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THE COMPLEXITY OF UNAVOIDABLE WORD PATTERNS
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Abstract. The avoidability, or unavoidability of patterns in words over finite alphabets
has been studied extensively. The word α over a finite set A is said to be unavoidable
for an infinite set B+ of nonempty words over a finite set B if, for all but finitely many
elements w of B+, there exists a semigroup morphism φ : A+

→ B+ such that φ(α) is a
factor of w. We present various complexity-related properties of unavoidable words. For
words that are unavoidable, we provide an upper bound to the lengths of words that avoid
them. In particular, for a pattern α of length n over an alphabet of size r, we give a
concrete function N(n, r) such that no word of length N(n, r) over the alphabet of size r

avoids α.
A natural subsequent question is how many unavoidable words there are. We show that

the fraction of words that are unavoidable drops exponentially fast in the length of the
word. This allows us to calculate an upper bound on the number of unavoidable patterns
for any given finite alphabet.

Subsequently, we investigate computational aspects of unavoidable words. In particular,
we exhibit concrete algorithms for determining whether a word is unavoidable. We also
prove results on the computational complexity of the problem of determining whether a
given word is unavoidable.

1. Introduction

Let N denote the nonnegative integers. If A is a finite set, we write A∗ for the set
{a1a2 . . . an | ai ∈ A and n ∈ N} of words over A, while A+ is the subset of all nonempty
words in A∗. For n ∈ N we symbolize the set of words of length n over A by An. Here the
length of a word is defined in the conventional sense: if w ∈ A∗ and w = a1a2 . . . an with
each ai ∈ A, then the length |w| of w is n. The set A above is sometimes called an alphabet

and its members are called letters. We say that the word v = a1a2 . . . am is a factor of the
word w = b1b2 . . . bn if there is an i such that, for 1 ≤ j ≤ m, we have aj = bi0+j.

For a word w and letters x1, x2, . . . , xk, we denote by w
x1,x2,...,xk the word derived from

w by deleting all occurrences of each of the xi.
We say that a word w over a finite alphabet B reflects a word α (or a pattern α,

for the sake of clarity) over a finite alphabet A whenever there is a semigroup morphism
φ : A+ → B+ such that φ(α) is a factor of w. The pattern α is called unavoidable for a
set X of words over a finite alphabet if all but finitely many w ∈ X reflect α. The pattern
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2 PAUL SAUER

α is simply called unavoidable if the preceding statement holds for every set over a finite
alphabet. Otherwise α is called avoidable.

The study of combinatorial patterns is one of the most repeated themes in Mathematics
[5], [8]. Among these studies, the unavoidability of patterns in words over finite alphabets
has been explored extensively. Over the last century, this theme has resurfaced repeatedly
[15], [9], [1], [16], [10], [14]. In the last decade, there has been a resurgence in the investiga-
tion of unavoidability [13]. Thue [15] proved that xxx is avoidable on the binary alphabet
and xx is avoidable on the alphabet of size 3. Bean et al. [1] conducted an extensive inves-
tigation into the avoidability of patterns. One central discovery of this investigation is the
notion of a letter that is free for a pattern.

Definition 1.1. Let A be a finite alphabet and let w ∈ A+. A letter x ∈ A is free for w if
x occurs in w and there is no integer n > 0 and a1, a2, . . . , an, b1, b2, . . . , bn such that

xa1

b1a1

b1a2

b2a2

...

bnx

are all factors of w.

Free letters are connected to the phenomenon of unavoidability be the following lemma,
whose proof appears in [1].

Lemma 1.2. Suppose α is a pattern with a free letter x. If αx is unavoidable, then so α.

A surprising, complete characterization of unavoidable patterns follows from Lemma
1.2. This is commonly known as the Bean, Ehrenfeucht and McNulty (B.E.M.) Theorem.

B.E.M. Theorem 1.3. A pattern α is unavoidable if and only if it is reducible to the
empty word by iteratively performing one of the following operations on the pattern:

(1) deleting every occurrence of a free letter, or
(2) replacing all occurrences of some letter x occurring in α by a different letter y, also

occurring in α.

We refer to the second operation as the identification of letters. We can extend the
definition of free letters to free sets.
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Definition 1.4. Let A be a finite alphabet and let w ∈ A+. A set X ⊆ A is free for w if,
for every pair of letters x, y ∈ X, there is no n > 0 and a1, a2, . . . , an, b1, b2, . . . , bn such that

xa1

b1a1

b1a2

b2a2

...

bny

are all factors of w.

The notion of free sets allows us to reformulate the B.E.M. Theorem in a way that is
sometimes more convenient for reasoning about patterns.

Theorem 1.5. A pattern is unavoidable if and only if it is reducible to the empty word by
iteratively deleting free sets.

This reformulation is due to Sapir [12]. See also Zimin [16]. The proof of Theorem 1.3,
presented in [1], is not constructive. Therefore it gives no indication, for any given pattern,
what the longest word avoiding that pattern might be. Subsequent to [1], one constructive
unavoidability result was established, pertaining to the subset of patterns that represent
permutations. We now discuss this result briefly.

Let [n] denote the set {1, 2, . . . , n} and let Sn be the set of all permutations of [n]. We
use one-line notation to express a permutation π ∈ Sn – that is we write x1x2 . . . xn when
π(i) = xi for i ∈ [n]. The write 〈π〉 for the word 12 . . . nx0x1 . . . xn, where x0 is a symbol
not in [n]. Fouché [6] discovered the following

Theorem 1.6. For n, r ∈ N there is an N = N(n, r) ∈ N such that every w ∈ [r]N reflects
every 〈π〉, where π ∈ Sn. Specifically, the numbers N(n, r) are inductively bounded from
above by

N(n+ 1, r + 1) ≤ 2(n+ 1)N(n + 1, r)N(n, (2n + 2)2rN(n+1,r))

In the sequel, we show that a similar bound holds for all unavoidable patterns. The proof
of the Main Theorem 2.3 follows Fouché’s reasoning. Subsequent sections are organized as
follows:

In Section 3, we investigate the density of unavoidable patterns in the space of all
patterns. We establish that this density drops quite fast as the length of the pattern
increases. This fact then provides a way to calculate an upper bound for the number of
unavoidable patterns as function of the size of the underlying alphabet.

Section 4 is devoted to the algorithmic decision problem of whether a letter appearing
in a given pattern is free. We present a concrete algorithm running in polynomial time. In
Section 5, we show that there is a simple reduction from boolean formulas to patterns that
maps satisfiable formulas to unavoidable patterns and unsatisfiable formulas to avoidable
patterns. The final substantial part of the paper is Section 6, where we prove that the the
problem of deciding whether a pattern is unavoidable is NP -complete.
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2. General Bounds for Unavoidable Patterns

The main result of this section is Theorem 2.3, which provides an upper bound on the
length of words that can avoid a given, unavoidable pattern. In order to establish Theorem
2.3, we first need to establish a few facts. Lemma 2.1 below gives us a method for building
morphisms as the size of our alphabet increases, provided that there is a free letter in the
pattern. This lemma, stated here without proof, is proved in [1].

Lemma 2.1. Let A and B be a finite alphabets and let w be a word over A. Suppose
x is free for w. If there is a morphism φ : wx 7→ v, where v ∈ B+ is of the form
ai1X1a

i2X2 . . . a
itXta

it+1 , each Xi being a word over B \ {a}, then there is a morphism
ψ : w 7→ v.

Since every letter in a free set is free, the following Lemma follows immediately from
Theorem 1.5. This will be used in conjunction with Lemma 2.1 to build morphisms in the
proof of the main result below.

Lemma 2.2. Every unavoidable pattern has a free letter.

We are now ready to prove our main result. The construction of the proof closely
follows [6].

Main Theorem 2.3. For n, r ∈ N there is an N = N(n, r) ∈ N such that every w ∈ [r]N

reflects every unavoidable pattern of length n over [r]. The minimal values for the numbers
N(n, r) are bounded from above by

N(n + 1, r + 1) ≤ (n+ 1)N(n + 1, r)N(n, (n + 1)2rN(n+1,r))

Proof. It is easy to see that N(1, r) = r+1 and N(1, n) = n+1. From here we proceed by
induction to establish the stated bound. Suppose our result holds for some n and all r, as
well as for n+ 1 and some r ≥ 1.

Let w be a word of length (n + 1)KL over an alphabet A of size r + 1, where K =

N(n + 1, r) and L = N(n, (n + 1)2rN(n+1,r). We may assume that every factor of length
K in w contains every letter in A, for otherwise w reflects every unavoidable pattern
of length n + 1, by our inductive hypothesis. Consequently, the word w is of the form
ai1X1a

i2X2 . . . a
itXta

it+1 , where each Xi ∈ {A \ {a}}+ satisfies |Xi| < K. We may assume
that 1 ≤ aij ≤ n, for otherwise the morphism f(x) = a that sends every letter to a shows
that every pattern of length n+ 1 is reflected by w.

We immediately have

(n+ 1)KL = |w| ≤ (K − 1)t+ (t+ 1)(n + 1)

= (K + n)t+ n+ 1

≤ (n+ 1)Kt+ 1

since K > 2 is readily available from the definition of K. Therefore we have t > L and hence

w has a factor v = ai1X1a
i2X2 . . . a

iLX
iL+1

L , where each Xi ∈ {A \{a}}+ satisfies |Xi| < K.

Define the alphabet B as the set of words of the form aiX, with 1 ≤ i ≤ n and
X ∈ {A \ {a}}+ satisfies |Xi| < K.
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|B| =n(r + r2 + · · ·+ rK−1)

≤(n+ 1)2rK

since K ≥ n+ 1 for every n and r.
We have v is a word of length L over B. Suppose that α is any unavoidable pattern

of length n + 1 over A. Using Lemma 2.2 there is a letter x ∈ A that is free for α. We
remind ourselves that L = N(n, (n + 1)2rN(n+1,r)) and note, by our inductive hypothesis,
that there is thus a morphism φ : αx 7→ v. Consequently, Lemma 2.1 yields that there is a
morphism ψ : α 7→ v and the proof is complete.

3. Density and Counting Unavoidable Patterns

A natural subsequent question is how many unavoidable words there are. We start by
showing that, for alphabets of 3 or more letters, the fraction of words that are unavoidable
drops exponentially fast in the length of the word.

Lemma 3.1. Let r > 2 and n > 0. Let pr,n be the probability that a pattern of length n

is unavoidable over [r]. We have pr,n ≤
(

r−1
r

)n−1
.

Proof. Let w be a word of length n over r. If n = 1 then w is unavoidable, so that our
claim holds with pr,1 = ( r−1

r
)0 = 1. Now suppose n > 1. We will use the fact that xx is

avoidable, established in [15]. Let V = {w ∈ [r]n : x ∈ [r] and xx is a factor of w}. First
we claim that every element of V is avoidable. To prove our claim, we start by noting that
x is not free for any v ∈ [r]∗ that has xx as a factor. Hence any sequence of deletions
of free letters applied to w results in a word that has xx as a factor. Using Theorem
1.3, our claim is proved. Let Un,r be the set of all unavoidable words of length n over r.
By our claim above, we have U ⊆ V̄ = [r]n \ V . Now we count the elements of V̄ . Let
w = w1w2 . . . wn be an abstract word of length n over r. For w1 we can choose any one of
the r letters in [r]. For each subsequent wi, we can choose any letter from [r], other than
our choice of wi−1. Hence |V̄ | = r(r−1)n−1. It follows that |U | ≤ r(r−1)n−1 and therefore

pr,n ≤ r(r−1)n−1

rn
=

(

r−1
r

)n−1
.

We also know from [1] that all unavoidable patterns over [r] have length less than 2n.
Combined with Lemma 3.1 above, we can now obtain an upper bound on the number of
unavoidable patterns over [r], where r > 2.

Proposition 3.2. Let r > 2. The number of unavoidable patters over [r] is at most

r
(

(r−1)2
r−1−1

r−2

)

.

Proof. The number of unavoidable patterns of length n is bounded from above by

pr,nr
n ≤

(

r − 1

r

)n−1

rn = r(r − 1)n−1.
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Since there are no unavoidable patterns of length greater than 2n − 1 we have the total
number of unavoidable patterns is at most

2r−1
∑

i=1

r(r − 1)i−1 = r
2r−2
∑

i=0

(r − 1)i = r

(

(r − 1)2
r−1 − 1

r − 2

)

and the proof is complete.

4. Free Letters and Computation

We now proceed to investigate the computational aspects of unavoidability, assuming a basic
familiarity with algorithms and computational complexity, for which Hopcroft and Ullman
[7] and [3] provide authoritative references. The computational complexity of patterns has
been the subject of significant study. Rytter and Shur [11] demonstrated that the problem
of finding whether a pattern is reflected in a given string is NP -complete. In the same
article, they mention that the problem of determining whether a pattern is unavoidable
has, at face value, properties that many other NP -complete problems have. Below, we
show that their suspicions are correct. The complexity of unavoidable words in the sense
of substrings, not morphisms, has also been investigated [2].

For a pattern α we construct a directed bipartite graph Gα, which we call the graph

of α. The vertex set V (Gα) of Gα has two nodes 0ab and 1ab for each 2-factor ab of α.
The pair of 2-factors (0ab,1 cd) of α is an edge of Gα whenever b = d. Similarly, the pair
(1ab,0 cd) of α is an edge of Gα whenever a = c. The reason why we create two vertices for
each 2-factor is to prevent paths of the form xa, xb, xc.

Lemma 4.1. Let α be a pattern. A letter x of α is not free if and only if there is a path in
Gα from a node having x as its first component to a node having x as its second component.

Proof. If x is not free for α, then there is an n ∈ N and a1, a2, . . . , an, b1, b2, . . . , bn such that

xa1

b1a1

b1a2

b2a2

...

bnx
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are all factors of w. It is clear from the definition of Gα that the edges

(0xa1,
1b1a1)

(1b1a1,
0 b1a2)

(0b1a2,
1 b2a2)

(1b2a2,
0 b2a3)

...

(0bnan−1,
1 bnx)

all exist in Gα. Therefore a path from 0xa1 to 1bnx exists in Gα, as desired.
Proving the converse is essentially the same as reading the construction above in reverse.

Given Lemma 4.1, we can easily construct an efficient algorithm that decides, given a
pattern α and a letter x appearing in α, whether x is free for α.

Firstly, the construction of the adjacency matrix of Gα from α can be defined as follows:

def BUILD_G(n, alpha):

G = [[0 for x in range(2*n-2)] for y in range(2*n-2)]

V = [[[0 for x in range(2)] for y in range(2)] for z in range(n-1)]

for i in range(n-1):

V[i][0][0] = V[i][1][0] = alpha[i]

V[i][0][1] = V[i][1][1] = alpha[i+1]

for i in range(n-1):

for j in range(n-1):

if V[i][0][0] == V[j][1][0]:

G[i + n - 1][j] = 1

if V[i][0][1] == V[j][1][1]:

G[i][j + n - 1] = 1

return (V, G)

We notice that the runtime is dominated by the nested for loop and therefore requires
O(n2) computational steps. The subroutine as it is written is not quite optimal since mul-
tiple vertices are created if the same 2-factor is repeated. This impacts the time complexity
only to a multiplicative constant and simplifies the description.

Now, given a graph G = Gα and a letter x, we can use a standard depth-first search
algorithm to detect if x is not free. For simplicity we write a standard depth-first search
subroutine.
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def DFS(n, G, V, i, p, x, is_seen):

is_seen[i][p] = True

if p == 0:

q = 1

else:

q = 0

for j in range(n-1):

if not is_seen[j][q] and

(

(q == 0 and G[i + n - 1][j] == 1) or

(q == 1 and G[i][j + n - 1] == 1)

):

if V[j][q][1] == x:

return True

else:

if DFS(n, G, V, j, q, x, is_seen):

return True

return False

We are now ready to write the subroutine determining if x is free for α.

def IS_FREE(alpha, x):

if x not in alpha:

return False

n = len(alpha)

V,G = BUILD_G(n, alpha)

is_seen = [[False for i in range(n)] for j in range(n)]

for i in range(n-1):

is_seen = [[False for k in range(n)] for j in range(n)]

if V[i][0][0] == x:

if not is_seen[i][0]:

if DFS(n, G, V, i, 0, x, is_seen):

return(False)

return(True)

The subroutine IS FREE requires O(n2) computational steps, where n = |α|: We already
know that BUILD G is O(n2). In subsequent steps, DFS is called at most n times since every
vertex is marked as seen subsequent to the invocation of DFS. At every invocation of DFS,
at most n neighbors of a vertex are examined.

Let us pause for a moment to remember where we started and what we have seen along
the way. Our initial definition of unavoidability sounds distinctly non-finitary: A pattern
must be reflected by all but finitely many elements for every set over any finite alphabet.
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Theorem 1.5 then gives us a finitary characterization of unavoidability in that we only need
to look for a sequence of deletions of free letters. Most recently we have seen, in addition,
that the problem of deciding whether a letter is free falls in Polynomial Time. It is hence
starting to look as though the problem of determining whether a pattern is free might fall
in NP : We can nondeterministically guess the sequence of deletions and verify the validity
of the guess (each deletion being of a free letter) in polynomial time. We may also ask how
hard this problem is, relative to other problems in NP . In the following two sections, we
explore this.

5. Unavoidability and Logic

We work to establish a natural correspondence between boolean formulas and patterns. In
particular, we show that given a boolean formula, we can construct a word whose unavoid-
ability coincides with the satisfiability of of the formula. We will restrict our construction
to 3-CNF boolean formulas, as the correspondence between this subset of boolean formulas
and the set of all boolean formulas is well-understood (see [7]).

Let φ be any 3-CNF boolean formula. We construct αφ, the word of φ, as follows:
Suppose φ has n variables x1, x2, . . . , xn. Without loss of generality φ = C1∧C2∧ · · · ∧Cm,
where each Ci is a clause of the form (pi1∨pi2∨pi3), each pij being either a variable xk, or its
negation xk. We may also assume that any negated variables occur after any non-negated
variables in each clause. We start by defining the letters in αφ. These letters will fall into
the following four categories:

(1) The set Xαφ
= {xi, xi, : i ≤ n}

(2) The set Yαφ
= {aj , bj , cj , dj : j < m}

(3) The letter e
(4) The set Z = {zi : i ≤ M}. We choose M to be sufficiently large so that every

element of this set will appear exactly once in α.

The elements of Z above are used as“separator” letters to prevent unfortunate 2-factors
from occurring. We adopt the convention that we will use each letter in Z once and denote
each occurrence of a letter from Z in αφ by z+. We denote the union of the sets of letters
itemized above by Aα.

For each variable xi, we create the factor

exixiez+

For each clause Cj in φ we construct a factor δj as the concatenation of the following
factors.

Let x, y and z be variables in φ. If Cj is of the form x ∨ y ∨ z we add the following
factors to α:
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ajxz+

bjxz+

bjyz+

cjyz+

cjzz+

djzz+

djajz+

ajbjz+

ajcjz+

ajdjz+

ajez+

If Cj is of the form x ∨ y ∨ z we add the following factors to α:

ajxz+

bjxz+

bjyz+

cjyz+

cjdjz+

zdjz+

zajz+

ajbjz+

ajcjz+

djajz+

ajez+

If Cj is of the form x ∨ y ∨ z we add the following factors to α:
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ajxz+

bjxz+

bjcjz+

ycjz+

ydjz+

zdjz+

zajz+

ajbjz+

cjajz+

djajz+

ajez+

If Cj is of the form x ∨ y ∨ z we add the following factors to α:

ajbjz+

xbjz+

xcjz+

ycjz+

ydjz+

zdjz+

zajz+

bjajz+

cjajz+

djajz+

eajz+

We define the word αφ of φ as the culmination of the above construction and proceed
to prove some properties of αφ.

Lemma 5.1. Let φ = C1 ∧ C2 ∧ · · · ∧ Cm be a 3-CNF boolean formula. Let B ⊂ Aα \
{aj , bj , cj , dj} be such that, if pi is a literal in Cj, then the letter pi is not in B. No letter
in {aj , bj , cj , dj} is free for αB

φ .

Proof. If Cj is of the form x ∨ y ∨ z then the path
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ajx

bjx

bjy

cjy

cjz

djz

djaj

shows aj is not free. Similarly the path

bjx

ajx

ajbj

yields that bj is not free, while

cjy

bjy

bjx

ajx

ajcj

and

djz

cjz

cjy

bjy

bjx

ajx

ajdj

demonstrate that cj and dj are not free. The arguments for the remaining three cases where
Cj contains negated variables are substantially similar.

The following lemma is easily established by inspecting αφ.

Lemma 5.2. Let φ = C1 ∧ C2 ∧ · · · ∧ Cm be a 3-CNF boolean formula and let αφ be the

word of φ. For i ≤ m the letters bj , cj and dj are free for α
aj
φ

Lemma 5.3. Let φ = C1 ∧ C2 ∧ · · · ∧ Cm be a 3-CNF boolean formula. Let B =
{y1, y2, . . . , yk} ⊆ Aα\{e}. Suppose y1, y2, . . . , yk is a free deletion sequence for αφ. Suppose
furthermore that B is such that, if pi is a literal in Cj, then the letter pi is not in B. Then
e is not free for αB

φ .
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Proof. Suppose Cj and B are as in the statement of the Lemma. Since y1, y2, . . . , yk is a
free deletion sequence, Lemma 5.1 gives us that none of the letters aj, bj , cj and dj are in
B.

If xi is the first literal in Cj, then the path

exi

ajxi

aje

ensures that e is not free.
On the other hand, if xi is the first literal in Cj , then we know (using our assumption

that negated variables always appear after non-negated variables in a clause) that Cj is of
the form xi ∨ y ∨ z, where y and z are variables of φ and the path

eaj

zaj

ze

shows that e is not free.

Lemma 5.4. Let B ⊆ Aα \ {e}. If there is an i such that both xi and xi are in B, then
αB
φ is avoidable.

Proof. If xi and xi are both in B, then exixie
B = ee is a factor of αB

φ .

Lemma 5.5. Let w be a word of the form z+z+ . . . z+. Every letter in w is free.

Proof. Each of the letters z+ appears at most once in w.

Lemma 5.6. Let φ = C1 ∧ C2 ∧ · · · ∧ Cm be a 3-CNF boolean formula in n variables and
let α = αφ be the word of φ. Fix k < n. Let Sk = {p1, p2, . . . , pk}, where for each i, either

pi = xi or pi = xi. Both xk+1 and xk+1 are free for αSk

φ .

Proof. We proceed by induction on k. For k = 0, we have Sk = ∅. Hence, the only 2-factor
(excluding those containing z+) that contains x1 as the first letter is x1x1 and the only
2-factor that contains x1 as the second letter is x1x1. So the only path starting at a 2-factor
having x1 as the first first letter is the one-cycle from x1x1 to itself. Our base case has thus
been established.

Now suppose the lemma holds for some k. Again, the only 2-factor containing xk as
the first letter is xkxk and the only 2-factor that contains xk as the second letter is xkxk.
The lemma immediately follows.

Lemma 5.7. Let φ be a 3-CNF boolean formula and let α = αφ be the word of φ. If α is
unavoidable, then there is a free deletion sequence where the letters z+ are deleted after all
other letters are deleted.

Proof. By Lemma 5.5, it suffices to note that deleting any letter z+ cannot make any letter
free that is not already free.
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Lemma 5.8. Let φ = C1 ∧ C2 ∧ · · · ∧ Cm be a 3-CNF boolean formula and let α = αφ be
the word of φ. If α is unavoidable, then there is a free deletion sequence where every free
set that is deleted contains exactly one letter.

Proof. Suppose α is as in the statement of the lemma. There is a partition of Aα into sets
B1, B2, . . . , Bk such that, for every i < k, we have that Bi+1 is a free set for αB1,B2,...,Bi .
Assume for contradiction that there is some t such that |Bt| > 1 and every deletion sequence
of the individual letters in Bt results in no letter y ∈ Aα \D \Xal being free for αD, where
D = B1∪B2∪ · · · ∪Bt−1∪E and E ⊂ Bt is the set of letters in Bt that are already deleted.
Let x be the last letter in E that was deleted and let y ∈ Bt \E be not free for αD.
Case 1. x = xi for some i.

Subcase 1.1. y = xj for some j. We have that the deletion of xi resulted in a path
from a 2-factor having xj as its first component to a 2-factor that has xj as its second
component. We observe that the only only 2-factors that can possibly be newly created by
the deletion of xi are among the following forms:

(1) akz+, bkz+, ckz+ or dkz+. Since each letter z+ appears only once in α we can
conclude that these factors are not in our path.

(2) exi. We conclude that there is a path from a 2-factor having xj as its first letter to

exi. But this means there is a path in αD\{xi} from a 2-factor having xj as its first
letter to exi. Thus xi and xj cannot be in the same free set, a contradiction.

(3) ee. Similarly to the previous item, we conclude that xi and xj cannot be in the
same free set as it implies a path from xie to a 2-factor having xj as its second
component before the deletion of xi.

Subcase 1.2. y = aj , or y = bj , or y = cj , or y = dj for some j. We follow the
same reasoning as Subcase 1.1 and arrive at the same conclusion, showing y not free implies
either a path from a 2-factor having y as its first letter to a two factor having x as its second
component, or vice versa.

Subcase 1.3. y = e. Our reasoning is substantially similar to the previous two subcases.
Case 2. x = xj for some j. This is symmetric to Case 1.
Case 3. y = aj , y = bj, y = cj , or y = dj for some j. The deletion of x results only in new
2-factors containing one or more of the z+ letters, so a new path from a 2-factor having y
as its first letter to a 2-factor having y as its second letter could not have been created by
virtue of deleting x.
Case 4. x = e. We know y 6= xj for any j since this would imply the existence of the
2-factor exj , negating the assumption that xj and e are in the same free set. Similarly
y 6= xj by virtue of the 2-factor xje and y 6= aj because of either aje or eaj would have
been a 2-factor before the deletion of e, so we are left with the possibilities of y = bj, y = cj
or y = dj .

Suppose y = bj. From Lemma 5.2 we have that aj /∈ D. If Cj consists of three negated
variables, then we know that z ∈ D, where z is the last literal in Cj , for otherwise the path

eaj

zaj

ze
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would contradict the assumption that e is free. But then there is no path from a 2-factor
having bj as its first component to a 2-factor having bj as its second component, contradict-
ing that bj is not free. On the other hand, if Cj contains a non-negated variable, we arrive
at a similar contradiction using the path

ez

ajz

aje

where z is the first literal in Cj . The arguments for y = cj and y = dj substantially identical.
The cases are exhausted. This concludes the proof.

Lemma 5.9. Let φ = C1 ∧ C2 ∧ · · · ∧ Cm be a 3-CNF boolean formula in n variables and
let α = αφ be the word of φ. If α is unavoidable, then there is a deletion sequence of free
letters that starts by deleting either xi or xi, for i ≤ n.

Proof. Suppose α is unavoidable. By Lemma 5.8 there is a deletion sequence of free letters
reducing α to the empty word. We may assume by Lemma 5.7 that all the letters z+ appear
at the end of the deletion sequence. We know from Lemma 5.6 that it is possible to delete
xi or xi as the ith letter in a deletion sequence of free letters. We need to establish that
we can alter any deletion sequence of free letters to one where the first n deletions are as
described by Lemma 5.6.

It suffices to show that we can always invert the deletion order whenever an x ∈ Xα is
deleted immediately after some letter y /∈ Xα and x is deleted after x, where x = x.
Case 1. y = aj. We start by noting that x is already free before the deletion of aj since
no new 2-factor that does not contain a letter z+ is created by deleting any letter not in
Xα or in Z. Suppose x is a non-negated variable, i.e. x = xi for some i ≤ n. Suppose for
contradiction that inverting the deletion order of xi and aj results in aj not being free. We
notice that the only new 2-factor (excluding ones with z+ letters) created by the deletion of
xi is exi, so after the deletion of xi there is a path from a 2-factor having aj as its first letter
to exi and a path from exi to a 2-factor having aj as its second letter. We now notice that
the only 2-factor having xi as its second letter is exi, so the immediate predecessor to exi
in our malignant path has e as its first letter. But this means that the immediate successor
to exi in the path has xi as its second letter. But again the only 2-factor having xi as its
second letter is exi, so the path cannot proceed to any 2-factor not already in the path.
Hence there is already a 2-factor having aj as its second letter at some earlier point in the
path, contradicting our assumption that aj was free before xi was deleted. Supposing, on
the other hand, that x = xi leads to the same contradiction through symmetric reasoning,
where we end up in a dead end at the 2-factor xe.
Case 2. y ∈ {bj , cj , dj}. The argument is essentially the same as Case 1.
Case 3. y = e. Suppose again, for contradiction, that e is not free as the result of deleting
xi. Again the only new 2-factor created is exi, so there is a path from exi to a 2-factor
having e as its second letter. But since the only 2-factor having xi as its second letter is exi,
we find ourselves back at the contradiction described in Case 1. For x = xi the argument
is, once again, symmetric.

The cases are exhausted and the proof is complete.
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Proposition 5.10. If φ is a 3-CNF boolean formula and α = αφ is the word of φ, then φ
is satisfiable if and only of α is unavoidable.

Proof. Suppose φ with variables x1, . . . , xn and clauses C1, . . . , Cm is satisfiable. Let x1 =
e1, x2 = e2, . . . , xn = en, with each ei ∈ {0, 1}, be a satisfying assignment for φ. We show
that αφ will reduce to the empty set by deleting all its letters in the following stages:

(1) For i ≤ n, delete xi if ei = 1, otherwise delete xi.
(2) Next, for j ≤ m, delete aj , bj , cj and the dj .
(3) Delete the letter e.
(4) Delete the remaining xi and xi.
(5) Delete the remaining characters z+ in any order.

Furthermore, every letter that is deleted will be free at the stage when the deletion happens.
Lemma 5.6 guarantees that every deletion in Stage (1) above is of a free letter. Since

φ is satisfiable, every clause Cj = (p1 ∨ p2 ∨ p3) has at least one literal that is set to 1. If
p1 = xi = 1, then xi is deleted in Stage (1). Consequently aj is free after Stage (1) and can
be deleted in Stage (2). The deletion of aj, in turn, causes bj , cj and dj to become free.
The remaining cases among pk = xi = 1 and pk = xi = 0 lead to aj , bj , cj and dj being
deleted in a similar fashion. We can therefore successfully complete the deletions in Stage
(2).

After the completion of Stage (2) the only 2-factors (once again ignoring the z+) con-
taining e, are of the form epi and pie, where for each i we have either pi = xi or pi = xi.
Furthermore, for each i the same 2-factors are the only ones containing pi. Therefore e is
free and consequently Stage (3) can be completed.

After the completion of Stage (3), there are no 2-factors left that do not contain one
of the z+. Since every letter z+ is unique, we can safely complete Stage (4). Now all that
remains is letters of the form z+ and hence, using Lemma 5.5, we can delete the remaining
letters. It follows, by Theorem 1.5, that αφ is unavoidable, as desired.

Now suppose φ is unsatisfiable. For contradiction, suppose αφ is unavoidable. Using
Lemma 5.9, we may assume that the first n deletions are p1, p2, . . . , pn with, for every i,
either pi = xi or pi = xi. Define the following assignment on φ: If pi = xi, then set the
variable xi to 1, otherwise set xi to 0. Since φ is not satisfiable, we know that there is some
clause Cj that is not satisfied by our chosen assignment. But this means that none of the
pi in the first n deletions appear in Cj and consequently none of the letters aj , bj , cj and
dj are free after the first n deletions, by Lemma 5.1. In addition, by Lemma 5.3, we have
that e is not free. In order to free any of these letters, we have to delete at least one letter
xi or xi which has, thus far not been deleted. But this means, for some i, both xi and xi
have been deleted. Using Lemma 5.4, we have a contradiction.

6. Unavoidability and Computational Complexity

We define the Word Unavoidability Problem as follows: Given a pattern α over a finite
alphabet, determine if α is unavoidable. We refer to the set of unavoidable patterns as
WU .

Theorem 6.1. The Word Unavoidability Problem is NP -complete.

Proof. We note that, given a 3-CNF boolean formula φ, the construction of the word αφ

of φ requires a number of computational steps that is linear in the length of φ: For every
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variable xi, we need to add a factor dxixid. For every clause we need to add a constant
number of factors that are derived purely from the literals in that clause.

Proposition 5.10 therefore leaves us very little work to do. All that remains is to prove
WU ∈ NP . Using Theorem 1.3 and the algorithm IS FREE above, we write the following
test for unavoidability:

IS_UNAVOIDABLE(alpha)

A[] = the distinct letters in alpha

B[] = the distinct letters in alpha and all pairs of letters in A

n = |B|

nondeterministically guess the permutation pi on [n]

for i = 1 to n:

if B[pi(i)] is a single letter and occurs in alpha:

x = B[pi(i)]

if IS_FREE(alpha, x):

delete every occurrence of x from alpha

else:

nondeterministic guess dies

else:

x, y = B[pi(i)]

if x and y are both letters in alpha:

replace every occurrence of y in alpha with x

return True

return False

Each branch of nondeterminism completes at most |Aα| deletions and |Aα|
2 iden-

tifications of letters. Since IS FREE runs in polynomial time, so does each branch of
IS UNAVOIDABLE. The number of branches of nondeterminism is bounded from above by
the number of permutations on |Aα|+ |Aα|

2.

7. Conclusion

Many interesting questions remain regarding the complexity of unavoidable patterns [4].
The bounds established in Theorem 2.3 above are not primitive recursive. We do not know
if there is a primitive recursive upper bound, nor do we know what lower bounds exist, for
any significantly general subset of patterns.
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