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Abstract

A timed CCS-like process algebra PAFAS and a testing scenario are developed
for evaluating the temporal worst-case efficiency of asynchronous concurrent systems.
Each action is associated with a maximal time delay, which allows components to
work with arbitrary relative speeds; for simplicity, the maximal delay is 1 or 0, but
time is continuous. The canonical testing preorder associated to our timed testing
compares worst-case efficiency; we show that this efficiency preorder can equivalently
be defined considering only discrete time, which is of course much simpler. Then we
characterize the efficiency preorder with some kind of refusal traces; despite the rather
weak control an asynchronous test environment has, this gives quite detailed insight
into the temporal system behaviour. Since the preorder is not a precongruence for
choice, we refine it to the efficiency precongruence, which is a precongruence for all
operators of the algebra including recursion.

1 Motivation and Introduction

Classical process algebras like CCS model asynchronous systems, where the components
have arbitrary relative speeds. To consider the temporal behaviour, several timed process
algebras have been proposed, where usually systems are regarded as synchronous, i.e. have
components with fixed speeds. The easiest of these is SCCS [20], since terms are essentially
the same as for CCS; the natural choice to fix the speeds of components is to assume that
each action takes one unit of time; so SCCS-semantics differs from CCS-semantics essentially
by excluding runs where one component performs many actions while another performs just
one.

Our aim is to compare the temporal worst-case efficiency of asynchronous concurrent
systems modelled with a process algebra, and — as in the case of SCCS — we want to keep
things simple by using (almost) just classical CCS-like process terms. Furthermore, we
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will use a variant of (must-)testing [12], where the testing preorder can be interpreted as
comparing efficiency.

A usual treatment of asynchronous systems with a timed process algebra is to allow
arbitrary idling before each action [20, 23|; this achieves arbitrary relative speeds, but is
not suitable for defining worst-case runs since each action already can take arbitrarily long.
Here, we assume that each action is performed within a given time bound. Since an action
can also be performed earlier, it is still possible that one component performs many actions
while another performs just one; thus, despite assuming an upper time bound, we deal with
arbitrary relative speeds, i.e. with truly asynchronous systems. Also e.g. [18] uses upper time
bounds for the performance evaluation of asynchronous systems in the area of distributed
algorithms.

To keep things simple as in SCCS, we could take 1 as a common upper time bound for
all actions, and we have done so in a preliminary version of this paper [16]. To demonstrate
the generality of our results, our process algebra PAFAS (process algebra for asynchronous
systems' also has urgent actions with upper time bound 0. Even when studying processes
where all bounds are 1, restricted use of such actions is necessary in order to describe states
reached after some time has passed. To have urgent actions as first class citizens enhances
the modelling power, since it is often very natural to consider the time taken by some actions
as negligible compared to others. It might also help to find an axiomatization; compare [34],
where a fragment of the algebra in [16] is axiomatized. Due to our notation, we interpret
ordinary CCS-like processes automatically as processes where all actions have bound 1.

We compare processes via the testing approach developed by [12] and extended to timed
testing in a Petri net framework in [31, 17], where a timed test is a test environment together
with a time bound. A process is embedded into the environment essentially via parallel
composition and satisfies a timed test, if success is reached before the time bound in every
run of the composed system, i.e. even in the worst case. If some process P satisfies each
timed test satisfied by a process @), then P may be successful in more environments than
specified by @, but it may also be successful in the same environments within a shorter time;
therefore, we call it a faster implementation of (), and the testing preorder is naturally an
efficiency preorder.

To define timed testing formally, we have to define runs of asynchronous systems. In
Section 2, we develop a suitable semantics where time is continuous; we try to formalize
our intuitive ideas as directly as possible without anticipating any specific treatment that
might be necessary to obtain a precongruence in the end. As a sort of sanity check, we
show in Section 3 that (most of) our processes do not have time-stops, i.e. every finite run
can be extended such that time grows arbitrarily; this result depends on the restriction to
time-guarded recursion.

It has turned out that the classical embedding in the test environment with just parallel
composition leads to a testing preorder which — surprisingly — is not a precongruence for
prefixing; instead of refining the preorder to the coarsest such precongruence (cf. [15]), we
get this precongruence directly by using a slightly different, but also intuitive embedding.

Using continuous time is difficult to handle; e.g. initially each process can make uncount-
ably many different time steps. Our first main result in Section 4 shows that realism and
simplicity can be reconciled: we define an analogous efficiency preorder based on discrete
time behaviour and show its coincidence with the first one. In Section 5, as usual in a

1Or process algebra for faster asynchronous systems, but the comparison of speed of course relies on
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testing approach, we characterize the efficiency preorder — here with some kind of refusal
traces. The important point with this second main result is that test environments are asyn-
chronous systems, hence ‘temporally weak’, but nevertheless reveal the temporal behaviour
of tested processes quite in detail; correspondingly, the construction of revealing tests is a
little involved.

These two main results are translations (and extensions to urgent actions) from corre-
sponding results for Petri nets in [17] to a process algebra setting. On the one hand, this
demonstrates that the underlying ideas are not model-dependent; on the other hand, the
developments here are quite different, in particular since process algebras are much more
powerful than finite safe Petri nets; see e.g. the progress preorder in Section 4.

We also provide precongruence results for parallel composition, hiding, relabelling and
prefixing. In Section 6 we refine the efficiency preorder to a precongruence also for choice:
as usual, we additionally have to take into account the (initial) stability of processes; fur-
thermore, we have to know to some degree which behaviour starts with an internal action.
Quite surprisingly, although we consider a preorder, the condition on stability is not only an
implication but an equivalence. The resulting efficiency precongruence is then shown to be
the coarsest precongruence for all operators of our process algebra that respects inclusion of
discrete behaviour. We also provide a precongruence result for recursion; for this, we added
to the algebra of [16] the complete time-stop €.

We close with a small example in Section7; work on more elaborate examples is in
progress. In the Petri net setting, different implementations of a bounded buffer are com-
pared in [32, 17], while [33, 7] study token-ring solutions to the problem of mutual exclusion.

2 Continuously Timed Processes and Tests

We will study a CCS-like process algebra with T'CSP-like parallel composition || 4, where
A is the set of actions components have to synchronize on. Processes will perform (atomic)
actions instantaneously within some time bound; we interpret ordinary C'CS-like processes
such that this time bound is 1, but also consider urgent actions with time bound 0. Time
passes (in this section) continuously between action occurrences. For example, process a.P
will idle and then perform action a at some time point in the real interval [0; 1], evolving to
P. To model this, we additionally have to introduce continuously timed actions (a, ), which
carry a ‘timer’ r whose initial value can be chosen from the interval [0; 1] of real numbers.
Whenever time passes globally by a certain amount, the timer of a locally activated action
will be decreased accordingly. Thus, we interpret C'CS-like processes as so-called initial
processes where all timer values are 1; e.g. a.b + ¢ is (a,1).(b,1) + (¢, 1), which becomes
(a,.7).(b,1) + {c,.7) after time .3 and (a,0).(b,1) + (¢,0) (which we also write as a.b + ¢)
after additional time .7. Processes with timer-values ¢ {0, 1} only interest us if they occur
in runs from processes with discrete timer-values.

Timer value 0 denotes that the idle-time of the respective action has elapsed, hence it
must either occur or be deactivated (in the example: a by ¢ or vice versa) before time
may pass further — unless it has to wait for synchronization with another component (i.e.
our processes are patient). E.g. process (a, 1).P can idle, process (a,0).Q) cannot, and as a
stand-alone process it has no reason to wait; but as a component in ({a, 0).Q)||1s;({a, 1).P),
it has to wait for synchronization on a, and this can take up to time 1, since component
{(a,1).P may idle this long.



We also use two distinguished actions: 7 represents internal activity that is unobservable
for other components; in the testing scenario, w is reserved for observers (test processes),
which use this action in order to signal success of a test.

Definition 2.1 A is an infinite set of actions with a special action w — the success action;
additionally, 7 is the internal action. We define A, = AU {r}. Elements of A are denoted
by a,b,c,... and those of A, are denoted by «, 3,....

Let T = [0;1] C Ry be the set of real numbers in the interval [0; 1]. Elements from T are
denoted e.g. by p or r.

For a € A; and r € T, (o, r) is a continuously timed action with timer r. We use « as a
shorthand for (o, 1) and « as a shorthand for (a, 0), which we call an urgent action.

Definition 2.2 (continuously timed and initial process terms and processes) Let ® : A, —
A, be a function such that the set {« € A, |0 # & () # {a}} is finite, ? ' (w) C {w}
and ®(7) = 7; then ® is a general relabelling function.

A general process term P is generated by the following grammar:

P :=0]|Q|z]|(wr).P|P+P | P|sP | PO | pa.P

where 0 (Nil) and Q (Timestop) are constants, v € X = {x,y, z,...} is a (process) variable,
() a continuously timed action, ® a general relabelling function and A C A possibly
infinite. Additionally, we only allow guarded recursion, where also internal timed actions
(1,7) may serve as a guard; see below. The set of general process terms is denoted by L.
Significant subsets of L are:

o P, the set of discrete process terms. These are L-terms where all r are from {0,1} and
recursion is time-guarded (see below).

e P, the set of continuous process terms. These are L-terms generated by the following
grammar (continuous timers, r € (0, 1), can appear only at the top level):

P = 0|z | (rQ | P+P | P|sP | P®] | pz.Q
where ) and px.Q) are P-terms — hence, recursion is time-guarded.

e P, the set of initial process terms. These are Q-free L-terms and the choice of r is
restricted to r = 1.

A term P is closed and called a process if all variables x in P are bound by the corre-
sponding pz-operator. The set of closed terms of L, P, P, and P; is obtained by removing
from the corresponding set. Thus, I denotes the set of general processes, P the set of discrete
processes, P, the set of continuous processes and P; the set of initial processes.

As explained above, P is the set of processes we are mainly interested in; P; is an
important subset, since it corresponds to ordinary CCS-like processes. The set P, is of
interest, since the processes in P can reach processes in P. when they let pass a non-discrete
amount of time; due to our treatment of recursion, we will actually need terms from P, in
the definition of our operational semantics of P-processes.

With = we denote syntactical equality of process terms.



0 is the Nil-process, which cannot perform any action, but may let time pass without
limit; a trailing O will often be omitted, so e.g. a.b 4+ ¢ abbreviates a.0.0 + ¢.0. {2 cannot
perform any action and does not allow time to pass any further; such a time-stop process
is not realistic and only introduced to show a precongruence result for recursion. =z € X
is a process variable used for recursion. (a,r).P is (action-) prefixing, known from CCS,
where (o, r).P is ready to perform action a at some time in [0, r]. P; + P, models the choice
(sum) of two conflicting processes P; and P,. Pi||4P, is the parallel composition of two
processes P; and P, that run in parallel and have to synchronize on all actions from A; this
synchronization discipline is inspired from TCSP.

The general relabelling operation P[®] subsumes the classically distinguished operations
relabelling and hiding. These can be understood as special cases of a general relabelling in
the following way: if @ satisfies the condition @ 1(7) = {7}, then @ is a (classical) relabelling
function; if for a set A C A ® satisfies the conditions ®|4 = 7 and @[, \a = idy, , then
we consider P/A to be a notation equivalent to P[®], where A is called a hiding set. The
restrictions on general relabelling functions serve several purposes: ®(7) = 7 ensures that 7
cannot be made visible by relabelling, and ® ! (w) C {w} ensures that testable processes will
be closed under general relabelling. The finiteness of the set {a € A, |0 # & () # {a}}
will ensure later on that the number of different actions ever performable by a given c-process
is finite; note that we allow infinite hiding sets, however.

pz.P models recursion. Q or some z € X is guarded in a general process term P € L,
if each occurrence of 2 or z is in a subterm («,r).QQ of P where o € A, ; note that also
internal timed actions (7, r) may serve as a guard. We speak of time-guarded if r = 1. In this
paper, we only consider general process terms, discrete process terms resp., px.P where x is
guarded, time-guarded resp., in P. We say that P € L is (time-)guarded if Q and all z € X
are (time-)guarded in P. Note: general processes are guarded and continuous processes are
time-guarded.

In order to economize on parentheses, precedence of the operators in decreasing order is
as follows: relabelling, prefix, recursion, parallel composition, choice.

Whenever we perform syntactical substitution P{Q)/z}, we assume free(Q)) N bound(P) =
() (BARENDREGT convention), where free( P) and bound(P) denote the sets of free resp. bound

variables in P. If S is a function S : X — L, then S denotes a simultaneous substitution of
all variables, and we write [P|s for P{S(x)/z,S(y)/y, ...}

We intend choice to be commutative and associative; therefore, > ., P; is used as a
shorthand for the sum of all P, € L, where i is in a finite indexing set I. We define
>ico i =0, and if [I| =1, then }°. ., P; = P

Now the purely functional behaviour of process terms (i.e. which actions they can per-
form) is given by the following operational semantics.

Definition 2.3 (Operational semantics of functional behaviour) The following SOS-rules de-
fine the transition relation C (L x L) for each o € A,. We always require the side-condition
that (P, P') €= implies that P is guarded. As usual, we write P = P’ if (P, P') €= and
P % if there exists a P’ € L such that (P, P') €%, and similar conventions will apply later
on.

ag A PSP b ac€A PSP, P, P

Pref, —————  Parg argo
Py||aPy % P{||aPy

(a,7).P % P Pi||aPy % P|| 4P,




P35 P PSP R P4 P
eCq, =
(), P'[®] px.P = P'{ux.P/x}

P1+P22>P1, P[(I)]

Additionally, there are symmetric rules for Par,; and Sum, for actions of P,. Finally,
A(P) ={a € A, | P %} is the set of activated actions of P.

Except for Pref, and Rec,, these rules are standard. Pref, allows an activated action to
occur disregarding the value of its timer; in particular, a.P can perform « just as e.g. in
CCS. Additionally, passage of time will never deactivate actions or activate new ones, and
we capture all behaviour that is possible in the standard CCS-like setting without time.
Note that rule Rec, implicitly makes use of guarded recursion. It forces us to define an
operational semantics not only for general processes but also for general process terms (in
the premise of Rec,). On the other hand, it will simplify proofs of operational properties,
since it connects induction on inferences of a transition with induction on the structure of a
general process.

Due to the rules for choice, it should be clear that any sensible semantics will make choice
indeed commutative and associative; in particular, this will be the case in this paper; we will
not mention this any further.

The set of activated actions of a general process term P describes its immediate functional
behaviour. Just as A(£2), A(x) is empty for process variables x € X, reflecting that unbound
occurrence of a variable means incomplete specification, which €2 stands for. Note that A(P)
records only actions, not the possibly various timer values associated with the same action
in a process. Instead via the operational semantics, A(P) can equivalently be determined
inductively from the syntactical structure of P alone; see the proposition below.

The set of activated actions will be preserved both along passage of time and under
substitution of guarded variables; furthermore, due to the definition of general relabelling
functions, A(P) is always finite, and this will be used for the characterization of our testing
preorder.

Proposition 2.4 Let P,Q, R € L be general process terms.
1. A(P) is finite.

2. Let & € A; and z € X be guarded in P. Then, P{Q/z} = R if and only if there
exists P’ € L with P % P’ and R = P'{Q/x}; in particular A(P) = A(P{Q/x}).

3. For P not guarded, A(P) = (); for guarded P, A(P) can be calculated by structural

induction:

Nil:  A(0) =0

Pref:  A((a,r).P) = {a} forall a €A,
Sum:  A(P + P,) = A(Py) U A(P,)

Rel:  A(P[®]) = ®(A(P))

Rec:  A(px.P) = A(P)

Proof:
1. Induction on the structure of P.

2. Induction on the structure of P:



Nil, Stop: 0 =0{Q/z} = for no a € A,; Q is analogous.
Var: z guarded in P = y implies © Z y; this case is analogous to Nil.

Pref: z is guarded in (a,7).P and ({a,7).P){Q/z} = {(a,7).(P{Q/z}) = P{Q/x}, which
is unique, and (o, r).P % P, which is unique.

Sum, Par, Rel: straightforward induction.

Rec: pz.P % P'{uxr.P/x} due to P % P’ by rule Rec,; then z is bound in pz.P and
P'{px.P/x}, hence (ux.P){Q/v} = px.P % P'{ux.P/z} = (P'{px.P/x}){Q/x}.
Now let © # y; then (uy.P){Q/z} = py.(P{Q/x}) since by BARENDREGT convention
y is not free in ().

By rule Rec,, (uy.P){Q/z} = py.(P{Q/z}) = R iff R = R'{uy.(P{Q/x})/y}
and P{Q/z} = R' for some R’ iff (by ind.) R = R'{uy.(P{Q/z})/y} and R' =
P'{Q/r} with P = P' for some R' and P' iff R = (P'{Q/z}){ny.(P{Q/x})/y} =
(P'{py.P/y}){Q/z} and P = P’ for some P'iff R = P"{Q/z} and P" = P'{uy.P/y}
and P % P’ for some P’ and P" iff uy.P % P" and R = P"{Q/z} for some P".

3. Clear from the side-condition in the above definition, by induction on the inference
of P % resp.

Nil: 0 = for no a € A,, hence A(0) = 0.
Pref: (a,r).P 5y iff & = B, hence A({a,r).P) = {a}

Sum: P+ P, 5 PP S VP B e a € AP) V a € A(P,), hence AP, + P,) =
A(P)) U A(B,).

Par;: CY%A/\PlnAPQg)@CY%A/\(Pli) \/P2g})@a¢A/\(QEA(P1)VQGA(P2)),
hence iff o € A(P)) U A(P2)

Par,: CYEA/\P1||AP2£><:>CY€A/\(P12> /\P2g))@&eA/\(O&EA(Pl)/\OZGA(PQ)),
hence iff a € A(Py) N A(P2)

Rel: P[] % < 3 d'(a): P 5o 3B AP): 3(8) =a & a c B(A(P))
Rec: ur.P %5 & P 5 & a € A(P).

O

As a first step to define timed behaviour, we now give operational rules for the passage
of ‘wait-time’: all components of a system participate in a global time step, and this passage
of time is recorded for locally activated actions by decreasing their annotated timer in rule
Pref.. Note that time passes disregarding elapsed timers; as in the example at the beginning
of this section, this might be necessary for a component when waiting for a synchronization
partner, explaining the name ‘wait-time’.

Definition 2.5 (Operational semantics for wait-time) Via the following SOS-rules, a rela-
tion ~5.C (L x L) is defined for each p € T:



r':max(r—p,()) Pl“gcpllap2“£>cp2,

Nil, - Pref, - Sum, -
0~.0 <OZ,T>.PWC<CY,TI>.P P1+P2“">CP1,+P2I
PP P, %, P|, Py, Py P5. P
Relc o ale D eC, 5
P[®] ~. P'[®] Pyi||aPs ~~¢ P||aPy px.P ~. P{px.P/x}

Note that a process variable z € X — as Q — has no time semantics, reflecting the fact
that an unbound occurrence of a variable means incomplete specification.

Lemma 2.6 (Closure Properties of Action and Wait-time Transitions)

1. PeP, (P),Q € Pandy € X time-guarded in P but not free in @ imply y time-guarded
in P{Q/z}.

2. P,Q € Pand z € X imply P{Q/x} € P.

3. PeP, QePandzeXimply P{Q/z} € P,.

4. For PEP (P), P % Q or P ~5, Q imply Q € P (P).

5. For PeP, (P,), P> Qor P~%,Q imply Q € P, (P,).
6. PP, (P.) and P ~>, Q imply Q € P (P).

Proof: 1. This is immediate since each occurrence of y in Q € P is bound and therefore
time-guarded.
2. By induction on the structure of P.
Nil,Stop: If P = 0 then P{Q/z} =0 € P. If P = Q then P{Q/z} =Q € P.
Var: P =z If z # x then 2{Q/z} = z € P. If 2 = z then z{Q/z} = Q € P.

Pref: P = (a,r).P,. By induction hypothesis P,{Q/z} € P. Thus also (a,7).(P{Q/z}) =
({a, ). P{Q/}.

Sum: P = P; + P,. By induction hypothesis P{Q/r} € P and P,{Q/xz} € P. Thus also
(P{Q/z}) + (P{Q/x}) = (P + P){Q/x} € P.

Par, Rel: analogously to Sum.

Rec: P = puz.Py. If z = z then (uz.P){Q/x} = pz.P, € P. Assume z # z and z not free
in () by Barendregt convention. Then (uz.P){Q/x} = pz.(P1{Q/z}). By induction
hypothesis P {Q/z} € P. Since z is time-guarded in P; and z not free in @, by Item
1. we have z is time-guarded in P, {Q/z}. Thus puz.(P,{Q/z}) € P.

3. A trivial adaptation of Item 2.

4. By induction on the structure of P.
Nil: P =0. Case P % @ is not possible while 0 ~%,. 0 € P.

Stop,Var: Cases P = x and P = () are not possible

8



Pref: P = (o,7).P.. Then (o, r).P; = Py and (o, 7).P, %, (a,r"). Py, where r' = max(r —
p,0). Both P, and (a,r').P; are in P and if P € P then P, and (a,r').P, are also in P.

Sum: P = P, + P,. Then P, + P, % P! if either P, & P! or P, & P!. Assume P, 5 P!

(the other case is symmetric). By induction hypothesis P € P.

It P + P, ~%, P{+ Py if both P, ~5. P{ and P, 5. P|. By induction hypothesis P; € P
and P, € P. Thus also P{ + Py € P.

Moreover, is P € P, that is Py, P, € P, then both P and P] + Pj are also in P.
Par, Rel: analogously to Sum.

Rec: P = pz.P,. Assume px.P, % P'{uz.P;/z} due to P, % P'. By induction hypothesis
P' € P. By px.P, € P and Item 2. we have P'{ux.P,/z} € P. Moreover, if pyz.P; € P
then x is the unique free variable in P;. Simple inductive reasoning shows that z is
the unique free variable in P|. Thus P'{ux.P,/z} € P.

Case px.Py N P'{ux.P;/z} is analogous.

5. A trivial adaptation of Item 4.

6. By induction on the structure of P.
Nil: P =0. In this case 0 ~>, 0 € P.
Stop,Var: P = (). This case is not possible since (2 %C. Similarly for P = z.

Pref: P = («,r).P,. Then {(a,r).P, 5 (o, 0).P, € P. Of course, if P € P, then («,0).P, €
P.

Sum: P = P, + P,. P, + Py ~, Q) + Qs then P, ~, Q; and P, ~+, Q. By induction
hypothesis P;, P, € P, (P,) implies @1, Q2 € P. (P.). Thus also Q1 + Q2 € P, (P,).

Par,Rel: analogously to Sum.

Rec: P = px.P;. In this case pux.P, € P. By the operational semantics px.P; ”1%

Qi1{px.P/x} if P, «r1~>C @ and @ € P by Item 4. Thus, Q{puz.P,/z} € P by Item 2.
Of course, if P € P then also Q{pz.P,/z} € P.

O

Lemma 2.7 (Properties of passage of wait-time) P,P',P",Q,R € L be general process
terms and p, o/, p+ p' € T.

1. P4, if and only if P is guarded, and if P ~%, P’, then P’ is guarded.
2. If P~%4,. P and P ~%, P", then P' = P".

3. Let z € X be guarded in P; then: P{Q/x} ~%, R if and only if there exists P’ € L
with P ~%, P' and R = P'{Q/z}.

4. If P %, P', then A(P) = A(P").



5. P pvtpc, P" if and only if P ~%, P’ «/’ic P" for some P'.

Proof: 1. By induction on the structure of P; informally, the argument is that a composite
term can do a time step iff its operands can do it — except for prefix-terms, where the prefix
is essentially preserved.

Nil: 0 is guarded and 0 ~%, 0.
Var: P = z for z € X is not guarded, and for no p: = ~%,.

Pref: (o, r).P is guarded and (o, 7).P ~%, (o, 7").P with ' = max(r — p,0), and (a, 7). P is
guarded, too.

Sum: P=P, + P, L, iff fori =1,2: P, 5, P! for some P!, hence by ind. iff both P, and
P, are guarded, in which case both P] and Pj are guarded, too. Thus, P = P, + P, f»c
iff P is guarded and if P ~%, P' = P! + P}, then P'is guarded.

Par: analogously to Sum.
Rel: similar to Sum.

Rec: px.P is guarded iff P is guarded iff by ind. P ~%, P’ for some guarded P’ iff uz.P -5,
P'{ux.P/x}, which is guarded, too.
2. by induction on the inference of P ~%, P', P %, P" resp.
3. similar to 2.4.2

4. By induction on the inference of P ~%, P'. We only consider the Rec-case in the
induction, since the other cases are clear:

By rule Rec,, px.P ~%. R implies R = P'{ux.P/x} and P . P’ for some P’ and by
1., z is guarded in P and P’. Now by induction and Proposition 2.4.2 and .3: A(uz.P) =
A(P) = A(P") = A(P'{ux.P/z}) = A(R).

5. Induction:
Nil: 0% 0 and 02,0 %, 0.

. +o .
Var, Stop: For x € X: neither x A nor z pwpc; similar for €.

Pref: (a,r).P pj»pc’ (o, max(r — (p + p'),0)).P and (a,r).P ~*, (o, max(r — p,0)).P «fic
(v, max(max(r — p,0) — p/,0)).P and max(max(r — p,0) — p',0) = max(r — (p+ '), 0).

Sum: P, + P, ", P/ + PV = V1, P "L P! & (ind.)Vi_ 3P : P, &, P! %, P o
Vic123FP : P + P “’ch{WLPQI “’p*cP1”+P2”-

Par: analogously to Sum.

Sum, Par, Rel: induction
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Rec: ux.P pvtpc, R iff (by rule Rec.) P pj@pcl P" for some P" and R = P"{ux.P/z} iff (by
induction) 3P, P" : P <%, P' %, P" A R = P"{px.P/x} iff (again by rule Rec, and by
3. since z is guarded in P and P') 3P, P" : yx.P ~>, P'{pux.P/x} %, P"{jz.P/z} =
R.

|

The operational semantics of wait-time allows general processes to wait forever, but our
intention was that an urgent action has to occur or be disabled (— unless it has to wait for
a synchronization partner). We will enforce this using an auxiliary function that calculates
for a given action « its residual time R(a, P) in a general process term P, i.e. the time until
it becomes urgent.

Definition 2.8 (Residual time of actions and general process terms) The residual time
R(«, P) of an action « € A, in a guarded general process term P € L is defined by:

0) =
_r ifa=p
(6,7)-P) = {1 otherwise
Sum: R(«, P, + Py) = min(R(«, P), R(a, P,))

Nil, Stop, Var: R(a,
(
(
( max(R(«a, P),R(a, P)) ifa€ A
(v,
R(

Pref: R

Par: R(a, Pi||aP>) = ) .
min(R(«o, P),R(a, ) ifa ¢ A

Rel: R(a, P[®]) = min{R(5, P) | B € &~ ()}

Rec: a, px.P) = R(«, P)

In this definition, we put min () := 1. The residual time of a guarded general process term
P € Lis R(P) = min{R(a, P)|a € A(P)}. R(a,P) and R(P) for unguarded P are
irrelevant and, hence, undefined.

We have chosen R(«, 0) = 1 mainly for technical reasons (cf. Proposition 2.9.1 below).
The Par-case will realize the desired behaviour of waiting in a parallel composition: if P,
and P, have to synchronize on «, then the residual time of « in Py||4 P, is determined by the
‘slower’ component with larger residual time; if P, and P, do not have to synchronize on «,
the ‘faster’ component determines the maximal possible delay of « in Py||4P.

Observe that in the Rel-case ®!(a) may be empty (where min) = 1) or infinite; for
the latter case, we will show below that for any P € L there are only finitely many 4 € A,
with R(3,P) # 1 (Proposition 2.9.1 together with Proposition 2.4.1), such that the set
{R(B,P)|B € ()} is finite and R(c, P[®]) exists. Similarly, R(P) exists for each
general process term P, and, hence, the residual time is well-defined in all cases.

In the following proposition, we ascertain that only activated actions of a general process
term can have a residual time less than 1, and that the residual time of each action is
preserved under substitution of guarded variables. Additionally, we show how the residual
time of a general process term can be calculated directly from the residual times of its
components, provided there is no parallel composition with synchronisation:

Proposition 2.9 Let P,Q € L be guarded general process terms, o € A, and z € X.

1. R(a, P) € T, and R(«, P) # 1 implies a € A(P).

11



2. R(a, P) = R(a, P{Q/z}), thus R(P) = R(P{Q/z}).

3. Except for parallel composition, R(P) may be calculated directly:

R(0)=1

R({a,r).P) =1

R(P + Q) = min(R(P), R(Q))
R(P[®]) = R(px.P) = R(P)

Proof: 1. Apply induction on the structure of P; observe Proposition 2.4.3 and that
R(a, P||4Q) # 1 iff either « € A and R(a, P) # 1 # R(a, Q) or a« ¢ A and R(a, P) # 1 or
R(a, Q) # 1; note that the respective induction step shows that R(«, P[®]) is well-defined.
2. Induction on the structure of P.
3. Mostly clear; we exploit the finiteness of A(P) and the restriction on general rela-
belling functions ® in order to swap minima:

o R(P + P5) = mingeg(p,+ 1) R(0, Py + Po) = minge 4cpyuacp,) min(R(a, Pr), R(a, P,))
= min(minge 4(pua(p) R, Pr), minae apyuacp) R(e, P2))
= min(minge 4p) R(a, Pr), Minge py) R(@, By)) = min(R(Py), R(Py)).

1.

e R(P[®]) = minge 4pia)) R, P[®]) = mingeq(a(py) Minges-1 (narp) R(G, P)
minge 4p) R(B, P) = R(P).

O

The effect of waiting on the residual time of activated actions is described by the following
lemma: if time advances by amount p, then the residual time of an activated action is
decreased by the same amount, unless it is already less than p, in which case it is zero
afterwards. This behaviour is realized locally by rule Pref, of Definition 2.5.

Lemma 2.10 For general process terms P, P’ € L and p € Tlet P . P'; then for all
a € A(P) = A(P') we have either R(«, P)—R(a, P') = p, or R(a, P) < pand R(«, P') = 0.

Proof: In this proof, we will deal with minima and maxima when calculating residual times.
In these calculations, we will often use the following properties without mentioning it:
Let I be a finite set, p € T and (x;);cr, (yi)icsr be families of real numbers.

1. min;es (2, — ;) < minger x; — minger ;.

2. fx; —y; < pforall i € I, then min;e; x; — min;er y; < p.
3. fz; —y; = pforall ¢ € I, then min;c; x; — ming; y; = p.
4. maxer (v — y;) > max;er & — MaXer Yi

5. If ¢; —y; < p for all ¢ € I, then max;c; x; — max;er y; < p.

6. If z; —y; = p for all ¢ € I, then max;c; ; — max;er y; = p.
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Proof: 1. Let min;e; x; = x; with j € I; then min;er (v —y;) < 25 —y; < xj — minger y; =
mlnzel Ty — mlnzGI Yi-

2. Let min;er y; = yp with k € I; then min;c; x; —minger y; = minger x; —yp < Tp —Yp <
p.

3. Follows from 1. and 2.

4. Let max;e; x; = x; with j € I; then max;er (v; — y;) > ; — y; > ©; — maX;er y; =
maXjer Ty — MaXier Yi-

5. Follows from 4.

6. max;e; xr; —max;er ¥ < p by 4. Let max;er y; = yr with £ € I; then p =2, — y, <
maX;es Tj — Yp = MaAX;er T; — MaAX;er Yj- 0

We now perform induction on the inference of P ~%, P, using Lemma 2.7.4, which also
gives A(P) = A(P'); interesting cases are:

Sum: Py + Py~ P+ Py = Vic1s P 0 Pl = Vic1 oVac ay=acer) (R(a, P) — R(a, Pf) =
pV (R(a, P)) < p AN R(a, P!) = 0)). For « € AP, + P») = A(P] + Pj) one of the
following cases applies:

1. 3i219 R(a, P) < p A R(a, P!) = 0; then R(a, P, + P») = min;—1 5 R(a, P;) < p
and R(a, P + Pj) = min;— » R(«, P}) = 0.

2. Vic12 R(a, P)—R(«, P!) = p; then R(«, P+ Py) —R(«, P{+ Pj) = min;—; » R(«,
P;) —min;—; o R(e, P}) = p.

3. R(a, P) — R(a, P]) = p A R(a, P;) = R(a, Pj) = 1 by 2.9.1 (or vice versa);
then R(a, Py + P2) — R(a, P{ + P;) = min;—; » R(«, P;) — min;— o R(a, P}) =
R(a, P1) = R(a, Pj) =

Par: P|[sP, B, Pl||aPy = Vic12 P N P;.
For any a € (A(P;) N A(P,)) N A by ind. one of the following cases applies:

L. Vic12 R(a, P;) < p A R(a, P)) = 0; then R(a, Pil[aP2) = max;—1,R(a, Pi) < p
and R(a, P||4P;) = max;_;» R(a, P;) = 0.

2. R(a,P) —R(a,P]) =p A R(a, P;) > R(a, P,) (or vice versa);
then R(a, Pi||aP2) — R(a, P{||aP;) = max;—;2R(a, P;) — max;—»R(a, P]) =
R(a, P1) = R(a, P)) = p

For a € (A(P) UA(P,)) \ A we argue as for sum.

Rel: P[®] 5, P'[®] = P %, P’
For a € A(P[®]) we have one of the following cases:

1. 38 € A(P)Nnd'(a): R(B,P) < p A R(B,P") = 0, then R(a, P[®]) < p A

R(a, P'[®]) =0

2. otherwise:
R(a, P[@]) (a P'[®]) = mingeq - (ﬁ P) — minges-1(0) R(B, P') =
MiNgesp-1(q) R(B, P) — mingce- ( ) R(B,P') =p

Rec: px.P ~%, R implies R = P'{uz.P/z} and P Jic P’ for some P’ by rule Rec., hence
induction yields
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Vacarp) R(a, P) = R(a, P') = p V (R(a, P) < p A R(er, P') = 0)
and since P’ is guarded by Lemma 2.7.1, with Proposition 2.9.2 follows
Vacaps.P)R(e, pr.P) — R(a, P'{px.P/x}) = R(er, P) — R(cr, P') = p or
R(a, px.P) = R(a, P) < p A R(a, P'{ux.P/x}) = R(a, P") = 0.

The residual time is the time a stand-alone process can idle; thus, we can use it to restrict
wait-time to the timed behaviour we had in mind originally and which we call ‘idle-time’.
Alternatively, idle-time could have been defined via SOS-rules intertwined with the rules for
wait-time.

Definition 2.11 (Passage of idle-time) For (guarded) P, P’ € L and p € T we write P 5,
P'if P2, P and p < R(P).

Most of the properties of wait-time stated in Lemma 2.7 carry over to idle-time analo-
gously, gathered in Proposition 2.12 below. Note that general processes without activated
actions may idle for an arbitrary amount of time by 4., 1. and 3., but if there are activated
actions, they may idle at most for time 1 by 5., 1. and 3. Also observe that 3. demonstrates
to some degree that functional and timed behaviour are orthogonal: passage of time can
neither deactivate actions (persistency) nor can it activate new actions, i.e. we do not have
timeouts.

Proposition 2.12 (Properties of idle-time) Let P, P', P",Q, R € L be general process terms
and p,p/,p+p' €T

1. P 5, iff Pis guarded and p < R(P), and P’ is guarded if P %, P'.

2. If P5, P and P %, P" then P' = P". (time-determinism,)
3. If P %, P', then A(P) = A(P"). (orthogonality)
4. It A(P) =0 and P %, P', then R(P) = R(P') = 1.

5. If A(P)# 0 and P %, P', then R(P) — R(P') = p

6. P piflc P" if and only if P 5, P’ i,>c P" for some P’. (continuity)

Proof: Use Definition 2.11 and:

1. Lemma 2.7.1.

2. Lemma 2.7.2.

3. Lemma 2.7.4.

4. Implication of 3. and Proposition 2.9.1.

5. Lemma 2.10 and Definition 2.8.

6. P, pr
S P P'A p+ g <R(P)
&3P P AP L P"Ap<R(P)Ap <R(P)—p  (by Lemma 2.7.5)
o3P P45, P %S, P A P <R(P) (5. and 4., also using p+ p' < 1)
e3P pPhH P 5, P O
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Both, purely functional and timed behaviour of processes will now be combined in the
continuous language of processes. As usual, we will abstract from internal behaviour; but
note that internal actions gain some ‘visibility’ in timed behaviour, since their presence
possibly allows to pass more time in between the occurrence of visible actions. For technical
reasons, we also need a continuous language that records 7’s when we compare processes
w.r.t. their temporal progress in the next section. Note that we use A (and not £) to denote
the empty sequence.

Definition 2.13 (Continuous language of processes) Let P, P’ € L be c-process terms. We
write P =5, P’ if either ¢ € A, and P = P', or e € T and P <. P'. We extend this to
sequences w and write P 5, P’ if P = P’ and w = )\ (the empty sequence) or there exist

QeLlandee (A, UT) such that P =, Q ﬂ;c P’ and w = cw'.

For a sequence w € (A, UT)* let w/7 be the sequence w with all 7’s removed, let act(w)
be the sequence of elements from A, in w, and let the duration ((w) of w be the sum of
time steps in w; note that ¢(w/7) = ¢(w). We write P =, P', if P %, P' and v = w/T.

For a general process P € L we define CL,(P) = {w|P .} to be the continuous(ly
timed) T-language, containing the continuous 7-traces of P, and CL(P) = {w| P =.} to be
the continuous language, containing the continuous traces of P.

Note that CL,(P) = CL(P) = {\} for P not guarded.

Based on the continuous language of general processes, we are now ready to define timed
testing and to relate general processes w.r.t. their efficiency, thereby defining an efficiency
preorder:

Definition 2.14 (continuously timed tests) A discrete Q-free process P € P is testable if w
does not occur in P. Any initial process O € P; may serve as a test process (observer). We
write || for ||A\{w}-

A general timed test is a pair (O, R), where O is a test process and R € R} is the real
time bound. A testable process P c-satisfies a general timed test (P must. (O, R)), if each
w € CL(7.P||O) with ((w) > R contains some w.

For testable processes P and @, we call P a continuously faster implementation of @,
written P 3, @, if P c-satisfies all general timed tests that () c-satisfies.

Note that in contrast to e.g. [12], execution and not only activation of an w is necessary
for satisfaction of a c-timed test. Usually, one considers the behaviour of P||O when defining
a test. This is also done in [15], where it is shown that surprisingly the resulting efficiency
preorder is not a precongruence for prefixing and therefore has to be refined afterwards.
In order to avoid this complication, we have chosen 7.P||O instead (which is shorthand for
((7,1).P)||mfw} O), getting the refined semantics directly. From an intuitive point of view,
the additional 7-prefix represents some internal setup activity before the actual test begins.

In [16] we only tested initial processes, whereas here we more generally test discrete
processes. In a testing approach, extending the class of processes under consideration does
not always lead to a generalization, since the additional observers can add discriminating
power. Here, we really generalize the result from [16], since we extend the class of testable
processes but not the class of observers; our results imply that in our setting additional
discrete observers would not ‘see’ more.

Runs with duration less than R may not contain all actions that occur up to time R; hence
we only consider runs with a duration greater than the time bound R for test satisfaction.
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The operational idea behind this is that — when performing a test — one should certainly
wait until time R is up before declaring the test a failure. If an ()-free continuous process
(like 7.P||O) could have a time-stop, waiting would not be possible and our definition of
c-satisfaction would be questionable; we will see below in Corollary 3.10 that this is not the
case.

At this point, it is by no means clear how to check P 3, @ for given testable P and Q).
Obviously, it is impossible to apply the definition directly, since there are already uncountably
many time bounds and, hence, general timed tests to apply. And even if we could decide
P 3. Q from CL(P) and CL(®) only (which is not the case), CL(P) and CL(Q) are still
uncountable and hard to handle.

3 Time-Stops

In this section, we will show that most processes in P, do not show the time-stop phenomenon.
A process is a time-stop, if there is a bound on the time that can elapse along its runs (i.e.
all infinite runs are Zeno-runs); a process has a time-stop if along a computation it can reach
a time-stop. The following definition introduces this new notion:

Definition 3.1 (Time-Stops) Let P € P,. Then:
- We say that P is a time-stop if there is some n € N such that P =, implies ((w) < n;

- We say that P has a time-stop if there is some P’ € P, such that P 2, P" and P’ is a
time-stop.

In general, open terms (those containing free variables) and terms containing the Q-
process suffer from this phenomenon, because variables x € X and Q do not let time elapse
according to the operational rules in Definition 2.5. Thus, according to Definition 3.1, simple
processes like (o, r).z or (o, r).Q2 have a time-stop.

The rest of this section is devoted to proving that ()-free P-processes do not have time-
stops. We need some new notation and preliminary results.

First of all we introduce a function bound which, roughly speaking, counts the number
of prefixes with timer less than 1 that are not in the scope of a prefix with timer 1, and we
state some properties that lead to our results at the end of the section.

Definition 3.2 (Function Bound) The bound of a process P € P,, bound(P), is defined by:

Nil, Stop, Var: bound(0) = bound(Q2) = bound(z) =0

Pref: bound((a, 1) P) = 1+ bound(P) ifr< 1
otherwise

Sum: bound(P; + P;) = max(bound(Pl) bound(F,))

Par: bound(P;||4P2) = bound(P;) + bound(Ps)

Rel: bound(P[®]) = bound(P)

Rec: bound(ux.P) = bound(P)

Lemma 3.3 Let P € P.. Then bound(P) is finite.

Proof: A simple induction on the structure of P. O
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Proposition 3.4 Let P be a time-guarded P,-(P-)term, Q be a time-guarded P-term. Let
x be a process variable. Then:

(1) P{Q/z} is a time-guarded P,-(P-)term;
(2) bound(P{Q/x}) = bound(P).

Proof: Prove the three statements together by induction on the structure of P. Actually,
we only consider the case P being a time-guarded P-term since the proof for P € P. is
completely similar.

Nil: P =0. In such a case P{Q/z} = 0. Hence P{Q/x} is time-guarded and
bound(P{Q/z}) = bound(P).

Stop,Var: Cases P = () and P = y are not possible because P is a time-guarded process.
Pref: P = («,r).P,. We distinguish two cases: r =1 and r < 1.

- Assume 7 = 1. Then ((o, 1).P){Q/2} = (o, 1).(P{Q/z}) and P {Q/x} € P.
Hence, (a, 1).(P{Q/z}) € P and it is time-guarded because of the initial prefix.
Moreover, bound(P{Q/z}) = 0 = bound(P).

- Assume r < 1. Then ((a,7).P){Q/x} = (a,7).(P{Q/x}) and P{Q/x} € P.
P time-guarded implies P; time-guarded. By induction hypothesis Pi{Q/z} is
a time- guarded P-term. Hence, (o, 7).(P,{Q/z}) € P and it is time-guarded.
Always by induction hypothesis we have bound(P;{@Q/z}) = bound(P;). Thus
also bound({a, r).(P1{Q/x})) = 1 4+ bound(P{Q/x}) = 1 + bound(P;) which is
in turn equal to bound({a, r).P).

Sum: P = P, + P,. Of course, P, and P, are time-guarded P-terms. Moreover, (P, +
P){Q/z} = (Pl{Q/x})—l—(PQ{Q/x}). By induction hypothesis Pi{Q/z} and P{Q/x}
are time-guarded P-terms. Hence also (P + P){Q/z} = (P {Q/z}) + (P{Q/z}) is a
time-guarded P-term. By induction hypothesis bound(P{Q/x}) = bound(P;) and
bound(P,{Q/x}) = bound(P,). Hence, bound((P; + P){Q/x}) =
max{bound(P {Q/x}), bound(P{Q/x})} = max{bound(P;), bound(P,)} =
bound(P; + P2).

Par,Rel: analogous to Sum.

Rec: P = py.P,. We distinguish two cases: © =y and x # y.
In the former case, x =y, P = P{Q/x} and we are done.

In the latter case, x # y, we have (uy.P){Q/z} = py.(Pi{Q/z}). By induction
hypothesis, we have that P;{Q/z} is a time-guarded P-term and bound (P {Q/z}) =
bound(P;). Hence, (uy.P1){Q/z} € P is a time-guarded P-term and
bound(uy.(Pi{Q/x})) = bound(P{Q/x}) = bound(P;) = bound(uy.P;).

|

Proposition 3.5 Let P be a time-guarded P.-term. If R(a, P) < 1 then there exists a
time-guarded @ € P, such that P % @ and bound(Q) < bound(P).
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Proof: By induction on the structure of P.

Nil: P = 0. This case is not possible because R(«a, P) = 1.

Stop,Var: These cases are not possible because P is time-guarded.

Pref: P = (3,r).P, and P, € P. R(a,P) < 1 implies & =  and r < 1. Since P is time-

guarded, P is also time-guarded. Moreover, P % P; and bound(P) = 1+bound(P;) >
bound(Py).

Sum: P = P, + P,. Then both P; and P, are time-guarded P,-terms. Assume R(«, P) =

Par:

Rel:

Rec:

min{R(«, P1), R(a, P2)} < 1. Then R(a, P1) < 1 or R(e, P») < 1. If R(e, P) < 1
(symmetrically if R(«, P2) < 1), then by induction hypothesis there is Q) € P, such
that P, = @ and bound(P;) > bound(Q). Then P, + P, % @Q and bound(P;, + P,) =
max{bound(Py), bound(P,)} > bound(Q).

P = Pi||4aP>. Then both P; and P, are P,-terms. Assume R(«, P) < 1. We consider
two cases: o € A and o ¢ A.

- a € A. Then R(a, P) = max{R(«a, P1),R(a, P2)} < 1. Hence R(a, P;) < 1
and R(a, P;) < 1. By induction hypothesis there are time-guarded ¢, and Qs
in P, such that P, & Qq, P» = Q, bound(Pl)N > bound(@,) and bound(P,) >

bound(Q;). Then Q,]|4Q: is a time-guarded P,-term and Py[|4P = Q1| 4Qo.
Moreover, bound(P,|| 4 P2) = bound(P;)+bound(FP2) > bound(@Q;)+bound(Q2) =
bound(Q1|4Q2)-

- a ¢ A R(a,P) = min{R(a, P,),R(ar, P»)} < 1. Then R(a,P) < 1 or
R(a, Py) < 1. f R(ar, P1) < 1 (symmetrically if R(«, P) < 1), then by induction
there is Q € P, such that P, % @ and bound(P;) > bound(Q). Hence, Q|4P
is a time-guarded P,-term and Pi||4P, = Q||4P.. Moreover bound(Py||oP,) =
bound(P;) + bound(P,) > bound(Q) + bound(P;) = bound(Q|| 4 P).

P = P[®]. R(a,P) < 1 means there exists 3 € Act such that ®(3) = « and
R(B,P1) < 1. By induction hypothesis there exists a time-guarded @ € P. such

that P, 2 @ and bound(P;) > bound(Q). Then P;[®] % Q[®] and bound(P;[®]) >
bound(Q[®]).

P = px.P. R(a,P) <1 means R(«, P;) < 1. Of course P, is time-guarded. Thus,
by induction hypothesis, there exists a time-guarded Q € P, such that P, = Q
and bound(P;) > bound(Q). By Proposition 3.4 Q{ux.P;/x} is a time-guarded
P.-term and pz. Py % Q{uz.P,/z} and bound(uz.P;) = bound(P;) > bound(Q) =

bound(Q{px.Py/x}) by Proposition 3.4.

|

Corollary 3.6 Let P be a time-guarded P.-term. If R(a, P) < 1 then there exists a time-
guarded @ € P, such that P % @ and bound(Q) < bound(P).

Proof: By 2.6.5, the @ from 3.5 is in P.. O

Lemma 3.7 Let P be a time-guarded P.-(P.-)term such that R(P) < 1. Then there exists
a time-guarded P,-(P,-)term @ and a sequence w € (A,)" such that P =, @ and R(Q) = 1.
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Proof: Assume P to be a time-guarded P,-(P,-)term. By Proposition 3.5 (Corollary 3.6),
there exists a computation P 5, Q; 3, ... 3. Q; “3' .. such that R(Q;) < 1 and
bound(P) > bound(@Q;) > ... > bound(Q;;1) > ... By Lemma 3.3 such a computation is
finite, ending at some Q) = @,, with R(Q) = 1; hence, we choose w = ajs...qu,. O

Proposition 3.8 Let P be an Q-free P.-process. Then there exists w € (A,)" such that
P 31)0 @ and @ is an Q-free P-term.

Proof: If R(P) = 1 then P =N Q. @ is, of course, Q-free and by Lemma 2.6.6, in P.
Otherwise, R(P) < 1 and, by Lemma 3.7, there exists w € (A,;)" and R € P, such that

P %, Rand R(R) = 1. Thus, R -5, Q and by Lemma 2.6.6, Q € P. Again Q is Q-free. O

Proposition 3.9 No (2-free P.-process P is a time-stop.

Proof: By Proposition 3.8, there exists w € (A,)" such that P Y. Q and Q is an Q-free
P-process. Iterative applications of Proposition 3.8 prove that P cannot be a time-stop. O

Corollary 3.10 No Q-free P.-process P has a time-stop.

Proof: Any derivative of an Q-free P.-process is an (-free P.-process and, by Proposition
3.9, cannot be a time-stop. O

As discussed at the end of the last section, this result is important for our testing sce-
nario to make sense intuitively. In our definition of test satisfaction, it might seem that we
completely ignore runs with duration less than the test duration R. Now we know that this
is not the case: such runs can be extended to runs with duration > R, since (2-free process-
es like 7.P||O do not have time-stops. Compare this e.g. to approaches that only consider
infinite runs and therefore ignore runs that lead to deadlocks; such approaches can lead to
counter-intuitive results. (It is not clear how such finite runs can be avoided operationally.)

4 Discretization

Intuitively, satisfaction of a timed test essentially depends on the ‘slowest’ sequences in
CL(7.P||O); in this section, we will show that these are already captured if we consider only
discrete behaviour, i.e. traces where all time steps have duration 1. This will yield a simple
theory.

Definition 4.1 (Discrete language of processes) Let P,P' € L be general process terms.
We write P =4 P’ if either ¢ € A, and P 5 P', or e = 1 and P =, P'; in the latter case
we say that P performs a unit time step. For sequences w € (A, U {1})*, we define >, and

w:/gd analogously to Definition 2.13.

For a general process P € L we define DL, (P) = {w| P =4} to be the discrete(ly timed)
T-language, containing the discrete T-traces of P, and DL(P) = {w/7|w € DL,(P)} to be
the discrete language, containing the discrete traces of P.

Observe that by definition DL(P) C CL(P) and DL,(P) C CL,(P), and that DL,(P) =
DL(P) = {\} for P not guarded. Furthermore, the set of Q-free P- and P-terms and the set
of P-terms are closed under =4, i.e. P =4 P’ for some P € P implies P’ € P etc. (These
results follow or are easy adaptations of the closure properties in Lemma 2.6.)

The following proposition states some useful properties of discrete processes.
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Proposition 4.2 Let P € P. Then:
1. R(a, P) € {0,1}, thus R(P) € {0,1} for every P € P.

2. Let P be a time-guarded P-term. Then there exists a time-guarded P' € P and
w € {a}*, such that P %, P’ and R(a, P') = 1.

Proof:

1. from the definition of P and R with structural induction

2. The proof is similar to that of Lemma 3.7. By Proposition 3.5 there exists a finite
maximal sequence P %, Q; >, ... =, P’ such that R(a, Q;) < 1, bound(P) > bound(Q,) >
.. and R(a, P') = 1. O

So far, we only know that discrete behaviour of a discrete process is part of its continuous
behaviour, viz DL(P) C CL(P). We now aim to show that discrete behaviour already contains
enough information for checking P J. @) for testable P and (). For this purpose, we will map
each continuous trace of a discrete process to a discrete trace of the same process. Related
traces will exhibit the same behaviour, but at different points in time. We first relate the
intermediate general processes reached when performing such traces.

Definition 4.3 (Progress preorder of general process terms)
The progress preorder =5 for § € T is a relation on L satisfying:

1. Nil, Stop, Var: 0>5;0 Q>5sQand x5

2. Pref: (a,11).P =5 (a,r9).P if 79 — 1 <0
3. Sum: P+ Py =5 Q1+ Q- if Vizl,g P =5 Q,;
4. Par: Pil|aPy =5 Q1]|aQ2 if Yiz12 Py 5 Q;
5. Rel: P[®] =5 Q[®] if P>5Q

6. Rec: a) px.P s px.P

b) P'{ux.P/x} >5 px.P if P' =5 P
¢) wpx.P>5 P{ux.P/x} if P =5 P’

Intuitively, P =5 Q means that P and () are essentially identical up to the values of
timers, and if P is ahead of @), then for at most time §. However, (Q may be ahead of P for
an arbitrary amount of time; compare the Pref-case, where we allow ry < ry.

Cases Rec b) and c) say that px.P and P'{uz.P/x} can be identified in two specific
situations; this is necessary to make Proposition 4.4.8.a) and b) below true: if P = pux.R >
pr.R = @ and P makes a time step, then only for P recursion is unfolded by rule Rec..
An alternative would have been permitting 0 time steps in the discrete behaviour, which
we have reprobated for the sake of compactness, since they only alter recursive terms and
expand discrete traces unnecessarily.

Proposition 4.4 For general process terms P, ), R € L and 8,8 € T let P =5 Q. Further-
more, let « € A, z € X and p, p1, po € T.

1. P>, P forall PcL.
2. x is guarded in P iff x is guarded in Q.
3. A(P) = A(Q).

20



4. R(a, Q) — R(av, P) < 4, in particular R(Q) — R(P) < .

5. If § < (S,, then P b Q, for all (SI, P bl L P.
6. P{R/x} =5 Q{R/x}.

7. If P % P, then there exists Q' such that Q@ = Q" and P’ =5 )', and vice versa.

8. a)IfP5.Pandé+p<1,then P -5, Q.
b) Q5. Q and 0 < § — p, then P =5 , Q'
c) If P LNy P, Q = Q and 0 <0+ p; —p <1, then P' =5, ,, Q.

9. a), b) and c) of 8. hold with — replaced by ~..
10. P ~5, P and Q ~5, Q' imply P' = Q.

Proof: 1. Induction on the structure of P.

2. Induction on the inference of P >4 (Q; only the Rec-cases are non-trivial:
a) clear

b) z guarded in py.P iff x guarded in P iff (ind.) z guarded in P’ iff # guarded in
P'{uy.P/y}. (For the last "iff’, observe for =’ that y is guarded in P, hence in P’ by
ind., so all occurrences of z in py.P are guarded in P'{uy.P/y}. Observe for <’ and
x = y that again y is guarded in P, hence in P’ by ind.)

c¢) analogous
3. Induction on the inference of P > (); in the Rec-cases observe that x is guarded in
P and apply 2. and Proposition 2.4.2.

4. For the following, compare the properties listed at the beginning of the proof of 2.10.
We perform induction on the inference of P >4 (), showing only some cases:

Sum: P+ P, 5 Q1+ Q2 = Viz12 P =5 Qi = Vaen, Vizi2 R(0,Q;) — R(o, P) < 6 =
Vaea, Rla, Q1 + Q2) — R(a, Py + Py) = min;— 2 R(, Q;) — min;—y » R(c, P;) < 6.

Par: Pi||aP =5 Q1]|aQ2 = Vizip Pi =5 Qi = Vacs, Viz12 R(o,Q;) — R(o, P;) < 6 =
Vaea, max;—1 2 R(a, Q;) — max;—1 o R(a, P;) < § A minj— o R(e, Q;) — min;—; » R(«,
P;) <6 = Vaea, R(a, Qi[4Q2) — R(cr, Pi[|aP,) < 6.

Rel: P[®] =5 Q[®] = P =5 Q = Vaca, R(a,Q) — R(a, P) <4
= Vaea, Milges-1(a) R(3,Q) — MiNges-1(q) R(B,P) <6
= vaEAr R(CY, Q[(I)]) - R(aa P[(I)]) < 0.

Rec: a) R(uz.P) — R(pz.P) =0 <.

b) Since z is guarded in P, it is guarded in P' by 2., hence R(a, P'{ux.P/z}) =
R(«, P') by Proposition 2.9.2. Now R(«, pz.P) — R(a, P'{px.P/z}) = R(«, P)
~ R(a, P') < § by ind.

c¢) analogous
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For the additional property we can either choose o € A(P) = A(Q) with R(P) = R(«, P)
and get R(Q) — R(P) < R(a, Q) — R(a, P) < §, or we have A(P) = A(Q) = 0 and by
Proposition 2.9.1: R(Q) — R(P)=1—-1<6.

5. Induction on the inference of P =; @Q; in particular, 7o — r; < § < ¢’ in Defini-
tion 4.3.2. Then apply 1. for the second part.

6. Induction on the inference of P >4 @); the case P = (@) is covered by 5., and covers
Nil, Stop, Var and Rec a).

Pref: depends on 7, 7 and § only
Sum, Par, Rel: straightforward induction by ’distributivity’ of substitution.

Rec: b) yisnot freein P'{uy.P/y} and py.P, hence assume x # y; then by BARENDREGT
convention P'{uy.P/y}{R/x} = P'{R/x}{py.P{R/x}/y}. Now P’ »5 P implies
P{R/x} ) P{R/x} by ind., hence (P'{R/z}){py.P{R/x}
[y} =5 py-(P{R/x}) = (ny-P){R/x}.

c¢) analogous

7. Induction on the inference of P > @):

Nil,Stop,Var: No a-transition is possible
Pref: since P 5 P by 5.
Sum,Par, Rel: straightforward induction.

Rec: a) clear.
b) z is guarded in P and also in P’ by 2.

On the one hand, P'{ux.P/x} < R only if (by Proposition 2.4.2)
IP": P' % P" A R = P"{px.P/x} only if (by ind.)

AP",P" . P = P" A P" =5 P" A R = P"{uz.P/z}

only if (by Rule Rec, and 6.)

pP", P" : yx.P % P"{ux.P/x} N R= P"{ux.P/x} =5 P"{ux.P/z}.

On the other hand, pz.P % R only if (by rule Rec,)

FP" . P % P" A R= P"{ux.P/x} only if (by ind.)
P",P" . P' % P" A P" =5 P" A R = P"{uz.P/x}

only if (by Proposition 2.4.2 and 6.)

IP", P" : P'{px.P/x} < P"{ux.P/x} =5 P"{ux.P/x} = R.

c¢) analogous

8/9.a) By Definition 2.11, it suffices to show P ~5, P’ A §+p< 1= P =s5+p Q@ by
induction on the overall size of P and @) (where the size is the number of operators, also
counting ux):

Clear for 0, 2 and x.

Pref: (a,r).P =5 («,13).P = ry — r; < 6. We distinguish two cases:

22



i) p <
then (o, r).P ~%, (a, 11 — p).P and
ro—1m1<d=>ro—(r—p)=ro—r1+p<5+p={(a,r —p).P =5, (a,r9).P.
i) p>r:
then (a,7).P ~>, (a,0).P and
ro—r <d=>ry<d+r <I+p=>ry;—0<35+p=(a,0).P =5, (a,r9).P.

Sum,Par,Rel: straightforward induction.

Rec: a) pz.P ~%, P"{uz.P/z} and P ~%, P" for some P" by rule Rec,. Hence P >; P im-
plies P" >,.5 P by ind. and thus P"{pux.P/x} > ,1s px.P by Definition 4.3.6.b).

b) P'{ux.P/x} ~%. R implies by 2. and Lemma 2.7.3 that 3P" : P’ ~%4, P" and
R = P"{pz.P/z}. Hence by ind. P" >;5,, P, such that R >;,, px.P by Defi-
nition 4.3.6.b). Note that P’ has at most the size of P'{ux.P/x}, and the sizes
might be equal if P’ does not contain a free x; but in any case, P has a smaller
size than pz.P and, thus, induction is applicable.

c¢) Similar to a) with induction and 6.

8/9.b) Similar to 8/9.a). We only consider the Pref-case:
{a,r1).P =5 {a,r9).P = 1y — 11 < 0. We distinguish two cases:

i) p<ry:
then (o, r5).P ~*, (a, 7y — p).P and
ro—r<d=>(rg—p)—ri=ro—r1—p<0—p={(a,r).P 5, (a,ry—p).P.

i) p > ro
then (o, 7,).P ~>, (a,0).P and
0—7r <0<d—p=(a,m).P =5, (a0).P.

8/9.c) Ifd+p <1, weget P’ >4, Qby8/9.a)and P' 5., _p Q by 0 <d+p —po

and 8/9.b). Otherwise, P LQ(Z P" %, P with p = p; +6 — 1 by Lemma 2.7.5. Now P" =, Q
by 8/9.a), P" >_,, Q' by 8/9.b) and P' 5., _,, Q' by 8/9.a) again.

10. Induction on the inference of P >; Q; for Rec b) and ¢) use 2. and 2.7.3. O

Proposition 4.4 provides the elements for emulating each continuous trace of an initial
process by a discrete trace that exhibits the same behaviour but consumes more time:

Lemma 4.5 Let P € P be a discrete process; then for each w € CL(P) there is a v € DL(P),
such that act(v) = act(w) and ((v) > ((w).

Proof: We will construct for each w € CL.(P) a v € DL.(P), such that act(v) = act(w)
and ((v) > ((w); furthermore, we will show that for P, € P and P, € P reached after w and
v we have P, >c()_c(w) Pw. Then w/7 € CL(P), v/T € DL(P), act(v/T) = act(w/T) and
((v/7) = ((v) = ((w) = ((w/T).

The proof is by induction on |w|, where for w = A we can choose v = A; then P =y P by
Proposition 4.4.1, hence P, >y o P,.

Hence, assume that for w € CL,(P) we have constructed v € DL.(P) as desired and
consider w' = we € CL,(P). We denote the processes reached after w’ and the corresponding
v' by P, and Py.
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If e = o € A then v' = va with act(v') = act(w') and ((v') = ((v) > ((w) = ((w’). We
have P, = P, and by Proposition 4.4.7, there is a P,y such that P, — P, and P, = (v)—C(w)
P,,ie. Py () —C(w') P,.

Now let e = p € T. If p < ((v) — ((w) we choose v' = v; obviously, act(v') = act(w'),
((v') = C(v) > p+ ((w) = ((w'). Furthermore, ¢(v) — ¢(w') = ¢(v) = ((w) — p > 0, hence
P, = () —C(w) P, and Proposition 4.4.8.b) yield Py, = P, () —¢(w') P,

If on the other hand p > ((v) — ((w), we choose v' = vl. With Proposition 4.4.4,
from P, >¢u)-¢w) Pw we conclude R(P,) + ((v) — ((w) > R(P,) and R(P,) > p >
¢(v) — ¢(w) by Definition 2.11, i.e. R(P,) > 0 and R(P,) = 1 by Proposition 4.2.1. Now
by Proposition 4.4.2, P, is guarded iff P, is guarded, and P, is guarded by Definition 2.11
and Lemma 2.7.1; hence by Proposition 2.12.1, the time step 1 is allowed after v and v' =
vl € DL, (P) with act(v") = act(w'). Furthermore, ((v') = {(v) +1 > {(w) + p = ((w'), and
finally, p <1 and 0 < ((v) — ((w) give 0 < {(v) — ((w) +1 — p, and ((v) — ((w) < p gives
¢(v) = ¢(w) +1 = p < 1; so with Proposition 4.4.8.c) we conclude Py >¢(y)—¢(w)+1-p Pur, i-€.
P =) =cu Do =

With this emulation result we can restrict attention to discretely timed testing based on
discrete behaviour and discrete time bounds:

Definition 4.6 (Discretely timed tests) For a testable process P € P, an observer O € Py
and D € Ny define P musty (O, D), if each w € DL(7.P||O), with {(w) > D contains some
w. The relation Jy is defined accordingly.

Again, one could wonder whether this definition might ignore some relevant behaviour
due to discrete time-stops, where we could define being or having a discrete time-stop,
replacing —, by —4 in Definition 3.1. Since —, is a subset of —., Proposition 3.9 and
Corollary 3.10 imply immediately that Q-free P-processes like 7.P||O neither are nor have
such discrete time-stops.

We now give our first main result: although 1, is based on fewer tests and much more
restricted behaviour than ., it turns out that both relations define the same efficiency
preorder. By this, we have also reached simplicity: we can now work with a CCS-like
untimed algebra, extended syntactically by urgent actions and semantically by 1-time-steps.

Theorem 4.7 The relations J,. and J,; coincide.
Proof: Let P and @ be testable processes, O an observer and R € Rf. We first show
P must. (O,R) < P musty (O, |R])

Assume P yhust. (O, R); then there is a w € CL(7.P||O) without w and {(w) > R; now by
Lemma 4.5, there is a v € DL(7.P||O) without w and ((v) > ((w) > | R], hence P jhusty
(O, |R]). Now assume P jhust; (O, |R]); then there is a w € DL(7.P||O) without w and
C(w) > | R], hence ((w) > |R| +1 > R; since DL(7.P||O) C CL(7.P||O), the same w causes
P yhust. (O, R).

With this result we conclude V (O, R) : Q must, (O, R) = P must. (O, R) iff V (O, R) :
Q musty (O, | R]) = P musty (O, |R]), hence P J. Q iff P J,; Q. O

Checking P 3, () now reduces to checking P J; ). But as for testing in general, using
the definition of 1y directly is hardly feasible, since there are still infinitely many discretely
timed tests to apply. And as indicated in Section 2, we cannot decide P J,; @ from DL(P)
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and DL(Q) only, since DL(7.P||O) generally cannot be determined from DL(P) and DL(O)
alone: e.g. synchronization allows activated actions in one component to wait for a partner in
the other one, which is not the case in stand-alone behaviour of a single component, recorded
in DL(P), DL(O) resp.

Technically, DL-inclusion is not a precongruence for parallel composition. As an example
consider P = (a+0)||yc.b and @Q = (a+b)||c, where DL(P) C DL(Q) but 1cl € DL(P||{,}0)
and lcl € DL(Q||00). Thus, in the next section we will refine the discrete language to
a kind of refusal traces, fulfilling the precongruence criterion. Refusal traces of a testable
process will allow us to characterize the preorder J, denotationally. There, we will also
need the following result, stating that the number of different actions ever performable by a
process is finite.

Definition 4.8 (Semantic sort of a process) For a general process term P € L let £,(P) =
{a € AlFw € CL,(P), PP € L: P 5. P 5.} be the continuous semantic sort of P, and
(4(P)={a€ A|Fw € DL,(P), P e L: P %4 P' %} be the discrete semantic sort of P.

For a general relabelling function ® let ib(®) = {a € A|D # &~ '(a) # {a}} (image base of
®); by definition, ib(®) is finite. The syntactic sort of P is L(P) = {a € A|a occurs in P} U
Us occurs in p 0(®), where occurrence means being part of the syntactic structure of P.

Proposition 4.9 Let P € L.
1. A(P) Cly(P)U{r} and £4(P) C (.(P)
2. For each w € CL,(P) there is a v € DL, (P) with act(v) = act(w) and no time steps.
3. L(P) and ¢4(P) coincide and will both be denoted by ¢(P) (semantic sort of P).
4. ((P) is finite.

Proof: 1. clear.

2. We construct an adequate v performing induction on |w| and show additionally that
for P, and P, reached after w and v resp. we have P, > P,.

By Proposition 4.4.1, P >y P, and by Proposition 4.4.5 P >~ P, hence we are done for
w = A. Thus assume there is an adequate v for a given w and P, =, P,,.

If w' = wa for a € A,, then by Proposition 4.4.7, P,, = P, and P, = P, for some P,
such that P, > P,, hence we have var € DL,.(P), and there is no time step in va since
there is none in v.

If w = wp for p € T, then P, %, P, and by Proposition 4.4.8.b) and 0 < p < 1,
P, >1_, Py, hence by Proposition 4.4.5 P, =1 Py, thus we may choose v' = v.

3. from 1. and 2.

4. Obviously, L(P{Q/x}) C L(P)U L(Q), which will be used in the Rec-case below,
and L(P) is finite; we show ¢(P) C L(P) and are done.

By Proposition 2.4.2, P % iff a € A(P) for a € A, and by 1. and 2. it suffices to show
by induction on the structure of P that A(P)\ {r} C £(P) and that P % P’ implies
L(P") C L(P):

Clear for 0, Q and z € X.

Pref: A((a,r).P)\ {7} = {a}\ {r} C L({(a,r).P); furthermore, (o, 7).P % P and L(P) C
L({a,T).P).
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Sum,Par: induction

Rel: Consider a € A with a € A(P[®]) = ®(A(P)); if a € ib(P), then a € L(P[P]),
otherwise @ '(a) = {a} and a € A(P)\ {7} C L(P) C L(P[®]) by induction and
definition. Furthermore, P[®] % P'[®] implies P 5, P’ for some B €A, with ®(5) =
«, hence by induction L(P') C L(P), thus L(P'[®]) = L(P")Uib(®) C L(P)Uib(P) =
L(P[®]).

Rec: By induction A(px.P)\ {7} = A(P)\ {7} C L(P) = L(pz.P).
Furthermore, yz.P % P'{ux.P/z} implies P % P’ hence by ind. £(P') C L(P), thus
L(P'{pzx.P/x}) C L(P") U L(ux.P) = L(P).

5 Characterization

As a consequence of the last section, from now on we let J denote the (coinciding) preorders
. and J,;. Furthermore, we will henceforth only deal with discrete processes and their
discrete behaviour.

We first modify the SOS-rules for wait-time as follows: we only allow unit time steps
and record at each time step a so-called refusal set X of actions which are not waiting; i.e.
these actions are not urgent, they do not have to be performed and can be refused at this
moment. Note that in contrast to wait-time we now prohibit passage of time if an urgent 7
can be performed. Just as wait-time is a very generous relaxation of idle-time which does
not care whether any action is urgent or not, also the new time semantics is a relaxation of
(discrete) idle time: when a time step occurs, all actions in X U {7} are treated correctly
w.r.t. passage of idle time, but the other actions might be urgent.

Definition 5.1 (SOS-rules for refusal of actions, refusal traces) The following SOS-rules
define a relation irg (]f” X ]f”), for each X C A:

. a¢ XU{r}
Nil, < Pref,, ————— Pref,, ——————
0—,0 a.P =, a.P a.P =, aP
Par vi:1,2 P ﬁ>r Pz',a X C (A n Ui:1,2 Xi) U ((ﬂi:1,2 Xi) \ A)
P1||AP2 £>r P1l||AP2,
-1 T T
Vici2 B iﬁ P} P wﬁ P’ P L,« P
Sum, < Rel, < Rec, <
P+ P, =, P+ P, P[®] =, P'[®] px.P =, P{pz.P/x}

When P 25, P', we call this a time step.

For process terms P, P’ € P, we write P =, P/, if either ¢ = a € A, and P % P, or
e=XCAand PS5, P For sequences w, we define P =, P' and P==>, P’ analogously
to Definition 2.13.

RT,(P) = {w|P %,} is the set of T-refusal traces of P, and RT(P) = {w | P==>,} is
the set of refusal traces of P. act(w) and ((w) are extended to elements from RT.(P) and
RT(P), i.e. ((w) is the number of time steps (sets) in w.
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As for discrete traces, we note that the sets of processes, process terms resp., are closed
under performance of refusal traces, i.e. P € P and P %, P’ for some w € RT.(P) implies
P' € P again etc.

By Proposition 5.2.1 below, the set of possible refusal sets at a time step is downward
closed w.r.t. set inclusion, and by .3, not activated actions can always be refused. Propo-
sition 5.2.4 links time steps to unit-time-waiting, unit-time-idling resp. Finally, Proposi-
tion 5.2.5 is an element needed in the treatment of recursion (Section 6), stating that guard-
ed subterms of a process term are not affected by or involved in time steps or occurrence of
actions.

Proposition 5.2 Let P,Q,R € P be process terms, let X, X' C A, let z € X and let
g€ (A, U2b).

1. If P2, Qand X' C X, then P 25, Q.
2. P, Qand P25, R, then Q = R.
3. If P %, Q and X' N A(P) =0, then P 225 Q.

4. P35, Qif and only if P ~5, Q and Yaexugry R, P) =1,
in particular P ﬁn Q@ if and only if P —1>d Q.

5. Let = be guarded in P. Then P{Q/z} =, R if and only if there exists P' € P with
P 5, P and R = P'{Q/z}.

6. If P is not guarded, then RT.(P) = RT(P) = {A}.

Proof: For 1. to 4. use structural induction on P. For 3., also use 2.4.3; in the Par-case,
this shows that X' N A can be added to X; or X, by induction, while X'\ A can be added
to X; and Xs.

The additional property of 4. follows with Definition 2.8 of R(P), A(P) C A, 2.9.1 and
Definition 2.11.

4. If ¢ = a € A,, we are done by Proposition 2.4.2, hence let ¢ = X C A. Then
P{Q/xz} 55, Riff P{Q/x} ~. R and Vaexu(ry R, P{Q/z}) = 1 by 4. iff P ~>, P' for some
P' such that R = P'{Q/x} and VoexuiryR(a, P) =1 by Lemma 2.7.3 and Proposition 2.9.2
iff P %5, P and R = P'{Q/z} by 4. again.

6. from Definition 2.3 and with induction from Definition 5.1. O

We now state that refusal traces refine the discrete language, which is due to Proposi-

tion 5.2.4 (part 2).

Theorem 5.3 Let P,Q € P be process terms; then RT(P) C RT(Q) implies DL(P) C
DL(Q).

Proof: By Proposition 5.2.4, P -, P' iff P A, P’ hence DL(P) can be derived from those
w € RT(P) where X = A for all refusal sets X in w, replacing A by 1. O

From now on we denote refusal-trace-inclusion and -equivalence of processes by <., =,
resp., and lift this relation to process terms as usual via closed substitutions:
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Definition 5.4 Let P,Q € P be process terms. We write P <, Q if for all closed sub-
stitutions S : X — P we have RT([P]s) C RT([Q]s). We write P =, Q if P <, @ and
Q< P

The information on temporal and nondeterministic behaviour of a process provided by
refusal traces is very similar to the one e.g. contained in the ‘barbs’ of TPL (see [14]). But
astonishingly, we will be able to observe this with asynchronous and initial —i.e. ‘temporally
weak’ — test processes.

For technical reasons, in the following we do not only consider the RT-semantics but also
the RT,-semantics: it will play an important role when deriving the precongruence property
of RT- and RT,-inclusion w.r.t. the recursion operator in Section 6. Note that RT,(P) does
not only treat 7’s like visible actions: additionally, by Definition 5.1, all refusal sets X in a
w € RT,(P) implicitly contain 7, i.e. in w after a time step an activated 7 must either occur
or be disabled before the next time step X.

Before characterizing the testing preorder in Theorem 5.13, the following developments
are concerned with (pre)congruence properties of refusal-trace-equivalence (-inclusion). As
indicated in Section 4, DL-inclusion is not a precongruence for parallel composition: it does
not record runs of a component in which actions are delayed beyond idle time, which in
general is necessary in a parallel composition when waiting for a communication partner.
We first show that (7-) refusal traces serve this purpose:

Definition 5.5 (Shuffle of refusal traces w.r.t A) Let u,v € (A, U2%)* and A C A; then
ul|av is the set of all w € (A, U 2%)* such that for some n u = uy...u,, v = v;...0p,
w=w;...w, and for all k =1,...,n one of the following cases applies:

l.uy=vp=wr,=a€ A

2. up=wp=a €A, \ Aand vy =\

.oy =wp=a €A, \ Aand up =\

4 up =X, CA v, =X, CAw,=XCAand X C (AN (X,UX,))U((XyNnX,)\ A
For sets Ry, Ry C (A, U2%)* we define Ry||4Rs = J{u|lav|u € Ry, v € Ry}.

Observe that if (v]|au) # 0, then by 1. for all @ € A the number of a’s is equal in u, v
and all w, and by 4. the number of time steps is equal in u, v and all w.

Theorem 5.6 For processes P, P, € P, we have RT(P||4aP2) = RT(P)||aRT(P,) and
RT,(Pi||aP2) = RT,.(P))||aRT,(P). In particular, both RT-inclusion and RT,-inclusion
are precongruences for parallel composition on P.

Proof: First observe that P;||4P, is not guarded if and only if at least one of P or P, is
not guarded; in this case, we are done by 5.2.6. Hence, assume P, and P, to be guarded.

It suffices to show the claim for RT-semantics; the same technique then applies for RT -
semantics, where 7’s are treated like visible actions. Let P = P || 4 P.

C:
Let v € RT(P). Then there is a w € RT,(P) such that v = w/7. With induction on the
length of w one shows that if P =, P’, then there are w;, € RT,(P) and wy € RT,(P,)
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such that w/7 € ((wi/7)|[a(ws/7)) C (RT(P)||4RT(R)), P, 2. P/, P, *%, P} and
P' = P[||aP;. (For a detailed proof, see [16].)

D
Let v € (RT(P)||aRT(P,)). Then there are w; € RT.(P;) and wy € RT,(P,) such that
v € ((wi/7)||a(wa/7)), Py =, P/ and P, %, P;. We show for all such w; and ws that
there is a w € RT,(P) with w/7T = v € RT(P) and P =, P/||4Pj. We perform induction on
|wy| + |wa|. For |wq| + |wa] = 0 we choose w = A\. We now distinguish several cases:

1. wy = wia with € A\ A; then we apply induction to w] and ws, to get w' and choose
w=w'o.

2. wy = wha with v € A \ A; analogous.

3. Neither 1. nor 2.: then either w; = wja and wy = wha with a € A or w; = w| X
and wy = whY with sets X,Y’; we apply induction to w| and w), to get w' and choose
w=w'aorw=w'Z withsome Z C (AN(XUY))U((XNY)\A).

The additional property follows since || 4 on sets is monotonic, i.e. Ry C Ry implies R||4R; C
RHARQ. O

We now show that (7-)refusal-trace-inclusion is also a precongruence for prefix:

Definition 5.7 (Prefiz of refusal traces) For R C (A, U2")* and a € A we define

1. a.R to be the set of all prefixes of
{Xl...Xna|n€Ng, X1 gA, XQ,...,XTLQA\{U,}}OR,

2. a.R to be the set of all prefixes of
{Xl...Xna|n€N0, Xl;---;Xn QA\{a}}oR,

3. mTR={X|X CA}U{\}oR,
4. TR=R.

Theorem 5.8 Let P € P be a process; for « € A;, RT(a.P) = a.RT(P) and RT(a.P) =
a.RT(P); for a € A, RT,(a.P) = a.RT,(P) and RT,(a.P) = a.RT,(P). Finally, RT,(r.P)
is the set of all prefixes of {7, X7| X C A} o RT,(P) and RT,(z.P) is the set of all prefixes
of {r} o RT,(P). In particular, both RT-inclusion and RT,-inclusion are precongruences for
prefixing of (initial) processes.

Proof: From the definitions. O

We allow 7’s as guards for recursion, and they actually have some potential visibility in
refusal traces due to time steps, but this is not enough for making fixed points unique modulo
RT-equivalence: consider P = pz.7.x and @ = px.(1.x + .0); we have 7.2{P/x} =, P and
r.x{Q/z} =, Q, but P #, Q. This observation will rule out application of BANACH’s fixed
point theorem when treating recursion in Section 6.

For the characterization we will also use the precongruence property of (7-)refusal-trace-
inclusion w.r.t. hiding and relabelling:
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Definition 5.9 (Relabelling of refusal traces) Let ® be a general relabelling function, a €
A, X C A and define o[®];! = & '(a) and X[®],;! = {d (X U{r})\ {r}}; we extend
[®]7" to sequences w € (A, U2")* via concatenation o. We define [®]~! identically, but
additionally A[®]~! = (®~'(7) \ {7})*. [®]~" is again extended to sequences.

Theorem 5.10 For a process P € P and a general relabelling function ® we have

1. RT(P[®]) = {w € (AU2%" | w[®]~' NRT(P) # 0}
2. RT,(P[®]) = {w € (A, U2")* |w[®]-' NRT(P) # 0}

Furthermore, both RT-inclusion and RT,-inclusion are precongruences for general relabelling
P[®] of processes, in particular for relabelling P[f] and hiding P/A.

Proof: From the definitions. O

Another property needed for the above mentioned test construction is that 0 is a zero
element for both choice and parallel composition without synchronisation:

Proposition 5.11 Let P € P be a process term; then P ||g0 =, P and P +0 =, P.

Proof: We can assume P € P and P is guarded. First, RT(P||30) = RT(P) ||y RT(0) by
Theorem 5.6. Now since by Definition 5.1 RT(0) = {X,... X, |n € N, Xi,..., X, C A},
Proposition 5.2.1 and Definition 5.5 (where only cases 2 and 4 apply, since A = () yield
RT(P) ||g RT(0) = RT(P).

Second, one shows for all v € (A, U 2%)* by induction on |[v]: P+ 0 -, @ if and only
if P55, Q or P35, R for some R with Q = R + 0; use that 0 can do arbitrary time steps,
but no action that would decide the choice. O

Finally, we state that refusal traces of Q2-free processes can always be extended by a time
step (after performing all urgent internal activity) and that time steps can be omitted. The
latter demonstrates how tightly the timed behaviour of an initial process P according to the
RT-semantics is related to the usual ‘CCS-behaviour’ of the CCS-like process P: a usual run
of P is just an RT-run of P with only functional behaviour, i.e. according to Definition 2.3;
if we delete all time steps in an RT-run of P, we obtain an RT-run of P with only functional
behaviour, hence a usual run of P.

Proposition 5.12 Let P, P', P" be Q-free P processes, w,w’ € (AU 2%)* and X C A.
1. w € RT(P) if and only if w) € RT(P).
2. wXw' € RT(P) implies ww' € RT(P).

Proof: 1. '’if’: clear
‘only-if’: assume P==>, P’ for some P' € P; then by Proposition 4.2.2 there is a t € {7}*
such that P’ %, P for some P" € P with R(r, P") = 1; now P" g,« by Proposition 5.2.4
and Lemma 2.7.1 since P" is closed, hence guarded.

2. wXw' € RT(P) implies wXw' = (uXv)/7 for some uXv € RT,(P). Now it suffices
to show by induction on |v| that uXv € RT.(P) implies uv € RT,(P), where we additionally
show that for P; reached after uv and P, reached after uXv we have P, =q Ps.
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The base case is v = ), hence P =, P, and P, =, P, by Proposition 4.4.5. Then by

Proposition 5.2.4 and Proposition 4.4.9 b), P L,« P, implies P; =y P,. Now assume the
property to hold for v.

If v' = va for o € A, then P, % P} for some Pj, and since P, = P, by assumption,
Proposition 4.4.7 implies P, % P! for some P/, such that P} >, P} again.

If v/ = vX' for X' C A, then P, Lr Pj for some Pj implies P, vl% P and for all
a € X'U{r} we have R(«a, P;) = 1 by Proposition 5.2.4. Hence, for P e P/, P~y P,
and Proposition 4.4.9 c¢) imply that P| > Pj; furthermore by Proposition 4.4.4, for all « €

X'U{r} we have R(a, Pi) > R(a, P,) — 0 = 1, thus finally P, X, P| by Proposition 5.2.4.
]

We now have collected all elements for characterising the efficiency preorder via refusal-
trace-inclusion, which is our second main result:

Theorem 5.13 (Characterization of the testing preorder) Let P;, P, be testable processes.
Then P, O P, if and only if P; <, P,.

Proof: ’if":

Let (O, D) be a timed test. Then RT(P;) C RT(P,) implies DL(7.P;[|O) C DL(7.P||O)
by Theorem 5.8, Theorem 5.6 and Theorem 5.3. Thus, if P, fails the test due to some
wy € DL(7.P,]|O), then so does Ps.

‘only if’:

We assume P; J P, and take some w; € RT(P;). By Definition 5.1, Proposition 5.2.4 and
Definition 4.8, all actions in w; are in ¢(P;) U £(P,). Furthermore, by Proposition 5.2.3 and
.1, we may assume that for all refusal sets X in w; we have X C ¢(P;) U{(P,), which is finite
due to Proposition 4.9.4.

Now let w = wy if w; = A and w = w; otherwise; by Proposition 5.12.1, w € RT(P;), too.
Furthermore Xw € RT(7.P;) for each X C ¢(P;)U{(P,) by Theorem 5.8 and Definition 5.7.3.

We will construct a timed test (Ox.,, ((w)) that is failed by a testable process P € P if and
only if Xw € RT(7.P). Hence, P fails (Ox,, ((w)), thus by assumption P, fails (Ox,,, ((w)),
too, and we conclude Xw € RT(7.P,). But then Xw; € RT(7.P) by Proposition 5.12.1 and
wy; € RT(P,) or Xw; € RT(P,) by Theorem 5.8 and Definition 5.7.2, i.e. wy € RT(P) by
Proposition 5.12.2, and we are done.

Note that it actually suffices to consider the case where X = (), which implies that Xw
ends with (). To make induction work, we will treat arbitrary sequences Xw that end with
(0, but at the end of the proof we will come back to the observation that additionally we can
assume X = ().

The proof is structured as follows: We first give the construction of Ox,, (1), then we
show that P fails the test (Oxy,((w)) if 7.P performs Xw (2), and finally we show that P
fails the test (Oxy, ((w)) only if T.P is able to perform Xw (3). All three parts are inductive
w.r.t. the structure of w.

(1)
We define Oy, for sequences Xw that end with (). Furthermore, all actions of Xw are in
((Py) U L(P,) and all refusal sets are subsets of £(Py) U {(Py).

Ox . will consist of several components that communicate via synchronized actions which
must not occur in the sort of P; or P;. Hence, let H = {by, ¢y, b1,c1,...} C A be an infinite
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set such that H N (L(Py) U £(Py)) = 0; H exists since ¢(P;) and ¢(P,) are finite and A is
infinite.
The components Qx, RY,,, Sxw and Ry, of Oy, are defined inductively as follows:
The base case is Xw = ()

Sp = 0
Ry = O

Now let the general case be Xw = Xa, ...a,X'w', where X'w' ends with (). We define:

Qxw = (bC(w)-QX’w’) H@ (CC(w)'O + w.O)
SXw = bg(w).al .. .an.qu).SX/w/
RXU) = (bﬁ(w)RX’w’) ||@ (Cc(w),l.o + Zan’ GO)

In both cases let
! —_

Yo = (Bxw [lo ¢¢(w)-0)
and finally Ox,, = Tx/H where

Txw = Qxw ||H Sxw ||H R,Xw

Before detailed formal reasoning, the function and the interplay of the parts are shortly
and informally described in the following:

The part Xa;...a, of Xw = Xa;...a,X'w' is called the {(w)-th round of Xw, started
by occurrence of X, whereas occurrence of X’ marks the begin of the (((w) — 1)-th round.

() xy is the ’clock’-part of the test, which for each round 7 of Xw enables an w that is
urgent after the time step starting round ¢ and can only be deactivated by performing the
auxiliary action ¢; (completion of round i) before the next time step.

The ’action-sequence’-part Sy, will ensure that ¢; can only occur after the action se-
quence @ .. .a,, which itself must be preceded by the auxiliary action b; (begin of round 7).
Furthermore, occurrence of b; triggers the activation of the w for the next round by enabling
@ x1w . This must not happen too early, i.e. b; and hence ¢; will be performed after the time
step starting round 7 and before the next one.

At the beginning of the present round, the ‘refusal-set’-part Ry, enables all actions a
from the refusal set X' of the following round in conflict with the auxiliary action ¢; ; which
has to occur only at completion of the following round. After the time-step of the present
round, all a from X’ have become urgent, but may not occur — i.e. must be refusable by the
tested process at the time-step starting the following round.

Finally, Ry, is augmented to Ry, for proof-technical reasons, Tx,, puts all three parts
via synchronisation together, and Oy, hides the auxiliary actions away. Otherwise, they
would have to synchronise with the tested process, which is of course impossible by the
definition of H.

(2)

On the one hand, by Definition 4.6, P fails the test (Oxy, ((w)) if and only if there is a
u € DL(7.P||Oxy) without w and with {(u) > ((w). By Proposition 5.2.4, this is case if
and only if there is a v € RT(7.P||Ox,) without w and with ((v) > ((w) and all refusal
sets in v are A. By Theorem 5.6, Proposition 5.2.1 and Definition 5.5, such a v exists if
and only if v € (v1||vz) for some v; € RT(7.P) and v, € RT(Ox,) satisfying the following:
C(v1) = ¢(v2) > ¢(w), both v; and v, are without w, all refusal sets in both v and vy contain
w, and match(vy) = vy, where match is defined inductively as follows :
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1. match()\) = .
2. match(av') = a match(v') for a € A.
3. match(Xv') = X match(v') for X C A, where X denotes {w}UA\ X.

On the other hand, for any testable process P we have w ¢ ¢(P), hence by Proposition 4.9.1
and Proposition 5.2.3 (and .1) we have Xw € RT(7.P) (if and) only if v; € RT(7.P), where
vy is Xw with each refusal set augmented by w; also, match(Xw) = match(v,). Hence, in
order show that P fails the test (Oxy, ((w)) if Xw € RT(7.P), with the above it suffices to
show that match(Xw) = match(vi) € RT(Oxy).

In order to apply inductive reasoning, we consider an intermediate state that is reached
when Oy, performs match(Xw). Let

R}w = RXU) ||@ (Qg(w)o + Zan QO)
and let 0%, = Ty, /H where

Txw = Qxuw llm Sxw o Ry,
We first observe that

(2.1)  Op=>,
(22) Of ==,

since (2.1) Oy is initial and (2.2) >° .5 2.0 = 0 € P, by definition, Qp, Sy € P1, and
¢, is the only urgent action in Rj, but has no synchronization partner in @y and Sy, thus
R(Oy) =1, and we are done by Proposition 5.2.4.

Now let Xw = Xa; ...a,X'w'. We show the following properties:

(2.3)  Oxp=2222 O = Ot

Xai...an '
(24) O;—(w $>T O;—(w =r O;_(’w’

Le. from both Oy, and OY%, by performing a sequence matching the ¢(w)-th round of
w, we reach a process that is RT-equivalent to OY,,,. For the proof of (2.3) consider (using
Proposition 5.11)

A be (w) e (w)
Qxw —r bg(w)-QX’w’ ||(D (Qg(w)o +Q0) —r Qx'w ||@0 =r Qxrur

A b ()01 ---GnCe
SXw —>p Qc(w).al .. -an-cg(w)-SX’w’ M,« SX’w’
and
A
Ry, =Rxw o ccw).0 =
b w C w

(O¢wy-Bxrw 10 (Cuwy-1-0 + Dgexr @0)) lo Ce(u-0 S,

(Bxrw llo (Cwy—1-0 + Xgexr @.0)) [lo O =r

(Bxrw llo (Cuwy-1-0 + X gexr @.0)) = Riry

Hence with synchronisation over H by Definition 5.5 and Theorem 5.6 we get

Ab( (w)@1---GnC¢(w)

TXU} >y Ile =r (QX'U)' ||HSX'U)') ||HR;(’w’ = T;’w’
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and hiding H by Definition 5.9 and Theorem 5.10 and finally applying Proposition 5.2.1:

Xaj...an

_4201--0n / — +
OXw —>7- OXw —r OXIwI

For (2.4), we consider R}, (using Corollary 5.11 again):

_ X\{c¢qwy}
R}w = RXU) ||@ (Q((w)o + Zan QO) I
be(w)Ce(w)
(Ocwy-Bxrw 10 (Couwy-1:0 + Dgexr @0)) o (Coquwy0+ Dpex @0) ———
(Bxrwr lo (Qg(w)—ro + 2 eexr @:0)) flo O =r
(RX’U)’ ||@ (Qc(w)ilo + Zan, QO)) = R;/w/

Hence, as above:

Xaj...an

+ > + _ Nt
OXw r OXw -r OX’U)’

Using these properties, we now perform induction on the length of Xw to show that
match(Xw) € RT(0O%,):

For Xw = 0, by (2.2) we have match(d) = A € RT(0%,,). For Xw = Xa, ...a,X'w' by
(2.4) we have Xaj ... a, match(X'w') € RT(O%,,) by induction.

It remains to show match(Xw) € RT(Oxy): for Xw = () we are done by (2.1); for

Xw = Xay...a,X'w', we have Ox,, %,ﬂ O =r O%1y by (2.3) and match(X'w') €
RT(O%.,) by the above, hence we are done.

(3)

We now show that P fails the test (Ox,, ((w)) only if 7. P is able to perform Xw.

We say that a refusal trace v € RT(Ox,) refuses w if w does not occur in v but in
all refusal sets of v. Now by Theorem 5.6, Definition 5.5 and analogous arguments as in
the beginning of part (2), P can fail the test (Oxy, ((w)) only if there is a v € RT(Oxy,)
that refuses w with ((v) > ((w) and match(v) € RT(7.P). We will show that this implies
Xw € RT(7.P) and are done.

By V(Ox,) we denote the set of all v € RT(Ox,,) that refuse w and satisfy ((v) > ((w),
and similarly for @y, etc. We will determine V' (Ox,,) by induction on the length of Xw,
where we first state the following properties:

The base case is w = A and X = {):

(3.1) (Qp || Sp) ==>, for a v refusing w with ¢(v) > ((w) = 0 if and only if
v = X, for some X, C A with w € X, hence ((v) =((w)+1=1.

(3.2) There is no v refusing w with ((v) > 1 such that
((Qgllg (1.0 + w.0)) || (d) ... al, .c;.Sp)) ==>.

Now let Xw = Xa;...a,X'w', where X'w' ends with 0:

(3.3) (Qxw ||z Sxw)=>, for a v refusing w with ((v) > ((w) if and only if
v = Xybe(w)@1 - . . anCeuw)v’ for some X, C A with w € X, and v’ refuses w and ((v) =
((w) + 1, such that

Xobe(w)a1---GnCe (e
(QXw ||HSXw) C(w)®1 ¢(w)

/
r Ql)(l,w/ :T‘ (QX”LU’ ||H SX”LU’)v:>7--

(3.4) There is no v refusing w with ((v) > ((w) + 1 such that
(@xw llo (cg(uy+1-0 +w.0)) [l (@] - . apy-Ce(uy+1-Sxw) =7
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Whereas (3.1) and (3.2) can be checked directly, we show (3.3) and (3.4) by induction using
Corollary 5.11 and Theorem 5.6:

(3.3) The if-case is clear. (Qxw ||# Sxw) can perform b¢(,), w or a time step X,.

Performance of be(,y yields (Qxrw [|o (Cc(w)-0+w.0)) |1 (a1 ... an.Cew)-Sxrwr), and since
((w") = {(w)—1, by ind. and (3.4) or (3.2), no v refusing w with ((v) > ((w) = ((w')+1
is possible any more.
Hence, v starts with some X, C A with w € X,; afterwards, only b¢w)ai ... ance(w)
is possible, since w is urgent, hence no time step may occur before its deactiva-
tion by cc(w); now a process RT-equivalent to (Qxrw ||# Sxrwr) is reached, and v =
Xobe(w)@i - - - anCewyv’. By ind. or (3.1), ¢(v") = ((w') + 1, hence ((v) = ((w) + 1.

(3.4) There are two possibilities for an appropriate v:

i) v starts aj...a;,ccw)+1, reaching a unique process, which is RT-equivalent to the
process Q xw || Sxw; but then (3.3) yields ((v) = ((w) + 1 only.

ii) v starts a}...ajX,ai, ... a5,ccu)+ with 0 <7 < m and w € X, C A yielding a
unique process RT-equivalent to ((be(,)-@xur) [lo (¢¢(u)-0 + w.0)) [|#r Sxw; now due to
the urgent w, from here only be(pya ... ancew) is possible, reaching a unique process
that is RT-equivalent to (Qx'w || Sxrwr); but then (3.3) or (3.1) yields only ((v) =
1+ ¢(w')+1=_(w)+1 again.

We are now able to determine the set V(Qxw |7 Sxw): by (3.1), we have V(Qq ||z Sp) =
{X,|w e X, C A}, and by (3.3), for Xw = Xa;...a,X'w" we get

V(Qxw|lir Sxw) = {Xy |w € Xy C A} o {b¢(u)ar - - - anceu)} 0 VI(IQxrw |7 Sxrur)
For the following let [ = ((w) and Xw be of the form
Xw= X! all...alnl Xt X0
Hence, by induction, vy € V(Qxw ||z Sxw) is of the form

v = Ty all...alnl all=Yo_y ... e TO,

where w € I'" C A for all i = 0,...,l. Now by Theorem 5.6, v3 € V(Tx,) implies vs €
(v1 || v2), where v; € V(Qxw ||z Sxw) and vy € RT(RY;,,). By the above and Definition 5.5,
(v1 || v2) # O only if vy is of the form

vy = ub Y ub by u e TP YT Wb sy L ud e ud Y0 i,

where w € T C A for all i = 0,...,7 and v} € (A\ (H U {w})* for i = 0,...,] and
jg=1,...,3. Ifué- = qu for some 1 =0,...,land j =1,...,3 and a € A, then a¢ must stem
from some sum-part of Rx,,, hence the respective ¢, could not occur any more; observe that

the sum-part for ¢y is empty. We conclude u; =Aforallt=1,...,land all j =1,...,3.
Furthermore, Ry, ==>, R’ if and only if RY,, %, R'. The derivations of (2) show

that, for v, of the form just determined, R, %, if and only if Y* C X \ {¢} for all

i=0,...,1 —1. As said in the very beginning of this proof, it suffices to consider the case

where X = () in Xw, hence since ) = A, by Definition 5.5 and the above, we determine
vg € V(Txy) to be of the form:

V3 = Fl bl all...alnl C Fl_l blfl .o C FO,
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where I C X' for all i = 0,...,[l. Finally, with Theorem 5.10 and Definition 5.9 we calculate
for the form of a v € V(Oxy):

_ 7l I pi-1 0
v=T"ay...a, ' .. T,

where I C X' for all i = 0,...,1, hence

match(v) = T a ...ad T

ny
such that T' D X' for i = 0,...,1, thus by Proposition 5.2.1, match(v) € RT(7.P) implies
Xw € RT(7.P), and we are done. O

In our testing scenario, we have restricted ourselves to test processes O € P;. We can now
argue that this makes our approach stronger, since test processes O € P cannot distinguish
testable processes any better: if P, O P, i.e. P <, P, by the above theorem, then for
all O € P we have 7.P||O <, 7.P,||O by our precongruence results, hence DL(7.P;||O) C
DL(7.P,||O) by Theorem 5.3; this implies that whenever P, satisfies a timed test (O, R) with
O € P, then so does P;.

It should be remarked though that this observation relies on our definition of timed testing
where we embed a process P in a test environment as 7.P||O; in fact, test processes from
P are stronger in the following sense. One could use test processes O from P and the usual
embedding P||O in the definition of timed testing, and get the same testing preorder that we
have in the present paper. As already remarked above, [15] shows in a Petri-net setting that
test processes from Py together with the embedding P||O give a weaker preorder; the latter
only becomes the preorder of the present paper if we refine it to a precongruence for prefixing.
We have chosen to work out the presented version of timed testing, since it generalizes the
preliminary version with its focus on CCS-like processes and since we considered it as less
‘traditional’ and hence more interesting.

6 Full Abstractness

Refusal-trace-inclusion not only characterizes the efficiency preorder, but also makes just the
necessary refinements to discrete behaviour of (initial) processes in order to get a precon-
gruence for parallel composition and prefix:

Corollary 6.1 For Q-free P-processes, RT-equivalence (-inclusion) is fully abstract w.r.t.
DL-equivalence (-inclusion) and parallel composition and prefixing, i.e. it gives the coarsest
(pre)congruence for these operators that respects DL-equivalence (-inclusion). For process
terms, i.e. on P, <, is a precongruence for these operators, hiding and relabelling.

Proof: Theorem 5.6, Theorem 5.8, Theorem 5.10 and Theorem 5.3 show that RT-equivalence
on P is a congruence and RT-inclusion is a precongruence for parallel composition, prefix-
ing, hiding and relabelling of processes that respects DL-equivalence, -inclusion resp. By
Definition 5.4, the result for RT-inclusion carries over to process terms related by <,.

If for Q-free processes Pj, P, we have = RT(P;) C RT(F,), then the proof of Theorem 5.13
exhibits a test process O such that = DL(7.P;||O) C DL(7.P||O). (If P, or P, contains the
special action w, then its role in O must be played by some other action a ¢ ((Py) U {(Py);
consider DL(7.P; ||ao_{q} O) in this case.). Hence, RT-equivalence (-inclusion) is the coarsest
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relation that refines DL-equivalence (-inclusion) to a (pre)congruence for parallel composition
and prefixing. O

As usual, the testing preorder alone is not a precongruence for choice: e.g. for the three
processes a, 7.a and a + 7.a, we have a =, T7.a =, a + 7.a, but: b is in RT(a + b), but not
in RT(z.a + b) or RT(a + 7.a + b); {b}{b} is in RT(z.a + b) and RT(a + 7.a + b), but not in
RT(a + b); we conclude that, in a precongruence, a cannot be in any order with the other
two processes, which can do a 7, i.e. are instable. Hence, stable and instable processes will
be incomparable, which is a little surprising, since we are only dealing with a preorder. But
note that €2 should be a least element.

Furthermore, b € RT(a + 7.a + b) \ RT(r.a + b), hence 7.a can only be smaller than
a + 7.a due to the urgent 7.

As another example, consider P = a+ pz.(1.x +a) and Q = a+ px.(7.2 + a), which have
the same refusal traces, are instable and cannot do an urgent 7; we have Ab € RT(P +b) \
RT(Q+b). This example shows that we need some information about behaviour unobservably
starting with 7. Recall that in the case of bisimulation complete information of this kind
is needed. In our setting, we only need very limited ‘negative’ information, namely which
maximal refusal set is initially possible without a preceding 7 — this is A for P, but not for @)
in our example. On the ‘positive’ side, we need more, but again not complete information:

a|lg7 and 7.a+a are RT-equivalent with the same initial refusal set, and are both instable
and cannot do an urgent 7; but Aa € RT(a||¢g7 + 7) \ RT(7.a + a + 7); this indicates that
we need to know which refusal traces beginning with a refusal set unobservably start with
7. We add this ‘positive’ information to RT, and also add 7 to indicate that a process is
instable.

Definition 6.2 A process P € P is stable, if 7 ¢ A(P), instable otherwise.
7RT(P) = RT(P) U {7w | w does not start with an action and 3P': P 5 P'=,}.

The (maximal) initial refusal set IR(P) is the maximal X with P X if =P A,ﬂ, then
we put IR(P) = L and define L. C X for all X C A. (Uniqueness, i.e. well-definedness of
IR(P) follows by an easy structural induction.)

To prepare the definition of our precongruence, we give a lemma relating guardedness and
stability to the 7TRT-semantics. Recall that P € P is not guarded iff there is an unguarded
Q as in  or 2 + a. Recall further that such processes cannot perform any action or time
step; in particular, they are stable.

Lemma 6.3 Let P c P.
1. 7 ¢ TRT(P) iff P is stable iff TRT(P) = RT(P).
2. P is not guarded iff TRT(P) = {\} iff RT(P) = {\}; in this case, IR(P) = L.
3. If P is guarded and IR(P) = L, then P is instable and =P X, for all X C A.

Proof: 1. For the first ‘iff’, consider w = A in Definition 6.2.

2. P not guarded implies RT,(P) = {A} by 5.2.6, which implies TRT(P) = {A}. The
latter implies that either P is not guarded, which implies the equivalences, or otherwise P is
guarded and stable by 1. In the latter case, we have R(r, P) =1 by Proposition 2.9, hence

rY, by 5.2.4, which shows () € TRT(P) — a contradiction. The rest is clear.
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3. We have just seen that, in case P is guarded and stable, we would have P ﬂn, a
contradiction. The rest follows from 5.2.1. 0

We now define our precongruence based on the pair (7RT(P),IR(P)). The examples
above have shown that neither IR(P) nor the additions to RT(P) are superfluous. (Note
that, in particular, P and @ above satisfy TRT(P) = 7RT(Q).) We will also show a coarsest
precongruence result below — but still, there is some redundancy. Firstly, we can by 6.3
determine from 7RT(P) whether P is not guarded, in which case IR(P) = L; secondly, we
can also determine from 7RT(P) whether P is stable and guarded, in which case IR(P) is the
maximal X C A with X € RT(P). Thirdly, if P is guarded and IR(P) = L, then =P X, for
any X; thus, if w starts with a set, then 7w € TRT(P) iff w € RT(P), and these additional
7w in TRT(P) can be determined from RT(P). There might be more redundancies.

The following definition of our precongruence refers to stability and guardedness, which
as just noted can be derived from the 7RT-semantics.

Definition 6.4 For P, () € P, we write P < @ if
1. 7RT(P) C 7RT(Q) (hence RT(P) C RT(Q))
2. If P is stable and guarded, then () is stable.
3. IR(P) C IR(Q)
The efficiency precongruence < is extended to P via substitution as above and usual. We

write P = Q (efficiency congruence) if P < @ and @ < P.
We write P <, @ if RT.(P) C RT,(Q) and we write P =, Q if P <, Q and Q <, P.

We note some properties, in particular that the unguarded processes are efficiency con-
gruent and minimal w.r.t. <, and that < indeed refines RT-inclusion.

Proposition 6.5 1. Let P,@Q € P; if P < @ and P is guarded, then () is guarded as well
and P stable iff () stable.

2. Let P,@ € P; if P is not guarded, then P < Q.

3. Let P,Q € P. Then P <, Q implies P < Q, and P < @ implies P <, Q, but none of
the reverse implications holds — not even on the set of Q-free P;-processes.

Proof: 1. ( is guarded by 6.4.1 and 6.3.2; the iff-statement follows from 6.4.2 and .1,
using 6.3.1.

2. 7RT(P) = {A} is minimal, as is IR(P) = L, and 6.4.2 holds vacuously.

3. It suffices to prove the implications for P, () € P, where the second holds directly by
Definition 6.4.

Let P <, @, i.e. RT(P) C RT,(Q), hence TRT(P) C 7RT(Q). If P is stable and

guarded, then 7 ¢ A(P), hence R(r, P) = 1 by Proposition 2.9.1, thus P Y. P’ for some
P’ by Proposition 5.2.4 and Lemma 2.7.1. Furthermore, 7 ¢ A(P’) by Lemma 2.7.4 and
R(r,P') = 1 by Proposition 2.9.1 again, hence P’ g,ﬂ again. Now by assumption also

Q A,« Q' ﬂ),« for some @', hence R(7,Q) = R(7,Q") = 1 by Proposition 5.2.4, thus 7 ¢ A(Q)
by Proposition 5.2.4 and Lemma 2.10. We conclude that @ is stable. Finally, IR(P) €
TRT(P) C 7RT(Q), thus IR(P) C IR(Q).

For the reverse implications consider a.7 < a and a <, 7.a. d
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Remark 6.6 Let P,(Q € P. Assume that P and () are guarded and either both stable or
both not stable with R(7, P) = 0. Then P < @ if and only if P <, Q.

Theorem 6.7 (Refusal traces of a sum) Let P=3"._, P, € P.

Put 7TRT™(P) = {X1... X,w € ;; TRT(P) |n > 0, X; C A, w does not start with a set
and X ... X, € ;,c;7RT(P,)}, and define RT_(P) analogously, using RT instead of 7RT.

Put 7RT*(P) = {w|w € 7RT(P;) does not start with a set or 7w € 7RT(P;) for some
i€},

Then: IR(P) = (,c; IR(F;) (which is L if some IR(F;) = L).

If some P, is not guarded, then neither is P, i.e. TRT(P) = RT,(P) = {\} and IR(P) = L.

Now assume that all P; are guarded; let I = SUT UU such that i € S iff P; stable and
i€ Uiff IR(P) = L.

1. RT,(P) = RT(P)
2. If S =1, then TRT(P) = 7RT"(P).

3. If S# I and U = (), then 7RT(P) = 7TRT*(P) U{Xw | X C IR(P) and Xw € 7RT(F;)
such that w does not start with a set or i € T'}.

4. It U # 0, then 7RT(P) = 7TRT(P).

Proof: The equation for IR(P) follows from the definitions, as does the unguarded case with
the above. 1. and 2. follow from the operational semantics, where for 2. stability implies
that the r-refusal-trace underlying some X ... X, w € TRT"(P) does not contain a 7 up to
the first a in w (if it exists).

In cases 3. and 4., note that ¢ € U implies by Lemma 6.3.3 that P; is instable and = FP; ﬁ),«
for all X C A; in particular, I is indeed a disjoint union of S, T" and U.

We first consider 7RT-behaviour w where the underlying 7-refusal-trace starts with a
set; since there is some instable P;, from the operational semantics for P we see that the P,
together might refuse at most one set X; this can only happen in case 3., where X can be
any subset of IR(P), and the succeeding behaviour w (if any) belongs to some P;; this P;
must do an action after X, thus w can only start with a visible action for i € S. For i € T,
on the other hand, we know that P; can do an urgent 7 after X, hence cannot directly refuse
a set; thus, any Xw € 7RT(P;) contributes to 7RT(P), since P; certainly performs 7 before
w, should w start with a set.

It remains to consider for cases 3. and 4. 7TRT-behaviour w of some P;, where the under-
lying 7-refusal-trace starts with an action; this is the case if and only if w starts with an
action (possibly 7) or 7w € TRT(F)). O

Theorem 6.8 1. On P, <, and < are precongruences for choice.

2. On Q-free ]f”—terms, < is fully abstract w.r.t. <, and choice.

Proof: Since substitution distributes over +, it suffices to consider P, its ()-free part resp.
1. The unguarded case is clear, using 6.5.2 for <; consider guarded processes only.

Precongruence for <, is clear from 6.7.1, since RT{'(P) is monotonic in its arguments RT(P;).
For <, take P < @) and some R. Computation of IR(P + R) is monotonic in IR(P), hence

IR(P + R) C IR(Q + R), i.e. 6.4.3 holds. P stable iff () stable by 6.5.1, hence P + R stable
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iff Q@ + R stable, i.e. 6.4.2 holds; and in this case, TRT(P + R) and 7RT(Q + R) can be
determined with the monotonic 7RT"(P) according to 6.7.2, hence 6.4.1 holds.

Thus, assume P and @ to be instable; we note that IR(P) # L implies IR(Q) # L, i.e.
if P belongs to T in 6.7, then so does (). We conclude that 7RT(P + R) and 7RT(Q + R)
can be determined with the same monotonic construction according to 6.7.3 or .4 — unless
IR(P) = L #IR(Q), in which case TRT(Q + R) might have additional elements as described
in 6.7.3 in contrast to 6.7.4. In any case, 6.4.1 holds; thus, P+ R < Q + R.

2. Take Q-free P,() € P with = P < (); we have to show that - P+ R <, Q + R for
some Q-free R € P. Let ¢ € A\ ({(P) U/(Q)).

If X =IR(P) C IR(Q) fails (in particular, X # 1), then Xc¢ € RT(P +¢) \ RT(Q + ¢).

If P is stable, then P grgr and 00c € RT(P + ¢); should @ be instable, then (¢ ¢
TRT(Q + ¢) O RT(Q + ¢) by 6.7. For the remaining part we need the following. If P is
instable (i.e. 7 € TRT(P)), then P can do 7 and refuse {c¢} (observe 5.12.1 and 5.2.3), hence
{c} € RT(P + ¢); should @ be stable, then {c} € RT(Q + ¢). ?

If w e RT(P)\ RT(Q), then choose R = 0 with 5.11. Thus, it remains to consider
Tw € TRT(P) \ 7RT(Q) where by the above w # A, i.e. w starts with a set; by 5.2.1 and .3,
we can assume that this set contains c. In this case, w € RT(P +7.c) \ RT(Q + 7.c), and we
are done. a

Theorem 6.9 1. On P, <, and < are precongruences for parallel composition, prefixing,
hiding and relabelling; this holds analogously for =.

2. On the Q-free part of P, < is fully abstract w.r.t DL-inclusion and parallel composition,
prefixing and choice.

Proof: As in the last proof, it suffices to consider P, its (2-free part resp.

1. By Theorems 5.6, 5.8 and 5.10, <, is a precongruence as desired, and so is <,. The
constructions easily carry over to show that 7RT-inclusion is such a precongruence as well.
Stability and the IR-set of a.P depend on « only, thus, < is a precongruence for prefixing.
In the unguarded case, 6.4.2 and .3 are easy also for the other operators.

(In)stability of a parallel composition depends on the (in)stability (and (un)guardedness)
of its operands, and IR(P|[4Q) is L if IR(P) = L or IR(Q) = L and IR(P)|[4IR(Q)) (with
IR(P) and IR(Q) considered as strings of length 1) otherwise. Thus, < is a precongruence
for parallel composition.

Finally, consider a general relabelling function ® and guarded P and @ with P < Q.
Since IR(P[®]) is the maximal X with X[®]~' C IR(P) (possibly L), P[®] and Q[®] satisfy
6.4.3. Now assume P[®] and thus P (by ®(7) = 7) and @ (by 6.4.2) to be stable. We will
show A(Q) C A(P) and conclude that Q[®] is stable and < a precongruence for relabelling
(and hiding).

{

Let 7 # a ¢ A(P); by 2.9.1 and 5.2.4, P L}>r P’ for some guarded P’ with A(P') = A(P)
by Lemma 2.7.4. Thus, P’ *%, and {a}{a} € 7RT(P) C 7RT(Q). Since Q is stable, this

shows ) ﬂn Q' ﬂn for some Q" with R(a, Q') =1 by 5.2.4, and this gives a ¢ A(Q) by
5.2.4 and 2.10; hence A(Q) C A(P).
2. follows from 1., 6.8 and 6.1. O

2For P € P containing (2, we would have a problem in this part: = 7.Q < 0, but RT(7.Q+ R) C RT(R) =
RT(0 + R) for all R.
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We finally aim to show that <, and < are also precongruences for (guarded) recursion.
A sort of iteration of processes is needed.

Definition 6.10 Let P € P be such that at most z € X is free in P, and assume z to be
guarded in P. Define, for each n € N, P! = P and P""!' = P{P"/x}.

The following proposition states a basic property of recursive processes; namely, that any
px.P process is =- or =,-related to its unfolding.

Proposition 6.11 Assume that at most 2 € X is free in P € P and that z is guarded in P.
Then:

1. px.P =, P{uz.P/x};
2. px.P = P{ux.P/x}.

Proof: We just have to prove 1., since this implies 2. by Proposition 6.5.3. In this proof let
g€ (A, U2 ) and v € (A, U247,

By rule Rec, or rule Rec, we have px.P S, R 5, iff PS5, Q for some Q such that
R = Q{pux.P/z} 5, iff P{ux.P/x} =, Q{ux.P/x} =, by Proposition 5.2.5 since  guarded
in P. O

Lemma 6.12 Assume that at most 2 € X is free in P € P and in Q € P and that z is
guarded in P and Q. Let R, S € P and consider a sequence w such that |w| = n. Then:

L. Q{P"/x}{R/x} 2, if and only if Q{P"/x}{S/x} D
2. P R/x} %, if and only if PPH{S/z} 5,.

Proof: Prove Item 1 by induction on n. Assume n = 1 and w = ¢ € (A, U2%7). Then
Q{P/z}{R/x} =, T if and only if @ =, Q" and T = Q'{P/x}{R/z} if and only if Q =, Q'
and T' = Q'{P/x}{S/x} if and only if Q{P/x}{S/z} =, T".

Now let |w| = n + 1 and w = ev with |v] = n. Assume the statement for sequences of
length less or equal than n. Similarly to the base case we have:

Q{P"' /3 {R/z} =, T if and only if Q =, Q' and T = Q'{P"*!/x}{R/z} if and only
if Q =, Q and T' = Q'{P"*!/z}{S/x} if and only if Q{P"*'/z}{S/z} =, T".

Now Q{P"*! [xl{R/x} = Q{P{P"/x}/x}{R/x} = Q{P/z}{P"[s}{R/x} and x is
guarded in Q'{P/z}. By induction hypothesis (Q'{P/z}){P"/x}{R/x} =, if and only
if (Q'{P/x}){P"/x}{S/x} 5, and, hence, we have Q'{P""'/z}{R/z} %, if and only if
Q'{P"*'/z}{S/x} %,. Thus the main statement holds.

Item 2 immediately follows from Item 1 by taking () = P.

The following sort of depth over P-processes is now needed.

Definition 6.13 The depth of a process P € P, d(P), is defined by:
Nil, Stop, Var: d(0) =d(Q) =d(zx) =0

Pref, Rel: d({a,r).P) = d(P[®]) = d(P), r € {0,1}
Sum, Par: d(P, + Py) = d(Py||aP;) = max(d(Py),d(P,))
Rec: d(x.P) = 0 if pz.P is closed

d(P)+1 otherwise
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Example 6.14 An interesting example for depth d is

d(py.(px.(a.x +by)) + c.z) =2
Lemma 6.15 Let P and R be P processes. Then:
1. P closed implies d(P) = 0;
2. R closed implies d(P{R/x}) < d(P).

Proof: Item 1 follows by simple inductive reasoning, so let us concentrate on Item 2. The
proof proceeds by induction on the structure of P.

Nil,Stop: If P = 0 then P{R/x} = 0 and hence d(P{R/x}) = d(P) = 0; P = Q is
analogous.

Var: P = y. We have two cases to distinguish: y = x and y # x. In the former case,
P{R/z} = R and, since R is closed, we have d(P) = d(R) = 0 by 1. In the latter one,
y # x, we have d(P{R/x}) = d(P).

Pref: P = («a,r).P;. In such a case we have ((o,7).P)){R/z} = (o, 7).(P1{R/z}). By in-
duction hypothesis d(P {R/z}) < d(Py). Thus, d(({ca,r).P1){R/x}) = d(P{R/z}) <
d(Py) = d({a,r).Py).

Sum: P = P+ P,. By induction hypothesis d(Pi{R/z}) < d(P;) and d(P,{R/z}) < d(P,).
Thus also d((P; + P){R/z}) = d((Pi{R/x}) + (P{R/x})) =
max(d(Pi{R/x}),d(P{R/z})) < max(d(P,),d(P)) = d(P).

Par, Rel: analogously to Sum and Pref.

Rec: P = py.P;. We distinguish two cases: y = x and y # x. The former case is simple
since (px.P){R/x} = px.P; and hence d((pz.P){R/x}) = d(px.Py). Assume y #
z. If (ny.P){R/z} is closed then d((uy.P1){R/x}) = 0 < d(py.Py). Otherwise,
assume d(P{R/x}) < d(P;) by induction hypothesis. Hence, d((uy.P){R/x}) =
d(py.(Pi{R/z}) = d(P{R/z}) +1 < d(P)) + 1 = d(py.Py), since py.P; cannot be
closed if (uy.Py){R/x} is not.

The following theorem states the precongruence of our preorders for recursion.

Theorem 6.16 Let P, () € P and z € X be guarded in P and (). Then:
1. P <, @ implies px.P <, px.Q;
2. P < Q implies px.P < px.QQ.

Proof: By well-founded induction on d = max(d(P),d(Q)). One can prove Item 1 first and
then Item 2, but the proofs are so similar that we do them together. Actually, we will only
show the most involved parts of the two statements.
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We have to show that for every closed substitution S that is defined for all free variables
in P and @ except z, we have [uz.Pls <, [pz.Qls or [uz.Pls < [pz.Q]s, i.e. px.([Pls) <,
na.([Qls) or p.([Pls) < pa([Qls).

By hypothesis, we have [Pls <, [@]s or [Pls < [@]s and by Lemma 6.15 we have
A([Pls}) < d(P) and d([Q]s}) < d(Q).

If max(d([P]s), d([Q]s)) < d, then the statement immediately follows by induction. Oth-
erwise, max(d([P]s),d([Q]s)) = d by Lemma 6.15, and we can concentrate on processes P
and () that have at most x as free variable.

Thus, assume at most x free in P and Q and z guarded in P and ). We need three
preliminary results:

Statement A: Let T € P, R,S € P be such that d(T) < d. Then:
(a) R <, S implies T{R/x} <, T{S/z};
(b) R < S implies T{R/x} < T{S/z}.

Proof: Ttems (a) and (b) have similar proofs, thus we concentrate on the first one. The proof
proceeds by structural induction on 7.

Nil,Stop, Var: For T = 0, we have T{R/x} = T{S/x} = 0, and similarly for T = Q. f T =y
then we have two cases: y = x and y # x. The latter case is similar to the previous
ones, so assume y = x. Then T{R/x} = R and T{S/x} = S, and T{R/x} <, T{S/z}
follows by hypothesis R <, S.

Pref: T = («a,r).Ty. Then T{R/x} = (a,r).(T1{R/z}) and T{S/x} = {(«,r).(T1{S/x}).
Since d(T7) = d(T) < d, the statement follows by induction and Theorem 6.9.

Sum: T = T, + T,. By definition d(T3),d(T:) < d(T) < d. By structural induction
Ti{R/x} <, T1{S/x} and To{R/x} <, T2{S/x}. Hence, by the fact that <, is
precongruence for +, T{R/z} = (11 + Tx){R/z} = (T1{R/z}) + (To{R/z}) <,
(T1{S/x}) + (To{S/x}) = T{S/x}.

Par, Rel: analogously to Sum.

Rec: T = uy. Ty, and we may assume that x is free in T', hence that x is free in T} and = # y.
Therefore, d(T}) = d(T) — 1 < d and T1{R/z} <, T1{S/z} by structural induction.
Moreover, by Lemma 6.15.2, d(T\{R/z}),d(T1{S/x}) < d(T}) < d and thus, by out-
er induction (the main statement), we also have (uy.T){R/x} = py.(Ti{R/x}) <,
(ny-T){S/x}.

Statement B: For all 7 € N,
(a) PH{Q/x} <, px.Q;
(b) P{Q/z} < pz.Q.
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Proof: Again concentrate on Item (a), since (b) is similar. The proof is by well-founded
induction on ¢ > 1, and we denote 2 with P°. For arbitrary i > 1, we have P{Q/z} =
P{P/z}{Q/z} = P{P"'{Q/z}/x} <, Q{P"'{Q/x}/x}, since by hypothesis P <, Q.
By induction hypothesis or by P°{Q/z} = Q <, ux.Q, we have P~ {Q/x} <, pz.Q, and s-
ince P 1{Q/z} and px.Q are closed, Statement A implies Q{P""{Q/z}/z} <, Q{uz.Q/x}.
Finally, Q{puz.Q/z} =, px.QQ by Proposition 6.11.

Statement C: For all 1 € N,
(a) px.P <, P{ux.P/x};
(b) px.P < P{uzx.P/z}.

Proof: Again, we only prove (a) by induction on i. Case i = 1 follows by Proposition
6.11, hence consider i + 1. By Proposition 6.11, Statement A and the induction hypothe-
sis, we get ux.P <, P{ux.P/x} <, P{P{pz.P/x}/z}, and finally P{P{ux.P/x}/x} =
P ux.P/z}.

Let us now come back to the main theorem. We prove Item 2, since 1 is easier. Since
x is guarded in P and ) and at most x is free in P and @, all variables are guarded in
pr.P and px.Q). If there is an unguarded €2 in () or equivalently in px.Q), then there is one
in P or equivalently in px.P by Proposition 6.5.1, and in the latter case we are done by
Proposition 6.5.2. Hence, we may assume px.P and px.QQ to be guarded.

We have to prove that, if puz.P is stable, then px.Q is stable. Assume px.P stable (and
guarded). Then pz.P ,, hence P /, and (closed) P{Q2/x} /%, by Proposition 5.2.5. Since
P < Q, also Q{Q/z} %, , thus Q %, and hence also px.Q /,, that is puz.Q is stable.

For X € IR(ux.P), we have ux.P X, if and only if P 25, if and only if P{Q/x} RN
again by Proposition 5.2.5. By P < @ also Q{Q/z} L,«, Q g,ﬂ and px.QQ ﬁ),n.

Now it only remains to show that 7RT(ux.P) C 7RT(uz.Q). Let v € TRT(uz.P) and
let w be the underlying 7-refusal trace with |w| = n. By Statement C, we have w €
RT,(P"™{uz.P/x}), hence w € RT.(P"'{Q/z}) by Lemma 6.12 and v € TRT(P""'{Q/z}).
Since P""{Q/x} < px.Q by Statement B, we get v € TRT (ux.Q). O

7 An Example

In this section we show an application of our theory. Consider a simple server that is able
to manage at most two requests from the external environment. (Of course, the example
extends to any number of requests.) The server receives requests via a channel in and sends
replies via a channel out.

We first provide a purely sequential implementation of such a system and then a parallel
one. We compare the efficiency of these two according to our preorder.

The first implementation Seq of the simple server can be described in our language by:

Seq = px.an.(py.(out.x + in.out.y))

An automaton describing the refusal-based transitional semantics (Definition 5.1) of this
system is given in Fig. 1, where the state inscriptions are:
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S1 = py.(out.Seq + in.out.y)
Sy = out.S;

S3 = out.Seq + in.out.S;

54 = O_’LLtSl

In the refusal sets, we only list actions from {in, out}, since all other actions can always be

refused additionally, see Proposition 5.2.3. Also, we only give maximal refusal sets, compare

5.2.1; hence, there are also e.g. transitions gr, {Z—n}n and %r from S, to Sy. Furthermore,

Seq has the form pz.P and the process reached after a time step is P{uz.P/x}; we identify
Seq with this unfolding, since the two processes are equivalent.

{out}

out

Figure 1: The (Refusal) Transitional Semantics of Spec

After receiving an input from the external environment, the server reaches a state in
which it is able either to provide the corresponding output or to receive another input. In
the former case the system reaches its initial state, in the latter one it must provide an
output before continuing. This ensures that the system receives no more than two inputs
and provides an output for each input.

Regarding efficiency, Seq is always ready to receive an input immediately if it can handle
an input at all; after an input, it might take one unit of time before it can provide the
respective output.

The second implementation Par is the parallel composition of two servers; each of them
is able to manage at most one request in the same way and with the same efficiency as just
described. In our language:
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Par = (pz.in.out.x) ||p (pz.in.out.x)

An automaton describing the refusal-based transitional semantics of Par is given in Fig.
2, where the state inscriptions are:

P = pxan.out.x
P, = out.P
P2 = O_U,tp

In addition to the remarks given for Fig. 1, we have also used another sound equality,
namely commutativity of parallel composition, in order to reduce the size of the automaton;
furthermore, we have abbreviated ||y to ||.

{out}

out

Figure 2: The (Refusal) Transitional Semantics of Par

Our main aim is to show that the parallel view of the server gives a faster implementation
than the sequential one; namely, Par J Seq. Of course, for this proof, we will exploit
the alternative characterization of our faster implementation preorder in terms of refusal
traces (Theorem 5.13). It is well-known that, for proving an inclusion of languages like
RT(Par) C RT(Seq), it is sufficient to find a simulation relation between the states of the
respective automata, which here describe the refusal-based transitional semantics of Par
and Seq. For the automata in Fig. 1 and Fig. 2 such a simulation relation is the following:

46



R = {(PC”"; 56(])a (Pl ||(D P, 51), (Pl ||(0 P1,52), (P2 ||@ P, 53)7
(P2 ||0 P17 52)7 (P2 ||@ P27 54)7 (P2 ||0 P7 51)}

Relation R is a simulation relation; this means that it relates the initial states, i.e. Par
and Seq, and whenever (P,Q) € ® and P =, P', where ¢ = a € A, or ¢ = X C A, then
Q=>, Q' (or Q=>, Q' if ¢ = 7) and (P',Q') € R. The existence of the simulation R
implies that RT(Par) C RT(Seq), i.e. Par J Seg.

Actually, Par is strictly faster than Seq since we can find a refusal trace of Seq that is
not one of Par: in in {out} out {out}. This is a witness of slow behaviour that Seq can
show, but Par cannot: if you quickly provide Par with two inputs, you do not have to wait
another unit of time for the second output. This result can be seen as a validation of our
approach, since one would expect intuitively that a parallel implementation gives a speed-up.

In the rest of this section, we have a short look at two variants of Seq. Consider the
following alternative system:

Seq) = px.(in.out.x + in.(uy.(out.x + in.out.y)

This server behaves nondeterministically as a “one request” server (choosing the left in)
that has to produce an output before accepting another input or as a “two requests” server
(choosing the middle in) just as Seq. As above, one can prove that Seq J Seq;. Thus, our
preorder is not only a faster-than relation, but also an implementation relation that may
reduce nondeterminism e.g. in a stepwise refinement.

As another example, consider:

Seqs = pr.in.(py.(out.x + in.out.y))

This specification is similar to the original one, but this time the input actions are
not offered immediately. Again Seq J Seqy, and in fact it is not hard to see that generally
a.P < a.P. Again, our preorder behaves as one should expect from a “faster than” preorder.

8 Conclusion and Related Work

Building on a similar approach in a Petri net setting [32, 17, 15, 33, 7], we have defined
a timed process algebra PAFAS for asynchronous systems and developed a timed testing
scenario to compare the worst-case performance of such systems. PAFAS is very much like
an ordinary CCS-like process algebra, but actions have an upper time bound 0 or 1; by
our notation, ordinary CCS-like processes (called initial here) are identified with PAFAS-
processes where all these bounds are 1. ;jFrom experience in a Petri net setting [6], we expect
that a generalization to processes where initially timer-values are arbitrary natural numbers
is feasible; but this would make the present paper unduly lengthy and deviate too much from
our original interest in C'CS-like processes. Essential in the testing scenario is that each test
has a duration and success only counts when it occurs within this duration; also, we only
use initial processes as test processes. The testing preorder that results from must-testing
in our scenario can naturally be interpreted as a faster-than relation or efficiency preorder
that relates processes according to their worst-case performance.

Since we only have upper time bounds, arbitrarily many actions may happen within a
given finite time; thus, one component of a system may perform arbitrarily many actions
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while another performs just one action within its given time bound, hence PAFAS-processes
are truly asynchronous systems. One might wonder at this stage whether we could have
any problems with Zeno-runs, where infinitely many actions happen in a finite time. The
technical answer is that we do not deal with infinite runs; a more convincing answer might
be that, intuitively speaking, runs with ‘very many’ actions in a short time are irrelevant in
our setting, since they do not represent some worst-case performance. We also show that
the processes we are really interested in do not have time-stops in a certain sense.

The first main result is that the testing preorder based on continuous time is the same as
that based on discrete time; thus, one can use the simpler discrete version to reason about
the more realistic continuous version. The same result was obtained in a Petri net setting
in [17] (for all time bounds being 1), but our process algebraic proof is technically quite
different. A related discretization result is given in [27], which considers Petri nets where
transitions are associated with intervals and each enabled transition fires after a delay in the
associated interval; it is shown that the reachable markings are the same for continuous and
discrete time. In the proof, each continuous firing sequence is translated to a shorter discrete
one; for our result, it is important that we translate a continuous trace into a longer discrete
one. Another, well-known discretization result can be found in [2]: the state space of a timed
automaton is infinite due to continuous time, but it can be made finite by a discretization
that replaces states by classes of states; this discretization has nothing to do with replacing
continuous by discrete time.

The second main result (again as in [17]) is a characterization of our efficiency preorder
with some sort of timed refusal traces; the construction of test processes in its proof is
quite involved since, intuitively speaking, asynchronous test processes are not very good in
controlling or finding out when exactly things happen in the tested system.

Since the efficiency preorder is not a precongruence for choice, we refine it to the coarsest
such precongruence and call this the efficiency precongruence. We close with a small example.
Work on more elaborate examples is in progress; in a Petri net setting, such examples can
be found in particular in [32, 7]. In the present paper, we have mentioned some algebraic
laws, and we are working on a complete axiomatization. Such an axiomatization for a
fragment of the algebra of initial processes can be found in [34], but a convincing treatment
of parallel composition in our setting of asynchronous processes is missing; observe that
a straightforward expansion law is not valid, since e.g. a.0 ||y 0.0 is strictly faster than
a.b.0 4 b.a.0 due to the refusal trace AdA.

There is a large number of papers about timed process algebras. Usually, they model
synchronous systems where components can decide what to do when according to a common
global clock; in particular, tizmeouts can be modelled where, at a certain time, enabled actions
are withdrawn or other actions are offered. In contrast, we have modelled asynchronous
systems where actions are not enabled or disabled because time passes; we have added
time to the process algebra simply to evaluate the performance, but not to change the
functionality.

A common feature in timed process algebras is a waiting construct written wait t or (t) or
o that requires the process to let exactly time t or time 1 pass. In contrast, in PAFAS such
timing information is associated with actions as in [1, 13]; also, an action a is not associated
with an exact time, but with the interval [0,1]. Timing intervals (already used in [19]) can
be modelled e.g. in the algebra of [5] and are associated with actions in the algebra of [11].
In most cases, time is taken to be continuous, but sometimes also discrete time is considered,
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e.g. in [14].

Although time is associated to actions, we have given an operational semantics in the
most usual style, where some transitions are time steps, while others correspond to the in-
stantaneous occurrence of actions. Naturally, a time step describes relative time, i.e. how
much time passes since the last time step. Given a run according to this operational se-
mantics, one can of course determine the absolute time of action occurrences, i.e. their time
since the beginning of the run. Alternatively to our sort of semantics, one can consider timed
actions, i.e. actions paired with the time of occurrence; [5] gives an operational semantics
with time steps and with timed actions and absolute time, [1, 13] present operational se-
mantics with only such timed actions; [29] gives a denotational semantics in this style, while
the corresponding operational semantics in [30] considers time steps and timed actions with
relative time. [11] gives a translation from a semantics with absolute time to an equivalent
one with relative time.

Another feature common to most timed process algebras is a mechanism to enforce the
timely occurrence of actions; very often, this is a combination of patience and mazimal
progress as e.g. in [29, 35, 14]. Patience means that components in a composition are willing
to wait for a synchronization partner if necessary; in general, this is modelled by allowing all
visible actions to idle since they are available for synchronization. Maximal progress means
that actions are performed if waiting is certainly not necessary; in general, this applies exactly
to internal actions. We have interpreted these concepts slightly differently by requiring
maximal progress for all actions in stand-alone processes. In particular, this may force w to
occur and therefore, in the testing definition, success is signalled by the performance of w; we
regard this as more natural than the usual definition where success is signalled by reaching
a state that enables w.

Alternatives to patience and maximal progress are insistent actions and soft time. An
insistent action as in [22, 5, 26] has to be performed at a certain time; if this is not possible
since a synchronization partner is required and not available, then time cannot go on. This
can mean that neither time steps nor actions can occur anymore. In soft time, used for
multimedia systems, actions can also be performed only at a certain time, but they may also
simply be left out, see e.g. [11] and the references there.

At least in some cases, timed process algebras can also be categorized as timed extensions
of classical process algebras. E.g. [29] (or the more modern version [28]) is an extension of
TCSP and, true to that approach, it gives a denotational semantics in the failures style.
This is in fact a refusal trace semantics, in spirit very similar to ours; presumably due to the
use of continuous time, the actions of a run and the refusal information are given separately.
Also, a so-called stability time is given for each run, and it is assumed that a component has
to wait some time 0 between any two actions, while actions from different components can
occur at the same time. Both these features are missing in the corresponding operational
semantics of [30]. In particular for our discretization result, it is very important that we do
not have such a ¢ and are not restricted in performing actions at the same time.

A timed extension of ACP is given in [5]; an operational semantics (where no two actions
can occur at the same time) and bisimulation is considered, but the stress lies on studying
suitable axioms. Timed extensions of CCS can be found in [22, 35] and the stress lies on
studying bisimulation; [22] gives a complete axiomatization of strong bisimilarity for finite
terms. We have taken the choice operation from CCS and the parallel composition from
TCSP. Hence, in our paper, choice is decided by the first action, which if visible can be
influenced by the environment; in contrast, TCSP has a choice that is decided completely
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internally and another choice that is decided by the first visible action. As e.g. in [35, 26, 14],
time does not decide choices in our paper; it does in [5], while [22] offers two different choice
operators for the two different interpretations.

The testing approach also belongs in the first place to the CCS-world, and it leads
naturally to considering preorders — instead of equivalences that most papers above look at.
Before discussing papers about preorders, we must mention another group of timed process
algebras: in this approach, starting with [1, 13|, components attach local time stamps to
actions (similar to logical time in distributed algorithms, see e.g. [18]) and actions occur as in
an untimed algebra, i.e. in a sequence of actions from different components local time stamps
might decrease — which is termed ‘ill-timed but well-caused’. This way, the timed algebra
stays very close to the untimed one, and in particular the operational semantics of parallel
composition can be simply given as arbitrary interleaving; as an equivalence, bisimilarity
is used. [1] only allows the synchronization of actions that ‘by chance’ have the same time
stamp attached, and a component might block, if it does not find a suitable synchronization
partner. [13] instead allows some form of busy-waiting, and the synchronizing components
put their local clocks to the maximum of their clock values; this seems more realistic, but
as a consequence bisimilarity is not a congruence for parallel composition anymore. Also
e.g. [10] (see below) belongs to this approach; local clocks are also used in [11], but there,
ill-timed computations are eliminated.

The literature about timed process algebras mostly deals with equivalences, possibly
because most often some form of bisimulation is used to compare processes. Another reason
is that most often synchronous systems are modelled and, as [23] argues, it seems unlikely
that for synchronous systems a faster-than preorder with a few reasonable properties exists
that is a precongruence for parallel composition. Nevertheless, there are several approaches
to define preorders which we discuss now.

[14] presents a testing approach for an algebra TPL extending CCS that has discrete
time steps ¢ in its syntax and in its operational semantics. The resulting must-preorder
and its characterization coincide in essence with ours; it just looks different in [14], since
it is formulated in terms of acceptance traces instead of refusal traces and since time steps
and instantaneous actions are separated in the algebra. Also, the precongruence problem for
choice is solved in a different, ‘less semantical’ way: process P is precongruent to () if - for
some action a not appearing in P or () — P + a is less than () + a in the must-preorder. We
could show the same result. Another difference is that in [14] there is just one operational
semantics, and the acceptance traces can be read off from the respective transition system.
In our approach, already for the treatment of discrete time behaviour, we have one transition
system for stand-alone behaviour and another one for the refusal traces; even if we changed
the first one and made all visible actions patient, it would not be possible to read off the
refusal traces from it — at least not in the way it is done in [14].

An essential difference is that TPL models synchronous systems and o is exactly one unit
of time; it is not clear, how we could translate a PAFAS-process with its upper time bounds
to a TPL-process — while the reverse translation is clearly impossible, since synchronous
systems are built upon a much stronger assumption about the global time. As a result, the
test environment has much more direct control over the temporal behaviour in TPL than
in our setting; as a consequence, no time bounds are needed for tests and the tests needed
for the characterization are much, much simpler than ours. The complexity of our tests
shows how much more difficult it is for an asynchronous test process to ‘see’ as much as a
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synchronous one; that this is possible at all should be quite astonishing.

Since TPL contains a timeout construct, we should regard it as stronger as PAFAS; in
this stronger algebra, [14] presents a complete axiomatization, something we do not have
as yet. It seems most likely that we will have to strengthen our algebra to obtain such an
axiomatization.

In view of the above observation of [23], it is not surprising that the testing preorder
is not seen as a faster-than relation in [14]. Instead, [25] shows that it can be considered
as relating systems w.r.t. their temporal and functional ‘predictability’ rather than their
efficiency.

In the discretely timed algebra ¢ TCCS of [23], asynchronous systems are modelled with-
out any progress assumption; instead, they can idle arbitrarily long and additional fixed
delays can be specified. An efficiency preorder is defined based on a sort of strong bisim-
ulation; bisimulation looks at the branching behaviour in detail, and as a consequence, an
interpretation in terms of worst-case behaviour is not obvious. An axiomatization for finite
sequential terms is given, though it seems not to fit the operational preorder completely;
also, the operational preorder does not completely match the intuition, as also the authors
have found out in the meantime [21]. The problems with axiomatizing parallel composition
are discussed.

Again, it is not clear how to translate between PAFAS and ¢TCCS. In [23], for basic
actions a and b (which are actually written with an underbar in [23]), we have a ||p b = a.b+
b.a (using TCSP-parallel-composition although [23] really uses CCS-parallel-composition),
which is wrong in PAFAS; hence, we should possibly relate our a to their basic a and our a to
their (1)a. Then, in PAFAS, a.b is faster than a.b+ a.b, since we only look at the worst-case
behaviour of the second term, whereas this is wrong in /TCCS, where also the performance
of a in the second term has to be matched. Even worse, a ||p b + a.b is faster than a || b
in /TCCS and even strictly faster due to the summand a.b; in PAFAS, this summand is
ignored as irrelevant for the worst-case behaviour and due to the refusal trace bA a ||p b is
strictly faster than a ||y b+ a.b. Observe that the two processes cannot immediately perform
bin (TCCS.

In the ‘ill-timed but well-caused’ approach, [10] also gives a bisimulation based preorder,
where component speeds are fixed with respect to local clocks (modulo patience for commu-
nication in [9]). As already mentioned above, this local passage of time leads to ill-timed
traces, hence this idea is hard to compare to our approach or any other of the preorders.

Finally, we want to mention an approach to compare the efficiency of untimed CCS-like
terms, based on counting internal actions. Efficiency preorders on this basis have been in-
vestigated in [8] and [24] with a testing scenario, and in [3] and [4] with a bisimulation-like
definition; in all these approaches, efficiency is measured by counting internal actions, where
runs of a parallel composition are seen to be the interleaved runs of the components; conse-
quently, in all cases (except [8], which does not consider parallel composition), 7.al||;47.a is
as efficient as 7.7.a, whereas in our setting 7.a||{s)7.a is strictly faster than 7.7.a.
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