the domains of the variables x1, . . . , xp restricted to V (G).

Moreover, for every set of pendant vertices X of size at most k, G |= φ if and only if
(G′ −X) |= β.

Notice that in the formula of Claim 5.1 we insist to restrict the domains of the variables
x1, . . . , xp in β to V (G), that is, β is not an FOL-formula (and β 6= α). Our next aim is
to express these additional constraints in the first-order logic. We do it using the property
that the branching vertices of G′ have degrees at least 3 and all the other vertices have
degrees at most 2.

We consecutively construct the formulas ρn+1, . . . , ρ1. First, we set ρn+1 = σ. Note
that x1, . . . , xp are free variable for ρn+1. Assume inductively that 1 ¬ i ¬ p and ρi+1
with free variables x1, . . . , xi is already constructed. Denote by Pi+1 the prefix and µi+1
the quantifier-free part of ρi+1 respectively, that is, ρi+1 = Pi+1µi+1. The construction of
ρi depends on the quantifier Qi.

• Introduce 3 new variables r1i , r
2
i , r
3
i .
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• If Qi = ∃, then set

ρi = ∃xi∃r1i ∃r2i ∃r3i Pi+1[(¬(r1i = r2i ) ∧ ¬(r1i = r3i ) ∧ ¬(r2i = r3i ))∧
((xi ∼ r1i ) ∧ (xi ∼ r2i ) ∧ (xi ∼ r3i )) ∧ µi+1].

• If Qi = ∀, then set

ρi = ∀xi∀r1i ∀r2i ∀r3i Pi+1[((¬(r1i = r2i ) ∧ ¬(r1i = r3i ) ∧ ¬(r2i = r3i ))∧(
((xi ∼ r1i ) ∧ (xi ∼ r2i ) ∧ (xi ∼ r3i ))→ µi+1

)
].

Let γ = ρ1. Note that in our construction of γ, we do not create new alternations of
quantifications, that is, γ ∈ Σs+1 or in Πs+1 depending on whether α ∈ Σs+1 or in Πs+1.
The construction of γ implies the next claim.

Claim 5.2. G |= φ if and only if G′ |= γ. Moreover, for every set of pendant vertices X
of size at most k, G |= φ if and only if (G′ −X) |= γ.

Recall that the removal of the edges in G corresponds to the removal of subdivision
vertices of G′. Respectively, our next aim is to ensure that the removal of a branching
vertex of G′ leads to the graph for which our formula is false. We use the property that
for every set S of at most k vertices of G′, G′ − S has an isolated vertex if and only if S
contains a branching vertex. We use the property that the condition that a graph has no
an isolated can be expressed by the formula ∀s1∃s2 (s1 ∼ s2) and modify γ as follows. Let
P be the prefix of γ and let µ be the quantifier-free part. We write P as the concatenation
of 3 parts P1, P2 and P3 where P1 and/or P3 may be empty. Recall that the prefix of the
original formula φ contains the ∀xi for some i ∈ {1, . . . , p} by the condition of the lemma.
Hence, the same holds for γ. Let P1 be the first part of P until the first occurrence of the
quantifier ∀. Then P2 is the next part until the first occurrence of the quantifier ∃ or until
the end of P if such a quantifier does not exist. Respectively, P3 is the remaining part. We
define

ψ = P1∀s1P2∃s2P3 [(s1 ∼ s2) ∧ µ]

using two new variables s1 and s2.
Notice that the insertion of the new quantifications is done in such a way that we do

not introduce new alternations of quantifiers unless P3 is empty. But if P3 is empty, then
φ ∈ Π1 or φ ∈ Σ2 and the new alternations were not introduced in the construction of α
from φ. We have that either φ, γ ∈ Σs and ψ ∈ Σs+1 or φ, γ ∈ Πs and ψ ∈ Πs+1.

We show the following claim.

Claim 5.3. The instance (G, k) is a yes-instance of Edge-Removal to φ if and only if
(G′, k) is a yes-instance of Vertex-Removal to ψ.

To show the claim, assume first that (G, k) is a yes-instance of Edge-Removal to φ.
Then there is F ⊆ E(G) of size at most k such that (G − F ) |= φ. We define S ⊆ V (G′)
be the the set of the subdivision vertices of G′ corresponding to the edges of F , that
is, S = {ve | e ∈ F}. Clearly, |S| ¬ k. Notice that our reduction algorithm for graphs
produces G′ − S from G − F . Hence, by Claim 5.2, (G′ − F ) |= γ. Because G′ − S has
no isolated vertices, we have that (G′ − S) |= ψ. It means that (G′, k) is a yes-instance of
Vertex-Removal to ψ.

Suppose now that (G′, k) is a yes-instance of Vertex-Removal to ψ. Then there is
S ⊆ V (G′) of size at most k such that (G′−S) |= ψ. Since ψ = P1∀s1P2∃s2P3 [(s1 ∼ s2)∧µ],
we have that G′ − S has no isolated vertices, that is, S contains only subdivision vertices
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of G′ or pendants vertices. Also this immediately implies that (G′ − S) |= γ. Let S′ be
the set of subdivision vertices of S and let X be the set of pendant vertices in S. We
define F to be the set of edges of G corresponding to the subdivision vertices in S′, that
is, F = {e ∈ E(G) | ve ∈ S′}. We have that |F | ¬ k. Let also X be the set of pendant
vertices in S. Observe again that our reduction algorithm for graphs produces G′ − S′

from G− F . Then by Claim 5.2, we have that (G− F ) |= φ. We conclude that (G, k) is a
yes-instance of Edge-Removal to φ.

To complete the proof of the lemma, observe that the size of ψ is polynomial in the
size of φ by our construction of the formula and this shows (i). To show (ii), observe that
ψ ∈ Σs+1 if φ ∈ Σs and ψ ∈ Πs+1 if φ ∈ Πs. The last claim (iii) of the lemma immediately
follows from Claim 5.3.

4.2 W[2]-hardness

In this subsection we show that there are formulas φ in Π2 and Π3 for which Edge-
Removal (Editing) to φ and Vertex-Removal to ψ. respectively are W[2]-hard
when parameterized by k. First, we show the claim for Edge-Removal to φ and Edge-
Editing to φ.

Lemma 6. There is an FOL-formula φ ∈ Π2 without free variables with 5 variables such
that Edge-Removal to φ and Edge-Editing to φ are W[2]-hard.

Proof. We define the formula φ as follows:

φ = ∀x∃y1∃y2∃y3∃y4[(x ∼ y1) ∧ (x ∼ y2) ∧ (x ∼ y3) ∧ (x ∼ y4) ∧ (y1 ∼ y2) ∧ (y1 ∼ y3)∧
(y2 ∼ y3) ∧ (y2 ∼ y4) ∧ (y3 ∼ y4) ∧ ¬(y1 = y4) ∧ ¬(y1 ∼ y4)].

In terms of graphs, G |= φ means that for every vertex x of G, there are vertices y1, y2, y3, y4
such that these vertices together with x induce the graph W shown in Fig. 1. We say that
W is a φ-witness subgraph rooted in x.

y4

x

y1 y2 y3

Figure 1: The φ-witness graph W .

We show hardness for Edge-Editing to φ by reducing the Set Cover problem:

Set Cover Parameter: k
Input: A family of sets S over the universe U and a positive integer k.
Question: Is there a subfamily S∗ ⊆ S of size at most k that covers U , that is, every
element of U is in one of the set of S∗?

It is well-known that Set Cover is W[2]-hard when parameterized by k [7].
Let (U,S, k) be an instance Set Cover, S = {S1, . . . , Sm} and U = {u1, . . . , un}. We

construct the graph G as follows.

• For each i ∈ {1, . . . ,m}, construct the graph Hi with 4 root vertices s1i , s
2
i , s
3
i , s
4
i

as it is shown in Fig. 2 a).
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s1i

s3i

s2i

s4i x

y2

y3

y4

y2

y1

y4
y1

y3

Hi

a) b)

Figure 2: Construction of Hi and the witness subgraphs for the vertices of Hi. The witness
subgraphs are shown by thick lines and the other edges are shown by dashed lines.

• For each j ∈ {1, . . . , n}, construct 2k + 1 vertices u0j , . . . , u
2k
j and make them

adjacent to the root vertices of all the gadgets Hr such that the element uj of the
universe U is in the set Sr ∈ S.

We claim that (U,S, k) is a yes-instance Set Cover if and only if (G, k) is a yes-
instance of Edge-Editing to φ.

Suppose that (U,S, k) is a yes-instance Set Cover. Let S∗ ⊆ S be a family of size at
most k that covers U . We construct the set of edges F of G as follows. For every Si ∈ S∗,
we include the edge s1i s

4
i of the gadget Hi in F . Clearly, |F | ¬ k. Let G′ = G4F = G−F .

We show that G′ |= φ. Recall that we have to show that for every x ∈ V (G′), there
are y1, y2, y3, y4, such that G[{x, y1, y2, y3, y3}] is a φ-witness subgraph rooted in x. For
x ∈

⋃m
i=1 V (Hi), such subgraphs are shown in Fig. 2 b). Let x = uhj for j ∈ {1, . . . , n} and

h ∈ {0, . . . , 2k}. The element uj ∈ U is covered by some set Si ∈ S∗. Since s1i s
4
i ∈ F , we

have that G[uhj , s
1
i , s
2
i , s
3
i , s
4
i ] is a φ-witness subgraph rooted in x. We conclude that G′ |= φ

and, therefore, (G, k) is a yes-instance of Edge-Editing to φ.
Assume that (G, k) is a yes-instance of Edge-Editing to φ. Then there is F ⊆

(V (G)
2

)
with |F | ¬ k such that for G′ = G4F , it holds that G′ |= φ. Consider the auxiliary graph
Q = (V (G), F ). For i ∈ {1, . . . ,m}, let δi =

∑
v∈V (Hi) dQ(v). We define S∗ = {Si | 1 ¬

i ¬ m, δi  2}. Because |F | ¬ k,
∑n
i=1 δi ¬ 2k and, therefore, |S∗| ¬ k. We claim that

S∗ covers U . To obtain a contradiction, assume that there is j ∈ {1, . . . , n} such that
uj is not covered by S∗. Since |F | ¬ k, there is h ∈ {0, . . . , 2k} such that the vertex uhj
is not incident to the pairs of F . Because G′ |= φ, there is a φ-witness subgraph rooted
in x = uhj . Hence, there are y1, y2, y3, y4 ∈ V (G) such that G[{x, y1, y2, y3, y4}] is a φ-
witness subgraph. Notice that y1, y2, y3, y4 ∈ ∪mi=1V (Hi). Observe that if ys ∈ V (Hi), then
F ∩

(V (Hi)
2

)
= ∅, because δi ¬ 1. Hence, it cannot happen that y1, y2, y3, y4 ∈ V (Hi)

for some i ∈ {1, . . . ,m}, because it would mean that {y1, y2, y3, y4} = {s1i , s2i , s3i , s4i } but
G′[{s1i , s2i , s3i , s4i }] = K4, a contradiction. Therefore, there are distinct i, i′ ∈ {1, . . . , n}
such that V (Hi) ∩ {y1, y2, y3, y4} 6= ∅ and V (Hi′) ∩ {y1, y2, y3, y4} 6= ∅. Since δi, δi′ ¬ 1,
there is a unique pair ab of F such that a ∈ V (Hi) and b ∈ V (Hi′). Moreover, ab is a bridge
of G′[∪ms=1V (Hs)] and, therefore, ab is a bridge of G′[{y1, y2, y3, y4}]. This contradicts the
fact that W − x is 2-connected. We conclude that S∗ covers U . Hence, (U,S, k) is a
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yes-instance Set Cover.
This concludes theW[2]-hardness proof for Edge-Editing to φ. To show that Edge-

Removal to φ is W[2]-hard when parameterized by k, we use the same reduction. Note
that to show that if (U,S, k) is a yes-instance of Set Cover then (G, k) is a yes-instance
of Edge-Editing to φ, we constructed F ⊆ E(G), that is, we proved that (G, k) is a
yes-instance of Edge-Removal to φ.

Lemma 6 and Observation 1 imply Theorem 3 (ii). To show the claim for Vertex-
Removal to φ we combain Lemma 6 with Lemma 5 and obtain the following lemma that
implies Theorem 1 (ii).

Lemma 7. There is a constant c such that there is an FOL-formula φ ∈ Π3 without free
variables that has at most c variables such that Vertex-Removal to φ is W[2]-hard.

4.3 Kernelization lower bounds

In this subsection we obtain the kernelization lower bounds for Edge-Removal (Edit-
ing) to φ and Vertex-Removal to ψ.

First, we show the lower bounds for Edge-Removal to φ and Edge-Editing to φ
for Π1-formulas. To do it, we use the known results about kernelization lower bounds for
the H-Free Edge Removal and H-Free Editing. Recall that for a graph H, H-Free
Edge Removal (H-Free Editing) asks, given a graph G and a nonnegative integer k,
whether there is a set of edges F (a set F ⊆

(V (G)
2

)
respectively) of size at most k such that

G−F (G4F respectively) does not contain an induced subgraph isomorphic to H. Since
the property that a graph G has no induced subgraph isomorphic to H can be expressed
by an FOL-formula φH ∈ Π1 that has |V (H)| variables, H-Free Edge Removal and
H-Free Editing can be written as Edge-Removal to φH and Edge-Editing to
φH respectively. The first kernelization lower bounds for H-Free Edge Removal and
H-Free Editing were obtained by Kratsch and Wahlström in [15] who proved that
there are graphs H for which these problems do not admit polynomial kernels unless
NP ⊆ coNP/poly. Some further results were obtained by Guillemot et al. [13]. In [5] Cai
and Cai completely characterized the cases when the problems have no polynomial kernels
if H is a path or cycle or is 3-connected graph up to the conjecture that NP 6⊆ coNP/poly.
In particular, they proved that H-Free Edge Removal and H-Free Editing do not
have polynomial kernels if H = C4 unless NP ⊆ coNP/poly. This immediately yields the
following lemma.

Lemma 8. There is an FOL-formula φ ∈ Σ1 without free variables that has 5 variables
such that Edge-Removal to φ and Edge-Editing to φ have no polynomial kernels
unless NP ⊆ coNP/poly.

Lemma 8 and Observation 1 prove Theorem 4 (ii). Using Lemma 5, we obtain the
following lemma for Vertex-Removal to φ.

Lemma 9. There is a constant c such that there is an FOL-formula φ ∈ Π2 without
free variables that has at most c variables such that Vertex-Removal to φ is has no
polynomial kernel unless NP ⊆ coNP/poly.

Our final task is to show that it is unlikely that Vertex-Removal to φ has a polyno-
mial kernel for Σ2-formulas. We do it by using the cross-composition technique introduced
by Bodlaender, Jansen and Kratsch [3] (see also [6] for the introduction to the technique).
Here we only briefly sketch the main notions that we need to apply it.
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Let Σ be a finite alphabet. An equivalence relation R on the set of strings Σ∗ is called
a polynomial equivalence relation if the following two conditions hold:

i) there is an algorithm that given two strings x, y ∈ Σ∗ decides whether x and y

belong to the same equivalence class in time polynomial in |x|+ |y|,

ii) for any finite set S ⊆ Σ∗, the equivalence relation R partitions the elements of S
into a number of classes that is polynomially bounded in the size of the largest
element of S.

Let L ⊆ Σ∗ be a problem, let R be a polynomial equivalence relation on Σ∗, and let
P ⊆ Σ∗ × N be a parameterized problem. An OR-cross-composition of L into P (with
respect to R) is an algorithm that, given t instances I1, I2, . . . , It ∈ Σ∗ of L belonging
to the same equivalence class of R, takes time polynomial in

∑t
i=1 |Ii| and outputs an

instance (I, k) ∈ Σ∗ × N such that:

i) the parameter value k is polynomially bounded in max{|I1|, . . . , |It|}+ log t,

ii) the instance (I, k) is a yes-instance of P if and only there is i ∈ {1, . . . , t} such
that Ii is a yes-instance of L.

It is said that L OR-cross-composes into P if a cross-composition algorithm exists for a
suitable relation R.

Bodlaender, Jansen and Kratsch [3] proved the following theorem.

Theorem 6 ([3]). If an NP-hard problem L OR-cross-composes into the parameterized
problem P, then P does not admit a polynomial kernelization unless NP ⊆ coNP/poly.

Lemma 10. There is φ ∈ Σ2 without free variables that has 3 variables such that Vertex-
Removal to φ has no polynomial kernel unless NP ⊆ coNP/poly.

Proof. We define the formula φ as follows:

φ = ∃x∀y∀z[((x ∼ y) ∧ (x ∼ z))→ ((y = z) ∨ (y ∼ z))].

In terms of graphs, G |= φ means that there is a vertex x whose neighborhood is a clique.
We consider the Clique problem:

Clique
Input: A graph G and a positive integer k.
Question: Is there a clique in G with at least k vertices?

and show that Clique OR-cross-composes into Vertex-Removal to φ.
We say that two instances (G1, k1) and (G2, k2) of Clique are equivalent if |V (G1)| =

|V (G2)| and k1 = k2.
Let (G1, k), . . . , (Gt, k) be equivalent instances of Clique where graphs have n vertices.

We construct the instance (G′, k′) of Vertex-Removal to φ as follows.

• Construct disjoint copies of G1, . . . , Gt.

• For every i ∈ {1, . . . , t}, construct n−k+2 vertices u1i , . . . , u
n−k+2
i and make them

adjacent to the vertices of Gi.

• Set k′ = n− k.
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We claim that (G′, k′) is a yes-instance of Vertex-Removal to φ if and only if there
is i ∈ {1, . . . , t} such that (Gi, k) is a yes-instance of Clique.

Suppose that there is i ∈ {1, . . . , t} such that (Gi, k) is a yes-instance of Clique. Then
Gi has a clique K of size k. Let S = V (G)\K. Note that |S| = n−k = k′. Now for x = u1i ,
we have that the neighborhood of x in G′ is the clique K, that is, (G′, k′) is a yes-instance
of Vertex-Removal to φ.

Assume that (G′, k′) is a yes-instance of Vertex-Removal to φ. Then there is a set
of vertices S ⊆ V (G′) of size at most k′ such that (G′−S) |= φ. Let G′′ = G′−S. We have
that there is x ∈ V (G′′) such that the neighborhood of x in G′′ is a clique. Then there is
i ∈ {1, . . . , t} such that x ∈ V (Gi) or x ∈ {u1i , . . . , u

n−k+2
i }. Suppose that x ∈ V (Gi). Since

|S| ¬ k′ = n− k, x is adjacent in G′′ to at least two distinct vertices of {u1i , . . . , u
n−k+2
i }

but these two verices are not adjacent. It implies that x ∈ {u1i , . . . , u
n−k+2
i } and the

neighborhood of x in G′′ is V (Gi)\S, that is, K = V (Gi)−S is a clique. Because |S| ¬ k′,
we have that |K|  n− k′ = k, that is, (Gi, k) is a yes-instance of Clique.

Since |V (G′)| = O(nt) and k′ = O(n), we conclude that Vertex-Removal to φ has
no polynomial kernel unless NP ⊆ coNP/poly by Theorem 6.

We have that Lemmata 9 and 10 imply Theorem 2 (ii).

5 Conclusion

In this paper we have provided necessary and sufficient conditions (subject to some com-
plexity assumptions) on the fixed-parameter tractability, as well as polynomial kerneliza-
tion, of graph modification problems to the properties expressible by an FOL-formula from
a certain prefix class. While we stated our results for undirected graphs, in fact, all our
results could be rewritten for directed graphs. In particular, the FPT and kernelization
algorithms work for directed graphs without any changes. For the hardness proofs, we need
only a minor modification. Denote by arc(x, y) the predicate for variables x and y meaning
that (x, y) is an arc of a directed graph. Denote by ~φ the FOL-formula on directed graphs
obtained from an FOL-formula φ on undirected graphs by replacing every predicate x ∼ y
with arc(x, y) ∨ arc(y, x). Then we have the following observation.

Observation 2. Let G be the underlaying undirected graph of a directed graph D and let
φ be an FOL-formula on undirected graphs without free variables. Then G |= φ if and only
if D |= ~φ.

Observation 2 immediately implies that whenever Vertex Removal to φ or Edge
Removal/Completion/Editing to φ is hard (W[2]-hard or does not have a polynomial
kernel unless NP ⊆ coNP/poly), the same holds for the variant of the problem on directed
graphs. The straightforward reduction constructs a directed graph from an undirected
graph G by turning its edges to arcs by assigning arbitrary orientations.

Our results are for FOL-formulas. It would be very interesting to obtain a similar
type of dichotomies for prefix classes of Monadic Second Order Logic (MSOL) formulas
on graphs. MSOL is substantially richer and allows to express more interesting graph
properties like connectivity that cannot be expressed in FOL. The crucial difference is
that while Model Checking for FOL-formulas can be solved in polynomial time for
formulas of bounded size (see Theorem 5), the problem for MSOL is well-known to be
NP-complete even for formulas whose size is bounded by a constant.
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