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Abstract

We consider the off-line scheduling problem of minimizing the maximal starting time.
The input to this problem is a sequence of n jobs and m identical machines. The goal is to
assign the jobs to the machines so that the first time at which all jobs have already started
running is minimized, under the restriction that the processing of the jobs on any given ma-
chine must respect their original order. Our main result is a polynomial time approximation
scheme (PTAS) for this problem in the case where m is considered as part of the input. As
the input to this problem is a sequence of jobs, rather than a set of jobs where the order is
insignificant, we present techniques that are designed to handle order constraints imposed
by the sequence. Those techniques are combined with common techniques of assignment
problems in order to yield a PTAS for this problem. We also show that when m is a con-
stant, the problem admits a fully polynomial time approximation scheme. Finally, we show
that the makespan problem in the linear hierarchical model may be reduced to the min-max
starting time problem, thus concluding that the former problem also admits a PTAS.
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1 Introduction

Consider a clinic where n patients need to be seen by one of m identical doctors, m < n. The
patients are ordered in a sequence according to some criterion, say, the time at which they called
in to make an appointment. The receptionist needs to assign the patients to the doctors based
on the expected ”processing time” of those patients (i.e., the time that each of those patients is
expected to be in the doctor’s office). As the receptionist needs to stay in the clinic until the last
patient is received by his assigned doctor, he aims at assigning the patients to the doctors so
that he could leave the clinic as early as possible.

Clearly, the best thing to do is to identify the m patients of largest expected processing time,
assign each one of them as the last patient of one of the m doctors, and then solve the makespan
problem with respect to the remaining n−m patients and m doctors. However, such a schedule
may assign a patient after another patient that has a lower priority according to their position in
the sequence. Therefore, while it is optimal in the sense that it minimizes the target function, it
is totally unfair. The other extreme strategy is the fair one, in which the receptionist completely
ignores the target function and obeys only fairness restrictions. The solution here is very simple
- the receptionist will assign the patients according to their order in the sequence. This strategy,
however, may keep the receptionist in the clinic for too long.

We consider here an intermediate strategy, one that obeys both fairness and efficiency con-
siderations. In that strategy, the receptionist seeks an assignment that would minimize the time
at which the last patient enters his assigned doctor, so that the patients that are assigned for the
same doctor are scheduled in accord with their order in the sequence. The idea is that partial
fairness, namely, fairness per doctor, as opposed to overall fairness, may decrease the value of
the target function on one hand, and be sufficient on the other hand: patients examine the wait-
ing list for their assigned doctor and would protest if they appeared on that list after a patient
of a lower priority; on the other hand, patients are unaware or unsensitive to the waiting lists
of other doctors or the times at which patients enter to be seen by other doctors. Hence, such an
intermediate strategy makes sense. As opposed to the only-efficient or the only-fair strategies,
it gives rise to an interesting model that does not coincide with any of the commonly studied
models.

We proceed by presenting a formal definition of the problem. In the Min-Max Starting
Time Problem one is given a sequence of n jobs with processing times pi, 1 ≤ i ≤ n, and m < n

identical machines, Mk, 1 ≤ k ≤ m. An assignment of the jobs to the machines is a function
A : {1, . . . , n} → {1, . . . , m}. The subset of jobs that are scheduled to run on machine Mk is
A−1(k) = {i : A(i) = k}. The jobs are processed on each machine in the order that agrees with
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their position in the input sequence. Hence, the index of the last job to run on machine Mk is
given by fk = max{A−1(k)}. Such jobs are referred to as the final jobs for assignment A. The
time at which the final job on machine Mk will start running is given by Fk =

∑
i∈A−1(k)\{fk} pi.

The goal is to find an assignment A such that the time at which the last final job starts running
is minimized. Namely, we look for an assignment for which

T (A) := max
1≤k≤m

Fk (1)

is minimized.

Many scheduling problems have been studied both in off-line [4, 5, 6, 12, 8] and on-line
environments (see [14] for a survey). In on-line environments, the jobs usually arrive in a
sequence. In off-line environments, however, the input is usually a set of jobs, where the order
of jobs is insignificant. The min-max starting time problem was first introduced as an on-line
problem in [3]. Here, we study the off-line version of the problem where the input is still
viewed as a sequence of jobs and order does matter.

We note that our problem is strongly NP-hard, as demonstrated by the following reduction
from the makespan problem. Given an input set of n jobs to the makespan problem (problem
P1 henceforth), we first turn the set into a sequence by imposing an arbitrary order; then, we
add to that sequence m additional jobs of a very large size with indices n + 1 through n + m.
Any optimal solution of the min-max starting time for the augmented sequence of n + m jobs
(problem P2 henceforth) will obviously place each of the m large jobs as the last job to run on
one of the m machines. Hence, the min-max starting time in such a solution coincides with
the makespan of the corresponding schedule, restricted to the original n jobs. This implies that
the min-max starting time in optimal solutions to P2 is bounded from below by the optimal
makespan for P1. On the other hand, there exists an optimal solution for P2 in which the
min-max starting time equals the optimal makespan for P1; indeed, given an optimal solution
of P1, we may rearrange the jobs on each machine in accord with their arbitrary order in P2
without affecting the makespan and then add on top of them the m large jobs, one in each
machine. Consequently, an optimal solution of P2, when restricted to the original n jobs, gives
an optimal solution of P1.

Due to the strong NP-hardness of the problem, Polynomial Time Approximation Schemes
(PTAS) are sought. Such schemes aim at finding a solution whose target function value is
larger than the optimal value by a multiplicative factor of no more than (1 + ε), where ε > 0 is
an arbitrarily small parameter. The run-time of such schemes depends polynomially on n and
m, but it depends exponentially on 1/ε. In case m is viewed as a constant, one usually aims
at finding a Fully Polynomial Time Approximation Scheme (FPTAS), the run time of which
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depends polynomially on n and 1/ε, but is exponential in the constant m. For example, PTAS
for the classical makespan problem were designed by Hochbaum and Shmoys [6, 7], while an
FPTAS for that problem was presented by Graham in [5] and later by Sahni in [12].

In this paper we design two approximation schemes: a PTAS for the case where m is part of
the input and an FPTAS for the case where m is constant. In doing so, we employ several tech-
niques that appeared in previous studies: rounding the job sizes [6], distinguishing between
small and large jobs and preprocessing the small jobs [7, 1], and enumeration. However, the
handling of sequences of jobs, rather than sets thereof, is significantly more delicate: the small
jobs require a different handling when order matters and one must keep track of the index of
the final job that is scheduled to run on each machine in order to guarantee the legality of the
assignment. The novel techniques presented here address those issues.

Related work. The on-line version of our problem was studied in [3], where an algorithm
of competitive approximation ratio 12 was presented. It was also shown there that a greedy
algorithm that performs list scheduling on the sequence [4] has a competitive ratio of Θ(log m).

A similar off-line problem with ordering constraints was presented in [11]. There, the n jobs
were to be assigned to m = 2 machines and be processed on each machine according to their
original order so that the sum of all completion times is minimized.

There exists some work on off-line scheduling of sequences. One such example is the prece-
dence constraints problem. The jobs in that problem are given as the vertices of a directed
acyclic graph. An edge (a, b) means that job a must be completed before job b is started. The
goal is to minimize the makespan. Lenstra and Rinnooy Kan proved that it is impossible to
achieve for this problem an approximation factor smaller than 4/3, unless P = NP [10]. Schu-
urman and Woeginger [13] mention this problem as the first among ten main open problems
in approximation of scheduling problems. Specifically they ask whether the problem can be
approximated up to a factor smaller than 2− 1/m, an approximation factor that is achieved by
the on-line List Scheduling algorithm [4].

The paper is organized as follows. In Section 2 we describe a PTAS for the min-max starting
time problem. In Section 3 we show how this implies that also the makespan problem in the
linear hierarchical model [2] admits a PTAS (to the best of our knowledge, a PTAS for that prob-
lem has not been presented before). In Section 4 we utilize an FPTAS for the makespan problem
in the linear hierarchical model in order to construct an FPTAS for the min-max starting time
problem when the number of machines, m, is constant.

We conclude the introduction with two observations. The first relates to the order of the
jobs: instead of assuming that the jobs are ordered in a sequence, we may assume a more gen-
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eral setting where each job is associated with a priority and fairness restricts us from scheduling
to the same machine one job after another job with a strictly smaller priority (if there are no two
jobs with the same priority then we get the sequence model that we presented above). Such a
model is suitable to cases where some jobs could have the same priority (e.g., the patients in
the clinic example are ordered not by the time at which they called in to make an appointment,
but according to their medical plan or seniority). It is easy to see that this more general setting
may always be reduced to the case of a sequence. Indeed, we may order the jobs in a sequence
according to the following rule: let J and J ′ be two jobs with priorities q, q′ and processing
times p, p′, respectively. Then J will precede J ′ in the sequence if q > q′, or if q = q′ and p < p′;
if q = q′ and p = p′, the relative position of J and J ′ in the sequence is insignificant. In other
words, in case of an equal priority, we should always schedule the smaller jobs first. Clearly,
if we rearrange the jobs scheduled to run on a given machine according to this convention, we
do not increase the min-max starting time of the schedule.

The second observation is that we may assume that all processing times are different, i.e.,
pi 6= pj for i 6= j. Such an assumption allows us to identify a job with its processing time and
it facilitates the discussion. In order to rely upon this assumption, we show how to translate
a problem instance having coinciding processing times into another one where all processing
times are different and has a close target function value. To that end, define

∆ = min{∆1,∆2} where ∆1 = min
1≤i≤n

pi and ∆2 = min
pi 6=pj

|pi − pj | .

If C = {pi`}1≤`≤c is a cluster of jobs of equal processing time, pi1 = . . . = pic , we replace that
cluster of jobs with

Č = {p̌i`}1≤`≤c where p̌i` = pi` + (`− 1) · ε∆
n2

and 0 < ε ≤ 1. By the definition of ∆, it is clear that after applying this procedure to all clusters
among {p1, . . . , pn}, we get a new sequence of perturbed jobs {p̌1, . . . , p̌n} where all processing
times are different. Moreover, as 0 ≤ p̌i − pi < ε∆

n , we conclude that the value of the target
function may increase in wake of such a perturbation by no more than ε∆. Since it is clear that
all assignments satisfy T (A) ≥ ∆ (recall that n > m), we may state the following:

Proposition 1 Let A be an assignment of the original sequence of jobs, {p1, . . . , pn}, and let Ǎ be the
corresponding assignment of the perturbed sequence of jobs, {p̌1, . . . , p̌n}. Then

T (A) ≤ T (Ǎ) ≤ (1 + ε) · T (A) , 0 < ε ≤ 1 .

In view of the above, we assume henceforth that all processing times are different and we
maintain the original notation (i.e., pi and not p̌i).
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2 A Polynomial Time Approximation Scheme

To facilitate the presentation of our PTAS, we introduce the following notations:

1. Given an assignment A, FA denotes the subset of indices of final jobs,

FA = {fk : 1 ≤ k ≤ m} . (2)

2. F c
A denotes the complement subset of indices of non-final jobs.

3. plnf denotes the size of the largest non-final job, plnf = max{pi : i ∈ F c
A}.

4. Jm+1 = {pj1 , . . . , pjm+1} denotes the subset of the m + 1 largest jobs.

The above definitions imply that one of the jobs in Jm+1 has processing time plnf.

The main loop in the algorithm goes over all jobs p ∈ Jm+1 and considers assignments in which
plnf = p. Obviously, by doing so, we cover all possible assignments. For a given value of plnf,
we may conclude that all corresponding assignments A satisfy T (A) ≥ plnf. In view of that, we
decompose the set of jobs {p1, . . . , pn} to small and large jobs as follows:

S =
{

pi : pi ≤ εplnf
}

, L =
{

pi : pi > εplnf
}

. (3)

We proceed to describe a discretization of the large jobs, Section 2.1, and then a preprocessing
of the small jobs, Section 2.2. Those two operations differ from the more standard discretization
and preprocessing steps that usually take place in non-ordered contexts, as they need to take
into account the ordering constraints. After those two steps, we are left with a problem instance
that may be solved optimally, Section 2.3.

2.1 Discretizing the large jobs

Given a value for plnf, we discretize the processing times of all large jobs that are smaller than
plnf. Namely, we treat all jobs pi for which εplnf < pi < plnf. To this end, we define a geometric
mesh on the interval [ε, 1],

ξ0 = ε ; ξi = (1 + ε)ξi−1 , 1 ≤ i ≤ q ; q :=
⌈ − lg ε

lg(1 + ε)

⌉
, (4)

and let
Ω = {ξ0 · plnf, . . . , ξq−1 · plnf} . (5)
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Then, for all p ∈ L,

p′ =

{
max{q ≤ p : q ∈ Ω} if p < plnf

p otherwise
. (6)

With this definition, we state the following straightforward proposition.

Proposition 2 For a given 0 < ε ≤ 1 and plnf ∈ Jm+1, let S and L be as in (3), and

L′ = {p′ : p ∈ L} . (7)

Let A be an assignment of the original jobs, S ∪ L, and let A′ be the corresponding assignment of the
modified jobs S ∪ L′. Then

T (A′) ≤ T (A) ≤ (1 + ε) · T (A′) . (8)

2.2 Preprocessing the small jobs

Denote the subsequence of indices of small jobs by i1 < i2 < . . . < ib, where b = |S|. We
describe below how to modify the small jobs into another set of jobs, the size of which is either
εplnf or 0. To that end, let σr denote the sum of the first r small jobs,

σr =
r∑

k=1

pik 0 ≤ r ≤ b . (9)

The modified small jobs are defined as follows:

Ŝ = {p̂i1 , . . . , p̂ib} where p̂ir =





εplnf if
⌈
σr/εplnf

⌉
>

⌈
σr−1/εplnf

⌉

0 otherwise

. (10)

Proposition 3 Let A be an assignment of the original jobs, S ∪ L, with target value T (A). Then for
every 0 < ε ≤ 1 a legal assignment, Â, of the modified jobs, Ŝ ∪ L, for which

T (Â) ≤ T (A) + 2εplnf , (11)

may be constructed in linear time.

Notation agreement. Each assignment A : {1, . . . , n} → {1, . . . , m} induces a unique function
from the set of processing times {p1, . . . , pn} to the set of machines {M1, . . . , Mm}. In view
of our assumption of distinct processing times, the converse holds as well. In order to avoid
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cumbersome notations, we identify between those two equivalent functions and use the same
letter to denote them both. For example, notations such as A(i) or A−1(k) correspond to the
index-index interpretation, while A : S ∪ L → {M1, . . . , Mm} corresponds to the job-machine
interpretation.

Proof.

The order of the machines. Consider the subset of indices of final jobs, FA, see (2). Without loss of
generality, we assume that they are monotonically increasing, i.e., f1 < f2 < . . . < fm.

Description of Â. Define the prefix subsets and sums of A,

Ak = {pi : pi ∈ S and A(i) ≤ k} , τk =
∑

pi∈Ak

pi 0 ≤ k ≤ m . (12)

Namely, Ak denotes the prefix subset of small jobs that are assigned by A to one of the first k

machines, while τk denotes the corresponding prefix sum. Next, we define

r(k) = min
{

r :
⌈

σr

εplnf

⌉
=

⌈
τk

εplnf

⌉}
0 ≤ k < m and r(m) = b , (13)

where σr is given in (9) and b is the number of small jobs. Obviously,

0 = r(0) ≤ r(1) ≤ . . . ≤ r(m) = b . (14)

Next, we define the assignment Â : Ŝ ∪ L → {M1, . . . , Mm} as follows:

Â(p) = A(p) ∀p ∈ L , (15)

namely, it coincides with A for the large jobs, while for the modified small jobs

Â(p̂ir) = k for all 1 ≤ r ≤ b such that r(k − 1) + 1 ≤ r ≤ r(k) (16)

(We refer the reader to Example 1 that illustrates the relation between Â and A.) Note that (14)
implies that (16) defines Â for all jobs in Ŝ. Finally, for each of the machines, we rearrange the
jobs that were assigned to it in (15) and (16) in an increasing order according to their index.

The prefix sets and sums of Â. Similarly to (12), we define the prefix subsets and sums for the
modified small jobs Ŝ and assignment Â:

Âk = {p̂i : p̂i ∈ Ŝ and Â(i) ≤ k} , τ̂k =
∑

p̂i∈Âk

p̂i 0 ≤ k ≤ m . (17)
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Denote the largest index of a job in Ak by it(k) and the largest index of a job in Âk by it̂(k). As
(16) implies that t̂(k) = r(k) while, by (13), r(k) ≤ t(k), we conclude that t̂(k) ≤ t(k). (e.g., in
Example 1, t(k) = 8, 9, 9 while t̂(k) = 2, 5, 9, where k = 1, 2, 3.)

The Min-Max starting time of Â. Given an assignment A : S ∪L → {M1, . . . ,Mm}we defined an
assignment Â : Ŝ ∪ L → {M1, . . . , Mm}. Let Mk be an arbitrary machine, 1 ≤ k ≤ m. The final
job on that machine, corresponding to the first assignment, is pfk

, and its starting time is

θk = `k + τk − τk−1 − pfk
, (18)

where `k is the sum of large jobs assigned to Mk. Similarly, letting p̂f̂k
denote the final job in

that machine as dictated by the second assignment, its starting time is

θ̂k = `k + τ̂k − τ̂k−1 − p̂f̂k
. (19)

In order to prove (11) we show that

θ̂k ≤ θk + 2εplnf . (20)

First, we observe that in view of the definition of the modified small jobs, (10), and r(k), (13),
τ̂k = εplnf ·

⌈
τk/εplnf

⌉
. Consequently,

τ̂k − εplnf < τk ≤ τ̂k . (21)

Therefore, by (18), (19) and (21), it remains to show only that

pfk
− p̂f̂k

≤ εplnf (22)

in order to establish (20). If pfk
∈ S then (22) is immediate since then

pfk
− p̂f̂k

≤ pfk
≤ εplnf .

Hence, we concentrate on the more interesting case where pfk
∈ L. In this case the job pfk

is
assigned to Mk also by Â. We claim that it is in fact also the final job in that latter assignment,
namely,

p̂f̂k
= pfk

. (23)

This may be seen as follows:
◦ The indices of the modified small jobs in Mk are bounded by it̂(k).
◦ As shown earlier, it̂(k) ≤ it(k).
◦ it(k) < fk since the machines are ordered in an increasing order of fk and, therefore, the

largest index of a small job that is assigned to one of the first k machines, it(k), is smaller than
the index of the final (large) job on the kth machine, fk.
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◦ The above arguments imply that the indices of the modified small jobs in Mk cannot
exceed fk.

◦ Hence, the rearrangement of large and modified small jobs that were assigned to Mk by
Â keeps job number fk as the final job on that machine.

This proves (23) and, consequently, (22). ¤

Proposition 4 Let Â be an assignment of the modified jobs, Ŝ ∪ L, with target value T (Â). Then for
every 0 < ε ≤ 1 a legal assignment, A, of the original jobs, S ∪ L, such that

T (A) ≤ T (Â) + 2εplnf , (24)

may be constructed in linear time.

Remark. Proposition 4 complements Proposition 3 as it deals with the inverse reduction, from
a solution in terms of the modified jobs to a solution in terms of the original jobs. Hence the
similarity in the proofs of the two complementary propositions. Note, however, that the direc-
tion treated in Proposition 4 is the algorithmically important one (as opposed to the direction
treated in Proposition 3 that is needed only for the error estimate).

Proof. Due to the similarity of this proof to the previous one, we focus on the constructive part
of the proof. We first assume that the indices of the final jobs, as dictated by Â, are monotoni-
cally increasing, namely, f̂1 < f̂2 < . . . < f̂m. Then, we consider the prefix subsets and sums of
Â,

Âk = {p̂i : p̂i ∈ Ŝ and Â(i) ≤ k} , τ̂k =
∑

p̂i∈Âk

p̂i 0 ≤ k ≤ m , (25)

and define

r(k) = min
{

r :
⌈

σr

εplnf

⌉
=

τ̂k

εplnf

}
0 ≤ k < m and r(m) = b , (26)

where σr and b are as before. Note that τ̂k is always an integral multiple of εplnf and 0 = r(0) ≤
r(1) ≤ . . . ≤ r(m) = b. Finally, we define the assignment A : S ∪L → {M1, . . . ,Mm} as follows.
A coincides with Â on L; as for the small jobs S, A is defined by

A(pir) = k for all 1 ≤ r ≤ b such that r(k − 1) + 1 ≤ r ≤ r(k) (27)

(this is exemplified in Example 1 below.) The jobs in each machine – large and small – are then
sorted according to their index.
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The proof of estimate (24) is analogous to the proof of (11) in Proposition 3. In fact, if
we take the proof of (11) and swap there between every hat-notated symbol with its non-hat
counterpart (i.e., A ↔ Â, pi ↔ p̂i, it(k) ↔ it̂(k) etc.), we get the corresponding proof of (24).

Proposition 3 offered an ”assignment translation” from A to Â, while Proposition 4 offered
a translation in the opposite direction. Note that the latter translation is not necessarily the
inverse of the former one. This is illustrated by the following example.

Example 1. We concentrate here on the small jobs since the assignment of the large jobs remains
invariant under the translations that are described in Propositions 3 and 4. For the sake of
clarity, we divide all job sizes by εplnf. Assume that there are 9 small jobs of sizes

S = (pi1 , . . . , pi9) = (0.5, 0.6, 0.7, 0.8, 0.9, 0.1, 0.2, 0.3, 0.4) .

Then, in view of (10), the modified small jobs are

Ŝ = (p̂i1 , . . . , p̂i9) = (1, 1, 0, 1, 1, 0, 0, 1, 0) .

Assume m = 3 machines and the following assignment A:

M1 ← (pi1 , pi4 , pi8) = (0.5, 0.8, 0.3)
M2 ← (pi2 , pi3 , pi9) = (0.6, 0.7, 0.4)
M3 ← (pi5 , pi6 , pi7) = (0.9, 0.1, 0.2)

.

The corresponding assignment Â would then be, (16),

M1 ← (p̂i1 , p̂i2) = (1, 1)
M2 ← (p̂i3 , p̂i4 , p̂i5) = (0, 1, 1)
M3 ← (p̂i6 , p̂i7 , p̂i8 , p̂i9) = (0, 0, 1, 0)

.

Finally, translating Â into an assignment Ā of the original jobs according to (27) we get

M1 ← (pi1 , pi2) = (0.5, 0.6)
M2 ← (pi3 , pi4 , pi5) = (0.7, 0.8, 0.9)
M3 ← (pi6 , pi7 , pi8 , pi9) = (0.1, 0.2, 0.3, 0.4)

.

Note that Ā 6= A. Also, we see that T (A) = 1.3, T (Â) = 1 and T (Ā) = 1.5.

2.3 The algorithm

In the previous subsections we described two modifications of the given jobs that have a small
effect on the value of the target function, Propositions 2–4. The first modification translated
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the values of the large jobs that are smaller than plnf into values from a finite set Ω, (5). The
second modification replaced the set of small jobs with modified small jobs of size either 0 or
ξ0 · plnf = ε · plnf. Hence, after applying those two modifications, we are left with job sizes p

where either p ≥ plnf or p ∈ Ω ∪ {0}. After those preliminaries, we are ready to describe our
algorithm.

THE MAIN LOOP

1. Identify the subsequence of m + 1 largest jobs,

Jm+1 = {pj1 , . . . , pjm+1} , pj1 > pj2 > . . . > pjm+1 . (28)

2. For r = 1, . . . ,m + 1 do:

(a) Set plnf = pjr .

(b) Identify the subsets of small and large jobs, (3).

(c) Discretize the large jobs, L 7→ L′, according to (6)+(7).

(d) Preprocess the small jobs, S 7→ Ŝ.

(e) Solve the problem in an optimal manner for the modified sequence of jobs Ŝ ∪ L′,
using the core algorithm that is described below.

(f) Record the optimal assignment, Ar, and its value, T (Ar).

3. Select the assignment Ar for which T (Ar) is minimal.

4. Translate Ar to an assignment A in terms of the original jobs, using Propositions 2 and 4.

5. Output assignment A.

THE CORE ALGORITHM

The core algorithm receives:
(1) a value of r, 1 ≤ r ≤ m + 1;
(2) a guess for the largest non-final job, plnf = pjr ;
(3) a sequence Φ of r − 1 jobs pj1 , . . . , pjr−1 that are final jobs;
(4) a sequence Γ of n− r jobs, the size of which belongs to Ω ∪ {0}.

It should be noted that the given choice of plnf splits the remaining n− 1 jobs from Ŝ ∪ L′ into
two subsequences of jobs: those that are larger than plnf (i.e., the r − 1 jobs in Φ that are non-
modified jobs) and those that are smaller than plnf (i.e., the n − r jobs in Γ that are modified
jobs, either large or small).
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Step 1: Filling in the remaining final jobs.

The input to this algorithm dictates the identity of r − 1 final jobs, Φ. We need to select the
additional m− r + 1 final jobs out of the n− r jobs in Γ.

Lemma 1 The essential number of selections of the remaining m− r + 1 final jobs out of the n− r jobs
in Γ is polynomial in m and independent of n.

Proof. Consider the decomposition of Γ into types,

Γ = ∪q−1
η=−1Γη where Γη = Γ ∩ {ξη · plnf} 0 ≤ η < q and Γ−1 = Γ ∩ {0} .

Let A be an assignment of the given modified jobs that minimizes T (A). Let Bη,−1 ≤ η ≤ q−1,
be the set of final jobs of type η, i.e., Bη = Γη ∩FA. We claim that if there exist other jobs of type
η, i.e., Γη \ Bη 6= ∅, we may rearrange the Γη-jobs so that the jobs in Bη have largest indices.
Indeed, assume that the final job in machine M1 is of type η and its index is i1 and that machine
M2 has a non-final job of the same type η whose index is i2 > i1. Swapping between those
two jobs would not change the value of T (A) since they are of equal size. Moreover, such a
swapping is permissible since in machine M1 we replace the final job with another job of a
higher index, while in machine M2 we replace a non-final job with another one of a smaller
index (the latter operation is legal since we may rearrange the non-final jobs in M2).

In view of the above, it is sufficient to review only selections where the selected jobs of a given
type η have the highest indices among the jobs of that type, Γη. The number of such selections
equals

#{ (b−1, . . . , bq−1) ∈ N q+1 :
q−1∑

η=−1

bη = m− r + 1 , 0 ≤ bη ≤ |Γη| }

and, consequently, may be bounded by (m + 1)q+1. ¤

Step 2: A makespan problem with constraints.

Assume that we selected in Step 1 the remaining m − r + 1 final jobs and let FA = {fk : 1 ≤
k ≤ m} be the resulting selection of final jobs, fk being the index of the selected final job in Mk.
Without loss of generality, we assume that f1 < f2 < . . . < fm. Given this selection, an optimal
solution may be found by solving the makespan problem on the remaining n−m jobs with the
constraint that a job pi may be assigned only to machines Mk where i < fk.

Next, define Γ∗η to be the subset of non-final jobs from Γη, −1 ≤ η ≤ q − 1, and let Γ∗q =
{plnf}. For each 1 ≤ k ≤ m and −1 ≤ η ≤ q, we let zk

η be the number of jobs from Γ∗η whose
index is less than fk. Finally, we define for each 1 ≤ k ≤ m the vector zk = (zk

−1, . . . , z
k
q )

13



that describes the subset of non-final jobs that could be assigned to at least one of the first k

machines. In particular, we see that 0 = z0 ≤ z1 ≤ . . . ≤ zm where the inequality sign is to be
understood component-wise and zm describes the entire set of non-final jobs, F c

A. In addition,
we let P(zk) = {z ∈ N q+2 : 0 ≤ z ≤ zk} be the set of all sub-vectors of zk.

Step 3: Shortest path in a graph.

Next, we describe all possible assignments of those jobs to the m machines using a layered
graph G = (V, E). The set of vertices is composed of m + 1 layers, V = ∪m

k=0Vk, where,

Vk = P(zk) 0 ≤ k < m and Vm = {zm} . (29)

We see that the first and last layers are composed of one vertex only, {z0 = 0} and {zm} respec-
tively, while the intermediate layers are monotonically non-decreasing in size corresponding
to the non-decreasing prefix subsets P(zk).

The set of edges is composed of m layers, E = ∪m
k=1Ek where Ek is defined by Ek = { (u,v) ∈

Vk−1 × Vk : u ≤ v }. It is now apparent that all possible assignments of jobs from F c
A to the m

machines are represented by all paths in G from V0 to Vm. Assigning weights to the edges of

the graph in the natural manner, w[(u,v)] =
q∑

η=0
(vη − uη) · ξη · plnf, where {ξη}q−1

η=0 are given in

(4) and ξq = 1, we may define the cost of a path (u0, . . . ,um) ∈ V0 × . . .× Vm as

T [(u0, . . . ,um)] = max{w[(uk−1,uk)] : 1 ≤ k ≤ m} .

In view of the above, we need to find the shortest path in the graph, from the source V0 to the
sink Vm, and then translate it to an assignment in the original jobs.

Step 4: Translating the shortest path to an assignment of jobs.

For 1 ≤ k ≤ m and −1 ≤ η ≤ q, let uk
η be the number of jobs of type η that were assigned by the

shortest path to machine k. Then assign the uk
η jobs of the lowest indices in Γ∗η to machine Mk

and remove those jobs from Γ∗η. Finally, assign the final jobs of indices fk, 1 ≤ k ≤ m.

2.4 Performance estimates.

Theorem 1 For a fixed 0 < ε ≤ 1, the running time of the above described algorithm is polynomial in
m and n.

Proof. We start with estimating the running time of the core algorithm. The outer loop in the
core algorithm goes over all possible selections of the complement set of final jobs. The number
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of such selections is O((m + 1)q+1), Lemma 1. For a given selection, we need to sort the final
jobs according to their index – Θ(m log m) time steps – and then construct the graph and find
the shortest path in that graph. The cost of this graph procedure is bounded by Θ(|V | + |E|).
The size of each layer in the graph, |Vk|, 0 < k < m, is bounded by (n + 1)q+2. Consequently,
|V | ≤ 2+(m−1)·(n+1)q+2, while |E| ≤ m·(n+1)2(q+2). Finally, the last step of recovering a job
assignment from the shortest path has a cost of Θ(n). As all of the costs above are polynomial
in both n and m, we conclude that the running time of the core algorithm is polynomial in n

and m.

This implies that the entire algorithm has a polynomial running time:

1. Identifying the m + 1 largest jobs and sorting them: Θ(n + m log m) steps.

2. A loop over all possible values of plnf = pjr ∈ Jm+1: m + 1 steps.

(a) Define L′ and Ŝ – Θ(n) steps.

(b) Apply the core algorithm – polynomial in n and m.

3. Translating the assignment of modified jobs into an assignment of the original jobs – Θ(n).

¤

Theorem 2 Let T o be the value of an optimal solution to the given Min-Max Starting Time Problem.
Let A be the solution that the above described PTAS yields for that problem. Then for all 0 < ε ≤ 1,
T (A) ≤ (1 + 35ε)T o.

Proof. Let A be an optimal assignment and denote T o = T (A). After the S ∪ L 7→ Ŝ ∪ L′ mod-
ification of the original jobs, the value of the assignment Â that corresponds to A is bounded
by T (Â) ≤ (1 + 2ε)T o, as implied by Propositions 2 and 3. The shortest path solution may
yield a different assignment, Ǎ, such that T (Ǎ) ≤ T (Â). Translating that assignment into an
assignment Ā in terms of the original jobs, we may conclude that T (Ā) ≤ (1+ ε) · (1+2ε)T (Ǎ),
Propositions 2 and 4. Ā is the assignment that our PTAS outputs. Summarizing all of the above,
we conclude that T (Ā) ≤ (1 + ε) · (1 + 2ε)2 · T o ≤ (1 + 17ε)T o for all 0 < ε ≤ 1.

Finally, taking into account the possibility of collisions in the original sequence of jobs, we
should multiply the latter factor of (1 + 17ε) by (1 + ε) which is a bound on the price incurred
by the procedure that removes collisions, Proposition 1. That yields a multiplicative factor of
(1 + 35ε) for all 0 < ε ≤ 1. ¤
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3 A PTAS for the Makespan Problem in the Linear Hierarchical Model

In the unrelated machine model, the jobs and machines are arranged in a full weighted bipartite
graph, G = (V, E), where V = J ∪M, J is the set of input jobs and M is the set of machines,
E = J × M, and the weight of an edge e = (Ji, Mk) is the processing time of job Ji on
machine Mk. If for each of the nodes Ji ∈ J , w(Ji,Mk) ∈ {pi,∞} for all Mk ∈ M, we get the
restricted assignment model. In that model, each job is associated with a subset of permissible
machines and it may be executed only on one of those machines, where its processing time on
a permissible machine is always pi. If M is partially ordered and whenever a job is executable
on a given machine it is also executable on machines that are higher in the hierarchy, we get the
hierarchical model. Finally, if the hierarchy is linear, in the sense that M1 ≤ M2 ≤ · · · ≤ Mm, we
get the linear hierarchical model [2]. In such a model, each of the given jobs may be assigned
to only a suffix subset of the machines, i.e., {Mk, . . . , Mm} for some 1 ≤ k ≤ m. Bar-Noy et al
[2] studied the makespan problem in several variants of the hierarchical model and designed
competitive algorithms for their solution. Here we show that the makespan problem in the
linear hierarchical model may be reduced to the min-max starting time problem.

Proposition 5 The makespan problem in the linear hierarchical model is reducible to the min-max start-
ing time problem.

Proof. We denote herein the two problems by P1 and P2 respectively and we show that P1 is
reducible to P2. Let J be the set of input jobs to P1. We decompose it into J =

⋃m
k=1 Jk where

Jk is composed of all jobs for which the permissible suffix subset of machines is {Mk, . . . , Mm},
1 ≤ k ≤ m. We define Ĵ = J ∪ {tk}m

k=1 where tk are jobs of a very large processing time, and
we order the jobs in Ĵ , thus turning it into a sequence, in the following manner,

(J1, t1,J2, t2, . . . ,Jm, tm) ,

where the inner order within each of the subsets Jk is arbitrary. We then consider problem P2
with the input sequence Ĵ .

An optimal solution of the latter problem will obviously place tk to be the last job in one of
the machines, for all 1 ≤ k ≤ m. Without loss of generality, we may assume that tk is the last
job on machine Mk, 1 ≤ k ≤ m. The way that we ordered the sequence of jobs Ĵ implies that
such an optimal solution induces a legal solution for P1 by removing the m largest jobs. Hence,
the optimal min-max starting time for P2 is bounded from below by the optimal makespan for
P1.
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On the other hand, any optimal solution of P1 may be translated to a legal solution for P2
by adding tk as the last job on machine Mk, 1 ≤ k ≤ m, and rearranging the original jobs on
that machine according to their arbitrary order in the sequence Ĵ ; such a rearrangement has no
effect on neither the makespan in P1, nor the min-max starting time in P2. Hence, the optimal
makespan for P1 is bounded from below by the optimal min-max starting time for P2.

Therefore, the optimal makespan for P1 equals the optimal min-max starting time for P2,
and P2 may be solved by the above simple reduction to P1. ¤

Corollary 1 The makespan problem in the linear hierarchical model admits a polynomial time approxi-
mation scheme.

4 A Fully Polynomial Time Approximation Scheme for a Constant m

In this section we design an FPTAS for the case where m is constant. This construction is
relatively simple. Let m be a given constant. Then there are O(nm) possibilities of selecting
the m final jobs. Assume that the selected final jobs are FA = {fk : 1 ≤ k ≤ m} and that
f0 = 0 < f1 < f2 < . . . < fm. Such a selection induces a partition of the remaining jobs into m

subsets,
F c

A = ∪m
k=1Jk where Jk = {i : fk−1 < i < fk} .

The jobs of Jk may be assigned only to a suffix subset of machines, {Mk, . . . , Mm}. The goal
now is to assign the jobs from F c

A so that the above constraints are respected and the makespan
is minimized. But this latter problem is the makespan minimization problem in the linear hier-
archical model, which, in turn, is a special case of the unrelated machines model, as discussed
in Section 3. Horowitz and Sahni [8], and later Jansen and Porkolab [9], designed an FPTAS for
the makespan problem in that latter model. We may use that FPTAS as the core algorithm in
our setting in order to approximate the optimal solution subject to a given selection of m final
jobs. Repeating this procedure for each of the O(nm) selections of final jobs and choosing the
assignment that achieves the minimal cost, we get an approximate solution to our problem in
time that is polynomial in n and 1

ε .

Corollary 2 The min-max starting time problem, with a fixed number of machines m, admits a fully
polynomial time approximation scheme.
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