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Deterministic Min-Cost Matching with Delays

Yossi Azar∗ Amit Jacob-Fanani†

Abstract

We consider the online Minimum-Cost Perfect Matching with Delays (MPMD) problem
introduced by Emek et al. (STOC 2016), in which a general metric space is given, and requests
are submitted in different times in this space by an adversary. The goal is to match requests,
while minimizing the sum of distances between matched pairs in addition to the time intervals
passed from the moment each request appeared until it is matched.

In the online Minimum-Cost Bipartite Perfect Matching with Delays (MBPMD) problem
introduced by Ashlagi et al. (APPROX/RANDOM 2017), each request is also associated with
one of two classes, and requests can only be matched with requests of the other class.

Previous algorithms for the problems mentioned above, include randomizedO (logn)-competitive
algorithms for known and finite metric spaces, n being the size of the metric space, and a deter-
ministic O (m)-competitive algorithm, m being the number of requests.

We introduce O
(

mlog( 3

2
+ǫ)
)

-competitive deterministic algorithms for both problems and for

any fixed ǫ > 0. In particular, for a small enough ǫ the competitive ratio becomes O
(

m0.59
)

.
These are the first deterministic algorithms for the mentioned online matching problems, achiev-
ing a sub-linear competitive ratio. Our algorithms do not need to know the metric space in
advance.

1 Introduction

In the algorithmic graph theory, a Perfect Matching is a subset of graph edges, in which each vertex
of the graph is incident on exactly one edge of the subset, and the weight of the matching is the
sum of the weights of the edges of the subset. In the well known Minimum-Cost Perfect Matching
problem a weighted graph is given, and a Perfect Matching of minimum weight is to be found. The
Blossom Algorithm due to Edmonds [9] is the first algorithm to solve this problem in polynomial
time.

Many versions of the Minimum-Cost Perfect Matching problem have been studied over the last
few decades, some of the noticeable variants are online versions of the problem (e.g. Minimum-Cost
Perfect Matchings with Online Vertex Arrival due to Kalyanasundaram and Pruhs [14]).

In this paper we suggest a deterministic algorithm for the Minimum-Cost Perfect Matching with
Delays (MPMD) variant, which was introduced by Emek et al. [10], and a similar deterministic
algorithm for another variation of the problem - the Minimum-Cost Bipartite Perfect Matching
with Delays (MBPMD) problem, which was introduced by Ashlagi et al. [2].

To illustrate the MPMD problem, imagine players logging in through a server to an online
game at different times, unknown a priori to the server they have connected through. The server
then needs to match between the players while maximizing their satisfaction from playing the game.
Players feel satisfied when they play against players at a level similar to their own. Therefore, when
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pairing players, the server needs to consider the difference in levels between the players, called the
connection cost.

Once logged in, a player doesn’t necessarily start playing instantly, as the server can postpone
the decision regarding with whom to match the player, until a good match is found (i.e. another
player at a similar level logs in to the game). This is a poor strategy since players are unhappy
when forced to wait too long until they start playing. The time a player has to wait until the game
starts is called the delay cost.

More formally, an adversary presents requests at points in a general metric space, in an online
manner. The goal is to produce a minimum-cost perfect matching when the cost of an edge is the
sum of its connection cost (the distance between the two points in the metric space) and the delay
cost of the two requests matched by the edge. All requests have to be matched by the server after
a finite time from the moment they have arrived.

The MBPMD problem is an extension of the MPMD problem (due to Ashlagi et al. [2]), in
which each of the requests may take one of two colors, and each edge of the matching, must be
incident on one request from each color. The MBPMD problem has many applications, such as
matching drivers to passengers (Uber, Lyft), job finding platforms, etc.

Background. The standard method used to measure an online algorithm’s performance is its
competitive ratio. We use this method when comparing the performance of matching algorithms
for both MPMD and MBMPD. An algorithm is α-competitive if the maximum ratio between the
cost of the algorithm to the cost of the optimum solution, over all inputs, is bounded by α.

The first algorithm for MPMD was developed by Emek et al. [10] with an expected competitive
ratio O

(

log2 n+ log∆
)

on a finite metric space of size n, where ∆ is the aspect-ratio of the metric
space (the ratio of the maximum distance to the minimum distance between any two points in
the metric space). Azar et al. [3] improved the competitive ratio to O (log n), and showed a lower
bound of Ω

(√
log n

)

(both deterministic and randomized). Ashlagi et al. [2] improved this lower

bound to Ω
(

logn
log logn

)

(both deterministic and randomized). They also gave an O (log n)-competitive

randomized algorithm for MBPMD.
All mentioned above algorithms are randomized (on a general finite metric). In online algo-

rithms where one cannot repeat the algorithm in case the cost is high, a deterministic algorithm is
preferable. Bienkowski et al. [7] provided the first deterministic algorithm for MPMD on general
metrics, with a competitive-ratio of O

(

m2.46
)

, m being the number of requests. While the previous
algorithms require the metric space to be known a priori, their algorithm does not, and is also
applicable when the metric space is revealed in an online manner. Bienkowski et al. also noted
that the algorithm of [3] can be used to provide an O (n)-competitive deterministic algorithm for
a general known metric space. Recently, Bienkowski et al. [6] provided a new primal-dual deter-
ministic algorithm for MPMD on general metrics, with a competitive-ratio of O (m), m being the
number of requests.

Prior to our result there was no deterministic sub-linear competitive algorithm, neither in n nor
in m.

Our Contribution. In this paper we introduce deterministic algorithms for both versions of the

problem, both with a competitive ratio O
(

1
ǫ
mlog( 3

2
+ǫ)
)

. When the constant ǫ is small enough, this

becomes O
(

m0.59
)

. Our algorithms do not need to know the metric space in advance.
We present a simple algorithm, which is an adaptation of the greedy algorithm for theMinimum-

Cost Perfect Matching problem by Reingold and Tarjan [21] to an online environment. In our
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algorithm, requests grow hemispheres around them in a metric that is the Cartesian product of the
original metric and the time axis (also called the time-augmented metric space). The hemispheres
radii grow slowly in the negative direction of the time axis. Once a request is found on the boundary
of another request’s hemisphere, they are matched by the algorithm. Our analysis is inspired by
the analysis of the original greedy algorithm by Reingold and Tarjan.

In the bipartite case, the algorithm is essentially the same, but requests are matched only if
they are of different colors.

Related Work. First we consider related work with delays. Since Emek et al. [10] introduced
the notion of online problems with delayed service, there has been a growing number of works
studying such problems (e.g. Online Service with Delays [4], Minimum-Cost Bipartite Perfect
Matching with Delays [2], Minimum-Cost Perfect Matching with Delays for Two Sources [11]).
Works dealing with the Minimum-Cost Perfect Matching with Delays and Minimum-Cost Bipartite
Perfect Matching with Delays problems, such as the papers by Emek et al. [10], Azar et al. [3],
Ashlagi et al. [2] and Bienkowski et al. [7], are the most closely related to this work. As mentioned
above, Emek et al. [10] provided a randomized O

(

log2 n+ log∆
)

-competitive algorithm for MPMD
on general metrics, in which n is the size of the metric space and ∆ is the aspect ratio. They consider
the randomized embeddings of the general metric space into a distribution over metrics given by
hierarchically separated full binary trees, with distortion O (log n), and give a randomized algorithm
for the hierarchically separated trees metrics.

Subsequently, Azar et al. [3] provided a randomized O (log n)-competitive algorithm for the
same problem, thus improving the original upper bound. They used randomized embedding of the
general metric space into a distribution over metrics given by hierarchically separated trees of height
O (log n), with distortion O (log n). Then they give a deterministic O (1)-space-competitive (that is
the competitive ratio associated with the connection cost) and O (h)-time-competitive (that is the
competitive ratio associated with the delay cost) algorithm over tree metrics, where h is the height
of the tree. This yields a competitive ratio of O (log n). Moreover, they provided a randomized
Ω
(√

log n
)

lower bound, confirming a conjecture made by Emek et al. [10] that the competitive
ratio of any online algorithm for the problem must depend on n.

Ashlagi et al. [2] improved the lower bound on the competitive ratio to Ω
(

logn
log logn

)

, almost

matching the upper bound of Azar et al. of O (log n). The rest of the paper focuses on the
bipartite version of the problem, providing an O (log n)-competitive ratio by the adaptation of the
algorithm of Azar et al. [3] to the bipartite case.

In order to provide a deterministic algorithm, Bienkowski et al. [7] used a different approach for
the problem - they used a semi-greedy scheme of a ball-growing algorithm. In their analysis, they
fix an optimal matching, and charge the cost of each matching-edge generated by their algorithm
against the cost of an existing matching-edge of the optimal matching. As mentioned above, their
algorithm achieves a competitive ratio of O

(

m2.46
)

, where m is the number of requests.
Bienkowski et al. improved this result in [6] by providing a new O(m)-competitive LP-based

algorithm. Briefly, their algorithm maintains a primal relaxation of the matching problem and its
dual (the programs evolve in time as more requests arrive). Dual variables are increased along time,
until a dual constraint (corresponding to a pair of requests) becomes tight, which results in the
algorithm connecting the pair. They also proved that their analysis is tight (the competitive-ratio
of their algorithm is Ω(m)). Recall that our algorithm acheives a sub-linear competitive-ratio (in
m).

Next we consider related work without delays. The Online Minimum Weighted Bipartite
Matching (OMM) problem due to [14, 16] is another important online version of the Minimum-
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Cost Perfect Matching problem, in which k vertices are given a priori, and k additional vertices
are revealed at different times, together with the distances from the first k vertices. The algorithm
then needs to match the later k vertices to the first k vertices, while trying to minimize the total
weight of the produced matching. In this version, delay of the algorithm’s decision is not available.
Kalyanasundaram and Pruhs [14] and Khuller et al. [16] showed independently a tight upper and
lower bounds of 2k − 1 on the deterministic competitive ratio of the problem.

The first sub-linear competitive randomized algorithm for the problem, was given by Mey-
erson et al. [18] using randomized embeddings into trees, with a competitive ratio of O(log3 k).
Consequently, Bansal et al. [5] improved this upper bound by providing a O(log2 k)-competitive
randomized algorithm. In addition, they showed an Ω(log k) lower bound on the competitive ratio
for randomized algorithms.

The special case of line-metrics is argued to be the most interesting instance of OMM (e.g. [17]).
Kalyanasundaram and Pruhs conjectured in 1998 [15] that there exists a 9-competitive deterministic
algorithm for OMM on line-metrics, but in 2003 Fuchs et al. [12] disproved the conjecture, proving
a lower bound of 9.001 for deterministic algorithms. This is the best known lower bound thus far.

Antoniadis et al. [1] presented the first sub-linear deterministic algorithm for line-metrics, with

a competitive ratio of O
(

1
ǫ
klog(

3
2
+ǫ)
)

. Recently, Nayyar and Raghvendra [19] improved this upper

bound to O(log2 k) by careful analysis of the deterministic algorithm present in [20]. Gupta and
Lewi [13] provided a randomized O(log k)-competitive algorithm for doubling metrics, hence for
line-metrics as well.

To summarize, the best known deterministic upper bound on the competitive ratio for line-
metrics is O(log2 k), and best known lower bound is 9.001. For randomized algorithms the best
known upper bound is O(log k).

Paper Organization. We describe the algorithm for Minimum-Cost Perfect Matching with De-
lays in Section 3 and analyze its performance in Section 3.1. Through an example in Appendix A
we show that our analysis is tight, and prove that the competitive ratio of our algorithm indeed
depends on the number of requests, and not on the size of the metric space. In addition, we show in
Appendix B that minor natural changes to the algorithm, do not transform the competitive ratio
into a function of the size of the metric space (in the case of a finite metric space) instead of the
number of requests. In Section 4 we present the algorithm for Minimum-Cost Bipartite Perfect
Matching with Delays and analyze its performance.

2 Preliminaries

A metric space M = (S, d) is a set S and a distance function d : S × S −→ R
+ that meets the

following conditions: non-negativity, symmetry, the triangle-inequality, and that d(x, y) = 0 if and
only if x = y. When S is finite, we refer to M as a finite metric space, and an infinite metric space
otherwise.

2.1 Model

In the online Minimum-Cost Perfect Matching with Delays problem on a metric space M = (S, d)
(known a priori to the algorithm), an input instance I = 〈ri〉mi=1 is presented to the algorithm in
an online fashion, so that each request ri is revealed to the algorithm at time t(ri) at the location
x(ri) ∈ S. The number of requests m is even and unknown a priori to the algorithm.
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The online algorithm should produce a perfect matching in real time. Formally, two requests
p, q can be matched by the algorithm at any time t ≥ max(t(p), t(q)), if they have not been matched
yet by the algorithm.

Let 〈pi, qi, ti〉
m
2
i=1 be the set of pairs of requests matched by the algorithm, and their matching

times (pi and qi were matched by the algorithm at ti), then the cost of the matching produced by
the algorithm is

m
2
∑

i=1

d(x(pi), x(qi)) + |ti − t(pi)|+ |ti − t(qi)|

In other words, the cost is the sum of the connection cost of all matched pairs in addition to the
sum of the delay cost of all requests. The goal of the algorithm is to minimize this cost.

The Minimum-Cost Bipartite Perfect Matching with Delays is virtually the same problem as
the Minimum-Cost Perfect Matching with Delays problem, except that each request ri is associated
with one of two classes, so that each request ri can be matched to a request rj if and only if
class(ri) 6= class(rj).

2.2 The time-augmented metric space

Given a metric space M = (S, d) define the time-augmented metric space as MT = (S × R,D)
where D is a distance function defined as

D ((l1, t1) , (l2, t2)) = d(l1, l2) + |t1 − t2|

assuming (l1, t1), (l2, t2) ∈ S × R. That is, the time axis was added as another dimension in the
metric space. One can easily verify that D indeed defines a metric.

The following Lemma shows that for offline algorithms, solving the Minimum-Cost Perfect
Matching with Delays problem in the metric space M is equivalent to solving the Minimum-Cost
Perfect Matching problem in MT .

Lemma 1. Assume I = 〈ri〉mi=1 is an instance of MPMD then OPT can be computed as the weight
of an optimal solution for the Minimum Metric Perfect Matching problem on the instance I as
points in the time-augmented metric space MT .

Proof. Let OPT∗ be an optimal solution for Minimum Metric Perfect Matching over the instance
I. We show that OPT = OPT∗.

Let A be the solution for Minimum Metric Perfect Matching over the instance I, which matches
the pairs corresponding to those matched by OPT. The cost of A is at most the cost of OPT,
since for a given pair (u, v) matched by OPT at time tuv ≥ max (t(u), t(v)), OPT would pay
tuv − t(u) + tuv − t(v) + d(x(u), x(v)), while A would pay D(u, v) = |t(u) − t(v)| + d(x(u), x(v))
which cannot be larger. Therefore OPT∗ ≤ A ≤ OPT.

For the other direction we define an online algorithm B which matches the pairs corresponding
to those matched by OPT∗, as soon as the two end-points arrive. For a given pair of requests (p, q)
matched by B, it pays

max(t(p), t(q)) − t(p) + max(t(p), t(q))− t(q) + d(x(p), x(q)) = |t(p)− t(q)|+ d(x(p), x(q))

Therefore the cost paid by B is the same as the cost paid by OPT∗.
Hence OPT ≤ B = OPT∗.
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3 A Deterministic Algorithm for MPMD on General Metrics

Our algorithm (ALG(ǫ)) is parametrized with a constant ǫ ∈ R. Upon the arrival of a request
p ∈ S × R, the algorithm begins to grow a hemisphere surrounding p in the negative direction of
the time axis, such that the radius growth rate is ǫ. Therefore, at time t, a request q ∈ S × R

is on the hemisphere’s boundary if and only if ǫ (t− t (p)) = D(p, q) and t(q) ≤ t(p), where D is
the distance function defined by the time-augmented metric space MT . The algorithm matches a
request q to a request p as soon as q is found on the boundary of p’s hemisphere.

Note that the algorithm does not need to know the metric space in advance, but it only requires
that together with any arriving request p, it learns the distances from p to all previous requests.

Algorithm 1 A Deterministic Algorithm for MPMD on General Metrics

1: procedure ALG(ǫ)
2: At every moment t:
3: Add the new requests that arrive at time t

4: for each unmatched request p do
5: for each unmatched request q 6= p do
6: if t(p) ≥ t(q) and t = t(p) + D(p,q)

ǫ
then

7: match(p, q)
8: end if
9: end for

10: end for
11: end procedure

The algorithm is described as a continuous process but can be easily discretized using priority
queues over anticipated matching events for each pair.

The algorithm breaks ties arbitrarily (i.e. a request that is on multiple hemispheres at the same
time, or multiple requests that are on the same hemisphere). Note that for the analysis of the
algorithm we may assume that there are no ties, as an adversary might slightly perturb the points
so that the algorithm would choose the worse option.

3.1 Analysis

Theorem 1. ALG(ǫ) is O
(

1
ǫ
mlog( 3+ǫ

2 )
)

-competitive.

Given ǫ ∈ R we run ALG(ǫ) over the instance I = 〈ri〉mi=1, that is with a hemisphere growth
rate of ǫ. For the analysis, we denote ALGON to be the cost paid by ALG(ǫ), and ALGOFF to be
the weight of the matching produced by ALG(ǫ), when viewing I as points in the time-augmented
metric space MT . OPT is the cost of an optimal solution for MPMD over the instance I.

Consider the last two pairs of requests to be matched by ALG. They consist of four requests,
name them a, b, c, d, such that (a, b) is one pair, and (c, d) is the second pair. Assume w.l.o.g that
(a, b) were matched at time tab, and (c, d) at tcd ≥ tab. Also, assume w.l.o.g that t(a) ≤ t(b).

Lemma 2.

(1) D(a, b) ≤ (1 + ǫ)D(a, c) and D(a, b) ≤ (1 + ǫ)D(a, d)

(2) D(a, b) ≤ (1 + ǫ)D(b, c) and D(a, b) ≤ (1 + ǫ)D(b, d)
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Proof. We only prove D(a, b) ≤ (1+ǫ)D(a, c) andD(a, b) ≤ (1+ǫ)D(b, c) since there is no difference
between c and d.

To prove (1), we look at two cases, that are t(c) ≥ t(a), and t(c) < t(a).
Case t(c) ≥ t(a): Upon the arrival of c and b, the algorithm begins to grow hemispheres

surrounding them, and in particular a might be on their boundaries. Since (a, b) was the first pair
to be matched, a was on b’s hemisphere before it was on c’s hemisphere (otherwise (a, c) should

have been matched first). Therefore t(b) + D(a,b)
ǫ

≤ t(c) + D(a,c)
ǫ

, and we conclude

D(a, b) ≤ D(a, c) + ǫ(t(c) − t(b)) ≤ D(a, c) + ǫ(t(c) − t(a)) ≤ (1 + ǫ)D(a, c)

Case t(c) < t(a): Upon the arrival of a and b, the algorithm begins to grow hemispheres
surrounding them. In particular, a might be on the boundary of b’s hemisphere, and c might
be on the boundary of a’s hemisphere. Since (a, b) was the first pair to be matched, a was on
b’s hemisphere before c was on a’s hemisphere (otherwise (a, c) should have been matched first).

Therefore t(b) + D(a,b)
ǫ

≤ t(a) + D(a,c)
ǫ

. Thus, we conclude that

D(a, b) ≤ D(a, c) + ǫ(t(a)− t(b)) = D(a, c)− ǫ(t(b)− t(a)) ≤ D(a, c) ≤ (1 + ǫ)D(a, c)

To prove (2), we look at the two cases t(c) ≥ t(b), and t(c) < t(b).
Case t(c) ≥ t(b): Upon the arrival of c and b, the algorithm begins to grow hemispheres

surrounding them. In particular, a might be on the boundary of b’s hemisphere, and b might
be on the boundary of c’s hemisphere. Since (a, b) was the first pair to be matched, a was on
b’s hemisphere before b was on c’s hemisphere (otherwise (b, c) should have been matched first).

Therefore t(b) + D(a,b)
ǫ

≤ t(c) + D(b,c)
ǫ

. Thus, we conclude that

D(a, b) ≤ D(b, c) + ǫ(t(c)− t(b)) ≤ D(b, c) + ǫD(b, c) = (1 + ǫ)D(b, c)

Case t(c) < t(b): Upon b’s arrival, the algorithm begins to grow a hemisphere surrounding it,
and in particular a and c might be on its boundary. Since (a, b) was the first pair to be matched,
a was on b’s hemisphere before c was (otherwise (b, c) should have been matched first). Therefore

t(b) + D(a,b)
ǫ

≤ t(b) + D(b,c)
ǫ

. Thus, we conclude that

D(a, b) ≤ D(b, c) ≤ (1 + ǫ)D(b, c)

We use the following well known observation.

Observation 1. The union of any two matchings is a set of vertex-disjoint cycles. In every such
cycle, the edges alternate between the two matchings. Note that two parallel edges are considered a
cycle.

Let C = {C1, . . . , Ck} be the set of cycles (vertices and edges) generated from taking the union
of the matchings produced by ALG and OPT. Define l1, . . . , lk ∈ R such that li is the total length
of edges of ALG in Ci. Define similarly l∗1, . . . , l

∗
k ∈ R for edges of OPT.

Lemma 3. ALGOFF
OPT ≤ maxi

li
l∗i

Proof.

ALGOFF

OPT
=

∑k
i=1 li

∑k
i=1 l

∗
i

=

k
∑

j=1

l∗j
∑k

i=1 l
∗
i

lj

l∗j
≤

k
∑

j=1

l∗j
∑k

i=1 l
∗
i

max
r

lr

l∗r
= max

r

lr

l∗r

k
∑

j=1

l∗j
∑k

i=1 l
∗
i

= max
r

lr

l∗r
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Lemma 4. Denote l̂∗i the cost paid by an optimal algorithm for Minimum Metric Perfect Matching

on the instance constructed from the vertices of Ci, and l̂i the cost of running ALG over the vertices
of Ci. Then l̂∗i = l∗i and l̂i = li.

Proof. To prove l̂∗i = l∗i assume by contradiction that l∗i < l̂∗i . Notice that the subset of edges of
OPT contained in Ci is a legal solution for Minimum Metric Perfect Matching with cost l∗i . Clearly
l∗i is less than l̂∗i , contradicting the definition of l̂∗i . For the other direction, let E be the edges

matched by OPT, and Ê be the edges matched by an optimal algorithm for Minimum Metric
Perfect Matching on the instance constructed from the vertices of Ci. Define Ē = (E \ Ci) ∪ Ê.
Notice that Ē is a legal solution for Minimum Metric Perfect Matching on the instance I with cost
∑k

i=1 l
∗
i − l∗i + l̂∗i < OPT contradicting the definition of OPT. Therefore l∗i = l̂∗i .

To prove l̂i = li we show that K - the matching produced by ALG when running over the
vertices of Ci, is the same as Ei - the subset of edges matched by ALG and contained in Ci, when
running on the instance I. Let r = |Ci|

2 where |Ci| is the number of edges in Ci, and note that
|Ei| = r = |K|, since both Ei and K are matchings over Ci. Sort the edges of Ei by the time
they are formed from first to last: e1 = (u1, v1), . . . , er = (ur, vr), and the same for the edges of K:
k1 = (p1, q1), . . . , kr = (pr, qr).

Assume by contradiction that Ei 6= K, and let j be the lowest index with ej 6= kj. Let te be
the time that ej was formed and tk be the time that kj was formed. At min(te, tk), just before ej
and kj were formed, Ei and K contained the same set of edges. Therefore the points that were
not matched by ALG until min(te, tk), are the same in the two cases, and obviously the radii of
the hemispheres at min(te, tk) are the same in both cases as well. Thus, if vj and uj still exist in
ALG’s run on I at that time, and vj is on uj’s hemisphere, then at the same time both vj and uj
exist in ALG’s run on Ci, and vj is on uj’s hemisphere. Thus ALG would match the pair (uj , vj)
when running on Ci at te = tk, concluding ej = kj and contradicting the assumption.

Corollary 1. By virtue of Lemma 3 and Lemma 4 it suffices to consider ALGOFF
OPT when the union

of the matchings produced by ALG and OPT forms a single cycle.

Lemma 5. Let γ ∈ R s.t. γ > 2 and let f : N → R satisfy the recurrence relation

f(2k) = min
1≤ i≤ k−1

{

f (2i) ,
1

γ
(f (2i) + f (2k − 2i))

}

, f(2) = 1

Then,

f(n) = Ω

(

1

nlog( γ
2 )

)

Proof. We prove by induction on k that f(2k) ≥
(

2
γ

)log k
.

Base Case (k = 1): f(2) = 1, and
(

2
γ

)log 1
=
(

2
γ

)0
= 1.

Inductive step: Assume the claim holds for all j < k.

By the induction hypothesis for every j < k it holds that f(2j) ≥
(

2
γ

)log j
>
(

2
γ

)log k
. Therefore,

from the definition of f

f(2k) ≥ min

(

(

2

γ

)log k

,
1

γ
(f(2) + f(2k − 2)) ,

1

γ
(f(4) + f(2k − 4)) , . . .

)
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Define h(j) = 1
γ
(f(2j) + f(2k − 2j)), so

f(2k) ≥ min

(

(

2

γ

)log k

, min
1≤ j ≤ k−1

{h(j)}
)

By the induction hypothesis,

h(j) ≥ 1

γ

(

(

2

γ

)log j

+

(

2

γ

)log k−j
)

≥ min
x ∈ R

1

γ

{

(

2

γ

)log x

+

(

2

γ

)log k−x
}

(

2
γ

)log x
+
(

2
γ

)log k−x

is symmetric about x = k
2 . Moreover, it is a concave function as it is the

sum of two concave functions, thus the minimum point occurs at x = k
2 .

We found that h(j) ≥ 1
γ

(

(

2
γ

)log k
2
+
(

2
γ

)log k
2

)

=
(

2
γ

)log k
2
+1

=
(

2
γ

)log k

Hence, we conclude

f(2k) ≥ min

(

(

2

γ

)log k

,

(

2

γ

)log k
)

=

(

2

γ

)log k

=
1

klog
γ
2

Lemma 6. ALGOFF ≤ O
(

mlog( 3+ǫ
2 )
)

OPT

Proof. We view the requests as if they were in the time-augmented metric space MT , and analyze
the performance of ALG in an offline manner. By Corollary 1 we analyze the performance of ALG
when G = (I, E), the union of the matchings produced by ALG and OPT, forms a single cycle.

Denote EO the subset of edges matched by OPT, and EA the subset of edges matched by ALG.
Consider again the last two pairs of requests to be matched by ALG, that is (a, b) and (c, d), and
assume that tab ≤ tcd and t(b) ≥ t(a) (tab is the time that ALG matched (a, b), and tcd is the time
that ALG matched (c, d)). Denote T =

∑

e∈E\{(c,d)} D(e), and let O =
∑

e∈EO
D(e). From the

triangle inequality we have that D(c, d) is smaller than T , therefore

ALGOFF

OPT
=

D(c, d) + T −O

O
≤ 2T −O

O
= 2

T

O
− 1 (1)

We will bound O
T

from below, by developing and solving a recurrence relation similar to the one

developed in [21], thus giving an upper bound on ALGOFF
OPT .

Scale the distances so that T = 1. Of course, O
T

stays the same. Let f(m) be the minimal value
of O

T
over all possible inputs of size m (|I| = m), when the union of the matchings produced by

ALG and OPT forms a single cycle.
For the sake of this analysis consider Figure 1.
Let Pca be the alternating path from c to a, and Pdb be the alternating path from d to b. Denote

α =
∑

e∈Pca
D(e), and β =

∑

e∈Pdb
D(e). Then, by the triangle inequality

α ≥ D(a, c) (2)

From Lemma 2 we have
(1 + ǫ)D(a, c) ≥ D(a, b) (3)

9



a b

c d

Pca Pdb

Figure 1: The cycle formed by the union of the matchings produced by ALG and OPT.
The length of Pca is α, and the length of Pdb is β.

It follows from Equations (2) and (3) that

1− α− β = D(a, b) ≤ (1 + ǫ)α (4)

Similarly 1− α− β ≤ (1 + ǫ)β.
Let 2i be the number of points on Pca, then f(m) satisfies the recurrence relation

f(m) = min
1≤ i < m

2
−1

0< 1−α−β ≤ (1+ǫ)α
0< 1−α−β ≤ (1+ǫ)β

{αf(2i) + βf(m− 2i)} (5)

Conditioning on t, f(t) and f(m− t) are constant, therefore αf(t)+βf(m− t) becomes a linear
function in α and β, so its minimum must occur at a vertex of the polyhedron defined by the
minimization constraints (see for example [8]).

The vertices of this polyhedron are (1, 0), (0, 1), ( 1
3+ǫ

, 1
3+ǫ

), so

f(m) = min
1≤ i≤ m

2
−1

{

f (2i) ,
1

3 + ǫ
(f (2i) + f (m− 2i))

}

(6)

Also note that f(2) = 1, since there is only one way to match two points, so T = O. The conditions
of Lemma 5 are met with γ = 3 + ǫ, thus

f(m) = Ω

(

1

mlog( 3+ǫ
2 )

)

Finally, from 1 we conclude

ALGOFF

OPT
≤ 2

T

O
− 1 ≤ 2

f(m)
= O

(

mlog( 3+ǫ
2 )
)

Lemma 7. ALGON = Θ
(

1
ǫ

)

ALGOFF

Proof. Assume two requests p and q were matched by ALG at time t. Assume w.l.o.g that t(p) ≥
t(q). The contribution of this pair to ALGON, is

t− t(p) + t− t(q) + d(x(p), x(q)) =

t− t(p) + t− t(p) + t(p)− t(q) + d(x(p), x(q)) = 2(t− t(p)) +D(p, q)

10



On the contrary, the contribution of this pair to ALGOFF, is just D(p, q).

Note that t is the time that q was on p’s hemisphere, so t = t(p)+D(p,q)
ǫ

, hence the ratio between
ALGON and ALGOFF for this pair is

2D(p,q)
ǫ

+D(p, q)

D(p, q)
= 1 +

2

ǫ

Summing over all matched pairs we get ALGON
ALGOFF

= 1 + 2
ǫ
= Θ

(

1
ǫ

)

.

Finally we prove Theorem 1 using the inequalities proven in the previous lemmas.

Proof of Theorem 1. Combining Lemma 1, Lemma 6 and Lemma 7 we have

ALGON ≤ O

(

1

ǫ

)

ALGOFF ≤ O

(

1

ǫ
mlog( 3+ǫ

2 )
)

OPT

Hence, ALG(ǫ) is O
(

1
ǫ
mlog( 3+ǫ

2 )
)

-competitive.

In Appendix A we show that the analysis is tight, and that the competitive ratio is indeed a
function of m, and not of n (the size of the metric space). In Appendix B we show that grow-
ing hemispheres in space while ignoring the time axis, and other similar hacks, only worsen the
competitive ratio.

4 The Bipartite Case

For the bipartite case, we suggest the same algorithm as in the monochromatic case. The only
difference is that we match a request q to a request p as soon as q is found on the boundary of p’s
hemisphere, and that q and p do not belong to the same class.

Algorithm 2 A Deterministic Algorithm for MBPMD on General Metrics

1: procedure ALG-B(ǫ)
2: At every moment t:
3: Add the new requests that arrive at time t

4: for each unmatched request p do
5: for each unmatched request q 6= p do
6: if t(p) ≥ t(q) and t = t(p) + D(x(p),x(q))

ǫ
and class(q) 6= class(p) then

7: match(p, q)
8: end if
9: end for

10: end for
11: end procedure

4.1 Analysis

We prove the following theorem:

Theorem 2. ALG-B(ǫ) is O
(

1
ǫ
mlog( 3+ǫ

2 )
)

-competitive.
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Observation 1, Lemma 3 and Lemma 4 hold for the bipartite case as well, therefore using
Corollary 1 we may assume that the union of ALG-B and OPT forms a single cycle.

The key difference in the analysis for this case, is that when we consider the last four requests
to be matched, not every two of them could have been matched to each other. Therefore Lemma 2
does not hold, but a weaker yet similar result does.

Consider the last two pairs of requests to be matched by ALG-B. Name them (a, b) and (c, d),
and assume w.l.o.g that (a, b) were matched at time tab, and (c, d) at tcd ≥ tab. Also, assume w.l.o.g
that t(a) ≤ t(b).

Lemma 8. If class(a) = class(d) 6= class(b) = class(c) then

(1) D(a, b) ≤ (1 + ǫ)D(a, c)

(2) D(a, b) ≤ (1 + ǫ)D(b, d)

We omit the proof of this lemma as it is the same as the proof of Lemma 2 for the relevant
cases.

Considering Figure 1 we have the following lemma.

Lemma 9. class(a) = class(d) 6= class(b) = class(c)

Proof. From the alternation property of Observation 1 we have that the number of edges along Pca

must be odd (since the number of OPT edges along Pca must be one more than ALG-B edges along
Pca). Moreover, the classes of the requests along Pca alternate as well (since every edge must match
requests of different classes). Since there are odd number of edges along Pca, there are odd number
of class alternations along Pca, so the class of the last request along Pca (that is class(c)) must be
different from the class of the first request along Pca (that is class(a)). Thus class(c) 6= class(a) and
of course class(a) 6= class(b), class(c) 6= class(d), so class(a) = class(d) 6= class(b) = class(c).

Using Lemma 9 and Lemma 8 we repeat the proof of Lemma 6 and achieve the following result:

Lemma 10. ALG-BOFF ≤ O
(

mlog( 3+ǫ
2 )
)

OPT

The main theorem for the bipartite case now follows:

Proof of Theorem 2. Lemma 7 and Lemma 1 hold for ALG-B as well, thus from Lemma 10 we have

ALG-BON ≤ O

(

1

ǫ

)

ALG-BOFF ≤ O

(

1

ǫ
mlog( 3+ǫ

2 )
)

OPT

Hence, ALG-B(ǫ) is O
(

1
ǫ
mlog( 3+ǫ

2 )
)

-competitive.

5 Concluding Remarks and Open Problems

In this paper we presented the first sub-linear competitive deterministic algorithm for Minimum-
Cost Perfect Matching with Delays as a function of m, the number of requests. We also provided a
similar algorithm for the problem of Minimum-Cost Bipartite Perfect Matching with Delays achiev-
ing the same competitive ratio.

One open problem is to decide if a deterministic algorithm with a better competitive ratio exists,
in particular a polylog(m)-competitive one, by showing a lower bound or providing an algorithm
for the problem. In addition, the problem of finding a sub-linear in n competitive deterministic
algorithm is still open.
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A The competitive ratio is a function of m

Following Section 3.1, a question arises - whether Theorem 1 can be modified to prove ALG
OPT ≤

O
(

1
ǫ
nlog( 3

2
+ǫ)
)

for a finite metric space of size n.

We show that for every ALG(ǫ) there is an instance with n = 1 for which ALG
OPT ≥ Ω

(

1
ǫ
mlog( 3+2ǫ

2+2ǫ)
)

.

The instance we give is essentially the example given by [21], over the time axis, and with distances
scaled to consider the progress of time. Let k = log(m) and consider Figure 2 which describes a
series of requests with the recurrence relation

ai =
bi

1 + ǫ
, bi = 2bi−1 + ai−1, b1 = 1 (7)

Lemma 11. ALG matches (r2, r3) . . . (rm−2, rm−1) and (r1, rm).

Proof. We prove the lemma by induction on k.

Base Case (k = 1): The only point that r2 = rm can be matched to is r1.

Inductive step: Assume the claim holds for k− 1. We start by showing that ALG will match
the pairs (r2, r3), . . . , (rm

2
−2, rm

2
−1).

Let t0 = bk−1+
bk−1

ǫ
, this is the time that the hemisphere of rm

2
reaches r1 unless rm

2
is matched

by another request at time t < t0. By the induction hypothesis, unless the hemisphere of some
ri with i > m

2 reaches past rm
2

by t < t0, the hemisphere of rm
2

will reach r1, after the pairs
(r2, r3),. . . ,(rm

2
−2, rm

2
−1) are matched. Notice that the hemisphere of rm

2
may reach r1 only by time

t0 and the hemisphere of rm
2
+1 may reach rm

2
only by

t1 = bk−1 + ak−1 +
ak−1

ǫ
= bk−1 +

bk−1

1 + ǫ
(1 +

1

ǫ
) = t0
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t

k = 1

k = 2

r1 r2 r3 r4 r5 r6 r7 r8 rmb1 a1 b1 a2 b1 a1 b1

bk

b2 b2

b3

k = logm

Figure 2: A series of m requests along the time axis with n = 1 and ALG
OPT ≥ Ω

(

1
ǫ
mlog( 3+2ǫ

2+2ǫ )
)

.

In blue is the matching produced by ALG, and in dashed red - a matching of cost O(m).

Therefore, the hemisphere of rm
2
+1 may reach rm

2
only after (r2, r3),. . . ,(rm

2
−2, rm

2
−1) are matched.

Obviously for every i > m
2 +1 the hemisphere of ri would not reach past rm

2
by t0 if the hemisphere

of rm
2
+1 does not, therefore (r2, r3),. . . ,(rm

2
−2, rm

2
−1) are matched by ALG by time t0.

Considering rm
2
+1,. . . ,rm, again by the induction hypothesis we have that unless rm is matched

by another request before its hemisphere reaches rm
2
+1, ALG will match the pairs (rm

2
+2, rm

2
+3),

. . . , (rm−2, rm−1). Indeed, there is no request after rm, thus ALG will match these pairs, and we
are left to address the requests r1, rm

2
, rm

2
+1, rm.

Observe that the hemisphere of rm reaches rm
2
+1 at t = bk +

bk−1

ǫ
> (1 + 1

ǫ
)bk−1 = t1 = t0,

hence ALG will match the pair (rm
2
+1, rm

2
). The remaining and last pair to be matched by ALG is

(r1, rm) of course.

The cost of OPT is at most O(m) since D(u, v) = b1 = 1 for every pair (u, v) in the matching
(r1, r2) . . . (rm−1, rm). The cost of matching r1 to rm is bk. Out of the pairs (r2, r3) . . . (rm−2, rm−1)
there are 2i pairs with distance ak−i−1 between the two end-points, for 0 ≤ i ≤ k − 2. Therefore
ALGOFF = bk +

∑k−2
i=0 2iak−i−1.

The mutual recurrence relation (7) solves to

ai =

(

2 + 1
1+ǫ

)i

2ǫ+ 3
, bi =

(

2 +
1

1 + ǫ

)i−1

(8)
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Therefore

ALGOFF = bk +

k−1
∑

i=1

2k−1−iai >

k−1
∑

i=1

(

2 + 1
1+ǫ

)i

2ǫ+ 3
2k−1−i

=
2k−1

2ǫ+ 3

k−1
∑

i=1

(

1 +
1

2 (1 + ǫ)

)i

=
2k−1

2ǫ+ 3
(2ǫ+ 3)

(

(

1 +
1

2 (1 + ǫ)

)k−1

− 1

)

=

(

2 +
1

1 + ǫ

)k−1

− 2k−1

Hence,

ALGOFF

OPT
≥

(

2 + 1
1+ǫ

)k−1
− 2k−1

2k
= Ω

(

m
log

(

1+ 1
2(1+ǫ)

))

= Ω
(

m
log( 3+2ǫ

2+2ǫ )
)

Finally, from Lemma 7 we have

ALGON

OPT
= Ω

(

1

ǫ

)

ALGOFF

OPT
≥ Ω

(

1

ǫ
mlog( 3+2ǫ

2+2ǫ )
)

B Time must be considered

A simple hack that may handle the instance given in Appendix A, is to match immediately two
points that are located at the same position in space. Obviously this will not handle some very
similar instances, generated by small perturbations of the positions of the requests.

A simple extension of this idea is to ignore the time axis, so that p and q will be matched as
soon as t ≥ min (t(p), t(q)) + d(x(p),x(q))

ǫ
, i.e. the requests grow spheres only in space, but not in

time, and they are matched to each other as soon as one of them is in the sphere of the other.
The instance in Figure 3 shows that the competitive-ratio of this algorithm can be worse as

Ω(m), even though the size of the metric space is n = 2.

t

1 δ 1 δ 1

1 δ 1 δ 1
2 + δ

Figure 3: In blue - the matching produced by the suggested algorithm, of cost O(m).
In dashed red - an alternative matching of cost O(1 + δm).

Note that Ω(m) competitive-ratio will be achieved for this instance, even for similar algorithms

which do not consider time, such as matching p to q if t(p) ≥ t(q) and t ≥ t(p) + d(x(p),x(q))
ǫ

, or

matching p to q if t(p) ≤ t(q) and t ≥ t(p) + d(x(p),x(q))
ǫ

.
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