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Abstract
We study cube-free words over arbitrary non-unary finite alphabets and prove the following
structural property: for every pair (u, v) of d-ary cube-free words, if u can be infinitely extended
to the right and v can be infinitely extended to the left respecting the cube-freeness property,
then there exists a “transition” word w over the same alphabet such that uwv is cube free. The
crucial case is the case of the binary alphabet, analyzed in the central part of the paper.

The obtained “transition property”, together with the developed technique, allowed us to
solve cube-free versions of three old open problems by Restivo and Salemi. Besides, it has some
further implications for combinatorics on words; e.g., it implies the existence of infinite cube-free
words of very big subword (factor) complexity.

2012 ACM Subject Classification Mathematics of computing→ Discrete mathematics→ Com-
binatorics → Combinatorics on words
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1 Introduction

The concept of power-freeness is in the center of combinatorics on words. This concept
expresses the restriction on repeated blocks (factors) inside a word: an α-power-free word
contains no block which consecutively occurs in it α or more times. For example, the block
an in the word banana is considered as having 5/2 consecutive occurrences; thus the word
banana is 3-power-free (cube-free) but not (5/2)-power-free or 2-power-free (square-free); the
block mag in the word magma occurs consecutively 5/3 times, and so magma is square-free.
Power-free words and languages are studied in lots of papers starting with the seminal works
by Thue [19,20], who proved, in particular, the infiniteness of the sets of binary cube-free
words and ternary square-free words. However, many phenomena related to power-freeness
are still not understood.

One group of problems about power-free words concerns their structure and extendability.
In 1985, Restivo and Salemi presented [15] a list of five problems, originally considered only
for ternary square-free words and binary overlap-free words, but equally important for every
power-free language. Suppose that a finite alphabet Σ is fixed and we study α-power-free
words over Σ. Here are the problems.
Problem 1. Given an α-power-free word u, decide whether there are infinitely many α-power-
free words having (a) the prefix u; or (b) the suffix u; or (c) the form vuw, where v and w
have equal length. (Such words u are called, respectively, right extendable, left extendable,
and two-sided extendable.)

1 Supported by the Russian Science Foundation, grant 18-71-00043
2 Supported by the Russian Ministry of Education and Science, project 1.3253.2017
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Problem 2. Given an α-power-free word u, construct explicitly an α-power-free infinite word
having u as prefix, provided that u is right extendable.
Problem 3. Given an integer k ≥ 0, does there exist an α-power-free word u with the
properties (i) there exists a word v of length k such that uv is α-power free and (ii) for every
word v′ of bigger length, uv′ is not α-power free.
Problem 4. Given two α-power-free words u and v, decide whether there is a “transition”
from u to v (i.e., does there exist a word w such that uwv is α-power free).
Problem 5. Given two α-power-free words u and v, find explicitly a transition word w, if it
exists.

These natural problems appear to be rather hard. Only for Problem 1a,b there is a sort
of a general solution: a backtracking decision procedure exists for all k-power-free languages,
where k ≥ 2 is an integer [3, 4]. In a number of cases, the parameters of backtracking were
found by computer search, so it is not clear whether this technique can be extended for
α-power-free words with rational α. The decision procedure also gives no clue to Problem 2.

There is a particular case of binary overlap-free words, for which all problems are
solved in [1, 15] (more efficient solutions were given in [2]). These words have a regular
structure deeply related to the famous Thue-Morse word, and it seems that all natural
algorithmic problems for them are solved. For example, the asymptotic order of growth for
the binary overlap-free language is computed exactly [6,7], and even the word problem in
the corresponding syntactic monoid has a linear-time solution [18]. Most of the results can
be extended, with additional technicalities, to binary α-power-free words for any α ≤ 7/3,
because the structure of these words is essentially the same as of overlap-free words (see,
e.g., [8]). However, the situation changes completely if we go beyond the polynomial-size
language of binary (7/3)-power-free words. In the exponential-size α-power-free languages3

the diversity of words is much bigger, so it becomes harder to find a universal decision
procedure. The only results on Problems 1-5 apart from those mentioned above are the
positive answers to Problem 3 (including its two-sided analog) for the two classical test cases:
for ternary square-free words [12] and for binary cube-free words [11].

In this paper, we study cube-free words over arbitrary alphabets. Still, the crucial case is
the one of the binary alphabet; the central part of the paper is the proof of the following
transition property of binary cube-free words.

I Theorem 1. For every pair (u, v) of binary cube-free words such that u is right extendable
and v is left extendable, there exists a binary word w such that uwv is cube free.

After proving Theorem 1 in Section 3, we use it and its proof to derive further results.
In Section 4 we prove the transition property for arbitrary alphabets (Theorem 9), while
in Section 5 we use this property to solve Restivo-Salemi Problems 2, 4, and 5. Thus, all
Restivo–Salemi problems for binary cube-free words are solved; this is the first fully solved
case since the original publication of the problems. For cube-free words over bigger alphabets,
only Problem 3 is not yet solved.

We finish the introduction with two remarks. First, the result of Theorems 1 and 9 was
conjectured, in a slightly weaker form, for all infinite power-free languages [17, Conj 1]. This
conjecture is related to the properties of finite automata recognizing some approximations of
power-free languages and was supported by extensive numerical studies. The transition words

3 For α > 7/3, the language of binary α-power-free words has exponential size [8]. The exponential
conjecture says that for k ≥ 3 all infinite power-free languages over k letters have exponential size. This
conjecture is proved for k ≤ 10 [9, 10] and odd k up to 101 [21].
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can be naturally interpreted as transitions in those automata and the transition property
forces the automata to be strongly connected. Second, recently it was shown [16, Thm 39]
that the transition property implies the existence of infinite α-power-free words of very big
subword complexity. Namely, Theorems 1 and 9 imply that for every d ≥ 2 there exists a
d-ary cube-free infinite word which contains all two-sided extendable d-ary cube-free finite
words as factors.

2 Preliminaries

2.1 Notation and Definitions
By default, we study words over finite alphabets Σd of cardinality d ≥ 2, writing Σd =
{a, b, c1, . . . , cd−2} (mostly we work with Σ2 = {a, b}). Standard notions of factor, prefix,
and suffix are used. The set of all finite (nonempty finite, infinite) words over an alphabet
Σ is denoted by Σ∗ (resp., Σ+, Σ∞). Elements of Σ+ (Σ∞) are treated as functions
w : {1, . . . , n} → Σ (resp., w : N→ Σ). We write [i..j] for the range i, i+1, . . . , j of positive
integers; the notation w[i..j] stands for the factor of the word w occupying this range as well
as for the particular occurrence of this factor in w at position i. Note that w[i..i] = w[i] is
just the ith letter of w. Let w[i1..j1] and w[i2..j2] be two factors of w. If the ranges [i1..j1]
and [i2..j2] have a nonempty intersection, their intersection and union are also ranges; we
refer to the factors of w, occupying these ranges, as the intersection and the union of w[i1..j1]
and w[i2..j2]. The word ←−w = w[n] . . . w[1] is called the reversal of the word w of length n.

We write λ for the empty word and |w| for the length of a word w (infinite words have
length ∞). A word w has period p < |w| if w[1..|w|−p] = w[p+1..|w|]; the prefix w[1..p] of w
is the root of this period of w. One of the most useful properties of periodic words is the
following.

I Lemma 2 (Fine, Wilf [5]). If a word u has periods p and q and |u| ≥ p+ q− gcd(p, q) then
u has period gcd(p, q).

A cube is a nonempty word of the form uuu, also written as u3; we refer to u as the root
of this cube. A word is cube-free (overlap-free) if it has no cubes as factors (resp., no factors
of the form cwcwc, where c is a letter). There exist binary overlap-free (and thus cube-free)
infinite words [20].

Let Σd be fixed. A word w ∈ Σ∗d is called a right context of a cube-free word u ∈ Σ∗d if
uw is cube free; we call u right extendable if it has an infinite right context (or, equivalently,
infinitely many right contexts). Left contexts and left extendability are defined in a dual way.

The Thue–Morse morphism θ is defined over Σ+
2 by the rules θ(a) = ab, θ(b) = ba. The

fixed points of θ are the infinite Thue-Morse word

T = abbabaabbaababbabaababbaabbabaab · · ·

and its complement, obtained from T by exchanging a’s and b’s. We refer to the factors of T
as Thue-Morse factors. The word T, first introduced by Thue in [20] and rediscovered many
times, possesses a huge number of nice properties; we need just a few. The Thue-Morse word
is overlap free, uniformly recurrent (every Thue-Morse factor occurs in T infinitely many
times with a bounded gap), and closed under reversals (u is a Thue-Morse factor iff ←−u is).

2.2 Uniform words and markers
We call a word w ∈ Σ∗2 uniform if w = cθ(u)d for some c, d ∈ {a, b, λ}, u ∈ Σ∗2; a uniform
word with d = λ is right aligned. Similarly, a uniform infinite word has the form cθ(u) for
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c ∈ {a, b, λ}, u ∈ Σ∞2 . Such “almost” θ-images play a crucial role in further considerations.
Note that all factors and suffixes of T are uniform. The following observation is well known.
I Observation 1. A word u ∈ Σ2 is uniform iff all occurrences of factors of the form cc in u,
where c ∈ Σ2, are at positions of the same parity.
Thus the word is non-uniform iff it has the factors of the form cc occurring in positions of
different parity. The following observation is straightforward.
I Observation 2. A cube-free word u ∈ Σ2 is non-uniform iff it contains at least one of the
factors aabaa, aababaa, bbabb, bbababb.
All right (resp., left) contexts of the word ababa begin (resp., end) with a, so ababa occurs
in a cube-free word only as a prefix/suffix or inside the non-uniform factor aababaa (same
argument applies to babab). This allows us to view binary cube-free words as sequences of
uniform factors separated by markers aabaa, ababa, babab, and bbabb, which break uniformity.

The importance of markers for the analysis of cube-free words is demonstrated by the
following theorem, proved in Section 3.2.

I Theorem 3. Every right-extendable cube-free word u ∈ Σ2 has an infinite right context
with finitely many markers.

3 Proof of the Transition Property for Binary Words

The proof of Theorem 1 consists of two stages. In the first stage we show that its result is
implied by Theorem 3. In the second stage we prove Theorem 3. All words in this section
are over Σ2 if the converse is not stated explicitly.

3.1 Reduction to Theorem 3
I Lemma 4. Suppose that cube-free words u and v have right contexts which are Thue-Morse
factors of length 2|u| and 2|v| respectively. Then there exists a word w such that uw←−v is
cube free.

Proof. Let u1 and v1 be the mentioned contexts of u and v respectively. Since T is recurrent
and closed under reversals, there exists a Thue-Morse factor w = u1w1

←−v1 for some w1 6= λ.
Assume to the contrary that uw←−v contains a cube of period p. Since w is overlap free, such
a cube cannot intersect u and ←−v simultaneously by the length argument. W.l.o.g. assume
that the cube intersects u. Then it must contain the whole u1. Hence p is a period of u1 and
thus p ≥ |u1|/2 ≥ |u| because u1 is overlap free. Further, the overlap-freeness of w means
that u contains at least the whole period of the cube, implying p ≤ |u|. So we have |u| = p

and the cube is a prefix of uw←−v . But in this case |u1| ≥ 2p and the cube is contained in the
cube-free word uu1, resulting in a contradiction. J

We say that a cube-free word u is T-extendable if it has a right context of the form
wT[n..∞] for some w ∈ Σ∗, n ≥ 1. By Lemma 4, if the words u and ←−v are T-extendable,
there is a word w such that uwv is cube-free. We analyze T-extendability in Lemmas 5–7.

I Lemma 5. If a uniform cube-free word u has a right context of length 3, or is right aligned
and has a right context of length 2, then u is T-extendable.

Proof. We assume |u| ≥ 5; otherwise, u is a factor of T and there is nothing to prove.
Consider two cases.
Case 1 : u = cθ(v) = cv1 . . . vn, vi ∈ {ab, ba} for i ∈ [1..n]. W.l.o.g., vn = ab.
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Claim 1. At least one of the words ua, ubab is cube free.
Assume that ua is not cube free and thus has a suffix w3 of period p. Then u has the suffix
u′ of length 3p− 1 and period p. If u′ 6= u, by the cube-freeness of u one has u[|u|−3p+1] 6=
u[|u|−2p+1], u[|u|−3p+2] = u[|u|−2p+2]. Note that u[|u|−2p+1..|u|−2p+2] = vn−p+1 ∈
{ab, ba}. Then u[|u|−3p+1] = u[|u|−3p+2], so these two letters do not form a block vi; then
p must be odd. Consider the suffix xx = vn−p+1 · · · vn of length 2p of u′. Both prefix and
suffix of x of length p− 1 are concatenations of blocks ab, ba. Hence x consists of alternating
letters. Then x[1] = x[p]. On the other hand, vn−bp/2c = x[p]x[1]. This contradiction proves
that u′ = u and then |u| = 3p−1. Further, since ua and ubb end with cubes, the only length-2
right context of u is ba, so uba = cθ(vb) is cube-free. If ubab ends with a cube of period p′,
we repeat the above argument for uba to obtain |uba| = 3p′ − 1. Hence 3p − 1 = 3p′ − 3,
which is impossible since the periods are integers. So ubab is cube free and Claim 1 holds.
Claim 2. At least one of the words uaa, ubabb is cube free.
Assume that ua is cube free. If uaa has a suffix w3 of period p, then w ends with aa (recall
that u ends with ab). On the other hand, the leftmost w in the suffix w3 of uaa ends with
vn−p+1 ∈ {ab, ba}. Thus uaa cannot have a cube as a suffix and hence is cube free. The
same argument works for ubabb if ubab is cube free. The reference to Claim 1 concludes the
proof.

Assuming that uaa is cube free, we show that the word

v = uT[6..∞] = cv1 · · · vn−1ab aabbaababba · · ·

is cube free and then u is T-extendable. Depending on vn−1, v has the non-uniform factor
aabaa or aababaa, and this factor, denoted by x, has a unique occurrence in v because u and
T are uniform. Note that abT[6..∞] = T[4..∞], and both words aT[4..∞] and aabT[4..∞]
are cube free. So if a cube w3 is a factor of v, then Claim 2 implies that x is a factor of w3. If
x is a factor of w2, then x occurs in w3 at least twice, which is not the case. So x = w′ww′′,
where w′ and w′′ are nonempty suffix and nonempty prefix of w respectively. Then w = aba

if x = aabaa, and w = ababa if x = aababaa. In both cases a direct check shows that w3 is
not a factor of v. So we proved that v is cube free. Assuming that ubabb is cube free, we use
the same argument for another suffix of T:

v = uT[20..∞] = cv1 · · · vn−1ab babbaabbaba · · ·

(here v contains a unique occurrence of bbabb). Note that if vn = ba, then we can take
T[20..∞] (resp., T[6..∞]) as the extension of u if ubb (resp., uabaa) is cube free.
Case 2. u = cθ(v)a = cv1 . . . vna, vi ∈ {ab, ba} for i ∈ [1..n].
Case 2.1 : vn = ab. The word uT[7..∞] = cv1 · · · vnT[6..∞] is cube free as in Case 1.
Case 2.2 : vn = ba. Since ua ends with a3, ub is cube free, right aligned and has a right
context of length 2. Then ub is T-extendable by Case 1, and so is u. J

I Lemma 6. If a cube-free word u has a uniform right context w such that |w| ≥ 2|u|+ 3
and w has no prefix ababa or babab, then u is T-extendable.

Proof. Let ŵ be the right aligned prefix of w of length 2|u| or 2|u|+1. We will prove that uŵ
is T -extendable, which implies the result immediately. Suppose uŵ is non-uniform (otherwise,
it is T-extendable by Lemma 5). Then it contains markers, and all of them begin in u by
the conditions on w. Let z be the rightmost marker in uŵ. W.l.o.g. the first letter of z
is a and we can write u = u′au′′, where au′′w begins with this distinguished occurrence of
z. The pair (u′a, u′′w) satisfies all conditions of the lemma, so for the rest of the proof we
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rename u′a as u and u′′ŵ as ŵ. This renaming retains the value of the word uŵ we analyze;
still, ŵ is right aligned and |ŵ| ≥ 2|u|. Since ŵ has a right context of length at least 2, it is
T-extendable by Lemma 5, and, moreover, there is a suffix v of T such that ŵv is cube-free.
If ŵ is a factor of T, we choose v such that ŵv is a suffix of T; otherwise, v is chosen as in
the proof of Lemma 5, Case 1.

Assume to the contrary that uŵv contains a cube x3; it starts in u and ends in v, thus
containing the distinguished occurrence of z:

x x x

. . .
z

u ŵ v

If z occurs in x3 only once, we have one of two cases, up to symmetry:

· · · abaaa︸ ︷︷ ︸
u

aba aaba aaba aba · · ·︸ ︷︷ ︸
ŵv

or · · ·aaa︸︷︷︸
u

b ab ab ab ab ab ab · · ·︸ ︷︷ ︸
ŵv

In the first case the condition |ŵ| ≥ 2|u| is violated; the second case contradicts the choice of
v (here ŵ is a factor of T). Therefore, z must have two occurrences in x3 at distance |x|. If
z occurs in x3 to the left of the distinguished occurrence, then |x| < |u| and x3 cannot end
in v. Otherwise, x3 contains exactly two occurrences of z: the distinguished one and another
one on the border of ŵ and v. Then x does not contain z, implying |x| ≤ |u|+ 3. On the
other hand, |x| ≥ |ŵ| − 3 as the distance between the occurrences of z. Hence |u| ≤ 6 and
|x| ≤ 9. This leaves, up to symmetry, the following options for x3:

|x| = 5 : abaa babaabab aa babaabab aa babaabab aab · · · |x| = 9 : aabbaa babaa babaa babaabbaabab aabab aabab aabbaabab · · ·
|x| = 7 : aabba abaaa abaaa abaabbaaba aaaba aaaba abbaab · · · ababba abaaa abaaa abaababbaaba aaaba aaaba ababbaaba · · ·

The factor between the marginal letters of markers contains ŵ; in first three cases, this factor
occurs in T but ŵv is not a suffix of T, contradicting the choice of v. In the last case ŵ is
not a factor of T, so v is chosen as in the proof of Lemma 5; hence the marker on the border
of ŵ and v must be followed by bb, not ba. This contradiction finishes the proof. J

Some right-extendable words have no long uniform right contexts, as Fig. 1 shows.
However, a weaker property is enough for our purposes.

3

9

27
a

a a

a

a
b

b

b

b

. . .

(babbaababbabbaababbabbaabba)2babbaababbabbaababbabb

Figure 1 A right-extendable word of length 76 having no long uniform right contexts: all its
infinite right contexts begin with the marker aabaa.

I Lemma 7. Every cube-free word having an infinite right context with finitely many markers
is T-extendable.

Proof. Let u be the word and w be its context from the conditions of the lemma. The
finiteness of the number of markers allows us to write w = w1v, where v is uniform. Then
uw1 has an infinite uniform right context, and hence is T-extendable by Lemma 6. Then u
is T-extendable as well. J

Thus if Theorem 3 holds, then Lemmas 7 and 4 imply Theorem 1.
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3.2 Proof of Theorem 3
We prove Theorem 3 by reductio ad absurdum; to obtain a contradiction, we use the
following lemma on cube-free words over an arbitrary alphabet. (For Theorem 3, bounding k
in Lemma 8 by any function of n would be sufficient; however, better bounds can be useful
for the algorithmic applications.)

I Lemma 8. Let u be a cube-free word of length n over an arbitrary fixed alphabet and let u
have a length-k right context w with the following property: for each i = 1, . . . , k, there exists
an integer pi ≥ 2 such that the suffix of length 3pi − 2 of the word u·w[1..i] has period pi and,
moreover, pi 6= pi+1. Then k = O(logn); more precisely, k ≤ max{1, 8.13 logn− 15.64}.

Proof. In the proof we can assume k ≥ 2. Let 1 ≤ i < j ≤ k, p = pi, q = pj , l = j − i, and
let v be the intersection of the periodic suffixes of u·w[1..i] and u·w[1..j] (see Fig. 2a,b). If
|v| ≥ p+ q− gcd(p, q), then v has the period gcd(p, q) by the Fine–Wilf property (Lemma 2).
If p 6= q, this means that the root of the longer periodic suffix is an integer power of a shorter
word; thus uw contains a cube, which is impossible. If p = q, then we are in the situation
shown in Fig. 2b, and the union of two suffixes has period p and the length 3p− 2 + l. In this
case, l ≥ 2 by conditions of the lemma, so we again obtain a cube. Thus we conclude that

|v| ≤ p+ q − gcd(p, q)− 1. (1)

v

a)
j1

u w

i

v

b)
j1

u w

i

Figure 2 The mutual location of periodic factors in the word uw (Lemma 8).

The case in Fig. 2b corresponds to |v| = 3q − 2− l. Comparing this condition to (1), we
get q ≤ p+l

2 (but q = p only if l ≥ 2p − 1 and q = p/2 only if l ≥ p/2 − 1). Similarly, the
case in Fig. 2a corresponds to |v| = 3p− 2 and we get q > 2p from (1). Thus, all possible
values of q are outside the red area in Fig. 3.

0

q

lp 2p 3p

p

2p

p
2

Figure 3 The restrictions on periods of periodic factors in the word uw (Lemma 8).

Now we estimate how many elements of the sequence {p1, . . . , pk} can belong to the range
[p..2p] for some fixed p ≥ 2. This is an analog of [13, Lemmas 4,5] and [14, Lemma 9]. Let
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i0 < i1 < · · · < is be the list of all positions such that the periodic suffix of u·w[1..ij ] has the
period from the range [p..2p]; let q0, . . . , qs denote these periods. Then Fig. 3 gives us the
lower bound for the distance lj = ij+1 − ij between consecutive positions from the list:

lj ≥ 2qj+1 − qj ; lj ≥ 2qj+1 − 1 if qj+1 = qj ; lj ≥ qj+1 − 1 if qj+1 = qj/2. (2)

The densest packing of the numbers ij , satisfying the restrictions (2), is achieved for q0 = 2p−1,
q1 = q3 = q5 = · · · = p, q2 = q4 = q6 = · · · = p + 1: one can take i0 = 1, i1 = 2, and
i2j = i2j−1 + p+ 2, i2j+1 = i2j + p− 1 for all subsequent positions. Since is ≤ k, we have⌈
s−1

2
⌉
· (p+ 2) +

⌊
s−1

2
⌋
· (p− 1) + 2 ≤ k, implying the upper bound for the number of periods

from the range [p..2p]:

s+1 ≤ 2(k − 2)
2p+ 1 + 2. (3)

Since 3p− 2 ≤ |uw| = n+ k, the maximum possible value of p is
⌊
n+k+2

3
⌋
. We partition all

possible periods into r ranges of the form [p..2p]:

[2..4], [5..10], [11..22], . . . ,
[
3 · 2r−1−1..

⌊
n+k+2

3
⌋]
.

The number of ranges thus satisfies r ≤ log n+k+2
9 + 1. The sum of the upper bounds (3) for

all ranges is at least k; observing that the number 2p+1 in (3) is the first period from the
range next to [p..2p], we can write

k ≤ 2(k − 2)·
r∑
i=1

1
3 · 2i−1 + 2r. (4)

The sum in (4) is bounded by 1
5 + 1

11 + 1
23 + 1

47 ·
∑∞
i=0

1
2i < 0.377; substituting this value

and the upper bound for r, we get

0.246(k − 2) ≤ 2 log n+k+2
9 . (5)

For k ≥ n− 1, (5) implies 0.246(k − 2) ≤ 2 log 2k+3
9 , but this inequality fails for k ≥ 2. So

k ≤ n − 2 and we replace (5) with the inequality 0.246(k − 2) ≤ 2 log 2n
9 ; it gives, after

arithmetic transformations, the required bound on k. J

Proof of Theorem 3. For the sake of contradiction, assume that all infinite right contexts
of some right-extendable cube-free word u contain infinitely many markers. W.l.o.g. we can
assume that u ends with a marker (if not, choose a prefix v of an infinite right context of u
such that uv ends with a marker, and replace u with the word uv having the same property
of right contexts). Let z be the marker which is a suffix of u. For example, if u is the word
written in the “trunk” of the tree in Fig. 1, then z = bbabb.

By our assumption, u has no infinite uniform right contexts. Thus u has finitely
many uniform right contexts (in Fig. 1 such contexts are λ, a, aa, aab, aaba, and aabb).
Other uniform words, being appended to u, produce cubes; in Fig. 1, appending a
word beginning with ab (resp., aabab, aabba) gives the cube (bab)3 (resp., (babbaabab)3,
(babbaababbabbaababbabbaabba)3). All these cubes contain markers and illustrate three types
of cubes with respect to the occurrences of markers (x below denotes the root of the cube):

mini: x2 contains no markers, x3 contains a marker (example: x = bab);
midi: x contains no markers, x2 contains a marker (example: x = babbaabab);
maxi: x contains markers (example: x = babbaababbabbaababbabbaabba);
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Note that mini cubes are exactly those having the root x ∈ {ab, ba, aba, bab}. Further, the
intersection of two markers in a cube-free word is either empty or one-letter; this fact implies
that each midi cube contains exactly two markers.

We call w a semi-context of u if uw ends with a cube but u·w[1..|w|−1] is cube free. Next
we show the following fact:

(∗) The word u has two distinct uniform semi-contexts w1 and w2 such that uw1 and uw2
end with midi or maxi cubes.

To prove (∗) we need a case analysis. W.l.o.g., z begins with a. Let w be an infinite right
context of u.
Case 1: z = aabaa. We have u = · · · baabaa, so w cannot begin with a or baa because uw is
cube-free. So w begins with bba, babba, or baba. In the first case, some prefixes of words

uT[2..∞] = · · · baabaa bba baababba · · · , (6)
uT[22..∞] = · · · baabaa bba abbabaab · · · (7)

must end with cubes. The longest common prefix ubba of these words is cube free as a prefix
of uw, so these cubes are different, contain the marker z, and are not mini. Hence we can
take some prefixes of T[2..∞] and T[22..∞] as the semi-contexts required in (∗). If w begins
with babba, the same result is obtained with prefixes of the words

uT[12..∞] = · · · baabaa babba baabbaab · · · , (8)
uT[20..∞] = · · · baabaa babba abbabaab · · · (9)

Finally, if w begins with baba, we can take one word from each pair (say, uT[2..∞] and
uT[12..∞]). Their longest common prefix is the cube-free word ub, so the cubes given by the
corresponding semi-contexts are distinct.
Case 2: z = ababa. Here w = ab · · · . Taking the pair of words

uT[7..∞] = · · · ababa ab baababba · · · , (10)
uT[19..∞] = · · · ababa ab abbaabba · · · , (11)

we achieve the same result as in Case 1: some prefixes of these words end with midi or maxi
cubes, and these cubes are distinct because the common prefix uab of the presented words is
cube-free. Thus, (∗) is proved.

Now take the semi-contexts w1, w2 given by (∗) such that uw1 and uw2 end with cubes
x3

1 of period p1 and x3
2 of period p2 respectively. Let w be the longest common prefix of

w1 and w2; w.l.o.g., w1 = waw′1, w2 = wbw′2. In both x3
1 and x3

2, the suffix z of u is the
rightmost marker and hence matches an earlier occurrence of the same marker in u. These
occurrences are different, because z is followed by wa in x3

1 and by wb in x3
2. In particular,

p1 6= p2. W.l.o.g., p1 > p2; then x1 contains z and so x3
1 is maxi (see Fig. 4).

. . .
u z w2

w1

p2

p1

Figure 4 Semi-contexts w1 and w2 of the word u: periods of cubes and corresponding markers.
Three grey factors are markers equal to z, other markers are not shown.
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Let z1 = z, z2, . . . , zm be all markers in u, right to left. We factorize u as u = ym · · · y2y1,
where yi begins with the first letter after zi+1 (ym is a prefix of u) and ends with the last
letter of zi (even if zi+1 and zi overlap); see Fig. 5 for the example. Assume that zj+1
matches z1 in the maxi cube x3

1 (note that j ≥ 2, because a marker with a smaller number
matches z1 in x3

2; j = 3 in Fig. 5). Then zj−1, . . . , z1 are in the rightmost occurrence of x1,
and zj is either also in this occurrence or on the border between the middle and the rightmost
occurrences (in Fig. 5, the latter case is shown). Depending on this, x3

1 contains either 3j or
3j−1 markers. Further, we see that w1 is a prefix of yj , y1 = yj+1, . . . , y2j−2 = y3j−2.

ym y8 y7 y6 y5 y4 y3 y2 y1

u w1

· · ·
zm z9 z8 z7 z6 z5 z4 z3 z2 z1

Figure 5 Marker-based factorization of the word u. Markers are grey, arcs indicate the cube
after appending w1 to u.

Let us extend u to the right by a context y0 such that uy0 is right extendable, y0 ends with
a marker z0, and all proper prefixes of y0 are uniform. Applying all the above argument to uy0
and its factorization ym · · · y1y0, we get another maxi cube (say, x3

0) and the corresponding
set of equalities between yi’s. Note that y0 6= yj : as was mentioned in the previous paragraph,
yj has the prefix w1, while y0 cannot have this prefix because uw1 contains a cube.

Let us iterate the procedure of appending a context k times, getting a right-extendable
word uy = ym · · · y1y0 · · · y1−k as the result (according to our assumption on u, the number
k can be arbitrarily big). Now consider the finite alphabet Γ = {ym, . . . , y1, y0, . . . , y1−k}
and let U = ym · · · y2y1, Y = y0 · · · y1−k be words over Γ. They are cube free and Y is a
length-k right context of U . Each word U ·Y [1..i] ends with a suffix having some period pi
and length 3pi − 2 or 3pi − 1. In addition, pi 6= pi+1, because y−i 6= ypi−i. So all conditions
of Lemma 8 are satisfied, and we apply it to get an upper bound on k. The existence of this
bound contradicts our assumption that all infinite right contexts of u have infinitely many
markers. The theorem is proved. J

4 Transition Property for Big Alphabets

Here we extend the results of the previous section to arbitrary finite alphabets.

I Theorem 9. For every d ≥ 3 and every pair (u, v) of d-ary cube-free words such that u is
right extendable and v is left extendable, there exists a d-ary word w such that uwv is cube
free.

As in the binary case, we use an auxiliary theorem about the existence of a context with
finitely many markers (but the markers are different now).

I Theorem 10. Let d ≥ 3. Every right-extendable cube-free word u ∈ Σ∗d has an infinite
right context with finitely many occurrences of all letters except for a and b.

Proof. We follow the main idea of the proof of Theorem 3 and use the same notation. The
difference, which actually simplifies the argument, is that the role of markers is now played by
the c-letters c1, . . . , cd−2. Aiming at a contradiction, assume that all infinite right contexts
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of some right-extendable cube-free word u contain infinitely many c-letters. W.l.o.g. we can
assume that u ends with a c-letter; we denote this letter by z. As in the proof of Theorem 3,
we let z1 = z, z2, . . . , zm be all markers in u, right to left, and factorize u as u = ym · · · y2y1,
where yi begins with the first letter after zi+1 and ends with the last letter of zi.

By our assumption, u contains finitely many contexts from {a, b}∗; then it has two
semi-contexts w1 = waw′1, w2 = wbw′2 ∈ {a, b}+ (each of the words w,w1, w2 may be empty).
Let x3

1, x
3
2 be suffixes of uw1 and uw2 respectively, and w.l.o.g. |x1| = p1 > p2 = |x2|. The

suffix zw1 of x1 matches some earlier occurrence of zw1 in u; same for the suffix zw2 of x2.
As in the proof of Theorem 3 we see that zj+1 = z1 for some j ≥ 2, w1 is a prefix of yj , and
the equalities y1 = yj+1, . . . , y2j−1 = y3j−1 hold.

Next we extend u to the right by a context y0 such that uy0 is right extendable, y0
ends with a marker z0, and all proper prefixes of y0 are over {a, b}. Applying all the
above argument to uy0 and its factorization ym · · · y1y0, we get another cube x3

0 and the
corresponding set of equalities between yi’s. Again, y0 6= yj , since yj has the prefix w1,
while y0 has not. After iterating the procedure of appending a context k times, we obtain
a right-extendable word uy = ym · · · y1y0 · · · y1−k and consider the words U = ym · · · y2y1,
Y = y0 · · · y1−k over the alphabet Γ = {ym, . . . , y1, y0, . . . , y1−k}. They are cube free and Y
is a length-k right context of U . Each word UY [1..i] ends with a suffix having some period pi
and length 3pi − 1. In addition, pi 6= pi+1, because y−i 6= ypi−i. So we can apply Lemma 8
to get an upper bound on k. The existence of this bound contradicts our assumption that all
infinite right contexts of u have infinitely many c-letters. Hence u has an infinite context
with finitely many c-letters, as required. J

Proof of Theorem 9. By Theorem 10, the word u ∈ Σ∗d has an infinite right context with
finitely many c-letters. First we note that we can choose such a context containing a c-letter
(if a context w is over Σ2, one can get another context of u replacing, say, the letter w[|u|]
with c1). So we can write this context w as xu1, where x ends with a c-letter and u1 ∈ Σ∞2 .
Let u1 be the prefix of u1 of length d|ux|/2e. In the same way, we take a right context ←−y←−v1
of ←−v and the prefix ←−v1 ∈ {a, b}∗ of ←−v1 of length d|yv|/2e. Then the binary words u1, v1 are
cube free, u1 is right extendable, and v1 is left extendable. Applying Theorem 1, we take a
binary transition word w1 such that u1w1v1 is cube free. Then s = uxu1w1v1yv is cube free.
Indeed, x ends with a c-letter, y begins with a c-letter, and these c-letters are separated by a
cube-free word over Σ2. Hence a cube in s, if any, must contain one of these c-letters. But
the lower bounds on |u1| and |v1| imply that this c-letter cannot match another c-letter to
produce a cube (recall that uxu1 and v1yv are cube free). Thus s is cube-free and we obtain
a transition word xu1w1v1y for the pair (u, v). J

5 Solving the Restivo-Salemi Problems and Future Work

To give the solutions to the Restivo–Salemi Problems 2, 4, and 5, recall the solution to
Problem 1a [4]: a d-ary α-power-free word u is right extendable iff it has a right context of
length fα,d(|u|) for some computable function fα,d. Algorithm 1 below solves Problem 4.

The natural next step is to find an efficient algorithm for Problem 4. The function f3,d(n)
is sublinear, but the search space is still of size 2nΩ(1) . The possible way to a polynomial-time
solution is to strengthen the connection with Lemma 8 to show that it is sufficient to process
the contexts of length O(logn), where n = max{|u|, |v|}.

For Problem 2, the first step is the reduction to the binary case. Let u ∈ Σd, d ≥ 3, be a
right-extendable cube-free word; we write u = u′cu′′, where c is the rightmost c-letter in u.
We check all cube-free words w ∈ Σ∗2 such that u′′w is right extendable and |u′′w| = d|u|/2e
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Algorithm 1 : Deciding the existence of a transition word for cube-free words u, v ∈ Σd
For all words w ∈ Σd such that |w| ≤ f3,d(|u|) check whether w is a right context of u
If a context w with the suffix v is found, return “yes”
If no context of length f3,d(|u|) is found, return “no”
Else . u is right extendable

For all words w ∈ Σd such that |w| ≤ f3,d(|v|) check whether w is a left context of v
If a context w with the prefix u is found, return “yes”
If no context of length f3,d(|v|) is found, return “no”
Else return “yes” . v is left extendable; apply Theorem 1 or 9

for being right contexts of u. If w is a right context of u, then any (binary) right context
of u′′w is a right context of uw, so the problem is reduced to binary words. If no word w
suits, we take the shortest right context of u of the form vc, where v ∈ Σ∗2, c ∈ {c1, . . . , cd−2}
such that the word u1 = uvc is right extendable; such a context can be found in finite time
because |v| < |u|/2. Then we replace u by u1 and repeat the search of long binary right
contexts. By Theorem 10, we will succeed after a finite number of iterations, and Lemma 8
gives the upper bound on the maximum number k of iterations depending on |u|. Thus we
end this step getting a word yû such that uyû is cube free, û ∈ Σ∗2, and all binary right
contexts of û are right contexts of uyû. If u is binary, we skip this step setting û = u.

On the second step we further reduce the problem to uniform words. We act as in the
first step, using Theorem 3 and Lemma 6. Namely, we check for uniform contexts and if û
has no uniform context w of length 2|û|+ 3 such that ûw is right extendable and w has no
prefix ababa/babab, we append the shortest context v ending with a marker, repeating the
search for û1 = ûv. Theorem 3 guarantees that we will find the required uniform context in
at most k iterations, where k is as in Lemma 8. Thus at this step we build a right context
ŷŵ of û such that ûŷŵ is right extendable, |ŵ| ≥ 2|ûŷ| + 3 and ŵ is uniform and has no
prefix ababa/babab.

Finally we choose, as described in Lemma 6, a suffix T[r..∞] of T which is a right context
of ŵ: if ŵ = T[i..j] for some i, j, then we take r = j + 1, otherwise the choice is performed
according to Case 1 in the proof of Lemma 5. Now Lemma 6 guarantees that ûŷŵT[r..∞] is
cube free. Thus the infinite right context of the original word u is given by the finite word
Y = yûŷŵ and the number r. The above description is summarized below as Algorithm 2.

Again, the natural direction of the future work is to make Algorithm 2 efficient.
Finally we approach Problem 5. We first run Algorithm 1, which can provide us with

an example of a transition word if u or ←−v is not right extendable. If both u,←−v are right
extendable, we run for each of them Algorithm 2, getting Y1, Y2, r1, r2 such that uY1T[r1..∞]
and ←−T [∞..r2]Y2v are cube free. It remains to use Lemma 4: take big enough r′1, r

′
2 and

find a word w such that T[r1..r
′
1]w←−T [r′2..r2] is a factor of T and a transition word for the

pair (uY1, Y2v); the uniform recurrence of T ensures that the word w can be found in finite
time. Thus Y1T[r1..r

′
1]w←−T [r′2..r2]Y2 is the transition word for the pair (u, v), so Problem 5

is solved.
Once again, it is clear that some steps of the above solution can be significantly sped

up, so it would be nice to finally get a polynomial-time algorithm for Problem 5 (and thus
for Problems 1, 2, 4 as well). From the experimental study we learned that if a length-n
cube-free word is not right extendable, then likely not only all its right contexts have the
length O(logn), but the number of such contexts is O(logn). The proof of this fact would
lead to a linear-time solution of Problem 1.
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Algorithm 2 : Finding an infinite right context of a right-extendable cube-free word u ∈ Σd
U ← u, Y ← λ

If U is not binary . first step
While U has no long binary right context
∗ Find the shortest right context vc ending with a c-letter
∗ U ← Uvc, Y ← Y vc

û← long binary right context of U , Y ← Y û

Else û = u

While û has no long uniform right context without prefix ababa/babab . second step
Find the shortest right context v such that ûv ends with a marker
û← ûv, Y ← Y v

ŵ ← long uniform right context of û without prefix ababa/babab, Y ← Y ŵ

Find r such that T[r..∞] is a right context of ŵ . final step
return Y, r

Another obvious continuation of the current research is the study of the same problems for
other power-free languages. One line is to use Thue-Morse words to solve Problems 2, 4, and 5
for other binary power-free languages. For example, we are able to extend the results of
Section 3.1 to α-power-free binary words for any α ∈ (5/2, 3], changing only some constants.
Another line is to obtain similar results for ternary square-free words, in the absence of such
a strong tool as Thue-Morse words.
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