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Abstract

Polynomial time unsafe approximations for intractable sets were introduced by Meyer and Paterson [9] and

Yesha [19] respectively. The question of which sets have optimal unsafe approximations has been investigated

extensively, see, e.g., [1, 5, 15, 16]. Recently, Wang [15, 16] showed that polynomial time random sets are

neither optimally unsafe approximable nor �-levelable. In this paper, we will show that: (1) There exists

a polynomial time stochastic set in E2 which has an optimal unsafe approximation. (2). There exists a

polynomial time stochastic set in E2 which is �-levelable. The above two results answer a question asked

by Ambos-Spies and Lutz et al. [3]: Which kind of natural complexity property can be characterized by

p-randomness but not by p-stochasticity? Our above results also extend Ville's [13] historical result. The

proof of our �rst result shows that, for Ville's stochastic sequence, we can �nd an optimal betting strategy

(prediction function) such that we will never lose our own money (except the money we have earned), that is

to say, if at the beginning we have only one dollar and we always bet one dollar that the next selected bit is 1,

then we always have enough money to bet on the next bit. Our second result shows that there is a stochastic

sequence for which there is a betting strategy such that we will never lose our own money (except the money

we have earned), but there is no such kind of optimal betting strategy. That is to say, for any such kind of

betting strategy, we can �nd another betting strategy which could be used to make money more quickly.

1 Introduction

Random sequences were �rst introduced by von Mises [10] as a foundation for probability theory. Von Mises
thought that random sequences were a type of disordered sequences, called \Kollektivs". The two features
characterizing a Kollektiv are: the existence of limiting relative frequencies within the sequence and the invariance
of these limits under the operation of an \admissible place selection rule". Here an admissible place selection
rule is a procedure for selecting a subsequence of a given sequence � in such a way that the decision to select a
bit �[n] does not depend on the value of �[n]. But von Mises' de�nition of an \admissible place selection rule"
is not rigorous according to modern mathematics. After von Mises introduced the concept of \Kollektivs", the
�rst question raised was whether this concept is consistent. Wald [14] answered this question a�rmatively by
showing that, for each countable set of admissible place selection rules, the corresponding set of \Kollektivs" has
Lebesgue measure 1. The second question raised was whether all \Kollektivs" satisfy the standard statistical
laws. For a negative answer to this question, Ville [13] constructed a counterexample in 1939. He showed that,
for each countable set of admissible place selection rules, there exists a \Kollektiv" which does not satisfy the
law of the iterated logarithm. The example of Ville defeated the plan of von Mises to develop probability theory
based on \Kollektivs", that is to say, to give an axiomatization of probability theory with \random sequences"
(i.e., \Kollektivs") as a primitive term. Later, admissible place selection rules were further developed by Tornier,
Wald, Church, Kolmogorov, Loveland and others. This approach of von Mises to de�ne random sequences is now
known as the \stochastic approach".

A completely di�erent approach to the de�nition of random sequences was proposed by Martin-L�of [8]. He
developed a quantitative (measure-theoretic) approach to the notion of random sequences. This approach is
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free from those di�culties connected with the frequency approach of von Mises. Later, Schnorr [11] used the
martingale concept to give a uniform description of various notions of randomness. In particular, he gave a
characterization of Martin-L�of's randomness concept in these terms.

Using martingales concepts, Schnorr [11] introduced resource bounded randomness concepts, and later Lutz
[7] introduced a kind of resource bounded measure theory. Resource bounded version of stochasticity concepts
were also introduced by several authors, see, e.g., Wilber [18], Ko [6] and Ambos-Spies et al. [2].

The notion of unsafe approximations was introduced by Yesha in [19]: An unsafe approximation algorithm for
a set A is just a standard polynomial time bounded deterministic Turing machineM with outputs 1 and 0. Duris
and Rolim [5] further investigated unsafe approximations and introduced a levelability concept, �-levelability,
which implies the nonexistence of optimal polynomial time unsafe approximations. They showed that complete
sets for E are �-levelable and there exists an intractable set in E which has an optimal safe approximation
but no optimal unsafe approximation. But they did not succeed to produce an intractable set with optimal
unsafe approximations. Ambos-Spies [1] de�ned a concept of weak �-levelability and showed that there exists
an intractable set in E which is not weakly �-levelable (hence it has an optimal unsafe approximation). In
[15, 16], Wang extended Ambos-Spies's results by showing that both the class of �-levelable sets and the class
of sets which have optimal polynomial time unsafe approximations have p-measure 0. Wang's results show that
�-levelable sets and optimally approximable sets could not be p-random. However, in this paper, we will show
the following results.

� There is a p-stochastic set in E2 which has an optimal unsafe approximation.

� There is a p-stochastic set in E2 which is �-levelable.

Note that our above results extend Ville's [13] historical result. Ville's result says that: For every countable
set of admissible place selection rules, we can construct a stochastic sequence � which has more 1s than 0s in its
initial segments. As we will show in Theorem 4.9, for this stochastic sequence �, the prediction function f(x) = 1
will be the optimal prediction strategy since, for every other prediction function g, there is a k 2 N such that
kfi < n : g(�[0::i � 1]) = �[i]gk � kfi < n : f(�[0::i � 1]) = �[i]gk + k for almost all n 2 N . Our second result
(Lemma 4.10 and Theorem 4.11) says that: For every countable set of admissible place selection rules, we can
construct a stochastic sequence � such that there is no optimal prediction strategy for this sequence. That is
to say, for every prediction function f , there is another prediction function g and an unbounded nondecreasing
function r(n) such that kfi < n : g(�[0::i � 1]) = �[i]gk � kfi < n : f(�[0::i � 1]) = �[i]gk + r(n) for almost all
n 2 N . We will prove our results for the resource bounded case only, but all of these results hold for the classical
case also.

The outline of the paper is as follows. In section 3 we review the relations between the concept of resource
bounded randomness and the concept of polynomial time unsafe approximations. In section 4 we establish
the relations between the concept of resource bounded stochasticity and the concept of polynomial time unsafe
approximations.

2 De�nitions

N and Q(Q+) are the set of natural numbers and the set of (nonnegative) rational numbers, respectively.
� = f0; 1g is the binary alphabet, �� is the set of (�nite) binary strings, �n is the set of binary strings of
length n, and �1 is the set of in�nite binary sequences. The length of a string x is denoted by jxj. < is the
length-lexicographical ordering on �� and zn (n � 0) is the nth string under this ordering. � is the empty string.
For strings x; y 2 ��, xy is the concatenation of x and y. For a sequence x 2 �� [ �1 and an integer number
n � �1, x[0::n] denotes the initial segment of length n+ 1 of x (x[0::n] = x if jxj < n+ 1) and x[i] denotes the
ith bit of x, i.e., x[0::n] = x[0] � � �x[n]. Lower case letters � � � ; k; l;m; n; � � � ; x; y; z from the middle and the end of
the alphabet will denote numbers and strings, respectively. The letter b is reserved for elements of �, and lower
case Greek letters �; �; � � � denote in�nite sequences from �1.

A subset of �� is called a language or simply a set. Capital letters are used to denote subsets of �� and
boldface capital letters are used to denote subsets of �1. The cardinality of a language A is denoted by kAk.
We identify a language A with its characteristic function, i.e., x 2 A i� A(x) = 1. The characteristic sequence
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�A of a language A is the in�nite sequence �A = A(z0)A(z1)A(z2) � � �. We freely identify a language with its
characteristic sequence and the class of all languages with the set �1. For a language A � �� and a string
zn 2 ��, A j�zn denotes the �nite initial segment of �A below zn, i.e., A j�zn = �A[0::n� 1]. For languages A and
B, �A = �� �A is the complement of A, A�B = (A�B) [ (B �A) is the symmetric di�erence of A and B.

We �x a standard polynomial time computable and invertible pairing function �x; y < x; y > on ��. We
will use P, E and E2 to denote the complexity classes DTIME(poly), DTIME(2linear) and DTIME(2poly),
respectively. Finally, we �x a recursive enumeration fPe : e � 0g of P such that Pe(x) can be computed in
O(2jxj+e) steps (uniformly in e and x).

We close this section by introducing a fragment of Lutz's e�ective measure theory which will be su�cient for
our investigation.

De�nition 2.1 A martingale is a function F : �� ! Q+ such that, for all x 2 ��,

F (x) =
F (x1) + F (x0)

2
:

A martingale F succeeds on a set A � �� if lim supn F (A j�zn) =1.

De�nition 2.2 (Lutz [7]) A class C of sets has p-measure 0 (�p(C) = 0) if there is a polynomial time computable
martingale F : �� ! Q+ which succeeds on every set in C. The class C has p-measure 1 (�p(C) = 1) if �p( �C) = 0
for the complement �C = fA � �� : A =2 Cg of C.

De�nition 2.3 (Schnorr [11]) A set A is nk-random if, for every nk-time computable martingale F , F does not
succeed on A. A set A is p-random if A is nk-random for all k 2 N .

The following theorem is useful in the discussion of p-measure theory.

Theorem 2.4 A class C of sets has p-measure 0 if and only if there exists a number k 2 N such that there is
no nk-random set in C.

Proof. See, e.g., [15].

3 Resource Bounded Randomness versus Polynomial Time Unsafe Approximations

For the reason of completeness, in this section we review the results in Wang [15, 16] which show the relations
between the resource bounded randomness concept and polynomial time unsafe approximation concepts.

De�nition 3.1 (Duris and Rolim [5] and Yesha [19]) A polynomial time unsafe approximation of a set A is a
set B 2 P. The set A�B is called the error set of the approximation. Let f be a function de�ned on the natural
numbers such that lim supn!1 f(n) = 1. A set A is �-levelable with density f if, for any set B 2 P, there is
another set B0 2 P such that

k(A�B) j�znk � k(A�B0) j�znk � f(n) (1)

for almost all n 2 N . A set A is �-levelable if A is �-levelable with density f for some f .

De�nition 3.2 (Ambos-Spies [1]) A polynomial time unsafe approximation B of a set A is optimal if, for any
approximation C 2 P of A,

9k 2 N 8n 2 N (k(A�B) j�znk < k(A�C) j�znk+ k) (2)

A set A is weakly �-levelable if, for any polynomial time unsafe approximation B of A, there is another polynomial
time unsafe approximation B0 of A such that

8k 2 N 9n 2 N (k(A�B) j�znk > k(A�B0) j�znk+ k): (3)
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It should be noted that our above de�nitions are a little di�erent from the original de�nitions of Ambos-Spies
[1], Duris and Rolim [5], and Yesha [19]. In the original de�nitions, they considered the errors on strings up to
certain length (i.e. k(A�B)�nk) instead of errors on strings up to zn (i.e. k(A�B) j�znk).

Lemma 3.3 (Ambos-Spies [1])

1. A set A is weakly �-levelable if and only if A does not have an optimal polynomial time unsafe approximation.

2. If a set A is �-levelable then it is weakly �-levelable.

In Wang [15, 16], we have established the following relations between the p-randomness concept and unsafe
approximation concepts.

Theorem 3.4 (Wang [15, 16]) The class of �-levelable sets has p-measure 0.

Theorem 3.5 (Wang [15, 16]) The class of sets which have optimal polynomial time unsafe approximations has
p-measure 0.

Corollary 3.6 (Wang [15, 16]) The class of sets which are weakly �-levelable but not �-levelable has p-measure
1.

Corollary 3.7 (Wang [15, 16]) Every p-random set is weakly �-levelable but not �-levelable.

4 Resource Bounded Stochasticity versus Polynomial Time Unsafe Approximations

As we have mentioned in the introduction, the �rst notion of randomness was proposed by von Mises [10].
He called a sequence random if every subsequence obtained by an admissible selection rule satis�es the law of
large numbers. A formalization of this notion, based on formal computability was given by Church [4] in 1940.
Following Kolmogorov (see [12]) we call randomness in the sense of von Mises and Church stochasticity.

For a formal de�nition of Church's stochasticity concept, we �rst formalize the notion of a selection rule.

De�nition 4.1 A selection function f is a partial recursive function f : �� ! �. A selection function f is dense
along A if f(A j�x) is de�ned for all x and f(A j�x) = 1 for in�nitely many x.

By interpretingA as the in�nite 0-1-sequence �A, a selection function f selects the subsequenceA(x0)A(x1)A(x2) � � �
of A where x0 < x1 < x2 < � � � are the strings x such that f(A j�x) = 1. In particular, f selects an in�nite subse-
quence � of �A i� f is dense along A. So Church's stochasticity concept can be de�ned as follows.

De�nition 4.2 (Church [4]) A set A is stochastic if, for every selection function f which is dense along A and
for b 2 �,

lim
n

kfi < n : f(A j�zi) = 1 & A(zi) = bgk

kfi < n : f(A j�zi) = 1gk
=

1

2
: (4)

For the resource bounded version of Church stochasticity, Ambos-Spies, Mayordomo, Wang and Zheng [2]
introduced the following nk-stochasticity notion.

De�nition 4.3 (Ambos-Spies et al. [2]) An nk-selection function is a total selection function f such that f 2

DTIME(nk). A set A is nk-stochastic if, for every nk-selection function f which is dense along A and for b 2 �,
(4) holds. A set A is p-stochastic if it is nk-stochastic for all k 2 N .

These concepts can also be characterized in terms of prediction functions. A prediction function f is a procedure
which, given a �nite initial segment of a 0-1-sequence, predicts the value of the next member of the sequence.
We will show that a set A is stochastic i�, for every partial prediction function which makes in�nitely many
predictions along A, the numbers of the correct and incorrect predictions are asymptotically the same.
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De�nition 4.4 (Ambos-Spies et al. [2]) A prediction function f is a partial function f : �� ! �. An nk-
prediction function f is a prediction function f such that f 2 DTIME(nk) and domain(f) 2 DTIME(nk). A
prediction function f is dense along A if f(A j�x) is de�ned for in�nitely many x. A meets (avoids) f at x if
f(A j�x) is de�ned and f(A j�x) = A(x) (f(A j�x) = 1�A(x)). A meets f balancedly if

lim
n

kfi < n : f(A j�zi) = A(zi)gk

kfi < n : f(A j�zi) #gk
=

1

2
: (5)

Theorem 4.5 (Ambos-Spies et al. [2]) For any set A, the following are equivalent.

1. A is nk-stochastic (p-stochastic).

2. A meets balancedly every nk-prediction (p-prediction) function which is dense along A.

The following theorem is straightforward.

Theorem 4.6 (Ambos-Spies et al. [2]) If a set A is nk-random then it is nk-stochastic.

We �rst show that neither �-levelability nor optimal approximability does imply p-stochasticity.

Theorem 4.7 1. There is a non-p-stochastic set B in E2 which has an optimal unsafe approximation.

2. There is a non-p-stochastic set B in E2 which is �-levelable.

Proof. 1. Let A 2 E2 be a set which has an optimal unsafe approximation (the existence of such A has been
shown in Ambos-Spies [1]), and let B = fz2n; z2n+1 : zn 2 Ag. Then B has an optimal unsafe approximation and
the prediction function f de�ned by

f(x) =

�
x[jxj � 1] if jxj is odd
" otherwise

witnesses that B is not p-stochastic.
2. The proof is the same as that of 1.
Before we prove our main theorems, we prove the following lemma which will present the basic idea underlying

Ville's construction.

Lemma 4.8 Let f0; f1 be two nk-selection functions. Then there is a set A in E2 such that

kfi < n : fb(A j�zi) = 1 = A(zi)gk > kfi < n : fb(A j�zi) = 1 = 1�A(zi)gk (6)

for all n 2 N and b 2 �.

Proof. The construction of A is as follows.

Let �0;0 = �0;1 = �1;0 = �1;1 = 110101010 � � � � � � 2 �1. For i 2 N , assume that �A[0::i � 1] has already been
de�ned. If (b0; b1) = (f0(�A[0::i� 1]); f1(�A[0::i� 1])), then let �A[i] be the �rst bit in the sequence �b0;b1 that
has not been used.

For the above constructed set A, every initial segment of the sequence selected by f0 (f1) from �A is a \mixture"
of the initial segments of �1;0 and �1;1 (�0;1 and �1;1). Hence it satis�es the requirements of the lemma.

Theorem 4.9 There is a p-stochastic set A 2 E2 satisfying the following properties.

1. For every p-selection function f which is dense along A, there is an unbounded nondecreasing function r(n)
such that

kfi < n : f(A j�zi) = 1 = A(zi)gk � kfi < n : f(A j�zi) = 1 = 1�A(zi)gk+ r(n) (7)

for almost all n 2 N .
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2. A has an optimal unsafe approximation.

Proof. Let f0; f1; � � � � � � be an enumeration of all p-selection functions. The construction of A is a modi�cation
of construction in Lemma 4.8. The detailed construction is as follows.

Let nj = 22j for all j 2 N , and let �w = 1110101010 � � � � � � 2 �1 for all w 2 ��. For i 2 N , assume that
�A[0::i� 1] has already been de�ned. Let x = f0(�A[0::i� 1])f1(�A[0::i� 1]) � � � fi�1(�A[0::i� 1]) and j be the
least integer such that we have used less than nj bits from �x[0::j]. Then let �A[i] be the �rst bit in �x[0::j] that
we have not used.

We show that the above constructed set A satis�es our requirements by establishing two Claims.

Claim 1 Let f be a p-selection function. Then the selected subsequence by the selection function f satis�es the
law of large numbers and there is an unbounded nondecreasing function r(n) satisfying (7).

Proof. The proof of the claim is exactly the same as that for the Ville's original construction, see, e.g. [12]. In
the following, we will only give the outline of the intuition. The basic idea underlying the above construction is
the same as that underlying the construction in Lemma 4.8. But here there are countably many selection rules.
Whence each bit of the constructed sequence is characterized by an in�nite binary sequence b0b1 � � � � � � (bi = 1 if
fi selects this bit). In other words, each bit is characterized by an in�nite path in a binary tree. Nevertheless,
we only use an initial segment of this path. More precisely, at each stage of our construction one of the vertices
of the binary tree is called active. To �nd out the active vertex we start from the root and follow the path until
we �nd a vertex x[0::j] which was active less than nj times. Because n0 < n1 < � � � � � � grows fast enough, we can
ensure that the selected subsequence by the selection function f satis�es the law of large numbers (the details are
omitted here, for those who have interest, it is referred to [12]). Furthermore, each base sequence is 111010 � � � � � �,
whence it is straightforward that there is an unbounded nondecreasing function r(n) satisfying (7).

Claim 2 B = �� is an optimal unsafe approximation of A. That is to say, for every set C 2 P such that
kC�Bk =1, (2) holds.

Proof. De�ne a p-selection function f by letting

f(x) =

�
1 if C(zjxj) = 0:
0 otherwise.

Then, by (7),

k(A�C) j�znk � k(A�B) j�znk

= kfi < n : f(A j�zi) = 1 = A(zi)gk � kfi < n : f(A j�zi) = 1 = 1�A(zi)gk

> 0

for almost all n 2 N . Hence (2) holds.
Before proving the second main theorem of our paper, we prove a lemma at �rst.

Lemma 4.10 Let B0;0; B0;1; B1;0; B1;1; B2;0; B2;1; � � � � � � be a sequence of mutually disjoint sets which has a uni-
versal characteristic function in E such that [i2N [b=0;1 Bi;b = ��. Then there is a p-stochastic set A 2 E2

satisfying the following properties.

1. For each i 2 N , let �i;0 = b0b1b2 � � � � � �, where

bj =

�
A(zj) if zj 2 Bi;0

� if zj =2 Bi;0

If �i;0 2 �1, then there is an unbounded nondecreasing function ri;0(n) such that kfj < n : �i;0[j] = 0gk �
kfj < n : �i;0[j] = 1gk+ ri;0(n) for almost all n 2 N .
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2. For each i 2 N , let �i;1 = b0b1b2 � � � � � �, where

bj =

�
A(zj) if zj 2 Bi;1

� if zj =2 Bi;1

If �i;1 2 �1, then there is an unbounded nondecreasing function ri;1(n) such that kfj < n : �i;1[j] = 1gk �
kfj < n : �i;1[j] = 0gk+ ri;1(n) for almost all n 2 N .

Proof. Let f0; f1; � � � � � � be an enumeration of all p-selection functions. The proof is a nested combination of
in�nitely many copies of the construction in the proof of Theorem 4.9. That is to say, for each Bi;b, we construct
�i;b in the same way as in the construction of A in the proof of Theorem 4.9. The formal construction is given
below.

Let nj = 23j for all j 2 N , and let

�w = 10101010 � � � � � � 2 �1

�w;j;1 = 1110101010 � � � � � � 2 �1

�w;j;0 = 00010101010 � � � � � � 2 �1

for all w 2 �� and j 2 N . For i 2 N , assume that �A[0::i � 1] has already been de�ned. Now we show how to
de�ne �A[i]. Let j; b be the unique numbers such that zi 2 Bj;b. If the condition

� There is an s � j such that fs(�A[0::i� 1]) = 1 and there is a stage u < i such that fs(�A[0::u� 1]) = 1
and �A[u] was constructed from �w;j;b for some jwj � 3j.

holds, then we construct �A[i] according to the following process (1), otherwise construct �A[i] according to the
process (2).

1. Let x = f0(�A[0::i � 1])f1(�A[0::i � 1]) � � � fi�1(�A[0::i � 1]) and s be the least integer such that we have
used less than ns bits from �x[0::s]. Then let �A[i] be the �rst bit in �x[0::s] that we have not used.

2. Let x = f0(�A[0::i � 1])f1(�A[0::i � 1]) � � � fi�1(�A[0::i � 1]) and s be the least integer such that we have
used less than ns bits from �x[0::s];j;b. Then let �A[i] be the �rst bit in �x[0::s];j;b that we have not used.

In the construction, we have a base tree of binary strings where each vertex corresponds to the in�nite binary
sequence 1010 � � � � � �. And for each Bj;b (j 2 N; b 2 �) we have a tree of binary strings where each vertex
corresponds to the in�nite binary sequence 111010 � � � � � � if b = 1 and 0001010 � � � � � � otherwise. At each stage of
our constuction, one tree will be called active, and one vertex on the active tree will be called active. To �nd out
the active tree, �rst we compute the unique numbers j; b such that zi 2 Bj;b. If the condition

� For all s < j such that fs(�A[0::i � 1]) = 1 and there is a stage u < i such that fs(�A[0::u� 1]) = 1 and
�A[u] was constructed from �w;j;b for some jwj � 3j.

holds then the tree corresponds to Bj;b will be active at stage i, otherwise the base tree will be active. To �nd
out the active vertex on the active tree, it is the same as in the proof of Theorem 4.9.

For each j 2 N and b 2 �, there is a number ij;b such that the tree corresponding to Bj;b will be active at any
stage i > ij;b when zi 2 Bj;b. Hence, in the same way as in the proof of Theorem 4.9, it is easily checked that
properties 1 and 2 of the lemma are satis�ed.

Now it remains to show that the above constructed set A is p-stochastic. That is to say, we need to show that
each selection function fn selects a balanced subsequence.

Let b0b1 � � � � � � be the in�nite subsequence obtained by the application of the selection function fn. Let us
consider an arbitrary initial segment b0b1 � � � bt of the sequence b0b1 � � � � � � and the vertices (strings) of the binary
trees corresponding to these bits. Let x be one of the longest strings among these strings (vertices) corresponding
to the bits in b0b1 � � � bt. Then, by the construction, the number of trees which correspond to these bits is not
greater than jxj=3. Without loss of generality, we may assume that jxj > n + 1. First we give a lower bound of
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Table 1. The relations among randomness, stochasticity and approximations
p-random p-stochastic �-levelable weakly �-levelable optimally approximable

A yes yes no yes no

B no yes yes yes no

C no yes no no yes

D no no yes yes no

E no no no no yes

t as a function of jxj. If the string x on T is used as active, then the string x0 = (x without the last bit) on T
is used as active for 23(jxj�2) times. The nth bit of x0 is equal to 1 (we assume that jxj > n + 1), hence all the
bits corresponding to x0 is selected by fn. So the length t + 1 of b0b1 � � � bt is at least 2

3(jxj�2). Now b0b1 � � � bt
can be divided into two groups. For some of them the corresponding strings (vertices) have length at most n, the
total number of such bits is bounded by (2020 + � � �+ 2n23n) � jxj=3, so we may ignore them. For other bits the
corresponding strings (vertices) have length greater than n and the nth bit is equal to 1. So the total number
of such kind of strings (vertices) used does not exceed (1 + 2 + � � �+ 2jxj) � jxj=3 < 22jxj. The di�erence between
the number of zeros and the number of ones in each sequence corresponding to each string (vertex) is at most 3.
Thus the di�erence between the number of ones and the number of zeros in b0b1 � � � bt does not exceed 3 � 22jxj.
Hence the frequency of ones in b0b1 � � � bt is close to 1=2 (the di�erence is less than (3 � 22jxj)=(23(jxj�2)) and tends
to zero).

Now we are ready to prove our another main theorem.

Theorem 4.11 There is a p-stochastic set A in E2 which is �-levelable.

Proof. Let P0; P1; P2 � � � � � � be an enumeration of all sets in P. For i 2 N and b 2 �, let Bi;b = fz<i;j> : j 2
N and Pi(z<i;j>) = 1 � bg. Let A 2 E2 be the p-stochastic set in Lemma 4.10 corresponding to the sequence
B0;0; B0;1; B1;0; B1;1; B2;0; B2;1; � � � � � � of sets. We have to show that A is �-levelable. For each in�nite set Pi,
de�ne a polynomial time computable set P 0i by letting

P 0i (zn) =

�
1� Pi(zn) if n =< i; j > for some j 2 N
Pi(zn) otherwise

It su�ces to show that (1) holds with Pi and P 0i in place of B and B0 respectively. Let �i;0 and �i;1 be de�ned
as in Lemma 4.10. Then at least one of them is an in�nite sequence. Without loss of generality, we may assume
that �i;0 is in�nite and �i;1 is �nite. By Lemma 4.10, there is an unbounded nondecreasing function ri;0(n) such
that kfj < n : �i;0[j] = 0gk � kfj < n : �i;0[j] = 1gk+ ri;0(n) for almost all n 2 N . Hence

k(A�Pi) j�znk � k(A�P 0i ) j�znk
� kfj < n1 : �i;0[j] = 0gk � kfj < n1 : �i;0[j] = 1gk � j�i;1j
� ri;0(n1)� j�i;1j

for almost all n 2 N , where n1 = kfj < n : j =< i; k > for some k 2 N and Pi(zj) = 1gk. That is to say, (1)
holds with Pi, P

0
i and ri;0(n1)� j�i;1j in place of B, B0 and f(n) respectively.

Our results in this paper show that p-randomness implies weak �-levelability, but it implies neither �-
levelability nor optimal approximability. However, p-stochasticity is independent of weak �-levelability, �-
levelability and optimal approximability.

As a summary, we list all these relations among randomness, stochasticity and approximations. There are sets
A;B;C;D;E 2 �� which satisfy the properties in Table 1.
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