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Abstract

For a graph G = (V, E) with no isolated vertices, a set D C V is called a semipaired dominating
set of G if (¢) D is a dominating set of G, and (4¢) D can be partitioned into two element subsets such
that the vertices in each two element set are at distance at most two. The minimum cardinality of a
semipaired dominating set of G is called the semipaired domination number of GG, and is denoted by
~pr2(G). The MINIMUM SEMIPAIRED DOMINATION problem is to find a semipaired dominating
set of G of cardinality v,,2(G). In this paper, we initiate the algorithmic study of the MINIMUM
SEMIPAIRED DOMINATION problem. We show that the decision version of the MINIMUM SEMI-
PAIRED DOMINATION problem is NP-complete for bipartite graphs and split graphs. On the positive
side, we present a linear-time algorithm to compute a minimum cardinality semipaired dominating
set of interval graphs and trees. We also propose a 1 + In(2A + 2)-approximation algorithm for the
MINIMUM SEMIPAIRED DOMINATION problem, where A denote the maximum degree of the graph
and show that the MINIMUM SEMIPAIRED DOMINATION problem cannot be approximated within
(1 — €)In|V| for any € > 0 unless NP C DTIME(|V/|©Uoglog VD),

Keywords: Domination, Semipaired Domination, Bipartite Graphs, Chordal Graphs, Graph algo-
rithm, NP-complete, Approximation algorithm.

1 Introduction

A dominating set in a graph G is a set D of vertices of G such that every vertex in V(G) \ D is
adjacent to at least one vertex in D. The domination number of G, denoted by v(G), is the minimum
cardinality of a dominating set of G. The MINIMUM DOMINATION problem is to find a dominating
set of cardinality v(G). More thorough treatment of domination, can be found in the books [0, [7]. A
dominating set D is called a paired dominating set if G[D] contains a perfect matching. The paired
domination number of G, denoted by 7, (G) is the minimum cardinality of paired dominating set of G.
The concept of paired domination was introduced by Haynes and Slater in [11].
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A relaxed form of paired domination called semipaired domination was introduced by Haynes and
Henning [8]] and studied further in [12} 9 [10]. A set S of vertices in a graph GG with no isolated vertices
is a semipaired dominating set, abbreviated a semi-PD-set, of GG if S is a dominating set of G and S
can be partitioned into 2-element subsets such that the vertices in each 2-element set are at distance at
most 2. In other words, the vertices in the dominating set S can be partitioned into 2-element subsets
such that if {u, v} is a 2-set, then the distance between w and v is either 1 or 2. We say that u and v are
semipaired. The semipaired domination number of G, denoted by v,,2(G), is the minimum cardinality
of a semi-PD-set of G. Since every paired dominating set is a semi-PD-set, and every semi-PD-set is a
dominating set, we have the following observation.

Observation 1.1. ([8]]) For every isolate-free graph G, ¥(G) < Ypr2(G) < Ypr(G).

By Observation [I.1] the semipaired domination number is squeezed between two fundamental dom-
ination parameters, namely the domination number and the paired domination number.

More formally, the minimum semipaired domination problem and its decision version are defined as
follows:
MINIMUM SEMIPAIRED DOMINATION problem (MSPDP)

Instance: A graph G = (V, E).
Solution: A semi-PD-set D of G.
Measure: Cardinality of the set D.

SEMIPAIRED DOMINATION DECISION problem (SPDDP)

Instance: A graph G = (V, E) and a positive integer £ < |V].
Question: Does there exist a semi-PD-set D in G such that |D| < k?

In this paper, we initiate the algorithmic study of the semipaired domination problem. The main
contributions of the paper are summarized below. In Section[2] we discuss some definitions and notations.
In Section [3] we discuss the difference between the complexity of paired domiantion and semipaired
domination in graphs. In Section ] we show that the SEMIPAIRED DOMINATION DECISION problem
is NP-complete for bipartite and split graphs. In Section [5] and Section [6] we propose a linear-time
algorithms to solve the MINIMUM SEMIPAIRED DOMINATION problem in interval graphs and trees
respectively. In Section [7], we propose an approximation algorithm for the MINIMUM SEMIPAIRED
DOMINATION problem in general graphs. In Section [§] we discuss an approximation hardness result.
Finally, Section[9] concludes the paper.

2 Terminology and Notation

For notation and graph theory terminology, we in general follow [13]. Specifically, let G = (V, E)
be a graph with vertex set V' = V(G) and edge set E = E(G), and let v be a vertex in V. The
open neighborhood of v is the set Ng(v) = {u € V |uv € E} and the closed neighborhood of v is
Ng[v] = {v} U Ng(v). Thus, a set D of vertices in G is a dominating set of G if Ng(v) N D # {) for
every vertex v € V'\ D, while D is a total dominating set of G if Ng(v)N D # () for every vertex v € V.
The distance between two vertices u and v in a connected graph G, denoted by dg(u, v), is the length of



a shortest (u, v)-path in G. If the graph G is clear from the context, we omit it in the above expressions.
We write N (v), N[v] and d(u, v) rather than N¢(v), Ng[v] and dg(u, v), respectively.

For a set S C V(G), the subgraph induced by S is denoted by G|[S]. If G[C], where C C V, is a
complete subgraph of G, then C'is a cligue of G. A set S C V is an independent set if G[S| has no
edge. A graph G is chordal if every cycle in GG of length at least four has a chord, that is, an edge joining
two non-consecutive vertices of the cycle. A chordal graph G = (V, E) is a split graph if V' can be
partitioned into two sets I and C' such that C'is a clique and I is an independent set. A vertex v € V(G)
is a simplicial vertex of G if N¢[v] is a clique of G. An ordering @ = (v1,v2,...,v,) is a perfect
elimination ordering (PEO) of vertices of G if v; is a simplicial vertex of G; = G[{v;, vit1, ..., Un}]
for all 2, 1 < ¢ < n. Fulkerson and Gross [4] characterized chordal graphs, and showed that a graph
G is chordal if and only if it has a PEO. A graph G = (V, E) is bipartite if V can be partitioned into
two disjoint sets X and Y such that every edge of GG joins a vertex in X to a vertex in Y, and such a
partition (X, Y") of V(G) is called a bipartition of G. Further, we denote such a bipartite graph G by
G = (X,Y,E). A graph G is an interval graph if there exists a one-to-one correspondence between
its vertex set and a family of closed intervals in the real line, such that two vertices are adjacent if and
only if their corresponding intervals intersect. Such a family of intervals is called an interval model of a

graph.
In the rest of the paper, all graphs considered are simple connected graphs with at least two vertices,
unless otherwise mentioned specifically. We use the standard notation [k] = {1,..., k}. For most of the

approximation related terminologies, we refer to [[1, [14]].

3 Complexity difference between paired domination and semipaired dom-
ination

In this section, we make an observation on complexity difference between paired domination and
semipaired domination. We show that the decision version of the MINIMUM PAIRED DOMINATION
problem is NP-complete for GP4 graphs, but the MINIMUM SEMIPAIRED DOMINATION problem is
easily solvable for GP4 graphs. The class of GP4 graphs was introduced by Henning and Pandey in [15]].
Below we recall the definition of GP4 graphs.

Definition 3.1 (GP4-graph). A graph G = (V, E) is called a GP4-graph if it can be obtained from
a general connected graph H = (Vi,Epg) where Vi = {vi,v2,...,0,,}, by adding a path of
length 3 to every vertex of H. Formally, V. = Vg U {w;,z;,yi,zi | 1 < i < ng}and E =
Eng U{viw;, wizs, x3y;, yizi | 1 < i <npg }.

Theorem 3.1. If G is a GP4-graph, then vpy2(G) = %]V(G)|

Lemma 3.1. If G is a GP4-graph constructed from a graph H as in Definition[3.1] then H has a paired
dominating set of cardinality k, k < nyy if and only if G has a semi-PD-set of cardinality 2n + k.

Since the decision version of the MINIMUM PAIRED DOMINATION problem is known to be NP-
complete for general graphs [[11]], the following theorem follows directly from Lemma|3.1

Theorem 3.2. The decision version of the MINIMUM PAIRED DOMINATION problem is NP-complete
for GPA-graphs.



4 NP-completeness Results

In this section, we study the NP-completeness of the SEMIPAIRED DOMINATION DECISION prob-
lem. We show that the SEMIPAIRED DOMINATION DECISION problem is NP-complete for bipartite
graphs and split graphs.

4.1 NP-completeness proof for bipartite graphs

Theorem 4.1. The SEMIPAIRED DOMINATION DECISION problem is NP-complete for bipartite graphs.

Proof. Clearly, the SEMIPAIRED DOMINATION DECISION problem is in NP for bipartite graphs. To
show the hardness, we give a polynomial reduction from the MINIMUM VERTEX COVER problem.
Given a non-trivial graph G = (V, E), where V' = {v1,v2,...,v,} and E = {e1,e2,...,en}, we
construct a graph H = (Vi7, Epr) in the following way:

Let Vi, = {v} | i € [n]} and E}, = {eé‘? | j € [m]} for k € [2]. Also assume that A = {a; | ¢ € [n]},
B={b|lien|},C={c|i€n]},and F ={f; | i€ [n]}.

Now define Vg = ViUV UE,UE,UAUBUCUF,
and By = {v} fi, 02 fi, aibs, bici, ai fi | i € [n]} U {vhek vkel | k € [2],i € [m], vy, v, are endpoints of

edge e; in G}. Fig. illustrates the construction of H from G.
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Figure 1: An illustration of the construction of H from G in the proof of Theorem #.1]

Note that the set I; = V3 UVoUAUC is an independent set in H. Also, the set Is = E1 UE;UFUB
is an independent set in H. Since Vi = I; U I, the graph H is a bipartite graph. Now to complete the
proof, it suffices for us to prove the following claim:

Claim 4.1. The graph G has a vertex cover of cardinality at most k if and only if the graph H has a
semi-PD-set of cardinality at most 2n + 2k.

Proof. LetV, = {vi,, vi,, ..., v, } be avertex cover of G of cardinality k. Then D,, = {v},,v},..., v}k U
{Uz’21 , 02-22, e ,vfk} U B U F'is a semi-PD-set of H of cardinality 2n + 2k.

Conversely, suppose that H has a semi-PD-set D of cardinality at most 2n 4 2k. Note that D N
{ai.bi,ci, fi}| > 2 for each i € [n]. Hence, without loss of generality, we may assume that {b;, f; | i €
[n]} € D, where b; and f; are semipaired. Hence |[DN(E1UE2UVIUV,)| < 2k. Let S = (VIUE)ND.
Without loss of generality, we may also assume that |S| < k. Now, if e} € S for some i € [m], and none
of its neighbors belongs to D, then e} must be semipaired with some vertex ejl where j € [m] \ {i}, and

4



also there must exists a vertex v,ﬁ which is a common neighbor of e} and ejl». In this case, we replace the
vertex e; in the set S with the vertex vy and so S < (S'\ {ej}) U {v;} where v} and e; are semipaired.
We do this for each vertex e} € S where i € [m] with none of its neighbors in the set D. For the resulting
set S, |S N Vi| < k and every vertex e} has a neighbor in V; N S. The set V. = {v; | v} € S} is a vertex
cover of G of cardinality at most k. This completes the proof of the claim. O

Hence, the theorem is proved. O

4.2 NP-completeness result for split graphs

Theorem 4.2. The SEMIPAIRED DOMINATION DECISION problem is NP-complete for split graphs.

Proof. Clearly, the SEMIPAIRED DOMINATION DECISION problem is in NP. To show the hardness, we
give a polynomial time reduction from the DOMINATION DECISION problem, which is well known NP-
complete problem. Given a non-trivial graph G = (V, E), where V = {v; | i € [n]} and E = {e; | j €
[m]}, we construct a split graph G’ = (Vizr, E¢) as follows:

Let Vi, = {v¥ | i € [n]} and Uy, = {u¥ | i € [n]} for k € [2]. Now define Vg = V4 U Vo U Uy U U,
and Ecr = {wv | u,v € Vi UU,u # v} U{vfvj,uiu;j | i € [n] and v; € Ng[vi]}. Note that the set
A =V, UUj is aclique in G’ and the set B = V5 U Us is an independent set in G’. Since Vir = AU B,
the constructed graph G is a split graph. Fig. [2|illustrates the construction of G’ from G.
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Figure 2: An illustration to the construction of G’ from G in the proof of Theorem 4.2

Now, to complete the proof of the theorem, we only need to prove the following claim.

Claim 4.2. G has a dominating set of cardinality k if and only if G’ has a semi-PD-set of size cardinality

2k.
Proof. Let D = {vj;, viy, ..., v;, } be adominating set of size atmost k of G. Then Dy, = {v] , v}, ..., v},
{ul ui,... ,ullk} is a semi-PD-set of G’ of size atmost 2k.

Conversely, suppose that G has a semi-PD-set D, of cardinality at most 2k. Let S; = (V1UV2)N Dy,
and Sy = Uy U Uz N Dy, Then either |S1| < k or [S3| < k. Without loss of generality, let us assume
that |S;| < k. Note that if v? € 57 and none of neighbors belong to .S then we replace vf by some of
its neighbor v} in the set S;. So, we may assume that S; N V5 = ¢. Now the set D = {v; | v} € S1}is

J
a dominating set of G of size atmost k. Hence, the result follows. O

Hence, the theorem is proved. O

U



S Algorithm for Interval Graphs

In this section, we present a linear-time algorithm to compute a minimum cardinality semi-PD-set of
an interval graph.

A linear time recognition algorithm exists for interval graphs, and for an interval graph an interval
family can also be constructed in linear time [2, [5]. Let G = (V, E) be an interval graph and I be its
interval model. For a vertex v; € V/, let I; be the corresponding interval. Let a; and b; denote the left and
right end points of the interval ;. Without loss of generality, we may assume that no two intervals share
a common end point. Let v = (v1,v2, ..., vy) be the left end ordering of vertices of G, that is, a; < a;
whenever ¢ < j. Now we first prove the following lemmas.

Lemma 5.1. Let o = (v1,v2,...,vy) be the left end ordering of vertices of G. If vjvj; € E fori < j,
then viv, € E foreveryi < k < j.

Proof. The proof directly follows from the left end ordering of vertices of G. O
Define the set V; = {vy,v9,...,v;}, for each i € [n].

Lemma 5.2. If G is a connected interval graph, then G[V;] is also connected.

Proof. The proof can easily be done using induction on . O

Let F'(v;) be the least index vertex adjacent to v;, that is, if F'(v;) = vy, then p = min{k | vzv; € E}.
In particular, we define F'(vi) = vy. Let L(v;) = vq, where ¢ = max{k | vyv; ¢ E and k < i}. In
particular, if L(v;) does not exist, we assume that L(v;) = vg (vo ¢ V). Let G; = G[V;] and D; denote a
semi-PD-set of G; of minimum cardinality. Recall that we only consider connected graphs with at least
two vertices.

Lemma 5.3. Fori > 2, if F(v;) = vy, then D; = {v1,v;}.
Proof. Note that every vertex in G; is dominated by vy, and dg, (v1,v;) = 1. Hence, D; = {vy,v;}. O
Lemma 5.4. Fori > 1, if F(v;) = vj, j > 1 and F(vj) = vy, then D; = {v1,v;}.

Proof. Note that every vertex in G; is dominated by some vertex in the set {v1, v;}, and dg, (vi, v;) = 1.
Hence, D; = {v1,v;}. O

Lemma 5.5. Forr < k < j < i, let F(v;) = vj, F(vj) = vy F(vg) = v,. If every vertex v; where
k <1 < j, is adjacent to at least one vertex in the set {v;, v, }, then the following holds:

(a) {vj,v,} C D;.

(b) vj is semipaired with v, in D;.

(¢) Di N {Us41, - Vpy Upg1, ..., U3} = {vj, 0}

Proof. (a) To dominate v;, either v; € D; or v;; € D;, where j < il < iand v;; € Ng,(v;). If il # j
and v;; is semipaired with some vertex v;1, then Ng, (vi1) € Ng,(v;), and dg, (vj,vj1) < 2. Hence, we
can update the set D; as D; = (D; \ {v;1}) U {v;} and semipair v; with v;;. This proves that v; € D;.

If v, also belongs to D;, then we are done. Otherwise, if v; is semipaired with vj; (where j1 # r),
then j1 > r. Also, Ng[vji] C Nglvj] U Nglv,]. In that case, we can update the set D; as D; =
(Dl‘ \ {Ujl}) U {1}7»}. Hence, {Uj,’l)r} C D;.



(b) Suppose {vj, v} € D, If v; is semipaired with v, in D;, then we are done. Otherwise, if v; is not
semipaired with v;., assume that v; is semipaired with v;; and v, is semipaired with v,1. Note that j1
must be greater than r, and Ng, [vj1] C Ng,[v;] U Ng,[v,]. Therefore, the set D; \ {v;1 } also dominates
all the vertices of G;.

Suppose that Ng, (v,1) € D;. In this case, D’ = D; \ {v;1,vr1} is a semi-PD-set of G; where v;
and v, are semipaired. This contradicts the fact that D; is a semi-PD-set of (&; of minimum cardinality.
Hence, Ng, (v;1) € D;.

Let vy € D; \ Ng,(vr1). Now update the set D; as follows: remove vj; from D;, add v, in the set
D;, semipair v; with v, and v,; with v,2. Clearly, the updated set is also a semi-PD-set of G; of mini-
mum cardinality. This proves that there always exists a semi-PD-set D; of G such that {v;, v, } C Dj,
and v; is semipaired with v, in D;.

(c) We know that {vj, v, } € DiN{vey1,..., 0, Vps1,...,0;}. Weneed to show that D; N {vei1, ..., vy,

Urt1, ...,V } = {v;,v,}, that is, there is no other vertex from the set {vs11,...,Vp, Vpq1,...,0;} be-
longs to D;. Suppose, to the contrary, that there does not exist any D; for which D; N {vgy1,..., v,
Urt1,-- .,V } = {vj,v,}. So, for each Dy, |D; N {vgy1,..., 0, Vpq1,...,0i}| > 3. Consider a set D;
for which |D; N {vsy1,...,vr, Upt1, ..., v;}| is minimum.

Let |D; N {vst1,..., U, Vpq1,...,0}| = . Also, assume that v, € D;, where p # j,r and
s+1 < p < 1. Also, assume that v, is semipaired with v,1 in D;. Now consider the following two cases.
Case 1. pl > s. If vg € D;, then if, some vertex of the set {v1,v2,...,vs} is dominated by v, or v,
then that vertex is also dominated by v,. In that case, D; \ {vp, vp1} is also a semi-PD-set of G;, which
is a contradiction. If v ¢ D; and Ng, (vs) C D;, then also D; \ {vp, vp1 } is a semi-PD-set of G;, which
is again a contradiction. Hence, vs ¢ D; and N, (vs) € D;. Suppose vy € N, (vs) N D;. Then, update
the set D; as D; = (D; \ {vp, vp1}) U {vs,v4}. Note that Dj is still a semi-PD-set of G; of minimum
cardinality, and |D; N {vs41, ..., Vp, Upg1,--.,0;}| <, a contradiction.

Case 2. pl < s. If vg ¢ D;, then the updated set D; = (D; \ {v,}) U{vs} is also a semi-PD-set of G; of
minimum cardinality. If v, € D; and Ng, (vp1) C D;, then the updated set D; = D; \ {vp, vp1 } is also
a semi-PD-set of G;, a contradiction. If vs € D; and N¢, (vp1) € D;, let vy € Ng, (vp1) \ D;. Then,
update D; as D; = (D; \ {v,}) U{v,}. Note that Dj is still a semi-PD-set of G; of minimum cardinality,

and |D; N {vs41,. ., Ur,Vp41,...,0}| <, acontradiction.
Since both Case 1 and Case 2 produce a contradiction, there exists a semi-PD-set D; of G; of mini-
mum cardinality, for which the set D; N {vs11,...,Vp, Up41,...,v;} contains only v; and v,. O

Lemma 5.6. Forr < k < j <, let F(v;) = v;, F(vj) = v, F(vg) = v, If every vertex v; where
k <1< j, is adjacent to at least one vertex in the set {v;, v, }, then the following holds.

(a) D; = {Uj,Ur} lfL(Ur) = Vo

(b) D; = {v1,v2,vj, v} if L(v,) = 1.

(c) Di = Dy U {vj, v} if L(v,) = vs with s > 2.

Proof. (a) Clearly D; = {v;,v,}.

(b) From Lemma we know that {vj, v} C D;. Also, other than vy, all vertices are dominated
by the set {v;, v, }. Hence, D; = {v1,v2,vj,vr}.

(c) Clearly D, U {v;,v,} is a semi-PD-set of G;. Hence |D;| < |Dg| + 2. We also know that there
exists a semi-PD-set D; of G; of minimum cardinality such that D; N {vst1, Usy2, ..., v} = {v;, v, }
(where v; and v, are semipaired in D;). Hence D; \ {v;,v.} C V(Gj). Also, {v;, v, } dominates the set



{Vs41,Vs42, . .., vn }, implying that the set {v1, v2, ..., vy} is dominated by the vertices in D; \ {v;, v, }.
Hence, the set D; \ {vj,v,} is semi-PD-set of G. Therefore, |Ds| < |D;| — 2. This proves that
|D;| = |Ds| + 2. Hence, D; = Dy U {vj, v, }. O

Lemma 5.7. Forr < k < j < i, let F(v;) = vj, F(v;) = v, F(vg) = vy, and {v; | k <1 < j} ¢
Ng,[v:] U Ng,[vj]. Lett = max{l | k < | < j and vjv; ¢ E} (assume that such a t exists). Let
F(v) = vp. Then, the following holds.

(a) {vj,vp} C D;.

(b) vj is semipaired with vy, in D;.

(c) Di N {vsq1,..., U, Ubt1,---,0i} = {vj,0p}.

Proof. (a) First we show that v; € D;. Suppose v; ¢ D;. Let v, be the vertex dominating v; in D;.
Note that j < p < i and Ng,[vp,] € Ng,[v;]. Let vy be the vertex semipaired with v, in D;. Since
Nlv,] € N{vj], any vertex which is within distance 2 from v,, is also within distance 2 from v;. We can
update D; as D; \ {vp} U {v;} with v; semipaired with v,. Hence, D; contains v;. Similarly, we can
show that D; also contains vy,. So, {vj,vp} C D;.

(b) If v; is semipaired with vy, in D;, then we are done. Suppose, to the contrary, that v; is not semipaired
with v, in D;. So, assume that v; is semipaired with v, and vy, is semipaired with v, in D;. We consider
the four cases based on the values of the indices p and q.
Case 1. p > band q > b. Here, Ng, [v,] U Ng,[vq] € Ng,[vj] U Ng,[vs]. Hence, the set D; \ {vp, vy} is
also a semi-PD-set of (G}, a contradiction.
Case 2. p < band q < b. Since the distance between v, and v; is at most 2, p > r. If ¢ < b and
da,; (vg,vp) < 2, then dg, (vg,vp) < 2. So, in the set D;, v; can be semipaired with vy, and v, can be
semipaired with vy.
Case 3. p > band ¢ < b. Here, Ng,[v,] C Ng,[v;] U Ng,[vs]. If Ng,(vg) C D;, then the set
D; \ {vp,vq} is also a semi-PD-set of G;, a contradiction. If Ng,(vq) € D;, let vy € Ng,(vq) \ D;.
Then update D; as D; = (D; \ {vp}) U {v, }, and semipair v, with v, and v; with vj.
Case 4. p < band q > b. Since the distance between v, and v; is at most 2, p > r. Also
Ng,[vq] € Ng,[vj] U Ng,[vp]. If Ng,(vp) € D;, then the set D; \ {vp, vy} is also a semi-PD-set of G,
a contradiction. If N¢, (v,) € D, letv, € Ng,(vp) \ D;. Then update D; as D; = (D; \ {vg}) U {vy},
and semipair v, with v, and v; with vj.

By the above four cases, there always exists a semi-PD-set D; of G; of minimum cardinality such
that v; is semipaired with vy, in D;. This completes the proof of part (b).

(c) The proof is similar to the proof of Lemma[5.5(c), and hence is omitted. ]

Lemma 5.8. Forr < k < j <, let F(v;) = vj, F(v;) = vx F(vg) = vy, and {v; | k <1 < j} ¢
Ng,[vr] U Ng,[vj]. Lett = max{l | k < [ < j and vjv; ¢ E} (assume that such a t exists). Let
F(v) = vy Then, the following holds.

(a) DZ' = {Uj,’l)b} l'fL(Ub) = 9.

(b) D; = {v1,v2,v;,vp} if L(vp) = vy.

(c) D; = Dy U{vj,vp} if L(vp) = vs with s > 2.

Proof. The proof is similar to the proof of Lemma[5.6] and hence is omitted. O

Based on above lemmas, we present an algorithm to compute a minimum semi-PD-set of an interval
graph.



Algorithm 1 SEMI-PAIRED-DOM-IG(G)

Input: An interval graph G = (V, E') with a left end ordering o = (v, v2, ..., vy) of vertices of G.
Output: A semi-PD-set D of G of minimum cardinality.
V' =V,
while (V' # ¢) do
Let i = max{k | vy, € V'}. if (F(v;) = v1) then
D = DU {vy,v;};

L V=V \ {1}1,1}2,...,1]1‘};
else if (F'(v;) = v; and F(v;) = vi where j > 1) then

| D=DU{v,v;}; V' =V'\{v1,02,...,0:}
else if (F'(v;) = v; and F(v;) = v, where k > 2) then
Let F(vg) = vp. if {vp41,Vk42, ..., vj-1} € Nglv;] U Nglv,] then
if (L(v,) = vo) then
D = D U{vj,v,};
L V=V’ \ {Ul,’Ug,...,’Ui};
Ise if (L(v,) = v1) then
D = DU {v1,v2,v;,0- };
V/* \{1}1,’02,... ’Ui},

[

else

Let (L(v,) = vs) where s > 2.
D = D U{vj;,v,};

L V=V \ {U5+1,US+Q, ‘e 7’(}1'};

else

Lett =max{l | k <! < jandv; ¢ Ng(v;)} and F(v;) = vp. if (L(vs) = vp) then
D =D U{v;,v};

V/ = V/ \ {'1)1,’[)2, e ,’Ui};

Ise if (L(vy) = v1) then

D = D U {vi,v2,vj, 0 };

L Vi=V \{U1,U2,...,Ui}7

else

[«

Let (L(vp) = vs) where s > 2.
D =D U{v;,u};
L V' =V \ {vst1, 042, .-, 05}

Here, we illustrate the algorithm SEMI-PAIRED-DOM-IG, with the help of an example. An interval
graph G and its interval model I is shown in Fig

For the interval graph G given in Fig. 3] the algorithm SEMI-PAIRED-DOM-IG computes a semi-
PD-set of minimum cardinality in 3 iterations. Below, we illustrate all the 3 iterations of the algorithm.



I I I1o I15
Iy I Is Iy Iy Iy I3 Iig

I Is Iip Iy

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
(a) an interval model I
U1 V2 U3 Uy Vs Ve v7 g ) Y0 V11 V12 V13 V14 V15 Vg

(b) corresponding interval graph G

Figure 3: An interval model I and corresponding interval graph G.

INITIALLY
V' ={v1,v9,...,v16} and D = ¢.

ITERATION 1
i =16 and F(v;) = F(v1g) = v15 # v1
j = 15 and F(’l}j) = F(U15) = V13 ?é U1
k=13 and F(’Uk) = F(Ulg) = V12
r=12and {vg11...,vj-1} = {via} € Nglv;] U Ng[v,]
Since L(v,) = L(vig) = vip and s = 10 > 2,
D=DuU {U13, U15} and V' =V’ \ {UH . Ulﬁ}-
AFTER ITERATION 1

‘ D = {1)13,1)15} and V/ = {1)1,1)2...1)10} ‘
] ITERATION 2 \

i =10 and F(v;) = F(v19) = v9 # v1
Jj=9and F(v;) = F(vg) = v7 # 0
k= 7andF(vk) :F(U7) = Vs
r=>5and {vg41...,vj_1} = {ve} € Nglv;] U Ng[vy]
In this case ¢t = max{l | k <! < jand v; ¢ Ng(v;)} = 8 and
F(v) = F(vg) = vg (clearly b = 6)
Since L(vy) = L(vg) =vgand s =4 > 2,
D=DuU {’()6,1)9} and V' =V’ \ {1)5 .. .Ulo}.
AFTER ITERATION 2

| D = {vg,v9,v13,v15} and V' = {w1, v2, v3,v4} |

| ITERATION 3 |
i=4and F(v;) = F(v4) = v2 # 01
Jj =2and F(vj) = F(v2) = v1, hence
D =D U{vy,vo} and V! = V' \ {v1,v2,v3,v4}.
AFTER ITERATION 3

D = {v1,va,v6,v9,v13,v15} and V' = ¢
As V' = ¢ hence, loop terminates.
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Our algorithm returns the set D = {v1, va, vg, Vg, V13, V15 }, which is a minimum cardinality semi-PD-set
of the interval graph G.

Theorem 5.1. Given a left end ordering of vertices of G, the algorithm SEMI-PAIRED-DOM-IG com-
putes a semi-PD-set of G of minimum cardinality in linear-time.

Proof. By Lemmas 5.6 and we can ensure that the algorithm SEMI-PAIRED-DOM-IG
computes a semi-PD-set of G of minimum cardinality. Also, it can be easily seen that the algorithm can
be implemented in O(m + n) time, where n = |V (G)| and m = |E(G)]. O

6 Algorithm for Trees

In this section, we present a linear-time algorithm to compute a minimum cardinality semipaired
dominating set in trees.

LetT = (V, E) be atree, and 8 = (vp, Up—1, ..., v1) be the BFS ordering of vertices of T starting at
a pendant vertex v,. Let « = (v1, vo, ..., v, ) be the reverse ordering of /3. In our algorithm, we process
the vertices in the order they appear in «v. Let p(v;) denote the parent of vertex v;. If v; is the root vertex,
we assume p(v;) = v;.

The idea behind our algorithm is the following. We start with an empty set D, an array L and an
array M. Initially L{v;] = 0 and M[v;] = 0 for all v; € V. We process the vertices one by one in the
order « = (v1,ve,...,v,). During each of the iterations, we update D, L and M suitably. During the
iterations, L[v;] = 0 if v; is not selected in D, L[v;] = 1 if v; is selected in D but not semipaired, and
L[v;] = 2 if v; is selected in D and semipaired. Also, M [v;] = k if vy need to be semipaired with some
vertex in N7 [v;] \ D. At the end of the algorithm D becomes a minimum cardinality semi-PD-set of the
given tree T'. At the i" iteration, we process the vertex v;. While processing v;, we update D, L and M
as follows.

Case 1: i # n,n — 1 and v; is not dominated by D.

Subcase 1.1: For every v, € Np[p(v;)], M[v,] = 0.

Update D = D U {p(v;)}, L{p(v;)] = 1 and M[p(v;)] = j, where v; = p(v;).

Subcase 1.2: For some v, € Nr[p(v;)], M[v,] # 0.

Let C' = {v, € Nr[p(vi)] | M[w] # 0}. Let vy, be the least index vertex in C' and m/[vy] = vs. Update
Llp(v;)] = L{vs] = 2,and D = D U {p(v;)}.

Case 2: i € {n,n — 1} and v; is not dominated by D.

Update L{v,—1] = L[vy] = 2,and D = D U {v,,_1,v,}.

Case 3: v; is dominated by D and M [v;] = 0.

No Update in D, L and M are made.

Case 4: v; is dominated by D and M [v;] = k # 0 (that is, vi, need to be semipaired with some vertex in
Nr[vi] \ D).

Subcase 4.1: L[p(v;)] =
Update L[p(v;)] = L[vg] =
Subcase 4.1: L[p(v;)] = 1.
This case will not arrive.
Subcase 4.3: L{p(v;)] = 2.
Update L[v;] = L[vg] =2, M[v;] =0and D = D U {v;}.

0.
2, Mv;] =0and D = D U {p(v;)}.

Theorem 6.1. The MINIMUM SEMIPAIRED DOMINATION problem is linear-time solvable in trees.
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7 Approximation Algorithm

In this section, we present a greedy approximation algorithm for the MINIMUM SEMIPAIRED DOMI-
NATION problem in graphs. We also provide an upper bound on the approximation ratio of this algorithm.
The greedy algorithm is described as follows.

Algorithm 2 : APPROX-SEMI-PAIRED-DOM-SET(G)

Input: A graph G = (V, E') with no isolated vertex.
Output: A semi-PD-set D of G.
begin
D=0,
i=0; Dy =0;
while (V \ (D() UDiU. Dz) 75 @) do
t=1+1;
choose two distinct vertices u, v € V such that dg(u,v) < 2 and |( Ng[u]UNg[v])\(DoUD1U...UD;_1)|
is maximized;
Di = (NG[U] U NG[U]) \ (DO U D1 u...u Di—l);
D =DU{u,v};

| return D;

Lemma 7.1. The algorithm APPROX-SEMI-PAIRED-DOM-SET produces a semi-PD-set of G in poly-
nomial time.

Proof. Clearly, the output set D produced by the algorithm APPROX-SEMI-PAIRED-DOM-SET is a
semi-PD-set of G. Also, each step of the algorithm can be computed in polynomial time. Hence, the
lemma follows. O

Lemma 7.2. For each vertex v € V, there exists exactly one set D; which contains v.

Proof. We note that V' = Do U Dy U ... Dp|j2. Also, if v € D;, thenv ¢ D; for i < j. Hence, the
lemma follows. O

By Lemma | there exists only one index ¢ € [|D|/2] such that v € D; for each v € V. We now
define d,, = D7l D E Now we are ready to prove the main theorem of this section.

Theorem 7.1. The MINIMUM SEMIPAIRED DOMINATION problem for a graph G with maximum degree
A can be approximated with an approximation ratio of 1 + In(2A + 2).

Proof. For any finite set X # (), Z ’ X\ = 1. Hence, we have

rzeX
1D|
2
EED S R
=1 weD; Z weV
Let D* = {uy, vy, u2,v2,...,u 1D v|p*| } be a semi-PD-set of G of minimum cardinality, where u;

2

is semipaired with v;, for each i € [‘D |} Define M = {{uy,v1},{ua,v2},...,{wp*,vp* }}. Note

2 2

12



that for each vertex w, there exists a pair {u;,v;} € M such that w € Nglu;] U Ng[v;]. Hence, the
following inequality follows.

Sas Y Y

weV {u;,vi}eM weNg[u; ]JUNG [v;)

Consider a pair {u,v} € M and define z;, = [(Ng[u] U Ng[v]) \ (Do U Dy U Ds U ... Dy)| for
ke {0}U [Lg‘] Clearly, zx_1 > 2z for k € [@] Suppose [ is the smallest index such that z; = 0. At
the k" step of the algorithm, Dj, contains z;_; — 23, vertices from the set Ng[u] U Ng[v]. Hence

l
1

weNg[u]UNg[v] =1

At the k'" step of the algorithm, we choose the pair wuy, vy, such that | Dy| = |(Ng[uz] U Ng[vi]) \
(DoUDqU---UDjg_1)|is maximum. Hence | D| > |(Ng[u|UNg[v])\ (DoUD1U- - Di_1)| = z—1.
Therefore the following inequality follows.

l
Zk—1 — %
2 : dy SZ : k—1 k.
— Zk—1
wENg[u]UNg[v] k=1

b

1
For all integers a < b, we know that H(b) — H(a) > I’_T“ where H(b) = E —and H(0) = 0.
i
i=1

Therefore
l
S dw < H(zo) - H(z) = H(zo) = H(ING[u] U Ne[ol]) < H(2A +2).
wENgG[u]UNg[v] k=1
It follows that

Dl=2Y dy< 3 H(A+2) = |D'|H(2A+2) < (n(2A+2) +1) - |D"].
weV {uv}teM

This shows that the MINIMUM SEMIPAIRED DOMINATION problem can be approximated with an
approximation ratio of 1 + In(2A + 2). O

8 Lower bound on approximation ratio

To obtain the lower bound on the approximation ratio of the MINIMUM SEMIPAIRED DOMINATION
problem, we give an approximation preserving reduction from the MINIMUM DOMINATION problem.
The following approximation hardness result is already known for the MINIMUM DOMINATION prob-
lem.

Theorem 8.1. [3)] For a graph G = (V, E), the MINIMUM DOMINATION problem cannot be approxi-
mated within (1 — €) In |V | for any € > 0 unless NP C DTIME (|V/|©(cglog|[V])),

Now, we are ready to prove the following theorem.
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Theorem 8.2. For a graph G = (V, E), the MINIMUM SEMIPAIRED DOMINATION problem cannot be
approximated within (1 — €)1In |V | for any € > 0 unless NP C DTIME (|V|C(cgloelV1)),

Proof. Let G = (V, E), where V. = {v1,va,...,v,} be an arbitrary instance of the MINIMUM DOM-
INATION problem. Now, we construct a graph H = (Vi, Ep), an instance of the MINIMUM SEMI-
PAIRED DOMINATION problem in the following way: Vi = {v},vZ, w}, w? 2 | i € [n]} and Ey =
{wjvi, wivi | v; € Nolvil} U{vjvj,vfv?, ziz; | 1 <i < j < n}U{vjz,0iz | i€ n],je [n]}
Fig. [Z_f]ﬂlustrates the construction of H from G.

v w} & ‘u,’f

0u
. }} 23 vl

Figure 4: An illustration of the construction of H from G in the proof of Theorem [8.2]

Let VF = {vF | i € [n]} and W* = {w} | i € [n]} for k = 1,2. Also, assume that Z = {z; | i €
[n]}. Note that V! U Z is a clique in H. Also V2 U Z is a clique in H.

Let D* denote a minimum dominating set of G. Then the set D’ = {v},v? | v; € D*} is a semi-PD-
set of H. Hence, if Dy, denotes a semi-PD-set of H of minimum cardinality, then |D7,| < 2|D*|.

Suppose that the MINIMUM SEMIPAIRED DOMINATION problem can be appr0x1mated within a
ratio of «, where &« = (1 — €) In(|Vy|) for some fixed ¢ > 0, by some polynomial time approximation
algorithm, say Algorithm A. Next, we propose an algorithm, which we call APPROX-DOMINATING-
SET, to compute a dominating set of a given graph G in polynomial time.

Algorithm 3 : APPROX-DOMINATING-SET(G)
Input: A graph G = (V, E).
Output: A dominating set D of G.

begin
Initialize &k = 0;
Construct the graph H;

Compute a semi-PD-set D), of H using Algorithm A;
Define D, = Dy;

if (|1 D5, N (VIUWY)| < |Dspl/2) then

L k=13
else

L k=2;

for i=1 to ndo

L if (Ng(w )OD’ ) then

| DL, )U{vf};

D = {v; | v} € D, ﬂVk}
return D;
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Next, we show that the set D returned by Algorithm 3 is a dominating set of G. If Dy, is any semi-
PD-set of H, then clearly either |Dg, N (VI U W1)| < |Dgpl/2 or [Dgp, N (VZ2UW?2)| < |Dgpl/2.
Assume that |Dg, N (V¥ U WF)| < |Dy,|/2 for some k € [2]. Now, to dominate a vertex w¥ € W¥,
either wf € Dy, or vf € Dy, where vé-“ € Ny (w;). If NH(wf) N Dy is an empty set, then we update
Dy, by removing w¥ and adding vf for some v;-“ € N (w;), and call the updated set Dg,. We do this for
each i from 1 to n. Note that even for the updated set D/, ,, we have | D}, (VFUW")| < |Dgy|/2. Also,
in the updated set D/, for each wf, Ny (wF) N (Dg, NV*) is non-empty. Hence |D}, N V*| < |Dyy|/2
and D/, N V¥ dominates W*. Therefore the set D = {v; | vf € D}, N V*} is a dominating set of G.
Also |D| < |Dgpl/2.

By above arguments, we may conclude that the Algorithm 3 produces a dominating set D of the
given graph G in polynomial time, and |D| < |Dsy|/2. Hence, |D| < @ < a% < a|D*|.

Also o = (1—€) In(|VH|) = (1—¢€) In(|V]) where |V | = 5|V|. Therefore the Algorithm APPROX-
DOMINATING-SET approximates the minimum dominating set within ratio (1 — €) In(|V]) for some
€ > 0. By Theorem|8.1] if the minimum dominating set can be approximated within ratio (1 — €) In(| V')
for some ¢ > 0, then NP C DTIME (|V|?Uoglog VD)) Hence, if the MINIMUM SEMIPAIRED DOMINA-
TION problem can be approximated within ratio (1 — €) In(|Vx|) for some ¢ > 0, then NP C DTIME
(|V|©UoslogVl)y - This proves that the MINIMUM SEMIPAIRED DOMINATION problem cannot be

approximated within (1 — ¢) In(|Vz|) unless NP C DTIME (|Vj|©oglog VD)), O

9 Conclusion

In this paper, we initiate the algorithmic study of the MINIMUM SEMIPAIRED DOMINATION prob-
lem. We have resolved the complexity status of the problem for bipartite graphs, chordal graphs and in-
terval graphs. We have proved that the SEMIPAIRED DOMINATION DECISION problem is NP-complete
for bipartite graphs and split graphs. We also present a linear-time algorithm to compute a semi-PD-set
of minimum cardinality for interval graphs and trees. A 1+ In(2A + 2) approximation algorithm for the
MINIMUM SEMIPAIRED DOMINATION problem in general graphs is given, and we prove that it can not
be approximated within any sub-logarithmic factor. It will be interesting to study better approximation
algorithms for this problem for bipartite graphs, chordal graphs and other important graph classes.
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