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Abstract. We investigate the problem of detecting periodic trends within a string S of length n,
arriving in the streaming model, containing at most k wildcard characters, where k = o(n). A wildcard
character is a special character that can be assigned any other character. We say S has wildcard-period p

if there exists an assignment to each of the wildcard characters so that in the resulting stream the length
n− p prefix equals the length n− p suffix. We present a two-pass streaming algorithm that computes
wildcard-periods of S using O

(

k3 polylog n
)

bits of space, while we also show that this problem cannot
be solved in sublinear space in one pass. We then give a one-pass randomized streaming algorithm that
computes all wildcard-periods p of S with p < n

2
and no wildcard characters appearing in the last p

symbols of S, using O
(

k3 log9 n
)

space.

1 Introduction

We study the problem of detecting repetitive structure in a data stream S containing a small number of
wildcard characters. Given an alphabet Σ and a special wildcard character ‘⊥’3, let S ∈ (Σ ∪ {⊥})n be a
stream that contains at most k wildcards. We can assign a value from Σ to each wildcard character in S
resulting in many possible values of S. Then we informally say S has wildcard-period p if there exists an
assignment to each of the wildcard characters in S so that the resulting string consists of the repetition of a
block of p characters.

Example 1. The string S = abcab⊥a⊥c⊥bc has wildcard-period 3, since assigning ‘c’ to the first wildcard
character, ‘b’ to the second wildcard character, and ‘a’ to the third results in the string ‘abcabcabcabc’,
which consists of repetitions of the substring ‘abc’ of length 3.

The identification of repetitive structure in data has applications to bioinformatics, natural language
processing, and time series data mining. Specifically, finding the smallest period of a string is necessary
preprocessing for many algorithms, such as the classic Knuth-Morriss-Pratt [KMP77] algorithm in pattern
matching, or the basic local alignment search tool (BLAST) [AGM+90] in computational biology.

We consider our problem in the streaming model, where we process the input in sequential order and
sublinear space. However in practice, some of the data may be erased or corrupted beyond repair, resulting
in symbols that we cannot read, ‘⊥’. As a consequence, we attempt to perform pattern matching with
optimistic assignments to these values. This motivation has resulted in a number of literature on string
algorithms with wildcard characters [MR95, Ind98,CH02,Kal02,CC07,HR14,LNV14,GKP16].

One possible approach to our problem is to generalize the exact periodicity problem, for which [EJS10]
give a two-pass streaming algorithm for finding the smallest exact period of a string of length n that uses
O
(

log2 n
)

-space and O (log n) time per arriving symbol. Their results can be easily generalized to an al-

gorithm for finding the wildcard-period of strings using O
(

log2 n
)

-space, but at a cost of O
(

|Σ|k
)

post-
processing time, which is often undesirable. More recently, [EGSZ17] study the problem of k-periodicity,
where a string is permitted to have up to k permanent changes. The authors give a two-pass streaming algo-
rithm that uses O

(

k4 log9 n
)

bits of space and runs in O
(

k2 polylogn
)

amortized time per arriving symbol.
This algorithm can be modified to recover the wildcard-period. We show how to do this more efficiently in
Theorem 6.
3 Although wildcard characters are usually denoted with ‘?’, we use ⊥ to differentiate from compilation errors - the
LATEX equivalent of wildcard characters
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1.1 Our Contributions

The challenge of determining periodicity in the presence of wildcard characters can first be approached by
working toward an understanding of specific structural properties of strings with wildcard characters. We
show in Lemma 2 that the number of possible assignments to the wildcard characters over all periods is
“small”. This allows us to compress our data into sublinear space. In this paper, given a string S with at
most k wildcard characters, we show:

(1) a two-pass randomized streaming algorithm that computes all wildcard-periods of S usingO
(

k3 polylogn
)

space, regardless of period length, running in O
(

k2 polylogn
)

amortized time per arriving symbol,

(2) a one-pass randomized streaming algorithm that computes all wildcard-periods p of S with p < n
2 and

no wildcard characters appearing in the last p symbols of S, using O
(

k3 polylogn
)

space, running in

O
(

k2 polylogn
)

amortized time per arriving symbol (see Appendix A),

(3) a lower bound that any one-pass streaming algorithm that computes all wildcard-periods of S requires
Ω(n) space even when randomization is allowed,

(4) a lower bound that, for k = o(
√
n) with k > 2, any one-pass randomized streaming algorithm that

computes all wildcard-periods of S with probability at least 1− 1
n
requires Ω(k logn) space, even under

the promise that the wildcard-periods are at most n/2.

We remark that our algorithm can be easily modified to return the smallest, largest, or any desired wildcard-
period of S. Finally, we note in Appendix B several results in the related problem of determining distance
to p-periodicity. We give an overview of our techniques in Section 2.

1.2 Related Work

The study of periodicity in data streams was initiated in [EJS10], in which the authors give an algorithm
that detlects the period of a string, using polylogn bits of space. Independently, [BG11] gives a similar result
with improved running time. Also, [EAE06] studies mining periodic patterns in streams, and [CM11] studies
periodicity via linear sketches, [IKM00] studies periodicity in time-series databases and online data. [EMS10]
and [LN11] study the problem of distinguishing periodic strings from aperiodic ones in the property testing
model of sublinear-time computation. Furthermore, [AEL10] studies approximate periodicity in the RAM
model under the Hamming and swap distance metrics.

The pattern matching literature is a vast area (see [AG97] for a survey) with many variants. In the data
stream model, [PP09] and [CFP+16] study exact and approximate variants in offline and online settings. We
use the sketches from [CFP+16] though there are some other works [AGMP13,CEPR09,RS17,PL07] with
different sketches for strings. [CJPS13] also show several lower bounds for online pattern matching problem.

Strings with wildcard characters have been extensively studied in the offline model, usually called “partial
words”. Blanchet-Sadri [Bla08] presents a number of combinatorial properties on partial words, including a
large section devoted to periodicity. Notably, [BMRW12] gives algorithms for determining the periodicity for
partial words. Manea et al. [MMT14] improves these results, presenting efficient time offline algorithms for
determining periodicity on partial words, minimizing either total time or update time per symbol.

Golan et al. [GKP16] study the pattern matching problem with a small number of wildcards in the
streaming model. Prior to this work, several works had studied other aspects of pattern matching under
wildcards (See [CH02], [CC07], [HR14],and [LNV14]).

Many ideas used in these sublinear algorithms stem from related work in the classical offline model.
The well-known KMP algorithm [KMP77] initially used periodic structures to search for patterns within a
text. Galil et al. [GS83] later improved the space performance of this pattern matching algorithm. Recently,
[Gaw13] also used the properties of periodic strings for pattern matching when the strings are compressed.
These interesting properties have allowed several algorithms to satisfy some non-trivial requirements of
respective models (see [GKP16], [CFP+15] for example).
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1.3 Preliminaries

Given an input stream S[1, . . . , n] of length |S| = n over some alphabet Σ, we denote the ith character of S
by S[i], and the substring between locations i and j (inclusive) S[i, j]. We say that two strings S, T ∈ Σn

have a mismatch at index i if S[i] 6= T [i]. Then the Hamming distance is the number of such mismatches,

denoted ∆ (S, T ) =
∣

∣

∣
{i | S[i] 6= T [i]}

∣

∣

∣
. We denote the concatenation of S and T by S ◦ T . We denote the

greatest common divisor of two integers x and y by gcd (x, y).
Multiple standard and equivalent definitions of periodicity are often used interchangeably. We say S has

period p if S = BℓB′ where B is a block of length p that appears ℓ ≥ 1 times in a row, and B′ is a prefix of
B. For instance, abcdabcdab has period 4 where B = abcd, and B′ = ab. Equivalently, S[x] = S[x+ p] for all
1 ≤ x ≤ n− p. Similarly, the following definition is also used for periodicity.

Definition 1. We say string S has period p if the length n − p prefix of S is identical to its length n − p
suffix, S[1, n− p] = S[p+ 1, n].

More generally, we say S has k-period p (i.e., S has period p with k mismatches) if S[x] = S[x + p] for
all but at most k (valid) indices x. Equivalently, the following definition is also used for k-periodicity.

Definition 2. We say string S has k-period p if ∆ (S[1, n− p], S[p+ 1, n]) ≤ k.

The definition of k-periodicity lends itself to the following observation.

Observation 1 If p is a k-period of S, then at most k substrings in the sequence of substrings S[1, p], S[p+
1, 2p], S[2p+ 1, 3p], . . . can differ from the preceding substring in the sequence.

Finally, we use the following definition of wildcard-periodicity:

Definition 3. We say that a string S has wildcard-period p if there exists an assignment to the wildcard
characters, so that S[1, n− p] = S[p+ 1, n] (i.e., the resulting string has period p. See Example 1).

Note that the determinism of the assignments of the characters is very important, as evidenced by Example 2.

Example 2. Consider the string S = aaa⊥bbb. To check whether S has wildcard-period 1, we must compare
S[1, n− 1] = aaa⊥bb and S[2, n] = aa⊥bbb. At first glance, one might think assigning the character ‘b’ to the
wildcard in the prefix S[1, n− 1] and an ‘a’ in the suffix S[2, n] will make the prefix and the suffix identical.
However, this is not a legal move; there is not a single character that the wildcard can be replaced with that
makes the above prefix and the suffix the same. Thus, S does not have a wildcard-period of 1.

The following example emphasizes the difference between k-periodicity and wildcard-periodicity:

Example 3. For k = 1, the string S = aaaaabbbbb has k-period p = 1. However, to obtain wildcard-period
p = 1, at least five characters in S must be changed to wildcards (for example, all of the characters ‘a’ or
‘b’).

Therefore, k-periodicity is a good notion for capturing periodicity with respect to long-term, persistent
changes, while wildcard-periodicity is a good notion for capturing periodicity against a number of symbols
that are errors or erasures.

We shall require data structures and subroutines that allow comparing of strings with mismatches. The
below useful fingerprinting algorithm utilizes Karp-Rabin fingerprints [KR87] to obtain general and important
properties:

Theorem 2. [KR87] Given two strings S and T of length n, there exists a polynomial encoding that uses
O (logn) bits of space, and outputs whether S = T or S 6= T . Moreover, this encoding supports concatenation
of strings and can be done in the streaming setting.

From here, we use the term fingerprint to refer to this data structure. We will also need use an algorithm
for pattern matching with mismatches, which we call the k-mismatch algorithm.
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Theorem 3. [CFP+16] Given a string S and an index x, there exists an algorithm which, with probability
1− 1

n2 , outputs all indices i where ∆ (S[1, x], S[i+ 1, i+ x]) ≤ k using O
(

k2 log8 n
)

bits of space. Moreover,

the algorithm runs in O
(

k2 polylogn
)

amortized time per arriving symbol.

Concurrent with our work, Clifford et al. [CKP17] provide a nearly-optimal solution to the k-mismatch
algorithm, which can potentially be used in the framework of [EGSZ17] to immediately improve over the
existing k-periodicity algorithms.

2 Our Approach

To find all the wildcard-periods of S, during our first pass we determine a set T of candidate wildcard-periods,
similar to the approach in [EGSZ17], that includes all the true wildcard-periods. We also determine a set W
of positions of the wildcard characters. By a structural result (Lemma 2), we can then use the second pass
to verify the candidates and identify the true wildcard-periods.

Pattern matching and periodicity seem to have a symbiotic relationship (for example, exact pattern
matching and exact periodicity use each other as subroutines [KMP77, EJS10], as do k-mismatch pattern
matching [CFP+16] and k-periodicity [EGSZ17]). It feels tempting and natural to try to apply the algorithm
from [GKP16] for pattern matching with wildcards. Unfortunately, there does not seem to be an immediate
way of doing this: the [GKP16] algorithm searches for a wildcard-free pattern in text containing up to k
wildcards, while we would like to allow wildcards in the pattern and the text. We instead choose to use
the k-mismatch algorithm from [CFP+16] in the first pass and obtain new structural results about possible
assignments to the wildcard characters in the second pass.

In the first pass, we treat wildcards simply as an additional character. We let T be the set of indices
(candidate periods) π that satisfy

∆ (S[1, x], S[π + 1, π + x]) ≤ 2k,

for some appropriate value of x that we specify later. Note that each wildcard character can cause up to
two mismatches; thus, all true wildcard-periods must satisfy the above inequality. We show that T can be
easily compressed, even though it may contain a linear number of candidates. Specifically, we can succinctly
represent T by adding a few additional “false candidates” into T .

If the correct assignments of the wildcards were known a priori, then the problem would reduce to deter-
mining exact periodicity. Unfortunately, we do not know the correct assignments to the wildcard characters
prior to the data stream, so most of the difficulty lies in the guessing of assignments, bounding the total num-
ber of assignments, and storing these assignments. Thus, the main difference between wildcard-periodicity
and both exact periodicity and k-periodicity is the process of verifying candidates. Whereas exact and k-
periodicity can be verified by comparing the number of mismatches between the prefix and suffix of length
n−p, wildcard-periodicity is sensitive to the correct assignments of the wildcards. We address this challenge
by noting W , the positions of the wildcard characters in the first pass. Since we also have the list of can-
didate wildcard-periods following the first pass, we can guess the assignments of the wildcard characters in
the second pass by looking at the characters in a few select locations, as in Example 4.

Example 4. The string S = ababa⊥ab has wildcard-period p = 2. The assignment of the wildcard at position
i = 6 must be the characters at positions i± p. Note that S[i+ p] = S[8] = b and S[i− p] = S[4] = b.

From Example 4, we observe the following:

Observation 4 If S has wildcard-period p and a wildcard character is known to be at position i, then the
assignment of the wildcard must be the character S[i± ap], for some integer a, that is not a wildcard.

We show how to use Observation 4 and the compressed version of T in the second pass to verify the candidates
and output the true wildcard-periods of S.

We note that recent algorithmic improvements to the k-mismatch problem [CKP17] use O
(

k log2 n
)

space. Using this algorithm in place of Theorem 3 as a subroutine in our algorithms improves the space
usage to O

(

k3 log3 n
)

bits in the two-pass algorithm.
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3 Two-Pass Algorithm to Compute Wildcard-Periods

In this section, we provide a two-pass, O
(

k3 log9 n
)

-space algorithm to output all wildcard-periods of some
string S containing at most k wildcard characters. At a high level, we first identify a list of candidates of
the periods of S, detected via the k-mismatch algorithm of [CFP+16] as a black box. Although the number
of candidates could be linear, it turns out the string has enough structure that the list of candidates can be
succinctly expressed as the union of k arithmetic progressions.

However, this list of candidates is insufficient in identifying the possible assignments to the wildcard
characters. To address this issue, we explore the structure of periods with wildcards in order to limit the
possible assignments for each wildcard character. Thus, the first pass also records W , the positions of all
wildcard characters so that during the second pass, we go over S as well as the compressed data to verify
the candidate periods.

We present two algorithms in parallel to find the periods, based on their lengths. The first algorithm
identifies all periods p with p ≤ n

2 , while the second algorithm identifies all periods p with p > n
2 .

3.1 Computing Small Wildcard-Periods

In this section, we describe a two-pass algorithm for finding wildcard-periods of length at most n/2. The
first pass of the algorithm identifies a set T of candidate wildcard-periods in terms of indices of S, and
maintains its succinct representation T C , which includes a number of additional indices. It also records W ,
the positions of all wildcard characters. The second pass of the algorithm recovers each index of T from
T C and verifies whether or not the index is a wildcard-period. We can find the assignments of the wildcard
characters in the second pass, by looking at the characters in a few locations that we determine via W . We
emphasize the following properties of T and T C :

(1) All wildcard-periods (possibly as well as additional candidate wildcard-periods that are false positives)
are in T .

(2) T C can be stored in sublinear space and T can be fully recovered from T C .

(3) In the second pass, we can verify and eliminate in sublinear space candidates that are not true periods.

In the first pass, we treat the wildcard characters as a regular, additional alphabet symbol. We observe
that if string S with such wildcards has wildcard-period p, there are at most 2k indices i such that S[i] 6=
S[i+p], caused by the wildcard characters (the converse is not necessarily true). It follows that any wildcard-
period p must satisfy

∆ (S[1, x], S[p+ 1, p+ x]) ≤ 2k

for all x ≤ n − p, and specifically for x = n
2 . Thus, we set x = n

2 and refer to any index p that satisfies
∆ (S[1, x], S[p+ 1, p+ x]) ≤ 2k as a candidate wildcard-period. The set of all candidate wildcard-periods
forms the set T . Because ∆ (S[1, x], S[p+ 1, p+ x]) ≤ 2k is a necessary but not sufficient condition for a
wildcard-period p, Property 1 follows.

We give the first pass of the algorithm in full in Algorithm 1.

5



Algorithm 1 (To determine any wildcard-period p with p ≤ n
2 ) First pass

Input: A stream S of n symbols si ∈ Σ ∪ {⊥} with at most k wildcard characters ⊥.
Output: A succinct representation of all candidate wildcard periods and the positions of the wildcard characters.

1: initialize πj = −1 for each 0 ≤ j < 4k log n+ 2.
2: initialize T C = ∅.
3: for each index i (found using the k-mismatch algorithm) such that

∆
(

S
[

1,
n

2

]

, S
[

i+ 1,
n

2
+ i

])

≤ 2k

do

4: consider j for which i is in the interval Hj =
[

jn

4(2k log n+1)
+ 1, (j+1)n

4(2k log n+1)

)

:

5: if there exists no candidate t ∈ T C in the interval Hj then

6: add i to T C .
7: else

8: let t be the smallest candidate in T C ∩Hj and either πj = −1 or πj > 0.
9: if πj = −1 then

10: set πj = i− t.
11: else

12: set πj = gcd (πj , i− t).

13: record the positions W of all wildcard characters.

Here, we show why the remaining properties for T and T C are satisfied. Our algorithm divides the
candidates into O (k logn) ranges H1, H2, . . . , HO(k logn) and stores the candidates in each range Hj =
[

jn
4(2k log n+1) + 1, (j+1)n

4(2k logn+1)

)

in compressed form as an arithmetic series.

Since we use the k-mismatch algorithm in the first pass, we describe a structural property of the resulting
list of candidates:

Theorem 5. [EGSZ17] Let pi be a candidate k-period for a string S, with p1 < p2 < . . . < pm all
contained within Hj. Given the fingerprints of S[1, n − p1] and S[p1 + 1, n], we can determine whether or
not S has k-period pi for any 1 ≤ i ≤ m by storing at most O

(

k2 log n
)

additional fingerprints. These
fingerprints represent substrings of the form S[p1 + aπj , p1 + (a + 1)πj − 1], where a > 0 is an integer and
πj = gcd (p2 − p1, p3 − p2, . . . , pm − pm−1).

The structural property can be visualized in Figure 1. Even though the list of candidates could be linear in

H1 H2

H3 H4

π1

π3

Fig. 1. The dots represent candidate wildcard-periods. For any interval that has more than two dots, it follows that
all dots are equally spaced after the first. The black dots represent T while white dots are artificially inserted to form
T , dots that follow an arithmetic sequence.

size, Theorem 5 enforces a structure upon the list of candidates, so that an arithmetic sequence with first
term p1 and common difference d includes all of p1, p2, . . . , pm. Thus, we can succinctly represent a superset
T C that contains T and Property 2 follows.

We now show that any wildcard period p is included among the list of candidates stored by Algorithm 1
during the first pass, and can be recovered from the list.
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Lemma 1. If p < n
2 is a period and p ∈ Hj, then p can be recovered from T C and πj.

Proof. Suppose p ∈ Hj is a wildcard period. Then there exists an assignment to the wildcard characters such
that S[1, n− p] = S[p+ 1, n]. It follows that for i = p,

∆
(

S
[

1,
n

2

]

, S
[

i+ 1,
n

2
+ i

])

≤ 2k,

so the index i = p will be reported by the k-mismatch algorithm in the first pass.
If at that time during Pass 1 there is no other index in T C ∩Hj , then p will be inserted into T C , so p

can clearly be recovered from T C . If there is another index q in T C ∩Hj , then πj will be updated to be a
divisor of p− q. Hence, p− q is a multiple of πj . Furthermore, any future update to πj will result in a value
that divides the current value of πj , due to a greatest common divisor operation. Thus, p− q will remain a
multiple of the final value of πj , and so the set T at the end of the first pass will contain p.

It remains to show that the list of candidate wildcard-periods can be verified in sublinear space in the second
pass (Property 3). To do this, we need a combinatorial property for periodicity on strings with wildcard
characters.

3.2 Verifying Candidates

Recall that after the first pass, the algorithm maintains O (k logn) succinctly represented arithmetic pro-
gressions Hj , corresponding to the candidate wildcard periods. The algorithm also maintains W , the list
of positions of wildcard characters in S. In the second pass, the algorithm must check, for each t ∈ Hj ,
0 ≤ j < 2k logn+ 2, whether S[1, n− t] = S[t+ 1, n] for an appropriate setting of the wildcard characters.
The challenge is computing the fingerprints of both S[1, n− t] and S[t+ 1, n] in sublinear space, especially
if the number of candidates t is linear.

We first set a specific j and note that for the smallest candidate t ∈ Hj , there are at most O
(

k2 logn
)

unique substrings S[t+1, t+ πj ], S[t+ πj +1, t+2πj], S[t+2πj +1, t+3πj ], . . .. Since any other candidate
r ∈ Hj satisfies r = t+ aπj for some integer a > 0, then S[t+ 1, n] is the concatenation

S[t+ 1, t+ πj ] ◦ S[t+ πj + 1, t+ 2πj ] ◦ · · · ◦ S[t+ (a− 1)πj + 1, t+ aπj ] ◦ S[r + 1, n].

Thus, by storing O
(

k2 log n
)

fingerprints and positions, we can recover the fingerprint of the substring
S[r + 1, n] for each r ∈ Hj .

The second obstacle is handling wildcard characters in the computation of the fingerprints of S[1, n− t]
and S[t+1, n]. To address this challenge, our algorithm delays the calculation of the contribution of wildcard
characters to the fingerprints until we know the assignment of the wildcard character with respect to a
candidate period. We show that for a specific j, then there are at most O

(

k2 logn
)

possible assignments for
the wildcard character S[w] = S[w ± t] with respect to all candidates t ∈ Hj , across all w ∈ W , where W is
the positions of all wildcard characters recorded by Algorithm 1. Therefore, we can compute the assignment
for each wildcard character with respect to a candidate period in the second pass, and then compute the
fingerprint of S[1, n− t] and S[t+ 1, n].

Lemma 2. For a given j, t ∈ Hj and w ∈ W, let σt(w) denote the assignment of S[w]. Then |{σt(w)}| =
O
(

k2 logn
)

.

Proof. Let t be the smallest candidate in Hj and z be the largest candidate in Hj so that z = t + aπj for
some integer a > 0. We partition W into W1, the set of indices greater than z, and W2, the set of indices no
more than z. We consider the wildcard characters wi ∈ W1, and note that the proof for W2 is symmetric.
Consider the O (k) sequences

S[w1 − t] S[w1 − t− πj ] · · · S[w1 − t− aπj ]
S[w2 − t] S[w2 − t− πj ] · · · S[w2 − t− aπj ]

...
...

. . .
...

S[w|W1| − t] S[w|W1| − t− πj ] · · · S[w|W1| − t− aπj ]

7



Each term in a sequence that differs from the previous term corresponds to a mismatch between S[wi − t−
πj + 1, wi − t], S[wi − t− 2πj + 1, wi − t− πj ], S[w − t− 3πj + 1, w − t− 2πj ], . . .. For each j, there are at
most O

(

k2 logn
)

unique chains of substrings with length πj beginning at index t+1. Hence, across all O (k)

sequences S[wi − t], S[wi − t − πj ], S[wi − t − 2πj ], . . ., there are at most O
(

k2 logn
)

unique characters.
Since the assignment of S[wi] with respect to any candidate r ∈ Hj is S[wi − r] = S[wi − t− bπj ] for some
integer b > 0, then it follows that there are at most O

(

k2 logn
)

assignments of S[w] across all w ∈ W1. As

the symmetric proof holds for W2, then there are at most O
(

k2 logn
)

assignments of S[w] across all w ∈ W .

Thus, deciding the assignment of S[wi] with respect to a candidate t ∈ Hj is simple:

For each j such that 0 ≤ j < 4k logn+ 2:

(1) Let t be the smallest candidate in Hj and z be the largest candidate in Hj so that z = t+ aπj for
some a > 0.

(2) For each w ∈ W :
(a) If w > z, succinctly record the values of S[w − t], S[w − t− πj ], . . ., S[w − t− aπj ].
(b) If w ≤ z, succinctly record the values of S[w + t], S[w + t+ πj ], . . ., S[w + t+ aπj ].
Let r ∈ Hj so that r = t+ bπj for some b > 0.

(3) The assignment of S[w] with respect to r is any S[w ± cr] that is not a wildcard character (where
c is an integer).

We describe the second pass in Algorithm 2, recalling that at the end of the first pass, the algorithm records
O (k logn) arithmetic progressions, succinctly represented, as well as the positions of all wildcard characters.

Algorithm 2 (To determine any wildcard-period p with p ≤ n
2 ) Second pass

Input: A stream S of symbols si ∈ Σ with at most k wildcard characters, a succinct representation of all candidate
wildcard periods and the position of the wildcard characters.
Output: All wildcard-periods p ≤ n

2
.

1: for each t such that t ∈ T C do

2: for each w such that w ∈ W, implicitly determine the value of S[w] with respect to t.

3: let j be the integer for which t is in the interval Hj =
[

jn

4(2k log n+1)
+ 1, (j+1)n

4(2k log n+1)

)

4: if πj > 0 then ⊲ Hj has multiple values in T C

5: record up to 128k2 logn+ 1 unique fingerprints of length πj , starting from t.
6: else ⊲ Hj has one value in T C

7: record up to 128k2 logn+ 1 unique fingerprints of length t, starting from t.

8: check if S[1, n− t] = S[t+ 1, n] and return t if this is true.

9: for each t which is in interval Hj =
[

jn

4(2k log n+1)
+ 1, (j+1)n

4(2k log n+1)

)

for some integer j do

10: if there exists an index in T C ∩Hj whose distance from t is a multiple of πj then

11: check if S[1, n− t] = S[t+ 1, n] and return t if this is true.

For each arithmetic progression, there are O
(

k2 logn
)

total possibilities for all of the wildcard charac-

ters. Thus, the algorithm maintains the O
(

k3 log2 n
)

characters corresponding to the value of all wildcard
characters across all candidate positions.

We now show the ability to construct the fingerprints of S[1, n− p] for any candidate period p.

Lemma 3. Let pi be a candidate k-period for a string S, with p1 < p2 < . . . < pm all contained within Hj.
Given the fingerprints of S[1, n−p1] and S[p1+1, n], we can determine whether or not S has wildcard-period
pi for any 1 ≤ i ≤ m by storing at most O

(

k2 logn
)

additional fingerprints.

Proof. Consider a decomposition of S into substrings uj of length pi, so that S = u1 ◦ u2 ◦ u3 ◦ . . .. Even
though the algorithm does not record a fingerprint for each uj , each index j for which uj 6= uj+1 corresponds

8



to at least one mismatch. Since the first pass searched for positions that contained at most k mismatches,
then it follows from Observation 1 that there are O (k) indices j for which uj 6= uj+1. Thus, recording
the fingerprints and locations of these indices j suffices to build fingerprints for S, ignoring the wildcard
characters. Then we can verify whether or not pi is a wildcard-period of S if the assignment of the wildcard
characters with respect to pi is also known.

By Theorem 5, the greatest common divisor πj of the difference between each pi in Hj is a O
(

k2 logn
)

-
period. That is, S can be decomposed S = v ◦ v1 ◦ v2 ◦ v3 ◦ . . . so that v has length p1, and each subse-
quent substring vi has length πj . Then there exist at most O

(

k2 logn
)

indices i for which vi 6= vi+1, by
Observation 1. Ignoring wildcard characters, storing the fingerprints and positions of these indices i allows
the recovery of the fingerprint of S[1, n−pi] from the fingerprint of S[1, n−pi−1], since pi−pi−1 is a multiple
of πj . By Lemma 2, we know the values of the wildcard characters with respect to pi. Therefore, we can
confirm whether or not pi is a wildcard-period.

We now show correctness of the algorithm.

Lemma 4. For any period p ≤ n
2 , the algorithm outputs p.

Proof. Since the intervals {Hj} cover
[

1, n
2

]

, then p ∈ Hj for some j. It follows from Lemma 1 that after the
first pass, p can be recovered from T and πj . Thus, the second pass tests whether or not p is a wildcard-period.
By Lemma 3, the algorithm outputs p, as desired.

3.3 Computing Large Wildcard-Periods

As in Algorithm 1, we would like to identify candidate periods during the first pass of the algorithm, while
treating the wildcard characters as an additional symbol in the alphabet. Unfortunately, if a wildcard-period
p is greater than n

2 , then it no longer satisfies

∆
(

S
[

1,
n

2

]

, S
[

p+ 1, p+
n

2

])

≤ 2k,

since p+ n
2 > n, and S

[

p+ n
2

]

is undefined. However, by treating the wildcard characters as an additional
symbol, recall that ∆ (S[1, x], S[p+ 1, p+ x]) ≤ 2k for all x ≤ n − p. Then we would like to use as large
an x as possible while still satisfying x ≤ n− p when choosing candidate wildcard periods p. To this effect,
the observation in [EJS10] states that we can try exponentially decreasing values of x. Specifically, we run
logn instances of the algorithm in succession, with x = n

2 ,
n
4 , . . .. Note that one of these values of x is the

largest value as possible while still satisfying x ≤ n − p. As a result, the corresponding algorithm instance
outputs p, while the other instances do not output anything. We detail the first pass in full in Algorithm 3
in Appendix C.

This partition of [1, n] into the disjoint intervals
[

1, n
2

]

,
[

n
2 + 1, n2 + n

4

]

, . . . guarantees that any k-period

p is contained in one of these intervals. Moreover, the intervals {H(r)
j } partition

[n

2
+

n

4
+ . . .+

n

2r−1
,
n

2
+ . . .+

n

2r

]

,

and so p can be recovered from T C
r and {π(r)

j }. We present the second pass in Algorithm 4 in Appendix C.
Since correctness follows from the same arguments as the case where p ≤ n

2 , it remains to analyze the
space complexity of our algorithm.

Theorem 6. There exists a two-pass randomized algorithm using O
(

k3 log9 n
)

bits of space that finds the

wildcard-period and runs in O
(

k2 polylogn
)

amortized time per arriving symbol.

Proof. In the first pass, for each Tm, we maintain a k-mismatch algorithm which requires O
(

k2 log8 n
)

bits

of space, as in Theorem 3. Since 1 ≤ m ≤ logn, we use O
(

k2 log9 n
)

bits of space in total in the first pass.

9



In the second pass, we maintain O
(

k2 logn
)

fingerprints for any set of indices in Tm, and there are

O (k logn) indices in Tm for each 1 ≤ m ≤ logn, for a total of O
(

k3 log3 n
)

bits of space. In addition, we

store the O
(

k2 logn
)

assignments for all the wildcard positions in each interval H
(r)
j , where 1 ≤ r ≤ logn

and 0 ≤ j < 2k log n+ 2. Thus, O
(

k3 log9 n
)

bits of space suffice for both passes.

The running time of the algorithm is dominated by the time spent for log n parallel copies of k-
mismatch algorithm in the first pass, i.e., Algorithm 3. From Theorem 3, the k-mismatch algorithm runs
in O

(

k2 polylogn
)

amortized time per arriving symbol. The rest of the algorithm consists of simple tasks

like computing gcd and can be performed very quickly. In the second pass, in total at most O
(

k3 polylogn
)

assignments are determined and stored. Thus, the second pass runs in O (1) amortized time per arriving
symbol.

4 Lower Bounds

We first note that [EJS10] shows computing the period of a string in one-pass requires Ω(n) space. Since
the problem of periodicity for strings containing wildcards is a generalization of exact periodicity, the same
lower bound applies.

Theorem 7 (Implied from Theorem 3 from [EJS10] and Theorem 16 from [EGSZ17]). Given a
string S with at most k wildcard characters, any one-pass streaming algorithm that computes the smallest
wildcard-period requires Ω(n) space.

To show a lower bound that randomized streaming algorithm that computes all wildcard-periods of S
with probability at least 1− 1

n
, even under the promise that the wildcard-periods are at most n/2, consider

the following construction. Define an infinite string 110112021303 . . ., as in [GMSU16], and let ν be the prefix
of length n

4 . Define X to be the set of binary strings of length n
4 with Hamming distance k

2 from ν. For

x ∈ X , let Yx be the set of binary strings of length n
4 with either ∆ (x, y) = k

2 or ∆ (x, y) = k
2 +1. Pick (x, y)

uniformly at random from (X,Yx). Then Theorem 17 in [EGSZ17] shows a lower bound on the size of the
sketches necessary to determine whether ∆ (x, y) = k

2 or ∆ (x, y) = k
2 + 1.

Theorem 8. [EGSZ17] Any sketching function S that determines whether ∆ (x, y) = k
2 or ∆ (x, y) > k

2
from S(x) and S(y), with probability at least 1− 1

n
for k = o(

√
n), uses Ω(k logn) space.

Suppose Alice has y, along with the locations of the first k
2 positions i in which y[i] 6= x[i]. Alice replaces

these locations with wildcard characters ⊥, runs the wildcard-period algorithm, and forwards the state of
the algorithm to Bob, who has x. Bob then continues running the algorithm on x ◦ x ◦ x to determine the
wildcard-period of the string S(x, y) = y ◦ x ◦ x ◦ x. Observe that:

Lemma 5. If ∆ (x, y) = k
2 , then the string S(x, y) = y ◦ x ◦ x ◦ x has period n

4 . On the other hand, if

∆ (x, y) = k
2 + 1, then S(x, y) has period greater than n

4 .

Combining Theorem 8 and Lemma 5:

Theorem 9. For k = o(
√
n) with k > 2, any one-pass randomized streaming algorithm that computes all

wildcard-periods of an input string S with probability at least 1− 1
n
requires Ω(k logn) space, even under the

promise that the wildcard-periods are at most n
2 .
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CFP+15. Raphaël Clifford, Allyx Fontaine, Ely Porat, Benjamin Sach, and Tatiana A. Starikovskaya. Dictionary
matching in a stream. In Algorithms - ESA 23rd Annual European Symposium, Proceedings, pages 361–
372, 2015. 1.2
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A One-Pass Algorithm to Compute Small Wildcard-Periods

In this section, we address the problem of computing any wildcard-period p that satisfies p < n
2 , under

the condition that no wildcard character appears in the last p symbols of the string. As in Section 3, we
run two algorithms in parallel. The first algorithm will return any wildcard-period that satisfies p ≤ n

4 and
the second algorithm will return any wildcard-period that satisfies n

4 ≤ p < n
2 . In the first process, we

identify all indices i such that ∆
(

S
[

i+ 1, i+ n
2

]

, S
[

1, n2
])

≤ k. We simultaneously track the positions of
the wildcard characters and the symbol that is i positions away from each wildcard character, so that we
know the assignment of each wildcard character with respect to each candidate period. Unfortunately, the
second process cannot use the same paradigm, since the k-Mismatch algorithm reports candidate periods
too late for fingerprints to be built. As a result, we must pre-emptively guess the candidate periods.

A.1 Computing Small Wildcard-Periods

In this section, we describe the algorithm that finds any wildcard-period p with p ≤ n
4 . We first designate

wildcard characters as unique characters and run the k-mismatch algorithm to find

T =
{

i
∣

∣

∣
i ≤ n

4
, ∆

(

S
[

1,
n

2

]

, S
[

i+ 1, i+
n

2

])

≤ k
}

.
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When the k-mismatch algorithm finds indices i ∈ T , we use the fingerprints for S
[

1, n2
]

and S
[

i+ 1, i+ n
2

]

to simultaneously build the fingerprint for S[1, n − i] and continue building the fingerprint for S[i + 1, n]
respectively. Concurrently, we also track the positions of each wildcard character. For some position w of
a wildcard character, we identify any arbitrary non-wildcard character that is at a position w (mod i). By
Lemma 2, we can do this in O

(

k2 logn
)

space, and thus replace the wildcard characters in the fingerprints
of S[1, n− i] and S[i+ 1, n].

The k-mismatch algorithm outputs i ∈ T upon reading character i + n
2 − 1. Thus for i ≤ n

4 , it follows
that i+ n

2 − 1 < 3n
4 ≤ n− i so we can identify i in time to build S[1, n− i]. From Theorem 5, we can build

each of these fingerprints from a sequence of compressed fingerprints.

A.2 Computing Large Wildcard-Periods

We now describe an algorithm for identifying all wildcard-periods p such that n
4 < p ≤ n

2 . Let Im be the
interval

[

n
2 − 2m + 1, n

2 − 2m−1
]

of length 2m−1 for 1 ≤ m ≤ logn − 1 and again define a set of candidate
periods:

Tm = {i |i ∈ Im, ∆ (S[1, 2m], S[i+ 1, i+ 2m]) ≤ k} .
Let πm be a wildcard-period of S[1, 2m]. We first consider the case where πm ≥ 2m

4 and then the case where

πm < 2m

4 .

Observation 10 [CFP+16] If p is a k-period for S[1, n/2], then each i such that

∆
(

S
[

1,
n

2

]

, S
[

i+ 1, i+
n

2

])

≤ k

2

must be at least p symbols apart.

By Observation 10, if πm ≥ 2m

4 , then |Tm| ≤ 4. Moreover, we can detect whether i ∈ Tm by index
n
2 − 2m−1 + 2m. On the other hand, n − i ≥ n

2 + 2m + 1, and so we can properly build the fingerprint of
S[1, n− i].

Now, consider the case where πm < 2m

4 . [EGSZ17] show that we can compute the fingerprint of S
[

n
2 + 1, n− i

]

by storing the fingerprints and positions of O
(

k2 log n
)

substrings.

Thus, we can build the fingerprint of S[1, n−i] regardless of whether πm < 2m

4 or πm ≥ 2m

4 . In both cases,
we again simultaneously track the positions of each wildcard character. For some position w of a wildcard
character, we identify any arbitrary non-wildcard character that is at a position w (mod i).

By a similar reasoning to Lemma 2, we can do this in O
(

k2 logn
)

space, and thus replace the wildcard
characters in the fingerprints of S[1, n− i] and S[i+ 1, n].

Theorem 11. There exists a one-pass algorithm that outputs all the wildcard-periods p of a given string
with p ≤ n

2 , and uses O
(

k3 log9 n
)

bits of space.

Proof. The k-mismatch subroutine that identifies candidate wildcard-periods uses O
(

k2 log8 n
)

bits of space.

We also maintain O
(

k2 logn
)

fingerprints for any set of indices in Tm, and there are O (k logn) indices in

Tm for each 1 ≤ m ≤ logn, for a total of O
(

k3 log3 n
)

fingerprints. In addition, we store the O
(

k2 logn
)

assignments for all the wildcard positions in each intervalH
(m)
j , where 1 ≤ m ≤ logn and 0 ≤ j < 2k logn+2.

Thus, O
(

k3 log9 n
)

bits of space suffice.

B Distance to p-Periodicity

In this section, we address the problem of finding distance δp(S) to p-periodicity in a string S of length n
containing wildcard characters. That is, we find the minimum number of character changes in S to obtain a
string that has wildcard-period p.
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Suppose without loss of generality that p divides n, so that n = ap for some integer a > 0. Then S can
be visualized as a p× a matrix M so that Mi,j = S[(j − 1)p+ i]. Intuitively, δp(S) is the smallest number
of changes to entries in matrix M so that all the characters in each row are the same. Let f−1(Mi) be the
frequency vector of the entries in Mi, the ith row of M , excluding both the most frequent character of Mi

and any wildcard characters that appear in Mi. Then it follows that

δp(S) =

p
∑

i=1

f−1(Mi).

It remains to estimate f−1(Mi) using one of several well-known techniques. Indeed, [EJS10] uses several
references to obtain results that directly translate to strings containing wildcard characters. For example,
[EJS10] use a heavy-hitter algorithm from [MG82] to approximate f−1(Mi). We can slightly modify the
technique by ignoring wildcard characters to obtain the following result:

Theorem 12. There exists a deterministic one-pass streaming algorithm that provides a (1+ǫ)-approximation

of δp(S) using O
(

p logn
ǫ

)

bits of space.

Similarly, [EJS10] use a distinct-elements algorithm from [KNW10] to approximate f−1(Mi). Again, the
technique can be modified by ignoring wildcard characters to obtain the following result:

Theorem 13. There exists a one-pass streaming algorithm that provides a (2 + ǫ)-approximation of δp(S)

with probability at least 1− δ, using O
(

log n
ǫ2

log 1
ǫ
log 1

δ

)

bits of space.

C Full Algorithms

In this section, we provide the full algorithms for finding wildcard-periods p > n
2 . We detail the first pass in

full in Algorithm 3. We present the second pass in Algorithm 4.
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Algorithm 3 (To determine any wildcard-period p if p > n
2 ) First pass

Input: A stream S of symbols si ∈ Σ with at most k wildcard characters.
Output: A succinct representation of all candidate wildcard periods and the position of the wildcard char-
acters.

1: initialize π
(m)
j = −1 for each 0 ≤ j < 4k log n+ 2 and 0 ≤ m ≤ logn.

2: initialize T C
m = ∅.

3: for each index i, let r be the largest m such that n
2 + n

4 + . . .+ n
2r ≤ i. do

4: using the k-mismatch algorithm, check whether

∆
(

S
[

1,
n

2r

]

, S
[

i+ 1, i+
n

2r

])

≤ 2k.

5: if so, let R = n
2 + n

4 + . . .+ n
2r−1 . then

6: let j be the integer for which i is in the interval

H
(r)
j =

[

R +
nj

2r+1(2k logn+ 1)
+ 1, R+

n(j + 1)

2r+1(2k logn+ 1)

)

7: if there exists no candidate t ∈ T C
r in the interval H

(r)
j then

8: add i to T C
r .

9: else
10: let t be the smallest candidate in T C

r ∩H
(r)
j and either π

(r)
j = −1 or π

(r)
j > 0.

11: if π
(r)
j = −1 then

12: set π
(r)
j = i− t.

13: else
14: set π

(r)
j = gcd

(

π
(r)
j , i− t

)

.

15: record the positions W of all wildcard characters

Algorithm 4 (To determine any wildcard-period p with p > n
2 ) Second pass

Input: A stream S of symbols si ∈ Σ with at most k wildcard characters, a succinct representation of all
candidate wildcard periods and the position of the wildcard characters.
Output: All wildcard-periods p > n

2 .

1: for each t and any r such that t ∈ T C
r do

2: Let R = n
2 + n

4 + . . .+ n
2r−1

3: Let j be the integer for which t is in the interval

H
(r)
j =

[

R +
nj

2r+1(2k logn+ 1)
+ 1, R+

n(j + 1)

2r+1(2k logn+ 1)

)

4: if π
(r)
j > 0 then ⊲ H

(r)
j has multiple values in T C

r

5: record up to 128k2 logn+ 1 unique fingerprints of length π
(r)
j , starting from t.

6: else ⊲ H
(r)
j has one value in T C

r

7: record up to 128k2 logn+ 1 unique fingerprints of length t, starting from t.

8: check if S[1, n− t] = S[t+ 1, n] and return t if this is true.

9: for each t which is in interval H
(r)
j =

[

R+ nj
2r+1(2k log n+1) + 1, R+ n(j+1)

2r+1(2k logn+1)

)

, for

10: some integer j do

11: if there exists an index in T C
r ∩H

(r)
j whose distance from t is a multiple of π

(r)
j then

12: check if S[1, n− t] = S[t+ 1, n] and return t if this is true.
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