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Abstract

In this paper we consider the notion of normality of sequences in shifts of finite type. A
sequence is normal if the frequency of each block exists and is equal to the Parry measure
of the block. We give a characterization of normality in terms of incompressibility by
lossless transducers. The result was already known in the case of the full shift.

1 Introduction

In this paper, we extend to the context of shifts the strong link between normality and
incompressibility by finite state machines. This link was known for the full shift, that is the
set of all infinite sequences over a fixed alphabet since the work of Schnorr and Stimm [18]
and Dai et al. [10].

On the one hand, normality is a weak notion of randomness. It has been introduced by
Borel in [6] more than a hundred years ago. Roughly speaking, it is required for a sequence
to be normal that for each length, all possible blocks of that length occur with the same
frequency in the sequence. It has been shown by Borel that almost all sequences (in a
measure-theoretic sense) are normal but almost nothing is known about specific sequences
coming from number theory like the expansions in some base of fundamental numbers as

√
2

or π. On the other hand, compressibility of sequences, especially by finite state machines, also
known as transducers, has been studied since the early days of computer science [13]. This is
mainly due to the large range of applications of compression techniques. These two important
notions are linked together by the characterization of normality by incompressibility. Normal
sequences are exactly those which cannot be compressed by some one-to-one transducer.
This is a rather robust characterization as it is valid for many variants of transducers: non-
deterministic, two-way [3, 8].

The notion of normality has been extended to broader contexts like the one of dynamical
systems and especially shifts of finite type [15]. These extensions are based on the different
characterizations of normality, namely uniform distribution [5] and martingales [2]. When
sofic shifts are irreducible and aperiodic, they have a measure of maximal entropy and a
sequence is then said to be normal if the frequency of each block equals its measure. This
extension to shifts meets the original aim of normality to study expansions of numbers in bases
when the shift arises from a numerical systems like the β-shifts coming from the numeration
in a non-integer base β. Normality can be again interpreted as the good distribution of blocks
of digits in the expansion of a number in a base β.

There are two main contributions in this paper. The first one is to give different formula-
tions of the definition of normality and to show that they indeed coincide. These formulations
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are similar to the ones used in the classical setting of the full shift and their equivalence in
that case is well-known [7]. The second contribution is a characterization theorem that proves
that a sequence is normal in a shift of finite type exactly when it is incompressible in the
shift by finite state transducers. Again this characterization holds in the case of the full shift
[18, 10].

This link between normality and automata opens the question whether selecting digits in
a sequence with an oblivious automaton preserves normality in a shift of finite type as it does
in the case of the full shift [1]. Oblivious means here that the selection of a digit is based on
the prefix of the sequence before the digit but not including it.

The paper is organized as follows. Section 2 introduces all basic notions like shifts and
normality. Section 3 is devoted to the equivalence of the different definitions of normality
given in the previous section. The notion of incompressibility by transducer is defined in
Section 4. The main result is stated and proved in Section 5.

2 Preliminaries

2.1 Notation

We write N for the set of all natural numbers. An alphabet A is a finite set with at least two
symbols. We write Aω for the set of all infinite words over A and Ak stands for the set of all
words of length k. The length of a finite word w is denoted by |w|. The positions in finite and
infinite words are numbered starting from 1. For a word w and positions 1 ≤ i ≤ j ≤ |w|, we
let w[i] and w[i..j] denote respectively the symbol at position i and the subword of w from
position i to position j (inclusive).

For any finite set S we denote its cardinality with |S|. We write log for the logarithm in
base 2.

2.2 Shift spaces and subshifts of finite type

In this article we are going to work on shift spaces, in particular subshifts of finite type (SFT).
Let A be a given alphabet. The full shift is the set Aω of all (one-sided) infinite sequences
(xn)n≥0 of symbols in A. The shift σ is the function from Aω to Aω which maps each sequence
(xn)n≥0 to the sequence (xn)n≥1 obtained by removing the first symbol.

Let F ⊂ A∗ a set of finite words called forbidden blocks. The subshift XF is the subset
of Aω made of sequences without any occurrences of blocks in F . More formally, it is the set

XF = {x : x[m..n] /∈ F for each 1 ≤ m ≤ n}.

A shift space of Aω or simply a shift is a subset X of Aω which is closed for the product
topology and invariant under the shift operator, that is σ(X) = X. This is equivalent to the
existence of a subset F ⊂ A∗ of forbidden blocks such that X = XF . The shift space is said
to be of finite type if X = XF for some finite set F of forbidden blocks [14, Def. 2.1.1]. Up
to a change of alphabet, any shift space of finite type is the same as a shift space XF where
any forbidden block has length 2, that is F ⊂ A2. For simplicity, we always assume that each
forbidden block has length 2. In that case, the set F is fully determined by the A×A-matrix
M = (mab)a,b∈A where mab = 1 if ab /∈ F and mab = 0 otherwise and we write X = XM .
The shift X is called irreducible if the graph induced by the matrix M is strongly connected,
that is, for each symbols a, b ∈ A, there exists an integer n (depending on a and b) such that
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Mn
ab > 0. The shift X is called irreducible and aperiodic if there exists an integer n such that

Mn
ab > 0 for each symbols a, b ∈ A.
For a shift X and n ∈ N, we let B(X) (resp., Bn(X) denote the set of all blocks (resp.,

blocks of length n) that occur in sequences of X. The (topological) entropy h(X) of the
shift X is defined by

h(X) = lim
n→∞

log |Bn(X)|
n

.

If X = XM for some {0, 1} matrix M , the entropy entropy h(X) can be computed as follows.
By the Perron-Frobenius theory, the non-negative matrix M has a positive eigenvalue λ of
greatest modulus [19, Thm 1.5]. The entropy h(X) of X = XM is then equal to log λ [12,
Obs. 1.4.2].

Example 1 (Golden mean shift). The golden mean shift is the shift space XF ⊂ {0, 1}ω
where the set of forbidden blocks is F = {11}. It is made of all sequences over {0, 1} with
no two consecutive 1. This subshift is also equal to XM where M = ( 1 1

1 0 ) and its entropy is
therefore log λ where λ = (1 +

√
5)/2 is the golden mean.

A probability measure on A∗ is a function µ : A∗ → [0, 1] such that µ(ε) = 1 and

∑

a∈A

µ(wa) = µ(w)

holds for each word w ∈ A∗. The simplest example of a probability measure is a Bernoulli mea-
sure. It is a morphism from A∗ to [0, 1] (endowed with multiplication) such that

∑

a∈A µ(a) =
1. Among the Bernoulli measures there is the uniform measure which maps each word w ∈ A∗

to |A|−|w|. In particular, each symbol a is mapped to µ(a) = 1/|A|.
By the Carathéodory extension theorem, a measure µ on A∗ can be uniquely extended to

a probability measure µ̂ on Aω such that µ̂(wAω) = µ(w) holds for each word w ∈ A∗. In the
rest of the paper, we use the same symbol for µ and µ̂. A probability measure µ is said to be
(shift) invariant if the equality

∑

a∈A

µ(aw) = µ(w)

holds for each word w ∈ A∗. We now introduce the entropy of a measure [21, Chap. 4]. The
entropy h(µ) of a measure µ is defined by

h(µ) = lim
n→∞

− 1

n

∑

w∈An

µ(w) log µ(w)

with the usual convention 0 log 0 = 0.
For a stochastic matrix P and a stationary distribution π, that is a line vector such that

πP = π, the Markov measure µπ,P is the invariant measure defined by the following formula
[12, Lemma 6.2.1].

µπ,P (a1a2 · · · ak) = πa1Pa1a2 · · ·Pak−1ak

A simple computation shows that the entropy h(µπ,P ) of such a measure is given by the
following formula [12, Obs. 6.2.10].

h(µπ,P ) = −
∑

i,j∈A

πiPij log Pij
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with the convention 0 log 0 = 0.
A measure µ is compatible with a shift X if it only puts weight on blocks of X, that

is, µ(w) > 0 implies w ∈ B(X) for each word w. It is well known that each compatible
measure µ satisfies h(µ) ≤ h(X) [12, Obs. 6.2.13]. For a subshift of finite type, there is a
unique compatible measure with maximal entropy h(X) [12, Thm. 6.2.20]. This measure is
called the Parry measure and it is a Markov measure. In the rest of the document we let µX

denote the Parry measure of an SFT X. This measure can be explicitly given as follows. The
Parry measure of an SFTXM is the (one step) Markov measure given by the stochastic matrix
P = (Pi,j) where Pi,j = Mi,jrj/λri and the stationary probability distribution π defined by
πi = liri, where λ is the Perron eigenvalue of the matrix M and the vectors l and r are
respectively left and right eigenvectors for λ normalized so that

∑k
i=1 liri = 1.

Example 2 (Parry measure of the golden mean shift). Consider again the golden mean
shift X. Its Parry measure is the Markov measure µπ,P where π is the distribution π =

(λ2/(1+λ2), 1/(1+λ2)) and P is the stochastic matrix P =
(

1/λ 1/λ2

1 0

)

where λ is the golden
mean.

2.3 Normality

We start with the notation for the number of occurrences of a given word within another
word.

Definition 3 (Occurences). For w and u two words, the number |w|u of occurrences of u
in w and the number ||w||u,r of aligned occurrences with offset r of u in w are respectively
given by

|w|u = |{i : w[i..i + |u| − 1] = u}|,
||w||u,r = |{i : w[i..i + |u| − 1] = u and i = r mod |u|}|.

The number ||w||u of aligned occurrences is given by

||w||u = ||w||u,1

For example, |aaaa|aa = 3, ||aaaa||aa = 2 and ||aaaa||aa,2 = 1.
Borel’s definition [6] of normality for a sequence x ∈ Aω is that x is normal if for each

integer ℓ ≥ 1 and each word w ∈ Aℓ of length ℓ,

lim
n→∞

||x[1..nℓ]||w
n

= |A|−ℓ

This definition is extended to the case of an SFT by replacing the uniform measure by
the Parry measure of the SFT. A sequence x of an SFT X is called normal (in X) if for each
integer ℓ ≥ 1 and each word w ∈ Aℓ of length ℓ,

lim
n→∞

||x[1..nℓ]||w
n

= µX(w)

where µX is the Parry measure of X. This definition is based on aligned occurrences. It will
be seen in the next section that alternative definitions based on non-aligned occurrences are
actually equivalent.
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3 Equivalence between definitions of normality

In the literature there are several definitions of normality of a sequence. Some of them are
based on aligned occurrences and some others are based on non-aligned occurrences. It is
part of the folklore that all these definitions are indeed equivalent. For the classical normality,
proofs can be found in [7, Thms 4.2 and 4.5]. For completeness, we provide here a proof for
the case of Markov measure.

Theorem 4. Let µ be a Markov measure on A∗. For each sequence x, the following three
statements are equivalent.

(1) Aligned normality: for each integer ℓ and each word w ∈ Aℓ,

lim
n→∞

||x[1..nℓ]||w
n

= µ(w)

(2) Strong aligned normality: for each ℓ, k ∈ N and each word w ∈ Aℓ,

lim
n→∞

||σk(x)[1..nℓ]||w
n

= µ(w)

(3) Non-aligned normality: for each word w ∈ A∗,

lim
n→∞

|x[1..n]|w
n

= µ(w).

Before proving the theorem, we state two very simple but useful lemmas. The first lemma
states that obtaining a proper upper or lower bound for asymptotic frequencies of all words of
a given length is sufficient to prove that limiting frequencies will follow the expected measure.
The proof follows directly from the equality

∑

w∈Aℓ µ(w) = 1 for each integer ℓ ≥ 0.

Lemma 5. Let µ be a probability measure and ℓ a fixed non-negative integer. For each
sequence x ∈ Aω, the following three statements are equivalent.

(1) limn→∞ ||x[1..nℓ]||w/n = µ(w) for each w ∈ Aℓ.

(2) lim supn→∞ ||x[1..nℓ]||w/n ≤ µ(w) for each w ∈ Aℓ.

(3) lim infn→∞ ||x[1..nℓ]||w/n ≥ µ(w) for each w ∈ Aℓ.

The next lemma states that it is sufficient to look at lengths which are multiples of a fixed
integer k. The proof follows easily from the observation that there are at most k occurrences
of w starting between positions kn and k(n+ 1).

Lemma 6. Let k ∈ N be a fixed positive integer. For each sequence x and each ℓ ∈ N and
each finite word w ∈ Aℓ, the following three statements hold.

(1) lim infn→∞ ||x[1..nℓ]||w/n = lim infn→∞ ||x[1..nkℓ]||w/(nk)

(2) lim supn→∞ ||x[1..nℓ]||w/n = lim supn→∞ ||x[1..nkℓ]||w/(nk)

(3) limn→∞ ||x[1..nℓ]||w/n = limn→∞ ||x[1..nkℓ]||w/(nk) if such limits exist.

Lemma 5 and Lemma 6 are stated for aligned occurrences frequencies but they are also
valid for occurrences frequencies.

Proof of Theorem 4. The equivalence between the three definitions of normality is proved as
follows. We successively show that (1) implies (2), (2) implies (3) and that (3) implies (1).
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(1) implies (2) It is sufficient to prove that if x presents aligned normality then σ(x) also
presents aligned normality.

For w ∈ Aℓ, k ≥ ℓ and 1 ≤ i ≤ k− ℓ+1 we define B(k,w, i) as the set of words of length k
which contains an occurrence of w at position i, that is B = {v ∈ Ak : v[i..i + |w| − 1] = w}.
Since the Markov measure µ is invariant µ(B(k,w, i)) = µ(w) for any |w| ≤ k and 1 ≤ i ≤
k − |w| + 1.

For any w ∈ Aℓ and r ∈ N.

lim inf
n→∞

||σ(x)[1..nℓ]||w
n

= lim inf
n→∞

||σ(x)[1..nrℓ]||w
nr

≥ lim inf
n→∞

1

r

r−2
∑

k=0

∑

v∈B(rℓ,w,2+ℓk)

||x[1..nrℓ]||v
n

=
1

r

r−2
∑

k=0

∑

v∈B(ℓr,w,2+ℓk)

µ(v)

=
r − 1

r
µ(w)

Since this inequality holds for any r ∈ N.

lim inf
n→∞

||σ(x)[1..nℓ]||w
n

≥ µ(w)

and we conclude by Lemma 5.

(2) implies (3) Notice that for any w ∈ Aℓ,

|x[1..n]|w =

ℓ−1
∑

i=0

||σi(x)[1..n − i]||w

then

lim
n→∞

|x[1..n]|w
n

=

ℓ−1
∑

i=0

lim
n→∞

||σi(x)[1..n − i]||w
n

=

ℓ−1
∑

i=0

µ(w)/ℓ = µ(w)

(3) implies (1) Let w be a finite word of length ℓ. For each word v, we define ||v||w,∗ =
maxℓi=1 ||v||w,i. And, for a given ε > 0 and k ∈ N, we define a set Bad(w, k, ε) of words of
length kℓ− 1 where the frequency of aligned occurrences of w is bad:

Bad(w, k, ε) = {v ∈ Akℓ−1 : ||v||w,∗ > (k − 1)(µ(w) + ε)}.

By the ergodic theorem for irreducible Markov chains [16, Thm. 1.10.2], for each positive
real numbers δ, ε > 0, there exists k0 such that for any k ≥ k0,

µ(Bad(w, k, ε)) < δ.
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Now, for any such k ≥ k0,

lim sup
n→∞

||x[1..nℓ]||w
n

= lim sup
n→∞

||x[(k − 1)ℓ+ 1..nℓ]||w
n

≤ lim sup
n→∞

1

n(k − 1)ℓ

(n−1)ℓ+1
∑

t=1

||x[t..t+ kℓ− 2]||w,2−t

≤ lim sup
n→∞

1

n(k − 1)ℓ

(n−1)ℓ+1
∑

t=1

||x[t..t+ kℓ− 2]||w,∗

= lim sup
n→∞

∑

v∈Akℓ−1

|x[1..(n + k − 1)ℓ− 1]|v
nℓ

||v||w,∗

k − 1

≤
∑

v∈Akℓ−1

(

lim sup
n→∞

|x[1..(n + k − 1)ℓ− 1]|v
nℓ

) ||v||w,∗

k − 1

=
∑

v∈Akℓ−1

(

lim sup
n→∞

|x[1..nℓ]|v
nℓ

) ||v||w,∗

k − 1

=
∑

v∈Akℓ−1

µ(v)
||v||w,∗

k − 1

=
∑

v∈Akℓ−1\Bad(w,k,ǫ)

µ(v)
||v||w,∗

k − 1
+

∑

v∈Bad(w,k,ǫ)

µ(v)
||v||w,∗

k − 1

≤ (µ(w) + ε)
∑

v∈Akℓ−1\Bad(w,k,ǫ)

µ(v) +
∑

v∈Akℓ−1\Bad(w,k,ǫ)

µ(v)

≤ µ(w) + ε+ δ

The inequality on the second line comes from the fact that every aligned occurrence of w
in a position jℓ+ 1 with k − 1 ≤ j < n is counted (k − 1)ℓ times as ||x[t..t+ kℓ− 2]||w,2−t for
(j + 1 − k)ℓ + 2 ≤ t ≤ jℓ + 1. This technique is due to Cassels [9]. Since the last inequality
is true for any δ, ε > 0, it follows that lim supn→∞ ||x[1..nℓ]||w/n ≤ µ(w) and we conclude by
Lemma 5.

4 Finite-state compressibility

In this section, we introduce the automata with output also known as transducers which are
used to characterize normality by incompressibility. We consider non-deterministic transduc-
ers computing functions from sequences in a shift X to sequences in a shift Y , that is, for
a given input sequence x ∈ X, there is at most one output sequence y ∈ Y . We focus on
transducer that operate in real-time, that is, they process exactly one input alphabet symbol
per transition. We start with the definition of a transducer.

Definition 7. A non-deterministic transducer is a tuple T = 〈Q,A,B, δ, I, F 〉, where

• Q is a finite set of states,

• A and B are the input and output alphabets, respectively,
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• δ ⊂ Q×A×B∗ ×Q is a finite transition relation,

• I ⊆ Q and F ⊆ Q are the sets of initial and final states, respectively.

A transition of such a transducer is a tuple 〈p, a, v, q〉 in Q×A×B∗ ×Q which is written
p a|v−−→ q. A finite (respectively infinite) run is a finite (respectively infinite) sequence of
consecutive transitions,

q0
a1|v1−−−→ q1

a2|v2−−−→ q2 · · · qn−1
an|vn−−−→ qn (resp. q0

a1|v1−−−→ q1
a2|v2−−−→ q2

a3|v3−−−→ q3 · · · ).

Its input and output labels are a1 · · · an and v1 · · · vn respectively. A finite run is written
q0

a1···an|v1···vn−−−−−−−−→ qn. An infinite run is final if the state qn is final for infinitely many integers n.
In that case, the infinite run is written q0

a1a2a3···|v1v2v3···−−−−−−−−−−−→ ∞. An infinite run is accepting if
it is final and furthermore its first state q0 is initial. This is the classical Büchi acceptance
condition [17]. We always assume that for each sequence x, there is at most one sequence y
such that there is an accepting run q0

x|y−−→ ∞ and we write y = T (x). In that case, it can
be assumed that there is exactly one accepting run with input label x. By a slight abuse of
notation, we write T (x[m..n]) for the output of T along that run while reading the factor
x[m..n]. We always assume that all transducers are trim: each state can occur in an accepting
run.

A transducer T is called bounded-to-one (resp., one-to-one) if there is a constant K such
that for each sequence y the set T −1(y) = {x : T (x) = y} has cardinality a most K (resp.,
at most 1). We call here compressor a bounded-to-one transducer. In the literature, lossless
deterministic transducers are often considered. As it was shown in [3, Prop 2.1], this is an
intermediate notion between one-to-one and bounded-to-one. We prefer not to use this notion
as it is a structural property of the transducer and not of the function it realizes.

q0 q1 q20|0
0|1

1|1

0|0
1|1

1|0

Figure 1: A transducer for the multiplication by 3 in base 2

The transducer pictured in Figure 1 is non-deterministic. It realizes multiplication by 3
on binary expansions of real numbers. If the input x is the binary expansion of some real
number α < 1/3, then the output is the binary expansion of 3α.

The compression ratio ρC(x) of a compressor C on a sequence x is

ρC(x) = lim inf
n→∞

|C(x[1..n])|
n

.

A sequence x of a shift X is called compressible in X if there is a compressor C : X → X such
that ρC(x) < 1.

5 Main Result

It follows from the results in [18, 10] that the words x with compression ratio ρ(x) equal to 1
are exactly the normal words in the full shift. A direct proof of this result appears in [4].
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Extensions of this characterization for non-determinism and extra memory appear in [3, 8].
The following theorem extends this result to the context of shifts of finite type.

Theorem 8. Let X be an irreducible shift of finite type and x a sequence in X. The sequence x
is normal in X if and only it is incompressible in X.

The following proposition is a very classical result showing that elements of a given shift
can be encoded in another shift with a compression ratio close to the ratio of their entropies.
To simplify the proof, we assume that the shifts are aperiodic but this is not really necessary.
The result can also be extended to sofic shifts.

Proposition 9. Let X and Y be two irreducible and aperiodic shifts of finite type. For each
real number ε > 0, there is a one-to-one transducer T from X into Y such that for each
x ∈ X,

lim sup
n→∞

|T (x[1..n]|)
n

<
h(X)

h(Y )
+ ε.

Proof. Suppose that X and Y are the subshifts X = XM and Y = XN for the two {0, 1}
matrices M and N . Let λ and µ be respectively the eigenvalues of greatest modulus of M
and N , so that h(X) = log λ and h(Y ) = log µ. Let p/q be a rational number such that
h(X)/h(Y ) < p/q < h(X)/h(Y ) + ε.

Since the sequence Mn/λn converges to some matrix, there is a constant c such that
∑

a,b∈AMn
a,b ≤ cλn for each integer n ≥ 0. Similarly, there is another constant d, a symbol a

and an integer n0 such that Nn
a,a ≥ dµn for each n ≥ n0. Since q log λ < p log µ, there is an

integer n1 such that cλqn < dµpn for each n ≥ n1. Let us recall that Mn
a,b is the number of

words w of length n − 1 such that awb is a block of X and the sum
∑

a,b∈AMn
a,b is thus the

number of blocks of length n+ 1 in X.
From the previous inequalities, it follows that, for n ≥ max(n0, n1), the number |Bqn+1(X)|

of blocks of length qn + 1 in X is less than the number of words w of length pn − 1 such
that awa is a block of Y . Let us choose an integer n such that n ≥ max(n0, n1). Let f be a
one-to-one function which maps each block u of length qn+ 1 of X to a word w = f(u) such
that awa is a block of Y . The transducer T reads each word x ∈ X by blocks of length qn+1.
For each read block u of length qn + 1, it outputs aw where w = f(u). Since f is one-to-
one, the function realized by T is also one-to-one. Furthermore, limN→∞ |T (x[1..N ]|)/N =
pn/(qn+ 1) < h(X)/h(Y ) + ε.

The following corollary allows us to work with transducers from a specific shift into the
full-shift and adapt those results to the case where the transducer has the same shift as
domain and image.

Corollary 10. There is a compressor C : X → X such that ρC(x) < 1 if and only if there is
a compressor C′ : X → 2ω such that ρC′(x) < h(X).

Proof. Suppose that there is a compressor C : X → X such that ρC(x) < 1. Let ε be a positive
real number such that (h(X) + ε)ρC(x) < h(X). By the previous proposition with Y = 2ω,
there is a transducer T from X to 2ω such that lim supn→∞ |T (x[1..n]|)/n ≤ h(X) + ε. The
composition C′ = T ◦ C gives the required compressor. The converse is proved similarly by
using the previous proposition with X = 2ω and Y = X.

The following result is a classical generalization of Kraft’s inequality. It is the key lemma
used to prove that normal sequences cannot be compressed by finite state machines.
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Lemma 11. Let C be a compressor from X to Y with |Q| states. For each word w, let LC(w)
be the minimum number of symbols written by a finite run in C with input label w. Then

∑

w∈Aℓ

2−LC(w) ≤ K|Q|2(1 + ℓrC)

where |C−1(y)| ≤ K for each y ∈ Y and rC is the maximum number of symbols written by a
single transition of C.
Proof. We claim that for each integer k the cardinality of the set {w ∈ Aℓ : LC(w) = k} is at
most K|Q|22k. Let p and q be two states of C and v a word of length k. We claim that the
set {w ∈ Aℓ : p w|v−−→ q} has cardinality at most K. Suppose that there are n distinct words
w1, . . . , wn in this set. Since the transducer is trim, there is a finite run i u|v′−−→ p from a n
initial state i and a final run q x|y−−→ ∞. It follows that C(uwjx) = v′vy for each 1 ≤ j ≤ n
and thus n ≤ K. If a word w belongs to {w ∈ Aℓ : LC(w) = k}, then there are two states p, q
and a word v of length k such that w belongs to {w ∈ Aℓ : p w|v−−→ q}. This proves the upper
bound for the cardinality of {w ∈ Aℓ : LC(w) = k} since there are |Q|2 possible choices for p
and q and 2k possible choices for v.

∑

w∈Aℓ

2−LC(w) =

ℓrC
∑

k=0

|{w ∈ Aℓ : LC(w) = k}|2−k

≤
ℓrC
∑

k=0

K|Q|2 = K|Q|2(1 + ℓrC)

Let u ∈ An and w ∈ Aℓ be two finite words of length n and ℓ and let x be an infinite word.
First define the relative frequency P (w, u) by P (w, u) = ℓ||u||w/n. This is just the number
of aligned occurrences of w in u normalized by the factor ℓ/n such that

∑

w∈Aℓ P (w, u) = 1.
The ℓ-block entropy hℓ(u) of u is then defined hℓ(u) = −1

ℓ

∑

w∈Aℓ P (w, u) log P (w, u). This
ℓ-block entropy is extended to infinite words by setting hℓ(x) = lim infk→∞ hℓ(x[1..kℓ]). The
block entropy h(x) of x is then defined by h(x) = lim infℓ→∞ hℓ(x)

It should be noted that the block entropy hℓ(x) has been defined using aligned occurrences.
This is the same as Ĥℓ in [20] but not the same as Ĥℓ in [13] where entropy is defined using
non-aligned occurrences. Therefore the existence of the limit limℓ→∞ hℓ(x) does not follow
from the results in [13] and h(x) is defined as h(x) = lim infℓ→∞ hℓ(x).

Lemma 12 (Proof of Theorem 3 in [13]). Given an alphabet A and a sequence x ∈ Aω. For
any compressor C : Aω → {0, 1}ω:

ρC(x) ≥ h(x)

For completeness, we present the proof of this theorem as given in [20].

Proof. Let us consider a bounded-to-one compressor C with |Q| states. Suppose that for each
y ∈ {0, 1}ω , |C−1(y)| ≤ K. For a word w ∈ Aℓ, C produces an output depending on its current
state. Let us denote as LC(w) the length of the shortest output that C produces when reading
w, where the minimum is taken over all possible finite runs with w as input label.

ρC(x[1..kℓ]) ≥
1

ℓ

∑

w∈Al

P (x[1..kℓ], w) · LC(w)

10



Then,

hℓ(x[1..kℓ])−ρC(x[1..kℓ]) ≤
1

ℓ

∑

w∈Aℓ

P (x[1..kℓ], w) log

(

2−LC(w)

P (x[1..kℓ], w)

)

By Jensen inequality applied to the log function,

hℓ(x[1..kℓ]) − ρC(x[1..kℓ]) ≤
1

ℓ
log





∑

w∈Aℓ

2−LC(w)





By the generalized Kraft’s inequality of Lemma 11,

hℓ(x[1..kℓ]) − ρC(x[1..kℓ]) ≤
1

ℓ
log(K|Q|2(1 + ℓrC))

and taking first the limit when k → ∞ and then the limit when ℓ → ∞ yields the required
inequality h(x) ≤ ρC(x).

We now come to the proof of the main theorem.

Proof of Theorem 8. Assume that the sequence x is normal in the shift X. Let φ : [0, 1] → R

be defined as φ(p) = −p log p with the usual convention that 0 log 0 = 0. Since φ is a
continuous function and for every word w ∈ Aℓ, limk→∞ P (w, x[1..kℓ]) = µ(w)

hℓ(x) =
1

ℓ

∑

w∈Aℓ

φ(µ(w)).

Therefore h(x) = lim infℓ→∞ hℓ(x) = h(µ) = h(X). By Lemma 12, there is no compressor
C′ : X → {0, 1}ω with a compression ratio better than h(X). By Corollary 10 we conclude
that there is no compressor C : X → X such that ρC(x) < 1.

Now suppose that the sequence x is not normal. By definition, there is a finite word
w0 ∈ A∗ such that either

lim
n→∞

||x[1..nℓ]||w0

n
6= µX(w0)

or this limit does not exist where ℓ = |w0| is the length of w0.
It is possible to choose a subsequence of positions 1 ≤ n1 < n2 < n3 < · · · such that

the ratio ||x[1..niℓ]||w/ni converges for every w ∈ Aℓ and such that the limit of this ratio is
different from µ(w0) for w = w0.

Let M = |Bℓ(X)| be the number of blocks of length ℓ in X and let B = {1, 2, . . . ,M}
be an alphabet of cardinality M . We can encode x into a sequence y ∈ Bω by taking
aligned words of length ℓ in x and representing them as a single symbol of B using a bijective
mapping f : Bℓ(X) → B. The sequence y belongs to a subshift of finite type Y with entropy
h(Y ) = ℓh(X).

For every b ∈ B, the limit limi→∞ |y[1..ni]|b/ni does exist, and for b0 = f(w0), it satisfies
limi→∞ |y[1..ni]|b0/ni 6= µY (b0) = µX(w0).
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Let n′
1, n

′
2, . . . be a subsequence of n1, n2, . . . such that the ratio |y[1..n′

i]|ab/n′
i converges

for each a, b ∈ B. Define the distribution vector π = (πa)a∈B and the stochastic matrix
P = (Pab)a,b∈B by

πa = lim
i→∞

|y[1..n′
i|a

n′
i

and Pab =











lim
i→∞

|y[1..n′
i]|ab

|y[1..n′
i]|a

if πa 6= 0

1

M
otherwise.

The stochastic matrix P is used to defined a measure ν on A∗ by setting for each word
a1a2 · · · an ∈ B∗

ν(a1a2 · · · an) =
1

M

n−1
∏

i=1

Paiai+1
.

with the convention that ν(a) = 1/M for each symbol a ∈ B. Note that this measure might
be not invariant because the vector (1, . . . , 1) might be not a left eigenvector of the matrix P .

Let k be an integer to be fixed later. We construct an appropriate encoding of Bk based
on the values of ν. Some care must be taken for words where ν takes the value 0. Let
S = {u ∈ Bk : ν(u) = 0} be the subset of words of length k mapped to 0 by ν and T = Bk \S
be its complement. Note that if u = a1a2 · · · ak belongs to S, there is then some index
1 ≤ i ≤ k − 1 such that Paiai+1

= 0, which means that limi→∞ |y[1..n′
i]|aiai+1

/n′
i = 0, and in

turn limi→∞ ||y[1..n′
i||u/n′

i = 0.
If S is non-empty, define a one-to-one mapping

CS : S → {0, 1}L where L = ⌈log |S|⌉

For T , we define a prefix-free code

CT : T → {0, 1}∗ such that |CT (u)| = ⌈− log ν(u)⌉

The existence of such a code is guaranteed by Kraft’s inequality since
∑

u∈T ν(u) = 1. The
functions CS and CT are now used to define a unique function Ck : Bk → {0, 1}∗ as follows.

Ck(u) =

{

0CS(u) if u ∈ S

1CT (u) if u ∈ T

Since both functions CS and CT are one-to-one, the function Ck is also one-to-one. This latter
function is now used to define a transducer C : Y → {0, 1}ω which reads each sequence in Y
by blocks of length k and for each read block u ∈ Bk outputs Ck(u). Since the function Ck is
one-to-one, the transducer C is also one-to-one. We now estimate its compression ratio ρC(y)
on the input y.
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ρC(y) = lim inf
n→∞

|C(y[1..n])|
n

≤ lim inf
i→∞

|C(y[1..n′
i])|

n′
i

= lim inf
i→∞

1

n′
i

∑

u∈Bk

||y[1..n′
i]||u |Ck(u)|

= lim inf
i→∞

1

n′
i

(

∑

u∈S

||y[1..n′
i]||u(L+ 1) +

∑

u∈T

||y[1..n′
i]||u(1 + |CT (u)|)

)

= lim inf
i→∞

1

n′
i

∑

u∈T

||y[1..n′
i]||u(1 + |CT (u)|)

= lim inf
i→∞

1

n′
i

∑

u∈T

||y[1..n′
i]||u (1 + ⌈− log ν(u)⌉)

≤ lim inf
i→∞

1

n′
i

∑

u∈T

||y[1..n′
i]||u

(

2 + log
M

∏k−1
j=1 Puiui+1

)

=
(2 + logM) ⌊n′

i/k⌋
n′
i

− lim sup
i→∞

1

n′
i

∑

u∈T

||y[1..n′
i]||u

k−1
∑

j=1

log(Puiui+1
)

≤ 2 + logM

k
− lim sup

i→∞

1

n′
i

n′
i
−1
∑

j=1

log Pyiyi+1

=
2 + logM

k
− lim sup

i→∞

∑

a,b∈B

|y[1..n′
i]|ab

n′
i

log Pab

=
2 + logM

k
−
∑

a,b∈B

πaPab log Pab

Since the last inequality is valid for any k ∈ N, and

−
∑

a,b∈B

πaPab log Pab = h(µπ,P ) < h(µY ) = h(Y ) = ℓh(X)

We conclude that there is a compressor C : Y → {0, 1}ω , such that ρC(y) < ℓh(X). Now,
define the compressor C′ : X → {0, 1}ω , which takes blocks of ℓ symbols from the input,
maps them into B using the bisection f : Bℓ(X) → B and then simulates the transducer C to
produce a binary output. Its compression ratio on the input x is given by

ρC′(x) = ρC(y)/ℓ < h(X).

This inequality implies, by Corollary 10, that there is a compressor C′′ : X → X, such that
ρC′′(x) < 1.

6 Outlook

The main theorem (Theorem 8) is stated and proved for shifts of finite type for simplicity.
We would like to provide some evidence that the result can be generalized to the case of sofic
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shifts. The Parry measure of an irreducible sofic shift does exist and it is an hidden Markov
chain (see [22, Thm 1], [11, Thm 4] and [14, p. 444]).

In the proof of Theorem 4, the fact that the measure µ is a Markov chain is only used
through the ergodic theorem. Since this latter result also holds for hidden Markov chains,
Theorem 4 can be lifted to hidden Markov chains.

The proof of Proposition 9 can be adapted to sofic shifts. The rest of the proof of Theo-
rem 8 does not really use the fact that the shift X is of finite type.
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