
ar
X

iv
:c

s/
00

11
01

1v
1

 [
cs

.D
M

]
 7

 N
ov

 2
00

0

Formal Properties of XML Grammars and

Languages

Jean Berstel
Institut Gaspard Monge (IGM)
Université de Marne-la-Vallée

5, boulevard Descartes, 77454 Marne-la-Vallée Cédex 2

Luc Boasson

Laboratoire d’informatique algorithmique: fondements et applications (LIAFA)
Université Denis-Diderot (Paris VII)
2, place Jussieu, 75251 Paris Cédex 05

October 31, 2018

Abstract

XML documents are described by a document type definition (DTD).
An XML-grammar is a formal grammar that captures the syntactic
features of a DTD. We investigate properties of this family of gram-
mars. We show that every XML-language basically has a unique
XML-grammar. We give two characterizations of languages gener-
ated by XML-grammars, one is set-theoretic, the other is by a kind of
saturation property. We investigate decidability problems and prove
that some properties that are undecidable for general context-free lan-
guages become decidable for XML-languages. We also characterize
those XML-grammars that generate regular XML-languages.

Résumé

Les documents XML sont décrits par une définition de type de doc-

ument (DTD). Une grammaire XML est une grammaire formelle qui

retient les aspects syntaxiques d’une DTD. Nous étudions les pro-

priétés de cette famille de grammaires. Nous montrons qu’un langage

XML a essentiellement une seule grammaire XML. Nous donnons deux

caractérisations des langages engendrés par les grammaires XML, la

première est ensembliste, la deuxième est par une propriété de sat-

uration. Nous examinons des problèmes de décision et nous prou-

vons que certaines propriétés qui sont indécidables pour les langages

1

http://arxiv.org/abs/cs/0011011v1

context-free généraux deviennent décidables pour les langages XML.

Nous caractérisons également les grammaires XML qui engendrent des

langages rationnels.

1 Introduction

XML (eXtensible Markup Language) is a format recommended by W3C in
order to structure a document. The syntactic part of the language describes
the relative position of pairs of corresponding tags. This description is by
means of a document type definition (DTD). In addition to its syntactic part,
each tag may also have attributes. If the attributes in the tags are ignored, a
DTD appears to be a special kind of context-free grammar. The aim of this
paper is to study this family of grammars.

One of the consequences will be a better appraisal of the structure of
XML documents. It will also illustrate the kind of limitations that exist in
the power of expression of XML. Consider for instance an XML-document
that consists of a sequence of paragraphs. A first group of paragraphs is
being typeset in bold, a second one in italic. It is not possible to specify, by
a DTD, that in a valid document there are as many paragraphs in bold than
in italic. This is due to the fact that the context-free grammars corresponding
to DTD’s are rather restricted.

As another example, assume that, in developing a DTD for mathematical
documents, we require that in a (full) mathematical paper, there are as
many proofs as there are statements, and moreover that proofs appear always
after statements (in other words, the sequence of occurrences of statements
and proofs is well-balanced). Again, there is no DTD for describing this
kind of requirements. Pursuing in this direction, there is of course a strong
analogy of pairs of tags in an XML document and the \begin{object} and
\end{object} construction for environments in Latex. The Latex compiler
merely checks that the constructs are well-formed, but there is no other
structuring method.

The main results in this paper are two characterizations of XML-langua-
ges. The first (Theorem 4.2) is set-theoretic. It shows that XML-languages
are the biggest languages in some class of languages. It relies on the fact that,
for each XML-language, there is only one XML-grammar that generates it.
The second characterization (Theorem 4.4) is syntactic. It shows that XML-
languages have a kind of “saturation property”.

As usual, these results can be used to show that some languages cannot
be XML. This means in practice that, in order to achieve some features of
pages, additional nonsyntactic techniques have to be used.

2

The paper is organized as follows. The next section contains the defini-
tion of XML-grammars and their relation to DTD. Section 3 contains some
elementary results, and in particular the proof that there is a unique XML-
grammar for each XML-language. It appears that a new concept plays an
important role in XML-languages: the notion of surface. The surface of an
opening tag a is the set of sequences of opening tags that are children of a (i.
e. the tags immediately under a that may follow a in a document before the
closing tag ā is reached). The surfaces of an XML-language must be regular
sets, and in fact describe the XML-grammar. The characterization results
are given in Section 4. They heavily rely on surfaces, but the second also
uses the syntactic concept of a context.

Section 5 investigates decision problems. It is shown that is is decidable
whether the language generated by a context-free language is well-formed,
but it is undecidable whether there is an XML-grammar for it. On the
contrary, it is decidable whether the surfaces of a context-free grammar are
finite (Section 6).

Section 7 is concerned with regular XML-languages. It appears indeed
that most XML-languages used in practical applications are regular. We
show that, for a given regular language, it is decidable whether it is an XML-
language, and we give a structural description of regular XML-grammars.

The final section is a historical note. Indeed, several species of context-
free grammars investigated in the sixties, such as parenthesis grammars or
bracketed grammars are strongly related to XML-grammars. These relation-
ships are sketched.

A preliminary version of this paper appears in the proceeding of the
MFCS 2000 conference [1].

2 Notation

An XML document [8] is composed of text and of tags. The tags are opening
or closing. Each opening tag has a unique associated closing tag, and con-
versely. There are also tags called empty tags, and which are both opening
and closing. These tags may always be replaced by an opening tag immedi-
ately followed by its closing tag. We do so here, and therefore assume that
there are no empty tags.

Let A be a set of opening tags, and let Ā be the set of corresponding
closing tags. Since we are interested in syntactic structure, we ignore any
text. Thus, an XML document (again with any attribute ignored) is a word
over the alphabet T = A ∪ Ā.

A document x is well-formed if the word x is a correctly parenthesized

3

word, that is if x is in the set of Dyck primes over A ∪ Ā. Observe that the
word is a prime, so it is not a product of two well parenthesized words. Also,
it is not the empty word.

An XML-grammar is composed of a terminal alphabet T = A ∪ Ā, of a
set of variables V in one-to-one correspondence with A, of a distinguished
variable called the axiom and, for each letter a ∈ A of a regular set Ra ⊂ V ∗

defining the (possibly infinite) set of productions

Xa → amā, m ∈ Ra, a ∈ A

We also write for short
Xa → aRaā

as is done in DTD’s. An XML-language is a language generated by some
XML-grammar.

It is well-known from formal language theory that non-terminals in a
context-free grammar may have infinite regular (or even context-free) sets of
productions, and that the generated language is still context-free. Thus, any
XML-language is context-free. Moreover, it is a deterministic context-free
language in the sense that there is a deterministic push-down automaton
([4]) recognizing it.

Example 2.1 The language {anān | n > 0} is a XML-language, generated
by

X → a(X|ε)ā

Example 2.2 The language of Dyck primes over {a, ā} is a XML-language,
generated by

X → aX∗ā

Example 2.3 The language DA of Dyck primes over T = A∪Ā is generated
by the grammar

X →
∑

a∈A Xa

Xa → aX∗ā, a ∈ A

It is not an XML-language. However, each Xa in this grammar generates an
XML-language, which is D ∩ aT ā.

In the sequel, all grammars are assumed to be reduced, that is, every
non-terminal is accessible from the axiom, and every non-terminal produces
at least one terminal word. Note that for a regular (or even a recursive) set
of productions, the reduction procedure is effective.

4

Given a grammar G over a terminal alphabet T and a nonterminal X we
denote by

LG(X) = {w ∈ T ∗ | X
∗

−→w}

the language generated by X in the grammar G.

Remark 2.4 The definition has the following correspondence to the termi-
nology and notation used in the XML community ([8]). The grammar of
a language is called a document type definition (DTD). The axiom of the
grammar is qualified DOCTYPE, and the set of productions associated to a tag
is an ELEMENT. The syntax of an element implies by construction the one-to-
one correspondence between pairs of tags and non-terminals of the grammar.
Indeed, an element is composed of a type and of a content model. The type
is merely the tag name and the content model is a regular expression for
the set of right-hand sides of the productions for this tag. For instance, the
grammar

S → a(S|T)(S|T)ā
T → bT ∗b̄

with axiom S corresponds to

<!DOCTYPE a [

<!ELEMENT a ((a|b),(a|b)) >

<!ELEMENT b (b)* >

]>

Here, S and T stand for the nonterminals Xa and Xb respectively.
The regular expressions allowed for the content model are of two types:

those called children, and those called mixed [8]. In fact, since we do not
consider text, the mixed expressions are no more special expressions.

In the definition of XML-grammars, we ignore entities, both general and
parameter entities. Indeed, these may be considered as shorthand and are
handled at a lexical level.

Remark 2.5 In the recent specification of XML Schemas ([9]), a DTD is
called a schema. The syntax used for defining schemas is XML itself. Among
the most significant enrichment of schema is the use of types. Also the purely
syntactical part of XML schemas is more evolved than that of DTD’s.

3 Elementary Results

We denote by Da the language of Dyck primes starting with the letter a.
This is the language generated by Xa in Example 2.3. We set DA = ∪a∈ADa.

5

This is not an XML-language if A has more than one letter. We call DA the
set of Dyck primes over A and we omit the index A if possible. The set D is
known to be a bifix code, that is no word in D is a proper prefix or a proper
suffix of another word in D.

Let L be any subset of the set D of Dyck primes over A. The aim of
this section is to give a necessary and sufficient condition for L to be an
XML-language.

We denote by F (L) the set of factors of L, and we set Fa(L) = Da∩F (L)
for each letter a ∈ A. Thus Fa(L) is the set of those factors of words in L
that are also Dyck primes starting with the letter a. These words are called
well-formed factors.

Example 3.1 For the language

L = {ab2nb̄2nā | n ≥ 1}

one has Fa(L) = L and Fb(L) = {bnb̄n | n ≥ 1}.

Example 3.2 Consider the language

L = {a(bb̄)n(cc̄)nā | n ≥ 1}

Then Fa(L) = L, Fb(L) = {bb̄}, Fc(L) = {cc̄}.

The sets Fa(L) are important for XML-languages and grammars, as illus-
trated by the following lemma:

Lemma 3.3 Let G be an XML-grammar over A ∪ Ā generating a language
L, with nonterminals Xa, for a ∈ A. For each a ∈ A, the language generated
by Xa is the set of factors of words in L that are Dyck primes starting with
the letter a, that is

LG(Xa) = Fa(L)

Proof . Set T = A ∪ Ā. Consider first a word w ∈ LG(Xa). Clearly, w is in
Da. Moreover, since the grammar is reduced, there are words g, d in T ∗ such
that X

∗
−→ gXad, where X is the axiom of G. Thus w is a factor of L.

Conversely, consider a word w ∈ Fa(L) for some letter a, let g, d be a
words such that gwd ∈ L. Due to the special form of an XML-grammar, any
letter a can only be generated by a production with non-terminal Xa. Thus,
a left derivation X

∗
−→ gwd factorizes into

X
k

−→ gXaβ
∗

−→ gwd (1)

6

for some word β, where k is the number of letters in g that are in A. Next

gXaβ
∗

−→ gw′β
∗

−→ gwd (2)

with Xa
∗

−→w′ and w′ ∈ D. None of w and w′ can be a proper prefix of the
other, because D is bifix. Thus w′ = w. This shows that w is in LG(Xa) and
proves that Fa = LG(Xa).

Corollary 3.4 For any XML-language L ⊂ Da, one has Fa(L) = L.

Let w be a Dyck prime in Da. It has a unique factorization

w = aua1ua2 · · ·uan ā

with uai ∈ Dai for i = 1, . . . , n. The trace of the word w is defined to be the
word a1a2 · · · an ∈ A∗.

If L is any subset of D, and w ∈ L, then the words uai are in Fai(L). The
surface of a ∈ A in L is the set Sa(L) of all traces of words in Fa(L).

Example 3.5 For the language of Example 3.1, the surfaces are easily seen
to be Sa = {b} and Sb = {b, ε}.

Example 3.6 The surface of the language of Example 3.2 are Sa = {bncn |
n ≥ 1} and Sb = Sc = {ε}.

It is easily seen that the surfaces of the set of Dyck primes over A are all
equal to A∗.

Surfaces are useful for defining XML-grammars. Let S = {Sa | a ∈ A}
be a family of regular languages over A. We define an XML-grammar G
associated to S called the standard grammar of S as follows. The set of
variables is V = {Xa | a ∈ A}. For each letter a, we set

Ra = {Xa1Xa2 · · ·Xan | a1a2 · · ·an ∈ Sa}

and we define the productions to be

Xa → amā, m ∈ Ra

for all a ∈ A. Since Sa is regular, the sets Ra are regular over the alphabet
V . By construction, the surface of the language generated by a variable Xa

is Sa, that is Sa(LG(Xa)) = Sa. For any choice of the axiom, the grammar is
an XML-grammar.

7

Example 3.7 The standard grammar for the surfaces of Example 3.1 is

Xa → aXbā
Xb → b(Xb|ε)b̄

The language generated by Xa is {abnb̄nā | n ≥ 1} and is not the language
of Example 3.1.

This construction is in some sense the only way to build XML-grammars,
as shown by the following proposition.

Proposition 3.8 For each XML-language L, there exists exactly one reduced
XML-grammar generating L, up to renaming of the variables.

Proof . Let G be an XML-grammar generating L, with nonterminals V =
{Xa | a ∈ A}, and Ra = {m ∈ V ∗ | Xa −→ amā} for each a ∈ A. We claim
that the mapping

Xa1Xa2 · · ·Xan 7→ a1a2 · · · an (∗)

is a bijection from Ra onto the surface Sa(L) for each a ∈ A. Since the
surface depends only on the language, this suffices to prove the proposition.
It is clear that (∗) is a bijection from V ∗ onto A∗. It remains to show that
its restriction to Ra is onto Sa(L).

If
Xa −→ aXa1Xa2 · · ·Xan ā

is a production, then a1a2 · · · an is the trace of some word u in LG(Xa). By
Lemma 3.3, the word u is in Fa(L), and thus a1a2 · · · an is in Sa(L).

Conversely, if a1a2 · · · an is in Sa(L), then there is a word w ∈ Fa(L) =
LG(Xa) such that

w = au1u2 · · ·unā

with ui ∈ Dai . Thus, there is a derivation

Xa−→ amā
∗

−→w

in G. Setting m = Y1Y2 · · ·Yk with Y1, . . . , Yk ∈ V , there are words u′
1, . . . u

′
k

such that Yi
∗

−→u′
i and

u1 · · ·un = u′
1 · · ·u

′
k

However, each ui, u
′
j is a Dyck prime, and since the sets of Dyck primes

are codes, it follows that n = k and ui = u′
i for i = 1, . . . , n. Since the

words ui are in Fai(L), there are derivations Xai

∗
−→ui. Thus Yi = Xai and

m = Xa1Xa2 · · ·Xan as required.

8

Remark 3.9 Obviously, Proposition 3.8 is not longer true if entities are
allowed. Indeed, entities may be used to group sets of productions in quite
various manners.

Corollary 3.10 Let L1 and L2 be two XML-languages. Then L1 ⊂ L2 iff
Sa(L1) ⊂ Sa(L2) for all a in A.

Proof . The condition is clearly necessary, and by the previous construction,
it is also sufficient.

Proposition 3.11 The inclusion and the equality of XML-languages is de-
cidable.

Proof . This follows directly from Corollary 3.10.

In particular, it is decidable if an XML-language L is empty. Similarly,
it is decidable if L = Dα.

XML-languages are not closed under union and difference. This will be
an easy example of the characterizations given in the next section (Exam-
ple 4.10).

The following proposition is interesting from a practical point of view.
Indeed, it shows that a stepwise refinement technique can be used in order
to design a DTD that satisfies or at least approaches a given specification.

Proposition 3.12 The intersection of two XML-languages is an XML-lan-
guage.

Proof . Let L and L′ be XML-languages generated by XML-grammars G and
G′. We define an new grammar G × G′with set of variables V × V ′ and
productions

(X,X ′)−→ a(X1, X
′
1) · · · (Xn, X

′
n)ā

if and only if X −→ aX1 · · ·Xnā in G and X ′ −→ aX ′
1 · · ·X

′
nā. The inclusion

LG×G′(X,X ′) ⊂ LG(X)∩LG′(X ′) is clear. Conversely, assume w ∈ LG(X)∩

LG′(X ′). Then X −→ aX1 · · ·Xnā
∗

−→w in G and X ′−→ aX ′
1 · · ·X

′
n′ ā

∗
−→w

in G′. Thus w = au1 · · ·unā = au′
1 · · ·u

′
n′ ā, where Xi

∗
−→ui and X ′

i

∗
−→u′

i.
Since the set of Dyck primes is a code, one has n = n′ and ui = u′

i. Thus
ui ∈ LG(Xi) ∩ LG(X

′
i) and the results follows by induction.

9

4 Two Characterizations of XML-languages

In this section, we give two characterizations of XML-language. The first
(Theorem 4.2) is based on surfaces. It states that, for a given set of regular
surfaces, there is only one XML-language with these surfaces, and that it
is the maximal language in this family. The second characterization (Theo-
rem 4.4) is syntactical and based on the notion of context.

Let S = {Sa | a ∈ A}, be a family of regular languages, and fix a letter
a0 in A. Define L(S) to be the family of languages L ⊂ Da0 such that
Sa(L) = Sa for all a in A. Clearly, any union of sets in L(S) is still in L(S),
so there is a maximal language (for set inclusion) in this family. The standard
language associated to S is the language generated by Xa0 in the standard
grammar of S.

Lemma 4.1 Let L be the standard language of S. For any language M in
L(S), one has Fa0(M) ⊂ L.

Proof . Let G be the standard grammar of S. Then L = LG(Xa0). We show
that Fa(M) ⊂ LG(Xa) for a ∈ A by induction on the length of words. Let
w = auā ∈ Fa(M). If u is the empty word, then the empty word is in Sa,
and the word aā is in LG(Xa). Otherwise, u has a (unique) factorization

u = ua1 · · ·uan

with uai ∈ Fai(M) for i = 1, . . . , n. By induction, uai ∈ LG(Xai) for i =
1, . . . , n. Since a1 · · · an ∈ Sa, there is a production Xa → aXa1 · · ·Xan ā in
the grammar. Thus w is in LG(Xa). The result follows.

Theorem 4.2 The standard language associated to S is the maximal element
of the family L(S). This language is XML, and it is the only XML-language
in the family L(S).

Proof . The first part is just Lemma 4.1 and the second part is Proposi-
tion 3.8.

Example 4.3 The standard language associated to the sets Sa = {b} and
Sb = {b, ε} of Example 3.1 is the language {abnb̄nā | n ≥ 1} of Example 3.7.
Thus, the language of Example 3.1 is not XML.

We now give a more syntactic characterization of XML-languages. For this,
we define the set of contexts in L of a word w as the set CL(w) of pairs of
words (x, y) such that xwy ∈ L.

10

Theorem 4.4 A language L over A ∪ Ā is an XML-language if and only if
(i) L ⊂ Dα for some α ∈ A,
(ii) for all a ∈ A and w,w′ ∈ Fa(L), one has CL(w) = CL(w

′),
(iii) the set Sa(L) is regular for all a ∈ A.

Before giving the proof, let us compute one example.

Example 4.5 Consider the language L generated by the grammar

S → aTT ā
T → aTT ā | bb̄

with axiom S. This grammar is not XML. Clearly, L ⊂ Da. Also, Fa(L) = L.
There is a unique set CL(w) for all w ∈ L, because at any place in a word
in L, a factor w in L can be replaced by another factor w′ in L. Finally,
Sa(L) = (a ∪ b)2 and Sb(L) = {ε}. The theorem claims that there is an
XML-grammar generating L.

Proof . We write Fa, Sa and C(w), with the language L understood. We first
show that the conditions are sufficient.

Let G be the XML-grammar defined by the family Sa and with axiom
Xα. We prove first LG(Xa) = Fa for a ∈ A. By Lemma 4.1, Fa ⊂ LG(Xa).
Next, we prove the inclusion Fa ⊃ LG(Xa) by induction on the derivation

length k. Assume Xa
k

−→w. Then w = auā for some word u. If k = 1, then
the empty word is in Sa, which means that aā is in Fa. If k > 1, then the
derivation factorizes in

Xa → aXa1 · · ·Xan ā
k−1
−→ auā

for some production Xa → aXa1 · · ·Xan ā. Thus there is a factorization
u = u1 · · ·un such that ui ∈ LG(Xai) for i = 1, . . . , n. By induction, ui ∈ Fai

for i = 1, . . . , n. Moreover, the word a1 · · ·an is in the surface Sa. This
means that there exist words u′

i in Fai such that the word w′ = au′
1 · · ·u

′
nā is

in Fa. Let g, d be two words such that gw′d is in the language L. Then the
pair (ga, u′

2 · · ·u
′
nād) is a context for the word u′

1. By (ii), it is also a context
for u1. Thus au1u

′
2 · · ·u

′
nā is in Fa. Proceeding in this way, on strips off all

primes in the u’s, and eventually au1u2 · · ·unā is in Fa. Thus w is in Fa. This
proves the inclusion and therefore the equality. Finally, by Corollary 3.4, on
has LG(Xα) = L, and consequently the conditions are sufficient.

We now show that the conditions are necessary. Let G be an XML-
grammar generating L, with productionsXa → aRaā and axiomXα. Clearly,
L is a subset of Dα. Next, consider words w,w′ ∈ Fa for some letter a, and

11

let (g, d) be a context for w. Thus gwd ∈ L. By Lemma 3.3, we know

that Fa = LG(Xa). Thus, there exist derivations Xa
∗

−→w and Xa
∗

−→w′.
Substituting the second to the first in

Xα
∗

−→ gXad
∗

−→ gwd (3)

shows that (g, d) is also a context for w′. This proves condition (ii).
Finally, since Ra is a regular set, the set Sa is also regular.

Example 4.6 Consider the language L of Example 4.5. The construction
of the proof of the theorem gives the XML-grammar

Xa → a(Xa|Xb)(Xa|Xb)ā
Xb → bb̄

Example 4.7 The language

{a(bb̄)n(cc̄)nā | n ≥ 1}

already given above is not XML since the surface of a is the nonregular set
Sa = {bncn | n ≥ 1}. This is the formalization of the example given in the
introduction, if the tag b means bold paragraphs, and the tag c means italic
paragraphs.

Example 4.8 In order to formalize the example of well-formed mathemat-
ical papers given in the introduction, consider the language L = {aHā},
where H is the language obtained from the Dyck language over a single let-
ter b by replacing every b by tt̄ and every b̄ by pp̄. Here, the letters t and t̄
stand for <theorem> and </theorem> and p and p̄ for <proof> and </proof>

respectively. If one renames t as c and p as c̄, then the surface of a in the
language L is the Dyck language over c, and it is not regular.

Example 4.9 Consider again the language

L = {ab2nb̄2nā | n ≥ 1}

of Example 3.1. First CL(bb̄) = {(ab2n−1, ab̄2n−1ā) | n ≥ 1}. Next CL(b
2b̄2) =

{(ab2n, ab̄2nā) | n ≥ 0}. Thus there are factors with distinct contexts. This
shows again that the language is not XML.

Finally, we give an example showing that XML-languages are closed nei-
ther under union nor under difference.

12

Example 4.10 Consider the sets cLc̄ and cMc̄, where L = D∗
{a,b} is the set

of products of Dyck primes over {a, b}, and M = D∗
{a,d} is the set of products

of Dyck primes over {a, d}. Each of these two languages is XML. However,
the union H = L ∪M is not. Indeed, the words cabb̄āc̄ and caādd̄c̄ are both
in H . The pair (c, dd̄c̄) is in the context of aā, so it has to be in the context
of abb̄ā, but the word cabb̄ādd̄c̄ is not in H . Given a language L ⊂ Da, write
L̄ = Da−L for the relative complementation. Closure under difference would
imply closure under relative complementation, and this would imply closure

under union because L ∪M = L̄ ∩ M̄ . Thus XML-languages are not closed
under difference.

5 Decision problems

As usual, we assume that languages are given in an effective way, in general
by a grammar or an XML-grammar, according to the assumption of the
statement.

Some properties of XML-languages, such as inclusion or equality (Propo-
sition 3.11) are easily decidable because they reduce to decidable properties
of regular sets. The problem is different if one asks whether a context-free
grammar generates an XML-language. We have already seen in Example 4.5
that there exist context-free grammars that generate XML-languages with-
out being XML-grammars. We shall prove later (Proposition 5.3) that it is
undecidable whether a context-free grammar generates an XML-language.
On the contrary, and in relation with Theorem 4.4, it is interesting to note
that it is decidable whether a context-free language is a subset of the set of
Dyck primes. The following proposition and its proof are an extension of a
result by Knuth [5] who proved is for a single letter alphabet A.

Proposition 5.1 Given a context-free language L over the alphabet A ∪ Ā,
it is decidable whether L ⊂ D∗

A.

We first introduce some notation. The Dyck reduction is the semi-Thue
reduction defined by the rules aā → ε for a ∈ A. A word is reduced or
irreducible if it cannot be further reduced, that means if it has no factor of
the form aā. Every word w reduces to a unique irreducible word denoted
ρ(w). We also write w ≡ w′ when ρ(w) = ρ(w′). If w is a factor of some
Dyck prime, then ρ(w) has no factor of the form ab̄, for a, b ∈ A. Thus
ρ(w) ∈ Ā∗A∗. In fact, ρ(F (DA)) = Ā∗A∗.

Proof of Proposition 5.1. Let G = (V, P, S) be a (reduced) context-free
grammar (in the usual sense, that is with a finite number of productions)

13

over T = A ∪ Ā, with axiom S ∈ V , generating the language L. For each
variable X , we set

Irr(X) = {ρ(w) | X
∗

−→w,w ∈ T ∗}

This is the set of reduced words of all words generated by X . Testing whether
L is a subset of D∗

A is equivalent to testing whether Irr(S) = {ε}.
First, we observe that if Irr(S) = {ε}, then Irr(X) is finite for each

variable X . Indeed, consider any derivation S
∗

−→ gXd with g, d ∈ T ∗.
Any u ∈ Irr(X) is of the form u = x̄y, for x, y ∈ A∗. Since ρ(gud) =
ρ(ρ(g)uρ(d)) = ε, the word x is a suffix of ρ(g), and ȳ is a prefix of ρ(d).
Thus |u| ≤ |ρ(g)|+ |ρ(d)|, showing that the length of the words in Irr(X) is
bounded. This proves the claim.

A preliminary step in the decision procedure is to compute a candidate to
the upper bound on the length of words in Irr(X). To do this, one considers

any derivation S
∗

−→ gXd
∗

−→ gud with gud ∈ T ∗, and one computes ℓX =
|ρ(g)| + |ρ(d)|. As just mentioned before, it is necessary that every reduced
word in Irr(X) has length at most ℓX .

We now inductively construct sets Irrk(X) as follows. We start with the
sets Irr0(X) = ∅, for X ∈ V , and we obtain the sets in the next step by
substituting irreducible sets of the current step in the variables of the right-
hand sides of productions. Formally,

Irrk+1(X) = Irrk(X) ∪
⋃

X→α

ρ(σk(α))

where σk is the substitution that replaces each variable Y by the set Irrk(Y).
This construction is borrowed from [2], with an addition use of the reduction
map ρ at each step. It follows that Irr(X) =

⋃
k≥0 Irrk(X)

For each k, one computes Irrk(X) for all X ∈ V , and then, one checks
whether Irrk(X) = Irrk−1(X) for all X . If so, the computation stops. The
language L is a subset of DA if and only if Irrk(S) = {ε}. If Irrk(X

′) 6=
Irrk−1(X

′) for some X ′, then one checks whether all words in Irrk(X) have
length smaller than ℓX , for all X . If so, then one increases k. If the answer
is negative, then L is not a subset of DA.

Since the sets Irrk(X) are finite, and the length of its elements must be
bounded by ℓX in order to continue, one eventually reaches a step where the
computation stops.

Corollary 5.2 Given a context-free language L over the alphabet A∪ Ā and
a letter a in A, it is decidable whether L ⊂ Da.

14

Proof . It is decidable whether L ⊂ a(A ∪ Ā)∗ā (for instance by computing
the set of first (last) letters of words in L. If this inclusion holds, then one
effectively computes the language L′ = a−1Lā−1 obtained by removing the
initial a and the final ā in all words of L. It follows by the structure of the
Dyck set that L ⊂ Da if and only if L′ ⊂ D∗.

The proof of the following proposition uses standard arguments.

Proposition 5.3 It is undecidable whether a context-free language is an
XML-language.

Proof . Consider the Post Correspondence Problem (PCP) for two sets of
words U = {u1, . . . , un} and V = {v1, . . . , vn} over the alphabet C = {a, b}.
Consider a new alphabet B = {a1, . . . , an} and define the sets LU and LV by

LU = {ai1 · · · aikh | h 6= uik · · ·ui1} LV = {ai1 · · · aikh | h 6= vik · · · vi1}

Recall that these are context-free, and that the set L = LU ∪ LV is regular
iff L = B∗C∗. This holds iff the PCP has no solution.

Set A = {a1, . . . , an, a, b, c}, and define a mapping ŵ from A∗ to (A ∪ Ā)
by mapping each letter d to dd̄.

Consider words û1, . . . , ûn, v̂1, . . . , v̂n in {aā, bb̄}+ and consider the lan-
guages

L̂U = {ai1āi1 · · · aik āikh | h 6= ûik · · · ûi1}

and
L̂V = {ai1 āi1 · · · aik āikh | h 6= v̂ik · · · v̂i1}

Set L̂ = c(L̂U ∪ L̂V)c̄. The surface of c in L̂ is Sc(L̂) = LU ∪ LV . If L̂ is
an XML-language, then LU ∪ LV is regular which in turn implies that the
PCP has no solution. Conversely, if the PCP has no solution, LU ∪ LV is
regular which implies that LU ∪LV = B∗C∗, which implies that L̂ = cB̂∗Ĉ∗ĉ,
showing that L̂ is an XML-language.

Corollary 5.4 Given a context-free subset of the Dyck set, it is undecidable
whether its surfaces are regular.

Proof . With the notation of the proof of Proposition 5.3, the surface Sc(L̂)
of the language L̂ is the language L, and L is regular iff the associated PCP
has no solution.

Despite the fact that regularity of surfaces is undecidable, it appears that
finiteness of surfaces is decidable. This is the main result of the next section.

15

6 Finite Surfaces

There are several reasons to consider finite surfaces. First, the associated
XML-grammar is then a context-free grammar in the strict sense, that is
with a finite number of productions for each nonterminal.

Second, the question arises quite naturally within the decidability area.
Indeed, we have seen that it is undecidable whether a context-free language
is an XML-language. This is due basically to the fact that regularity of
surfaces is undecidable. On the other side, it is decidable whether a context-
free language is contained in a Dyck language, and we will prove that it is
also decidable whether the surfaces are finite. So, the basic undecidability
result is the regularity of surfaces.

Finally, XML-grammars with finite surfaces are very close to families of
grammars that were studied a long time ago. They will be considered in the
concluding section.

Theorem 6.1 Given a context-free language L that is a subset of a set of
Dyck primes, it is decidable whether L has all its surfaces finite.

Corollary 6.2 Given a context-free language L that is a subset of a set of
Dyck primes, it is decidable whether L is a XML-language with finite surfaces.

In the rest of this section, we consider a reduced context-free grammar
G with nonterminal alphabet V , and terminal alphabet T = A ∪ Ā. The
language L generated by G is supposed to be a subset of some set Dα of
Dyck primes. Recall that D =

⋃
a∈A Da. If N is an integer such that F (L)

is contained in D(N) = ε ∪ D ∪ D2 ∪ · · · ∪ DN , we say that L has bounded
width.

First, observe that L has finite surfaces iff it has bounded width. Indeed,
if the surface Sa(L) is infinite for some a ∈ A, then there are words of the
form au1 · · ·unā in F (L) for infinitely many integers n, and clearly F (L) is
not contained in any D(N). Conversely, if u1 · · ·un ∈ F (L), then there are
words w,w′ ∈ D∗ such that awu1 · · ·unw

′ā ∈ F (L). But then the trace of
this word has length at least n. Thus if F (L) is not contained in D(N), at
least on surface is infinite.

For the proof of the theorem, we investigate iterating pairs in G. We
start with a lemma of independent interest.

Lemma 6.3 If X
+

−→ gXd for some words in g, d ∈ A∪Ā)∗, then there exist
words x, y, p, q ∈ A∗ such that

ρ(g) = x̄px, ρ(d) = ȳq̄y

and moreover p and q are conjugate words.

16

Proof . The words g and d are factors ofD. Thus, there exist words x, y, z, t ∈
A∗ such that g ≡ x̄z, d ≡ t̄y. There is a word v such that gnvdn is a factor of
D for each n ≥ 0. From g2vd2 ≡ x̄zx̄zvt̄yt̄y, one gets that x is a suffix of z or
z is a suffix of x, and similarly for t and y. If z is a suffix of x, set x = pz. But
then z̄p̄n is a prefix of ρ(gnvdn) for all n, contradicting the fact that Irr(X)
is finite. Thus x is a suffix of z and similarly y is a suffix of t. Set z = px and
t = qy. Then ρ(g) = x̄px and ρ(d) = ȳq̄y. Since gnvdn ≡ x̄pnxvȳq̄ny and
Irr(X) is finite, one has |p| = |q| and and moreover p is a factor of q2.

A pair (g, d) such that X
+

−→ gXd is a lifting pair if the word p in
Lemma 6.3 is nonempty, it is a flat pair if p = ε.

Lemma 6.4 If X
+

−→ g1Xd1 or X
+

−→ g2Xd2 is a lifting pair, then the com-

pound pair X
+

−→ g1g2Xd2d1 is a lifting pair.

Proof . According to Lemma 6.3, g1 ≡ x̄1p1x1 and g2 ≡ x̄2p1x2. Assume the
compound pair is flat. Then x̄1p1x1x̄2p1x2 ≡ z̄z for some word z ∈ A∗. Thus
the number of barred letters is the same as the number of unbarred letters
at both sides. This implies that p1 and p2 are the empty word.

Lemma 6.5 The language L has bounded width iff G has no flat pair.

Proof . If there is a flat pair (g, d) in G, then L has an infinite surface.
Indeed, ugnvdnw ∈ L for all n and for some u, v, and since g ≡ x̄x, there is
a conjugate of g in D. Thus gn has a factor in Dn−1, and L has unbounded
width.

Conversely, assume that L has unbounded width. LetK be the maximum
of the lengths of the right-hand sides of the productions in G. Let m be an
integer that is strictly greater than the maximum of the length of the words in
the (finite) sets Irr(X) for X ∈ V . Consider a word zu1u2 · · ·uNz

′ ∈ L with
u1, . . . , uN ∈ D, for some large integer N to be fixed later. In a derivation
tree for this word, let X0 be the deepest node such that the tree rooted
at X0 generates a word containing the factor u1u2 · · ·uN . The production
applied at that node has the form X → Y1 · · ·Yk with Y1, . . . , Yk ∈ V ∪T and
k ≤ K. By the pigeon-hole principle, at least one of Y1, . . . , Yk generates a
word containing a factor that is a product of at least N/k − 1 ≥ N/K − 1
consecutive ui’s. Denote this nonterminal X1. If N is large enough, on
constructs a sequence X0, X1, . . . , Xh of nonterminals, and if h ≥ m ·Card V ,
there are at least m of these variables that are the same. A straightforward

17

computation shows that N ≥ K +K2 + · · ·Km·CardV is convenient. We get
pairs

Y
∗

−→ s1w1p1Y d1
Y

∗
−→ s2w2p2Y d2
· · ·

Y
∗

−→ smwmpmY dm

where each of w1, . . . wm is in D∗, the si and pi are suffixes (resp. prefixes)
of words in D, and p1s2, p2s3, . . . pm−1sm are Dyck primes. For each i, define
xi ∈ A∗ by setting x̄i = ρ(si). From ρ(pisi+1) = ε, it follows that ρ(pi) = xi+1.
Thus siwipi ≡ x̄ixi+1. In view of Lemma 6.3, there are words yi ∈ A∗ such
that xi+1 = yi+1xi for i = 1, . . .m − 1, and each siwipi is equivalent to
x̄iyi+1xi, which in turn is equivalent to x̄1ȳ2 · · · ȳiyi+1yi · · · y2x1. All x̄1ȳ2 · · · ȳi
are prefixes of words in Irr(Y), and since this set is finite, one of the yi is the
empty word because of the choice of m. This shows that one of the pairs is
flat.

We now need to prove that it is decidable whether there exists a flat pair.

Lemma 6.6 Assume that X
+

−→ ℓ1Y r1, Y
+

−→ gY d and Y
+

−→ ℓ2Xr2. If the

pair X
+

−→ ℓ1gℓ2Xr2dr1 is flat, then the pair Y
+

−→ gY d is flat.

Proof . According to Lemma 6.3, ℓ1gℓ2 ≡ z̄z and g ≡ x̄px for some z, x, p ∈
A∗. Thus, ℓ1gℓ2 has the same number of barred and of unbarred letters,
and g has more (or as many) unbarred letters than barred letters. Next,

X
+

−→ ℓ1ℓ2Xr2r1 is an iterating pair, and therefore ℓ1ℓ2 has more unbarred
letters than barred letters. Thus g has as many unbarred letters than it has
barred letters. It follows that p is the empty word.

Proof of Theorem 6.1. In view of Lemma 6.5, it suffices to check whether
the grammar has a flat pair. For this, consider the derivation tree associated

to a pair X
+

−→ gXd. We call this tree (and the pair) elementary if there
is no variable that is repeated on the path from the root X to the leaf X .
Lemmas 6.4 and 6.6 shows that if there is a flat pair, then there is also an
elementary flat pair.

To each elementary pair, we associate a skeleton defined as follow. Con-
sider the path X = X0, X1, . . . , Xn = X from the root X to the leaf X . Each
of the Xi+1 is in the right-hand side of some production Xi → ωi. The skele-
ton is the derivation obtained by composing these productions. It results in

a derivation X
+

−→UXU ′, for some U, U ′ ∈ (V ∪T)∗. There are only a finite
number of skeletons because each skeleton is built from an elementary pair.

18

For each skeleton X
+

−→UXU ′, we consider the set of pairs X
+

−→uXu′

for all u ∈ Irr(U), u′ ∈ Irr(U ′) (Irr(U) denotes the set of reduced words of
words deriving from U). Since all Irr(U) is finite, the set of pairs obtained is
finite. It suffices to check whether there is a flat pair among them.

As a final remark, we consider grammars and languages similar to paren-
thesis grammars and languages studied by McNaughton [7] and by Knuth [5].
We will say more about them in Section 8. A polyparenthesis grammar is a
grammar with a terminal alphabet T = A ∪ Ā, and where every production
is of the form X −→ amā, with m ∈ V ∗, a ∈ A, ā ∈ Ā. A polyparenthesis
language is a language that has a polyparenthesis grammar. Thus, poly-
parenthesis grammars differ from XML-grammars in two aspects: there are
only finitely many productions, and the non-terminal need not to be unique
for each pair (a, ā) of letters.

Proof of Corollary 6.2. Let G be a context-free grammar G over A∪ Ā gen-
erating L = L(G). It is decidable whether L ⊂ Da for some letter a ∈ A
(Corollary 5.2). If this holds, we check whether L has finite surfaces. This
is decidable (Theorem 6.1). If this holds, we proceed further. A generaliza-
tion of an argument of Knuth [5] shows that it is decidable whether L is a
polyparenthesis language, and it is possible to effectively compute a poly-
parenthesis grammar G′ for it. On the other hand, let G′′ be the standard
grammar obtained from the (finite) surfaces. The language L is XML if and
only if L = L(G′′), thus if and only if L(G′) = L(G′′). This equality is
decidable. Indeed, any XML-grammar with finite set of productions is poly-
parenthetic, and equality of polyparenthesis grammars is decidable [7].

7 Regular XML languages

Most of the XML languages encountered in practice are in fact regular.
Therefore, it is interesting to investigate this case. The main result is that,
contrary to the general case, it is decidable whether a regular language is
XML. Moreover, XML-grammars generating regular languages will be shown
to have a special form: they are sequential in the sense that its nonterminals
can be ordered in such a way that the nonterminal in the lefthand side of
a production is always strictly less than the nonterminals in the righthand
side. The main result of this section is

Theorem 7.1 Let K ⊂ DA be a regular language. It is decidable whether K
is an XML-language.

One gets the following structure theorem.

19

Proposition 7.2 Let K be an XML-language, generated by an XML-gram-
mar G. Then K is regular if and only if the grammar G is sequential.

We shall give two proofs of Theorem 7.1, based on the two characteriza-
tions of XML-languages given above (Theorem 4.2 and Theorem 4.4). Both
proofs require the effective computation of surfaces.

Lemma 7.3 Let K ⊂ DA be a regular language. The surfaces of K are
effectively computable regular sets.

Proof . Let A be a finite automaton with no useless states recognizing K. For
each pair (p, q) of states, let Kp,q be the regular language composed of the
labels of paths starting in p and ending in q. A pair (p, q) of states is good
for the letter a in A, if Kp,q ∩Da 6= ∅. This property is decidable. A pair is
good if it is good for some letter. Let G be the set of good pairs, considered
as a new alphabet, and consider the set M(a) over G composed of all words

(p0, p1)(p1, p2) · · · (pn−1, pn)

such that there is an edge ending in p0 in the automaton A and labeled by
a and there is an edge starting in pn labeled by ā. Clearly, M(a) is a (local)
regular language over G.

Consider now the finite substitution f from G∗ into A∗ defined by

f(p, q) = {a ∈ A | (p, q) is a-good}

Then f(M(a)) is the surface of a in K, that is f(M(a)) = Sa(K). This
proves the lemma.

First proof of Theorem 7.1. We use Theorem 4.2. Let K be a regular subset
of DA. It is decidable whether K ⊂ Da0 for some letter a0. If this holds,
then by Lemma 7.3, the family S of surfaces Sa(K) is effectively computable.
From this family, one constructs the standard language L associated to S.
This is effective. We know that K ⊂ L, and consequently K is an XML-
language if and only if L ⊂ K or equivalently if and only if L∩K ′ = ∅, where
K ′ = (A ∪ Ā)∗ \K is the complement of K. This is decidable.

Second proof of Theorem 7.1. We use Theorem 4.4. Let A be the minimal
finite automaton with no useless states recognizing K, with initial state i
and set of final states T . For each pair (p, q) of states, let Kp,q be the regular
language composed of the labels of paths starting in p and ending in q. For
each letter a in A, the set Fa,p,q = Kp,q ∩Da is the set of well-formed factors

20

of K starting with the letter a that are labels of paths from p to q. Clearly,
Fa,p,q ⊂ Fa(K), for all p, q. We show that all words in Fa(K) have same
context if and only if Fa,p,q = Fa(K), for all p, q such that Fa,p,q 6= ∅.

Assume first that all words in Fa(K) have same context. Let p, q such
that Fa,p,q 6= ∅, and consider a word w ∈ Fa,p,q. There exist words x and y
such that i · x = p, and q · y ∈ T . The pair (x, y) is a context for w. Let w′

be a word in Fa(K). Then there is a successful path with label xw′y. Thus
there is a state q′ such that p ·w′ = q′ and q′ ·y ∈ T . If q 6= q′, there is a word
z separating q and q′, because A is minimal. Thus q · z ∈ T and q′ · z /∈ T
or vice-versa. However, this means that (x, z) is a context for w and is not
a context for w′ or vice-versa. Thus q = q′ and w′ ∈ Fa,p,q. This prove that
Fa(K) ⊂ Fa,p,q.

Conversely, assume that Fa,p,q = Fa(K), for all p, q such that Fa,p,q 6= ∅.
The contexts of any word w ∈ Fa(K) is the union of sets Ki,p ×Kq,t over all
pairs (p, q) with Fa,p,q 6= ∅. Thus all words have same contexts.

It follows from the preceding claim that K is a XML-language if and
only if Fa,p,q = Fa,p′,q′ for all pairs for which the languages are not empty.
Although equality of context-free languages in not decidable in general, this
particular equality is decidable because Fa,p,q = Fa,p′,q′ iff

Da ∩ (Kp,q \Kp′,q′ ∪Kp′,q′ \Kp,q) = ∅

For the proof of Proposition 7.2 we use the following notation and result.
For any word w ∈ (A∪ Ā)∗, the weight of w is the number |w|A−|w|Ā. Here,
|u|A is the number of occurrences of letters in A in the word u. The height
of w is the number

h(w) = max{|u|A − |u|Ā | uv = w}

that is the maximum of the weights of its prefixes. The height of a language
is the maximum of the heights of its words. This is finite or infinite.

Proposition 7.4 Let K ⊂ DA be a language over A ∪ Ā. If K is regular,
then it has finite height.

Proof . This result is folklore. We just sketch its proof. Given an automaton
recognizing K, the weight |u|A − |u|Ā of the label u of a circuit must be
zero for every circuit, by the pumping lemma. Thus, the height of K is the
maximum of the heights of the labels on all acyclic successful paths in the
automaton augmented by the sum of the heights of all its simple cycles. Since
the automaton is finite, this number is finite.

21

Proof of Proposition 7.2. Consider an XML-grammar G, and construct a
graph with an edge (Xa, Xb) whenever Xb appears in the righthand side
of a production with Xa as lefthand side. Nonterminals can be ordered
to fulfill the condition of a sequential grammar if and only if the graph
has no cycle. If the graph has no cycle, then the language generated by
a variable of index i is a regular expression of languages of higher indices.
Thus, the language generated by the grammar G is regular. On the contrary,
if there is a cycle through some variable Xa, then there is a derivation of the
form Xa

∗
−→ auXavā for some words u, v. By iterating this derivation, one

constructs words of arbitrary height in K, and so K is not regular.

Note that the language Fa(K) of well-formed factors is regular when K
is a regular XML-language, because Fa(K) is the language generated by the
nonterminal Xa in a sequential grammar.

8 Historical Note

There exist several families of context-free grammars related to XML-gram-
mars that have been studied in the past. In the sequel, the alphabet of
nonterminals is denoted by V .

Parenthesis grammars. These grammars have been studied in particular
by McNaughton [7] and by Knuth [5]. A parenthesis grammar is a grammar
with terminal alphabet T = B ∪ {a, ā}, and where every production is of
the form X −→ amā, with m ∈ (B ∪ V)∗. A parenthesis grammar is pure if
B = ∅. In a parenthesis grammar, every derivation step is marked, but there
only one kind of tag.

Bracketed grammars. These were investigated by Ginsburg and Harrison
in [3]. The terminal alphabet is of the form T = A∪ B̄ ∪C and productions
are of the form X −→ amb̄, with m ∈ (V ∪C)∗. Moreover, there is a bijection
between A and the set of productions. Thus, in a bracketed grammar, every
derivation step is marked, and the opening tag identify the production that
is applied (whereas in an XML-grammar they only give the nonterminal).

Very simple grammars. These grammars were introduced by Korenjak
and Hopcroft [6], and studied in depth later on. Here, the productions are
of the form X −→ am, with a ∈ A and m ∈ V ∗. In a simple grammar, the
pair (a,m) determines the production, and in a very simple grammar, there
is only one production for each a in A.

22

Chomsky-Schützenberger grammars. These grammars are used in the
proof of the Chomsky-Schützenberger theorem (see e. g. [4]), even if they
were never studied for their own. Here the terminal alphabet is of the form
T = A ∪ Ā ∪ B, and the productions are of the form X −→ amā. Again,
there is only one production for each letter a ∈ A.

XML-grammars differ from all these grammars by the fact that the set
of productions is not necessarily finite, but regular. However, one could con-
sider a common generalization, by introducing balanced grammars. In such
a grammar, the terminal alphabet is T = A∪ Ā∪B, and productions are of
the form X −→ amā, with m ∈ (V ∪B)∗. Each of the parenthesis grammars,
bracketed grammars, Chomsky-Schützenberger grammars are balanced. If
B = ∅, such a pure grammar covers XML-grammars with finite surfaces. If
the set of productions of each nonterminal is allowed to be regular, one gets
a new family of grammars with interesting properties.

References

[1] J. Berstel and L. Boasson. XML-grammars. In MFCS 2000 Mathemat-
ical Foundations of Computer Science (M. Nielsen and B. Rovan, eds),
Springer-Verlag, Lect. Notes Comput. Sci. 1893, pages 182–191, 2000.

[2] N. Chomsky and M. P. Schützenberger. The algebraic theory of context-
free languages. In Computer Programming and Formal Systems (P. Braf-
fort and D. Hirschberg, eds), North-Holland, Amsterdam, pages 118–161,
1963.

[3] S. Ginsburg and M. A. Harrison. Bracketed context-free languages. J.
Comput. Syst. Sci., 1:1–23, 1967.

[4] Michael A. Harrison. Introduction to Formal Language Theory. Addison-
Wesley, Reading, Mass., 1978.

[5] D. E. Knuth. A characterization of parenthesis languages. Inform. Con-
trol, 11:269–289, 1967.

[6] A. J. Korenjak and J. E. Hopcroft. Simple deterministic grammars. In
7th Switching and Automata Theory, pages 36–46, 1966.

[7] R. McNaughton. Parenthesis grammars. J. Assoc. Mach. Comput.,
14:490–500, 1967.

23

[8] W3C Recommendation REC-xml-19980210. Extensible Markup Language
(XML) 1.0, 10 February 1998. http://www.w3.org/TR/REC-XML.

[9] W3C Working Draft. XML Schema Part 0,1 and 2, 22 September 2000.
http://www.w3.org/TR/xmlschema-0,1,2.

24

