
π−Calculus with Noisy Channels

Mingsheng Ying∗

State Key Laboratory of Intelligent Technology and Systems,

Department of Computer Science and Technology,

Tsinghua University, Beijing 1000815, China

Email: yingmsh@tsinghua.edu.cn

Abstract

It is assumed in the π−calculus that communication channels are always
noiseless. But it is usually not the case in the mobile systems that developers
are faced with in the real life. In this paper, we introduce an extension of π,
called πN , in which noisy channels may be present. A probabilistic transition-
al semantics of πN is given. The notions of approximate (strong) bisimilarity
and equivalence between agents in πN are proposed, and various algebraic laws
for them are established. In particular, we introduce the notion of stratified
bisimulation which is suited to describe behavior equivalence between infinite
probabilistic processes. Some useful techniques for reasoning about approxi-
mate bisimilarity and equivalence are developed. We also introduce a notion
of reliability in order to compare different behaviors of an agent in π and πN .
It is shown that reliability is preserved by the basic combinators in π. A link
between reliability and bisimulation is given. This provides us with a uniform
framework in which we can reason about both correctness properties and relia-
bility of mobile systems. Also, a potential way of combing value-passing process
algebras and Shannon’s information theory is pointed out.

Key Words: Process algebras, Shannon’s information theory, Mobile pro-
cess; Communication; Noisy channel; Probability distribution, Transitional se-
mantics; Bisimulation; Equivalence; Reliability

Contents

1. Introduction .. 2

1.1. Overview of the Paper ... 5

1.2. Related Works ... 7

∗This work was partly supported by the National Foundation of Natural Sciences of China (Grant
No: 60273003, 60321002, 601596321) and the Key Grant Project of Chinese Ministry of Education
(Grant No: 10403)

1

2. π−Calculus .. 9

3. Noisy Channels ... 12

4. Transitional Semantics of πN .. 15

5. Strong Bisimilarity... 34

6. Strong (D-)Equivalence ... 53

7. Stratified (Strong) Bisimilarity .. 60

8. Reliability of Agents in π−calculus ... 63

9. Conclusion ... 70

Acknowledgement .. 73

References ... 74

1. Introduction

The studies of communication and concurrency in computer science began in the
late of 1960’s and the early of 1970’s. Since then various models and theories of con-
currency have been introduced, including Petri nets [47], CSP [34,35], CCS [41,42]
and ACP [15]. Among them, CCS is one of the most mathematically developed.
Interactive systems whose components communicate may be represented very well
in CCS.

The recent development of information technology brings us new challenges.
Many systems in the information world are much more complicated than interactive
systems. Not only can their subsystems communicate, but they are also able to
change their communication linkages and then their topological structures. Such
systems are usually called mobile systems. It is well known that CCS cannot ex-
press mobility directly. Thus, it becomes a very important problem in theoretical
computer science to find satisfactory models of mobile systems. Indeed, as early
as in 1986, not long after the invention of CCS, Engberg and Nielsen [26] extend-
ed CCS to include mobility. In the late of 1980’s, Milner, Parrow and Walker [44]
successfully established a basic calculus, namely, π−calculus, of mobile processes.
The π−calculus has a much greater expressiveness than CCS, and agents modelled
in π may not only communicate with each other but also dynamically reconfigure
their communication topology. After [44], many variants of π have been proposed;
for example, Boudol [17] and Honda and Tokoro [36] introduced the asynchronous
π−calculus, a subset of π in which communication is asynchronous in the sense
that the actions of sending a message and receiving it do not need to occur at the
same time. Also, some higher-order generalizations have been introduced; see [50],
Chapters 12 and 13 for an excellent exposition.

The capacity of dynamic reconfiguration of agents in the π−calculus is realized
by passing communication linkages along channels connecting the involved agents. It
is worth noting that in the π−calculus there is an implicit but essential assumption:

2

all communication channels are noiseless. This means that what is received at the
output of a channel is exactly what was sent through it. However, it is usually not
the case when we consider communication in the real world, and channels are often
not completely reliable.

The aim of this paper is to introduce a new version of the π−calculus, called
πN , in which noisy channels are allowed. The language of πN is the same as that of
π. The essential difference between π and πN lies behind the syntax. Both π and
πN presuppose a set of names, each of which is used to identify a communication
channel. As mentioned above, in π it is assumed that each channel is noiseless,
although not explicitly stated. But in πN we are going to deal with a more realistic
situation where noise may reside in some channels. According to a basic idea from
Shannon’s information theory [2, 53], noise may be described in a statistic way.
Thus, we associate to each pair of (channel) names x and y a probability distribution
px(·|y) over the output alphabet (here it is just the set of names): for any name
z, px(z|y) indicates the probability that z is received from channel x when y is
sent along it. Under this new assumption for channels, we have to reexamine the
behavior of agents in π, and this enables us to present a transitional semantics of
πN . The transitional semantics of πN is given in terms of probabilistic transition
systems, and probability information arises from noise in channels. On the other
hand, the π−calculus possesses a non-probabilistic structural operational semantics.
The difference between π and πN is mainly caused by the actions performed by
an output agent xy.P . In the π−calculus this agent will perform the transition

xy.P
xy−→ P , which means that name y is sent through channel x and the same

name will be received at the output of the channel. However, in the πN−calculus
the transition performed by it would be

xy.P
xz[px(z|y)]−→ P

This probabilistic transition indicates that although the name sent by the agent is
y, the name received as output on channel x might be the name z, different from y,
with the probability px(z|y).

Various behavioral equivalences are important concepts in process algebras be-
cause they provide a formal description that one system implements another. In
[44], the notions of strong bisimilarity and equivalence were generalized into the
π−calculus. Furthermore, they were elaborated and refined by Sangiorgi, Walker
and Boreale [16,50]. In this paper, we want to extend these notions of equivalence
into the πN−calculus. Note that an agent in πN is represented by a probabilistic
transition system. In the literature, there have been two kinds of bisimulation for
probabilistic processes. The first one is the exact version of probabilistic bisimula-
tion [39], which equates two processes whenever they perform the same actions with
the same probabilities. The other is the approximate (and ”more probabilistic”)
version: two processes may be equated by a bisimulation up to a certain degree of d-
ifference in the probabilistic transitions [19, 25, 59]. Here, we adopt an approximate
version of probabilistic bisimulation, and the notion of λ−bisimulation is introduced

3

in πN . In a λ−bisimulation, an action of a process should be matched by the same
action of another process related to it, but the occurrence probabilities of the action
in these two processes may have a difference not exceeding the given threshold λ.
It is obvious that the notion of λ−bisimulation gives us a continuous spectrum of e-
quivalence relations with parameter ranging from 0 to 1. At the top of this spectrum
is the exact version of probabilistic bisimulation, and to those agents that cannot be
equated by an exact probabilistic bisimulation this spectrum will assign a similarity
degree less than 1.

Various algebraic laws in the π−calculus were established under the assumption
that all communication channels are noiseless. These laws provide us with a basis
for reasoning about systems modelled in π. One of the main purposes of the present
paper is to carefully reexamine these laws in the situation of noisy channels. It
is found that some of them are still valid in πN ; for example, commutativity and
associativity of summation and parallel composition. However, other laws are no
longer true in general, and their validity depend on the nature of noise in the involved
channels; see Propositions 6(2), (3), 7(8) and (12) for example.

Behavioral equivalence are used to compare different processes. The πN−calculus
gives us a chance to compare processes from a new angle, in a sense orthogonal to that
of behavioral equivalence. We imagine that the ideal behavior of a mobile system is
described as an agent P in π. However, communication between its subsystems may
be subject to certain disturbance from the environment so that its behavior is not
always reliable. Thus, the same agent P can be used to model the real behavior of
this system, but in the different framework of πN . Now what we need to compare is
the behaviors of the same agent in different environments, depicted respectively by
the calculus π and πN . A formalization of this issue leads to a notion of reliability.

It is very interesting to note that as early as in 1992 N. Francez [28] already
noted the necessity of combining correctness of programs with reliability, and he
pointed out:

”Sometimes, the ’very’ idea of program verification, using any mathematical or log-
ical method, is criticized. The main argument is that, when programs are actually
executed on electronic computers, the prerequisites for successful application (listed
in [28], pages 4 and 16) cannot be assumed to hold. Computers, being physical de-
vices, cannot be assumed to behave reliably. In addition, standard implementations
at best approximate the formal definition of semantics. Thus, no logical conclusion
can be drawn about the real-life behavior of programs, no more than about any other
natural phenomena, with absolute certainty.”

To the author’s best knowledge, however, up to now formal methods (for reason-
ing about correctness properties of systems) and software reliability are still studied
separately. Nevertheless, the πN−calculus gives a possibility of putting them nat-
urally into a single picture. Suppose that we are designing a mobile system and

4

write down its specification as an agent S in π. Furthermore, we suppose that an
ideal implementation is described also in π as agent I. With the mathematical tools
provided by the π−calculus, we may prove correctness of I with respect to S by es-
tablishing a behavioral equivalence between them. However, this is still not enough
to guarantee that a real physical implementation built according to I will be prop-
erly correct in the sense that it behaves completely as specified by S. The reason is
that noise in communication between components of the physical implementation is
entirely ignored in correctness reasoning conducted in π. Indeed, a direct and nat-
ural modelling of channel noise is not easy to find in the π−calculus although the
π−calculus has proved, time and again, its ability to encode almost any phenomena,
and a noisy channel could probably be modelled by a process that takes the original
message as input and produces as output a nondeterministic choice of all possible
channel names that could be produced as the result of noise. On the other hand,
the πN−calculus gives rise to a mechanism suited for this purpose. Using formal
devices presented in this paper, we are able to establish certain reliability of I in the
environment of noisy channels. Thus, by combining π and πN it is possible to derive
a useful connection between the specification and the real implementation and to
verify certain correctness properties of the real implementation with respect to the
specification. The situation exposed here may be visualized by the following figure:

Specification
(agent S in π)

bisimilarity
(correctness)
⇐⇒

Ideal
implementation
(agent I in π)

m reliability

Real
implementation
(agent I in πN)

Fig.1

1.1. Overview of the paper

The present paper is an elaboration of the ideas exposed above, and the re-
mainder of it is organized as follows. In Section 2, we recall the syntax and the
structural operational semantics of π. As we mentioned above, the syntax of πN is
the same as that of π. Thus, this section also fixes the syntactic notations needed
in what follows. The presentation of the operational semantics of π gives us a basis
for comparing it with that of πN .

In Section 3, we review the mathematical model of noisy channels from Shannon’s

5

information theory. What is concerned in this paper is the simplest, memoryless
channels, but a definition of more general channels with memory is also presented
because it will be used in the studies of some generalizations and variants of πN ,
say higher-order πN or polyadic version of πN (see some comments on pages 13 and
14).

In Section 4, we start our study on the πN−calculus by presenting its structural
operational semantics. This semantics is given in terms of probabilistic transition
systems. Certain distinctions between the transitional rules in π and in πN are
explained. Several examples are given, and the behaviors of some agents in πN are
carefully compared with their behavior in π. Also, several lemmas on probabilistic
transitions of agents in πN are presented. They generalizes Lemmas 1 to 16 in [44,
II] and Lemmas 1.4.4 and 1.4.16 in [50], and they will be widely used in establishing
some key properties of bisimulation and reliability.

The notions of λ−strong bisimulation and strong bisimulation degree are intro-
duced in Section 16. Also, various properties of them are established there. In
particular, it is shown that λ−bisimilarity is preserved by the basic combinators in
π (and so in πN), and many equational laws for λ−bisimilarity are proved. What
should be emphasized is that the corresponding results in the π−calculus are valid
universally, but in the πN−calculus some of them need to impose certain constraints
on the nature of communication channels. It is especially interesting that πN en-
joys an expansion law for unfolding parallel composition, but it cannot be expressed
in the syntax of π (and πN). In order to present this expansion law, we have to
introduce a probabilistic extension of the language of the π−calculus.

We propose the concept of λ−strong equivalence in Section 6. It is defined to be
a λ−equivalence under certain substitutions of names. Also in this section, various
algebraic laws for λ−equivalence are derived, and they generalized the main results
of Section 4 in [44, II]. Of course, certain constraints on communication channels
are necessary too in order to guarantee the validity of these results. An expansion
laws with respect to strong equivalence is also obtained.

It is proved that λ−bisimilarity is preserved by some substitutions of a single
name (see Proposition 16). However, in doing so a quite strict condition on relevant
communication channels has to be added. In order to remove part of this condition,
in Section 7 we introduce the notion of (λ, µ)−stratified bisimulation and use it to
give a generalization of Proposition 16. An example is presented to illustrate that
(λ, µ)−stratified bisimilarity is properly weaker than λ−bisimilarity. The concept
of λ−bisimulation up to µ−bisimilarity is proposed in Section 16, but it can be
applied to derive λ−bisimilarity between certain agents merely for the case of µ =
1. Now (λ, µ)−stratified bisimilarity gives an opportunity of applying the proof
technique of λ−bisimulation up to µ−bisimilarity with µ < 1. It should be pointed
out that (λ, µ)−stratified bisimulation still needs an elaboration, and its power is to
be exploited. We believe that it will become a suitable tool in dealing with recursive
constructs in πN and other probabilistic process algebras.

Section 8 is devoted to develop the theory of reliability in the πN−calculus.

6

The notions of λ−reliability bisimulation and reliability degree are introduced. It
is shown that two agents bisimilar both in π and in πN have the same reliability
degree. This shows us an interesting link from reliability to bisimilarity. In addition,
some algebraic properties of reliability are derived, and we prove that reliability is
preserved by the basic combinators of π under certain conditions. The latter can be
seen as a logical support to the modularization technique in analyzing reliability of
mobile systems.

Section 9 is the concluding section, several interesting problems for further re-
search are proposed there, and in particular, a potential way to combine value-
passing process algebras with Shannon’s information theory is pointed out.

1.2. Related works

To conclude the introduction, we briefly expose some related works. This will
help us in clarifying the connection of this paper to the existing literature.

The basic idea of developing an extension of the π−calculus in which noisy
communication channels are allowed was already proposed in the concluding section
of the author’s paper [59] as a problem for further studies, and the first part of the
present paper is just an elaboration of this idea. But the idea of reliability of agents
in π and its potential link to Shannon’s information theory was not mentioned there.

Several formal models of systems with unreliable communication channels have
been studied in the literature. In a series of papers [2-8], Abdulla et al. considered
systems consisting of finite-state processes that communicate via unbounded FIFO
channels which may nondeterministically lose messages. These systems are called
lossy channel systems (LCSs), and they are able to model link protocols such as the
Alternating Bit Protocol and HDLC. Various verification problems for this class of
systems were solved in [2-8]. Since then, lossy channel systems have been investigated
by some other authors; for example, see [11, 38, 51]. On the other hand, in [14]
Berger and Honda augmented the asynchronous π−calculus with a timer and with
locations, message-loss, location failure and the ability to save process state, and in
[12, 13] Berger introduce πmlt, the asynchronous π−calculus with timer and message
failure. It is easy to see that noise in communication channels considered in the
current paper is different from the unreliability of channels dealt with in [2-8, 12-
14].

This paper is based on Milner, Parrow and Walker’s original version [44] of the
π−calculus because the author believes it is the most popular in the process algebra
community. A clear and thorough comparison of π and πN is made in Sections 4-8.
This should help us in understanding the major difference between them. Of course,
it is possible to introduce noisy channels into various variants of the π−calculus and
its higher-order generalizations.

As pointed out above, in the structural operational semantics of πN an agent is
represented by a probabilistic transition system. The study of probabilistic process

7

algebras has a history of more than ten years, and there have been a considerable
number of papers in the literature devoted to this topic. For example, Hansson
and Jonsson [31] proposed a probabilistic extension of CCS, Seidel [52] presented
a probabilistic variant of CSP, and Baeten, Bergstra and Smolka [3] introduced a
probabilistic counterpart of ACP.

Some probabilistic extensions of the π−calculus have been proposed by Herescu,
Palamidessi, Lu and Wei [32, 33, 40]. In [32, 33], a notion of probabilistic choice
was introduced into the asynchronous π−calculus, and an operational semantics
was defined, which distinguishes between probabilistic choice, made internally by
the process, and nondeterministic choice, made externally by an adversary sched-
uler. In [40], only probabilistic choice was considered, and a so-called risk semantics
was introduced. Roughly speaking, risk semantics is a probabilistic generalization of
Hoare’s failure semantics [21, 35]. In addition, Priami [48] presented a random ex-
tension of the π−calculus. The essential difference between probabilistic π−calculus
and random π−calculus is that time in the former is treated as a continuous (and
explicit) variable, but in the latter it is seen as a discrete (and implicit) variable.

What we have to emphasize is that πN is essentially different from the probabilis-
tic process algebras in the previous literature. A common way of accommodating
probability information in various probabilistic extensions of process algebras is to
add some probabilistic constructs, such as probabilistic choice, into the languages
of non-probabilistic process algebras. But it may be observed that noisy channels
cannot be explicitly represented in the syntax of πN . Instead, they are indicated
by an assumption behind the language. On the other hand, translations of the
πN−calculus and a probabilistic extension of the π−calculus into each other seems
possible.

In order to provide some useful mathematical tools for describing approximate
correctness and evolution of concurrent systems, the author [57] tried to develop
topology in process algebras. In particular, he and Wirsing [61] introduced the
notions of λ−bisimulation and approximate bisimilarity in CCS equipped with a
metric on its set of action names. These notions were further applied by the author to
probabilistic processes [59]. It was noted by Feng and Zhang [27] that the definition
of λ−bisimulation given in [59] needs a slight modification because it is not preserved
by summation. This paper follows [69, 61] and use λ−bisimilarity to act as an
approximate behavioral equivalence between agents in πN . It should be pointed
out that the idea of approximate bisimilarity has also been proposed by some other
researchers. For example, Desharnais, Gupta, Jagadeesan and Panangaden [25]
formalized a notion of approximate bisimilarity by defining a metric on labelled
Markov processes, and van Breugel and Worrell [19] gave a co-inductive definition
of approximate bisimilarity using the Hutchinson metric on probability measures. In
addition, a related idea of approximate correctness has been applied by the author
to probabilistic sequential programs [60].

8

2. π−Calculus

For convenience of the reader, in this section we recall from [44] the syntax and
the transitional semantics of the π−calculus. Another purpose of this section is to
fix notations used in the sequel.

We presuppose in the π−calculus a countably infinite set N of names, and we
shall let u, v, w, x, y, z, ..., with or without subscripts, act as meta-variables ranging
over names. The set N is taken to be infinite mainly for the purpose of avoiding name
capture uniformly in the theoretical development. Also, we assume a set K of agent
identifiers, each assigned an arity, a non-negative integer. We shall use A,B,C, ... to
range over agent identifiers. And, we employ P,Q,R, ... to serve as meta-variables
of agent or process expressions. Then the syntax of π may be presented by the
following BNF grammar:

P ::= 0 |yx.P | y(x).P | τ.P | P1 + P2 | P1|P2 | (x)P | [x = y]P | A(y1, ..., yn)

where n is the arity of A, τ 6∈ N is called a silent action, and 0 is a designated agent
symbol which can do nothing and so is called inaction.

The above syntax of π is exactly the original one given in [44]. Indeed, after
[44] several simplified versions of π have been introduced. For example, in the
asynchronous π−calculus [17, 23], name matching is removed and summation is
allowed only on input prefixes and τ ’s since they often cause trouble, and output
prefixing is also removed since it can be encoded with asynchronous communications.
In this paper, however, we still adopt the original version of the π−calculus. The
main reason is that we hope to carefully compare our results with those in [44]. In
particular, we keep (unrestricted) summation and name matching because they are
needed in presenting the expansion law from which we can see an essential difference
between π and πN . On the other hand, we use output prefixes because with them
some examples can be presented in a much simpler way.

We need to fix some syntactic notations before going forward. The input prefix
y(x) and restriction (x) bind the name x. The free names and bound names are
defined in the standard way and their detailed definitions are omitted here. We
denote the free names and bound names in P by fn(P) and bn(P), respectively, and
we write n(P) for the names of P ; that is, n(P) = fn(P) ∪ bn(P).

A substitution is a function σ from N to itself such that σx = x for all but a
finite number of names x in N. Let x̃ = {x1, ..., xm} and ỹ = {y1, ..., ym} be two
vectors of names. Suppose further that x1, ..., xm are distinct (but y1, ..., ym do not
necessarily have to be distinct). If σ(xi) = yi for each i ≤ m and σ(x) = x for any
x ∈ N − {x1, ..., xm}, then σ is often written as {ỹ/x̃}. For any subset X of N,
we use σdX to denote the restriction of σ on X. More precisely, σdX(x) = σ(x) if
x ∈ X and otherwise σdX(x) = x. Suppose that P is an agent and σ = {ỹ/x̃}. We
write Pσ or P{ỹ/x̃} for the resulting expression of the simultaneous substitution of
yi for all free occurrences of xi for each i ≤ m. Of course, in defining Pσ we need to

9

change some bound names to avoid name captures. This can be done in a familiar
way and here we omit the details (see [44], part II, Definition 6).

The relation of alpha-convertibility between agents is defined in the standard
way, and it is denoted by ≡α (see [44], part II, Definition 7).

The language of π is easily understandable from its notation for the reader who
is familiar with the process algebra CCS. The output prefix yx.P sends the name
x along channel y and then behaves like P . The input prefix y(x).P receives any
name z along channel y, putting it into all free occurrences of x, and then behaves
like P{z/x}. The silent prefix τ.P performs the silent action τ and then becomes P .
The summation P1 +P2 behaves like one of P1 and P2. The agents P1 and P2 in the
parallel composition P1|P2 can act independently, and they may also communicate
with each other. It is noteworthy that here the communication is not only a simple
synchronization, as in the pure CCS; it is instead a process of name-passing: P1 or
P2 sends a name along a channel, and the other receives this name along the same
channel. The restriction (x)P behaves like P except that communication with its
environment are not allowed along channel x, which is private to P . The match
[x = y]P is an agent who acts like P whenever the names x and y are the same,
and can do nothing if they are different. It is assumed that each agent identifier A
of arity n has a unique defining equation of the form:

A(x̃)
def
= P

where x̃ = {x1, ..., xn} is a vector of n distinct names, and fn(P) ⊆ x̃. Here, P is
called the defining agent of A(x̃). This equation decrees that for any vector ỹ of
names with length n, A(ỹ) behaves like P{ỹ/x̃}. Following [44], to avoid pathological
technical difficulties we always assume that for any agent identifier A, bn(A(x̃)) is

finite, and if A(x̃)
def
= P then bn(A(ỹ)) = bn(P{ỹ/x̃}) (see [44], part II, Definition

4).

An agent identifier is weakly guarded in an agent P if it always lies within some
prefix sub-term τ.Q or xy.Q or x(y).Q of P . An agent is said to be weakly guarded
if all agent identifiers in it is weakly guarded. Agents containing no agent identifiers
are called finite agents.

The above intuitive explanation of various agent expressions may be formally
reformulated in the transitional semantics of π. To present this semantics, we first
isolate the actions performed by agents. There are four kinds of actions in the
π−calculus: the silent action τ , input actions x(y), free output actions xy, and
bound output actions x(y). Free output actions and bound output actions will
collectively be called output actions, and the silent action and free output actions
will be called free actions. As we saw before, τ stands for an internal action within
an agent, x(y) is the action of receiving any name from the channel x and then
putting it into the places held by y, xy means that an agent emits the free name y
along the channel x, and x(y) means that an agent emits a private name along the
channel x and y is a reference to where this private name will go. We write Act for
the set of actions; that is, Act = {τ, x(y), xy, x(y) : x, y ∈ N}. Let meta-variables α,

10

β, ... range over actions. If α = xy or α = x(y) or α = x(y), then x is called the
subject and y the object or parameter of α. We define free names and bound names
in an action α by

fn(α) =

∅, if α = τ

{x, y}, if α = xy

{x}, if α = x(y) or xy

and

bn(α) =

{
∅, if α = τ or xy

{y}, if α = x(y) or x(y)

Also, we write n(α) = fn(α) ∪ bn(α) for the names in α.

Now the structural operational semantics of the π−calculus may be given by a
family of transition relations

α−→ (α ∈ Act), which are defined to be the smallest
relations satisfying the rules of action in the following table:

TAU-ACT:

τ.P
τ−→ P

OUTPUT-ACT:

xy.P
xy−→ P

INPUT-ACT:

x(z).P
x(w)−→ P{w/z}

w /∈ fn((z)P)

SUM:
P

α−→ P ′

P +Q
α−→ P ′

MATCH:
P

α−→ P ′

[x = x]P
α−→ P ′

11

IDE:
P{ỹ/x̃} α−→ P ′

A(ỹ)
α−→ P ′

A(x̃)
def
= P

PAR:
P

α−→ P ′

P |Q α−→ P ′|Q
bn(α) ∩ fn(Q) = ∅

COM:

P
xy−→ P ′ Q

x(z)−→ Q′

P |Q τ−→ P ′|Q′{y/z}

CLOSE:

P
x(w)−→ P ′ Q

x(w)−→ Q′

P |Q τ−→ (w)(P ′|Q′)

RES:
P

α−→ P ′

(y)P
α−→ (y)P ′

y /∈ n(α)

OPEN:

P
xy−→ P ′

(y)P
x(w)−→ P ′{w/y}

y 6= x,w /∈ fn((y)P ′)

Note that a symmetric form of the rule SUM is omitted in the above table, and
this is also the case for the PAR rule, the COM rule and the CLOSE rule. The
rule for input agents is presented in the scheme of early instantiation (for a detailed
discussion of early instantiation and later instantiation, we refer to [44], part II,
Section 1.3.1).

3. Noisy Channels

A fundamental assumption in πN is that communication channels may be noisy;
that is, their inputs are subject to certain disturbances in transmission. In other

12

words, the communication situation is conceived as that an input is transmitted
through a channel and the output is produced at the end of the channel, but the
output is often not completely determined by the input. For convenience of the
reader, in this section we recall briefly the notion of channel in Shannon’s information
theory; for more details, see [9, 53].

In the mathematical model of channels from statistic communication theory, the
noisy nature is usually described by a probability distribution over the output al-
phabet. This distribution of course depends on the input and in addition it may
depend on the internal state of the channel. Usually, communication channels are
divided into two categories: discrete channels and continuous channels. It is ob-
vious that what we consider in the πN−calculus are discrete channels. Both the
input alphabet and output alphabet are taken to be the set N of names. In the
case of discrete channels, if the sender emits a sequence x1, ..., xn of inputs along
a channel, then the receiver will get a sequence y1, ..., yn of the same length from
the channel. Note that the output sequence y1, ..., yn is determined by not only the
input sequence x1, ..., xn but also the internal state s of the channel at the time the
inputs are applied. Formally, a channel may be defined to be a family of probability
distributions

pn(y1, ..., yn|x1, ..., xn; s)

where x1, ..., xn, y1, ..., yn ∈ N, n = 1, 2, ..., and s is assumed from a set S called the
set of states. This family of probability distributions is of course required to satisfy
the following two conditions:

(1) pn(y1, ..., yn|x1, ..., xn; s) ≥ 0 for all n ≥ 0, x1, ..., xn, y1, ..., yn ∈ N and s; and

(2) ∑
y1,...,yn∈N

pn(y1, ..., yn|x1, ..., xn; s) = 1

for all n ≥ 0, x1, ..., xn ∈ N and s ∈ S.

The intuitive interpretation of the quantity pn(y1, ..., yn|x1, ..., xn; s) is the prob-
ability that the sequence y1, ..., yn will be received at the output when the input
sequence x1, ..., xn is sent and the internal state of the channel at that time is s.
It should be pointed out that in the πN−calculus each channel is represented by a
family of probability distributions and at the same time we need a name to give it
an unambiguous identity.

It is easy to see that the channel defined above has memory; that is, the distri-
bution of the output yn may depend on the previous inputs x1, ..., xn−1 and outputs
y1, ..., yn−1. As the first step in the study of value-passing process algebras with
noisy channels, here we only deal with a special class of channels, namely memo-
ryless channels. In the continuation of this paper we shall consider channels with
memory. In particular, the factor of memory will become serious when we examine
higher-order processes [49, 54, 55] where a process may be transmitted through a
channel because a process usually consists of more than one symbol. Another sit-
uation where memory of channels may concern us is the polyadic variants of πN .
πN is an extension of the original, monadic π, which is limited in that only single

13

names can be communicated. However, polyadic π [43] allows tuples of names to
be sent. Then memory of noisy channels cannot be overlooked in a polyadic version
of πN . Indeed, even in the monadic case memory of channels can also be natural-
ly incorporated into πN . A possible way is to enrich the labels of transitions so
that they record not only the current action but also those in the history of pro-
cess performance. Such an idea is indeed borrowed from Boudol and Castellani’s
non-interleaving semantics [18] for CCS in which the notion of proved transition is
employed.

Memoryless channels are characterized by the following two conditions:

(i) The distribution functions pn(y1, ..., yn|x1, ..., xn; s) do not depend on the
internal state s, and thus they may be rewritten as pn(y1, ..., yn|x1, ..., xn); and

(ii)

pn(y1, ..., yn|x1, ..., xn) =

n∏
i=1

p1(yi|xi)

for all n ≥ 0 and x1, ..., xn, y1, ..., yn ∈ N.

Intuitively, the second condition means that in a memoryless channel successive
symbols are acted on independently. If we introduce the quantities

pn(y1, ..., yn−k|x1, ..., xn) =
∑

yn−k+1,...,yn∈N
pn(y1, ..., yn|x1, ..., xn) (1 ≤ k ≤ n− 1)

and

pn(yn|x1, ..., xn; y1..., yn−1) =
pn(y1, ..., yn|x1, ..., xn)

pn(y1, ..., yn−k|x1, ..., xn)
,

then condition (ii) may be equivalently stated as follows:

(a) pn(yn|x1, ..., xn; y1, ..., yn−1) = p1(yn|xn) for all x1, ..., xn, y1, ..., yn ∈ N; and

(b) pn(y1, ..., yn−k|x1, ..., xn) = pn−k(y1, ..., yn−k|x1, ..., xn−k) for all x1, ..., xn, y1,
..., yn−k ∈ N and 1 ≤ k ≤ n− 1.

Here, pn(y1, ..., yn−k|x1, ..., xn) may be explained as the probability that the first
n − k output symbols will be y1, ..., yn−k if the input sequence is x1, ..., xn, and
pn(yn|x1, ..., xn; y1..., yn−1) is the conditional probability that the nth output symbol
will be yn given that the input sequence is x1, ..., xn and the first n−1 output symbols
are y1, ..., yn−1. Condition (a) is a clear indication of the memoryless feature, and
condition (b) shows the non-anticipatory behavior of the channel.

From the above condition (ii) it is clear that a memoryless channel is completely
described by its channel matrix

[p(y|x)]x,y∈N

where p(y|x) is the abbreviation of p1(y|x).

A typical example of memory channel is the binary symmetric channel. Suppose
that x0 and x1 are in N. In this channel, xi is correctly transmitted with probability

14

p, and is incorrectly changed to x1−i with probability 1 − p (i = 0, 1). Thus, the
channel matrix is p 1− p

1− p p
0

0 IN−{x0,x1}

where IN−{x0,x1} is the identity matrix over N− {x0, x1}.

The channel matrix of a noiseless channel is the identity matrix over N, and it
is simply given by

p(y|x) =

{
1, if y = x

0, otherwise

We shall see that the results in πN obtained below degenerate to the corresponding
ones in π when this kind of channel matrices are considered.

4. Transitional Semantics of πN

The syntax of πN is entirely the same as that of the π−calculus. The essential
difference between π and πN arises from an implicit assumption about communica-
tion channels. In the π−calculus, although not explicitly stated, it was supposed
that every channel is noiseless. This means that in a communication along such a
channel the receiver will always get exactly what the sender delivers. In the πN ,
however, we assume that some noise may reside in a communication channel. This
is obviously a more realistic assumption. As already pointed out in Section 3, in
this paper we only consider memoryless channels. Thus, we may suppose that each
name x ∈ N has a channel matrix

Mx = [px(z|y)]y,z∈N

where px(z|y) is the probability that the receiver will get the name z at the output
when the sender emits the name y along the channel x.

The structural operational semantics of πN is also given by a family
α[p]−→ (α ∈

Act, 0 < p ≤ 1) of transition relations. It is different from the operational semantics
of π in that what concern us here are probabilistic transition relations. We shall see
shortly that randomness represented by probability values p comes completely from
noise in communication channels. A probabilistic transition in the πN is of the form

P
α[p]−→ Q

where P and Q are two processes, α ∈ Act and 0 < p ≤ 1. The intuitive meaning
of this transition is that after performing action α the agent P will become Q with
the probability p. It is clear that this transition has one more parameter p than the
transitions in the π−calculus. For the case of p = 1, we shall omit it and simply

write P
α−→ Q for P

α[p]−→ Q. The family
α[p]−→ (α ∈ Act, 0 < p ≤ 1) of transition

relations is defined by the following set of inference rules:

15

OUTPUT-ACT:

xy.P
xz[px(z|y)]−→ P

px(z|y) > 0

SUM:

P
α[p]−→ P ′

P +Q
α[p]−→ P ′

MATCH:

P
α[p]−→ P ′

[x = x]P
α[p]−→ P ′

IDE:

P{ỹ/x̃} α[p]−→ P ′

A(ỹ)
α[p]−→ P ′

A(x̃)
def
= P

PAR:

P
α[p]−→ P ′

P |Q α[p]−→ P ′|Q
bn(α) ∩ fn(Q) = ∅

COM:

P
xy[p]−→ P ′ Q

x(z)−→ Q′

P |Q τ [p]−→ P ′|Q′{y/z}

CLOSE:

P
x(w)[p]−→ P ′ Q

x(w)−→ Q′

P |Q τ [p]−→ (w)(P ′|Q′)

16

RES:

P
α[p]−→ P ′

(y)P
α[p]−→ (y)P ′

y /∈ n(α)

OPEN:

P
xy[p]−→ P ′

(y)P
x(w)[p]−→ P ′{w/y}

y 6= x,w /∈ fn((y)P ′)

The appearances of TAU-ACT and INPUT-ACT are the same as in the π−calculus,
and we omit them here. However, it should be noted that in πN these two rules
indeed have the probability parameter p, and its absence in the presentation is just
because p is always 1. It is obvious that all input actions have probability p = 1.
But it is not the case for τ actions because τ actions have another possibility rather
than those given by τ−prefix forms, namely, they may come from the applications
of the rules COM and CLOSE, and the probability of τ actions in the conclusion
transitions of these rules is inherited from the (free or bound) output actions in the
premises, which may be less than 1. The symmetric forms of the rules SUM, PAR,
COM and CLOSE are omitted too.

All rules except OUTPUT-ACT are easily understandable. In fact, they are just
simple imitations of the corresponding rules in the π−calculus, and the only differ-
ence is that a probability parameter p is added. The OUTPUT-ACT rule deserves a
careful explanation. OUTPUT-ACT represents the noisy nature of channels in the
πN−calculus. It means that the agent xy.P of output prefix form sends the name
y through the channel x, but what the receiver gets at the output of this channel
may not be y due to noise residing in it, and the name z will be received with the
probability px(z|y). Indeed, OUTPUT-ACT is the unique rule which all differences
between π and πN come from.

In the above OUTPUT-ACT rule, the action performed by xy.P is not xy but
xz, and the probability px(z|y) that y becomes z in channel x is indicated. This
may be thought of as that noise happens at the end of sending, not at the end of
receiving. We call this design decision the early noise instantiation schema. There
is an alternative treatment, named the late noise instantiation schema, to noise in
the transitional semantics of πN . In such a schema, we keep the OUTPUT-ACT
rule from π unchanged, and thus output transitions will not carry any probability
information. But the COM rule has to be modified as follows:

P
xy−→ P ′ Q

x(w)−→ Q′

P |Q τ [px(z|y)]−→ P ′|Q′{z/w}

17

The CLOSE rule needs a similar modification, and the OPEN rule is taken to be
the same as that in π. This is quite similar to the case where the early and late
bisimulations are distinguished (see [44, II], Section 2.3). It is worth noting that
the early (name) instantiation is usually preferred because it coincides with barbed
bisimulation in many cases, as shown by Milner and Sangiorgi [45]. An elaboration
of the late noise instantiation schema is deferred to another paper.

Probabilistic models of processes were divided by van Glabbeek et al. [30, 31]
into three categories in accordance with the relationship between occurrences of
actions and transition probabilities: (a) in a reactive system, for any process state, a
separate probability distribution is associated with the outgoing transitions labelled
by the same action, and choice among actions is nondeterministic and it is made by
the environment; (b) in a generative system, all outgoing transitions are governed
by a single probability distribution, regardless of the action names labelling these
transitions; and (c) the stratified model is an extension of the generative one, and
it allows for level-wise and nested probabilistic branching. For any agent P and for
any action α, we write

p(P, α) =
∑
{|p : P

α[p]−→ P ′ for some P ′|}

where {|, |} stands for the multi-set brackets, and p(P) =
∑

α p(P, α). Then in a
reactive system it is usually required that p(P, α) ∈ {0, 1} for any agent P and
action α, and in a generative system, it is required that p(P) ∈ {0, 1} for any
agent P . Sometimes, a sub-stochastic approach is adopted, that is, the above two
conditions are weakened to p(P, α) ≤ 1 for any agent P and action α, and p(P) ≤ 1
for any agent P , respectively. However, from the SUM and PAR rules we can
see it may happens in the transitional semantics of πN that p(P, α) > 1 for some
agent P and action α. This contradicts in a sense our intuition for a probability
distribution. In the literature on probabilistic processes, a standard method to
overcome this objection is the normalization procedure. Concretely, we can use

p
p(P,α) to replace the probability p in each transition P

α[p]−→ P ′ of agent P with
action α. Unfortunately, the normalization procedure often makes reasoning in a
theory of probabilistic processes extremely complicated, for example see [23, 24, 46].
We decide not to use normalization in our transitional semantics of πN . (Of course,
we have to treat in mind transition probabilities in the normalized way.) This allows
us to have a much simpler theory of behavior equivalence and reliability in πN .

There is another assumption for probabilistic transition systems in the literature:

for any agents P and P ′, for any α ∈ Act, and for any p1, p2 ∈ (0, 1], if P
α[p1]−→ P ′

and P
α[p2]−→ P ′, then p1 = p2. However, from the SUM rule we can see that it is not

the case in πN . For example, if px(z|y1) = 1
2 and px(z|y2) = 1

3 , then

xy1.0 + xy2.0
xz[1

2−→ 0

18

and

xy1.0 + xy2.0
xz[1

3−→ 0

Some authors believe this is unreasonable according to the usual understanding
about probability distributions, and a way to deal with this problem in the previous
works on probabilistic processes is to modify a probabilistic transition system by
adding up all possible values of transition probability with the same source and
target agents and the same action (for instance, see [29, 30, 59]). More precisely,

suppose that we derive the probabilistic transitions P
α[pi]−→ P ′ from the original

rules. Then the modified transition would be P
α[
∑
i pi]−→ P ′ (sometimes, we also need

to normalize the transition probabilities). Once again, this kind of modification
highly complicates a theory of probabilistic processes. In this paper, we choose not
to modify the probabilistic transitional semantics of πN , and we understand the
values of transition probability in a different way. We think that the probability
of transition P

α−→ P ′ is one of these pi’s, but we do not exactly know what is its
value, and the choice among these pi’s is made by the environment. Furthermore,

the set {pi : P
α[pi]−→ P ′} can be understood as an imprecise probability value of the

transition P
α−→ P ′. Indeed, imprecise probability distributions have been widely

studied in the communities of Statistics and Artificial Intelligence (for a detailed
exposition, we refer to [56]).

To illustrate further these transition rules, let us consider some simple examples.
For convenient comparison, these examples are all taken from [44, I]. The purpose
of choosing these examples is to see how the same agent behaves in different ways
when they are considered in π and πN respectively.

Example 1. Let

P
def
= a5.P ′,

Q
def
= a(x).Q′

and
R

def
= (a)(P |Q).

The expression R describes that an agent P wishes to send a value 5 to an agent Q,
along a private channel a. In the π−calculus, the unique transition of R is

R
τ−→ (a)(P ′|Q′{5/x})

We now treat it in the πN−calculus. Suppose that pa(5|5) = 0.8, pa(4|5) = pa(6|5) =
0.1 and pa(x|5) = 0 for other names x. Then we have

P
a5[0.8]−→ P ′,

P
a4[0.1]−→ P ′

19

and

P
a6[0.1]−→ P ′

by the OUTPUT-ACT rule. Furthermore, it follows that

R
τ [0.8]−→ (a)(P ′|Q′{5/x}),

R
τ [0.1]−→ (a)(P ′|Q′{4/x})

and

R
τ [0.1]−→ (a)(P ′|Q′{6/x})

from INPUT-ACT, COM and RES. So, the agent Q receives a wrong value 4 or 6
with the total probability 0.2. �

Example 2. Suppose that an agent P wishes to delegate a new agent, Q, the
task of transmitting a value 5 to another agent R. In the notation of π we may
write:

P
def
= ba.b5.P ′,

Q
def
= b(y).b(z).yz.0

and
R = a(x).R′.

Let
S
def
= (a)(b)(P |Q|R)

Then in the π−calculus the agent S behaves in the following way:

S
τ−→ (a)(b)(b5.P ′|b(z).az.0|a(x).R′)

τ−→ (a)(b)(P ′|a5.0|a(x).R′)

τ−→ (a)(b)(P ′|0|R′{5/x})

On the other hand, in the πN−calculus, we assume that pb(a|a) = 0.95, pb(c|a) =
0.05, pb(5|5) = 1 and pb(u|a) = pb(v|5) = 0 for all names u 6= a, c and for all v 6= 5.
Then one of the possible transitions of S is:

S
τ [0.05]−→ (a)(b)(b5.P ′|b(z).cz.0|a(x).R′)

τ−→ (a)(b)(P ′|c5.0|a(x).R′)

Now the value 5 cannot be sent to R because what Q receives from P is a wrong
channel name, which is different from the channel used by R. So, the probability
that the agent Q fails to fulfil the task is 0.05. �

20

Example 3. In the π−calculus, scope intrusion happens in the situation where
an agent P wishes to pass a link to Q but Q already has, with another agent S, a
private link of the same name as that of the link which P sends to it. More precisely,
let

P
def
= yx.P ′

and
Q

def
= y(z).Q′,

and we further suppose that P has the link x to R, and Q also has the link x to
S but x is private between Q and S. Once P sends x to Q along the channel y, it
will intrude the private scope of x between Q and S. To avoid this scope intrusion,
the private link x must be renamed. This case can be described by the following
transition:

P |R|(x)(Q|S)
τ−→ P ′|R|(x′)(Q′{x′/x}{x/z}|S{x′/x}

where x′ is a fresh name. However, in the πN−calculus, it may be that scope
intrusion does not happen in such a situation with a certain probability. For instance,
suppose that py(x|x) = 0.7 and py(w|x) = 0.3, where w is a new name. Then it
holds that

P |R|(x)(Q|S)
τ [0.3]−→ P ′|R|(x)(Q′{w/z}|S)

Here, although the link that P passes to Q is still x, we escape from scope intrusion
with the probability 0.3. The reason is that noise in the channel y makes Q to
receive a wrong link w, which has no name conflict with the private link between Q
and S. �

Example 4. We now examine scope extrusion. Let both P and Q be as in
Example 3. In addition, we assume that x is a private link between P and agent R.
Whenever x is passed from P to Q, P extrudes the scope of the private link x. In
the π−calculus, this may be formally depicted by the following transition:

(x)(P |R)|Q τ−→ (x)(P ′|R|Q′{x/z})

where x is supposed not to be free in Q. (If x is free in Q, then the transition will
become a little bit more complicated:

(x)(P |R)|Q τ−→ (x′)(P ′{x′/x}|R{x′/x}|Q′{x′/z})

where a fresh name x′ is taken to avoid name conflict.) In Example 3 we saw that
scope intrusion may be absent in πN with a small probability in certain situation
where it occurs in π. However, here it will be shown that there is the possibility that
scope extrusion happens in πN but not in π. Let us consider the agent (w)(P |R)|Q.
Note that the restriction (w) does not bind the name x that P wishes to send along
the link y to Q. Then in the π−calculus we have the transition:

(w)(P |R)|Q τ−→ (w)(P ′|R)|Q′{x/z}

21

no matter x ∈ fn(Q) or not, and there is no scope extrusion. On the other hand, in
the πN−calculus, if we suppose that py(x|x) = 0.7 and py(w|x) = 0.3, as in Example
3, then the rules OUTPUT-ACT, PAR and OPEN lead to

P
yw[0.3]−→ P ′,

P |R yw[0.3]−→ P ′|R

and

(w)(P |R)
y(w)[0.3]−→ P ′|R

So, it holds that

(w)(P |R)|Q τ [0.3]−→ (w)(P ′|R|Q′{w/z})

provided w 6∈ fn(Q), or more general,

(w)(P |R)|Q τ [0.3]−→ (w′)(P ′{w′/w}|R{w′/w}|Q′{w′/z})

where w′ is a fresh name. In this transition, scope extrusion happens with the
probability 0.3. �

Noise in communication channels may make that some wrong channel names
are received by the involved agents. As shown in the above examples, these wrong
channel names will be used as communication linkages in the further process of
communication. Thus, noise channels can even change the topological structures
and dynamic configurations of mobile systems.

The remainder of this section is devoted to establish some basic properties of
probabilistic transitions in πN . These properties are very useful in examining various
algebraic laws of probabilistic bisimilarity defined in the next section. We begin with
a comparison between input actions in π and πN .

Lemma 1. P
x(y)−→ P ′ in π if and only if P

x(y)−→ P ′ in πN .

Proof: Obvious from the inference rules in the transitional semantics of πN . �

Second, we observe the relation among free variables in the source, target and
action of a probabilistic transition. Here, two new syntactic notations are needed.
We use rn(P) to denote the set of names bound by restrictions in P , and we write
son(P) for the set of subjects of output prefixes in P . It is necessary to assume

that rn(A(x̃)) = rn(P) and son(A(x̃)) = son(P) whenever A(x̃)
def
= P . Of course,

when some agent constants (i.e., identifiers) A occur in P , rn(A) and son(A) must
be counted in rn(P) and son(P), respectively.

22

Lemma 2. (i) If P
xy[p]−→ P ′ or P

x(y)−→ P ′ or P
x(y)[p]−→ P ′, then x ∈ fn(P).

(ii) If P
xy[p]−→ P ′, then

p ≤ sup
u∈fn(P)∪rn(P)

px(y|u) (1)

(iii) If P
α[p]−→ P ′ and α 6= τ , then fn(P ′) ⊆ fn(P) ∪ bn(α).

(iv) If P
τ [p]−→ P ′, then fn(P ′) ⊆ fn(P), or there exist x ∈ son(P) and y satisfying

Eq. (1) and fn(P ′) ⊆ fn(P) ∪ {y}.

Proof: It is carried out by induction on the depth of inference in the premises.
As an example, we prove (iv) but only consider the case that the last rule in the

derivation of P
τ [p]−→ P ′ is COM. Suppose that P = U |V , U

xy[p]−→ U ′ and V
x(z)−→ V ′.

Then P ′ = U ′|V ′{y/z}, and

fn(P ′) = fn(U ′) ∪ fn(V ′{y/z}) ⊆ fn(U ′) ∪ (fn(V ′)− {z}) ∪ {y}

By (iii) we know that fn(U ′) ⊆ fn(U) and fn(V ′) ⊆ fn(V) ∪ {z}. Thus, fn(P ′) ⊆
fn(U |V) ∪ {y} = fn(P) ∪ {y}. It is clear that x ∈ son(U) ⊆ son(P). Furthermore,
from (ii) we have

p ≤ sup
u∈fn(U)∪rn(U)

px(y|u) ≤ sup
u∈fn(P)∪rn(P)

px(y|u)

because fn(U) ⊆ fn(P) and rn(U) ⊆ rn(P). �

It was shown in the π−calculus that if P
α−→ P ′ then fn(α) ⊆ fn(P) (see [44,

II], Lemma 1(i)). For the case that α is an input action or a bound output action,
this conclusion has a direct generalization in πN , namely, Lemma 2(i). However, for
an output action α, the thing becomes much more complicated, and we have two
subcases: (i) if we are concerned with the subject of α a direct generalization still
exists (see also Lemma 2(i)); and (ii) for the object of α, due to noise in the channels
probabilistic information has to be accommodated; see Lemma 2(ii). Indeed, a more

pertinent probabilistic generalization should be: if P
xy[p]−→ P ′ then

p ≤ sup
u∈fn(P)

px(y|u)

But it is not true unless P contains no restrictions. For example, if px(x|x) = 1,
px(u|u) = 0.8 and px(y|u) = 0.2, then

xu.0
xy[0.2]−→ 0

(u)(xu.0)
xy[0.2]−→ (u)0

23

and
sup

z∈fn((u)(xu.0))
px(y|z) = 0

The last inequality is violated. It is easy to see that such a difficulty arises mainly
from the RES rule. In the agent (u)(xu.0), the object u in the output prefix xu
is bound by (u). On the other hand, a new name y may be produced when u is
emitted from the channel x because of noise in x, and y is not bound by (u). Thus,
RES allows the output action xy. One way to overcome this objection is to add
a new parameter, except action α and probability p, in a transition relation. This
parameter is used to record the original name which was emitted along the channel
and produced the object of the output action under consideration. Then the RES
rule may be modified in such a way: an output action is not allowed whenever
the name recorded by the new parameter is bound by restriction. Nevertheless, we
decide not to adopt this modification. The design decision is based on the reason
that the new parameter should not be visible from the outside. It is also known in
the π−calculus that P

α−→ P ′ implies fn(P ′) ⊆ fn(P) ∪ bn(α) (see [44, II], Lemma
1(ii)). In the πN−calculus, this conclusion also splits up into two cases, namely
Lemma 2(iii) and (iv).

There is an alternative generalization of Lemma 1 in [44, II]. In order to present
it, we define fn∗(P) to be the set of free names in P and those names produced by
noise when sending free names. Formally, it is defined as follows: for each agent P ,

fn∗(P) =
∞⋃
n=0

fnn(P)

where fnn(P) is recursively given by fn0(P) = ∅ for all agents P , and for any n ≥ 0,

(i) fnn+1(0) = ∅;
(ii) fnn+1(yx.P) = fnn(P) ∪ {y} ∪ {z ∈ N : py(z|x) > 0};
(iii)

fnn+1(y(x).P) =
⋃

z=x or z is a new name in P

[(fnn(P{z/x})− {z}) ∪ {y}];

(iv) fnn+1(τ.P) = fnn(P);

(v) fnn+1(P1 + P2) = fnn+1(P1|P2) = fnn(P1) ∪ fnn(P2);

(vi)

fnn+1((x)P) =
⋃

z=x or z is a new name in P

(fnn(P{z/x})− {z});

(vii) fnn+1([x = y]P) = fnn(P) ∪ {x, y}; and

(viii) fnn+1(A(y1, ..., yn)) = fnn(A) ∪ {y1, ...yn}.

24

Note that the presence of agent constants (i.e., identifiers) forces us to define
fn∗(P) in a recursive way. In the defining equation of fnn+1(yx.P), the free name
x is not explicitly added into the right-hand side. Instead, it is (implicitly) present
in the set {z ∈ N : py(z|x) > 0} because it is usually reasonable to assume that
py(x|x) > 0. Note that there may be infinitely many names z with py(z|x) > 0.
Then from (ii) we know that fn∗(P) may be an infinite set for some agents P . This
is different from the case of π where fn(P) is always finite. In clauses (iii) and (vi),
a union with z ranging over x and all new names in P is made. This is just because
we want to guarantee that fn∗(P) is invariant under α−conversion.

The following lemma shows that Lemma 1 in [44, II] has a simple generalization
in πN provided we replace fn(·) by fn∗(·).

Lemma 3. If P
α[p]−→ P ′, then

(i) fn(α) ⊆ fn∗(P); and

(ii) fn∗(P ′) ⊆ fn∗(P) when α is an output action.

Proof: Induction on the depth of inference P
α[p]−→ P ′. �

Obviously, Lemma 3(ii) generalizes Lemma 1(ii) of [44, II] only in the case of out-
put actions. For other cases, computing fn∗(P ′) amounts to deal with fn∗(P{z/y}),
which is evaluated by the following lemma.

Lemma 4. If y, z /∈ bn(P), then

fn∗(P{z/y}) ⊆ fn∗(P) ∪ {z} ∪K(P ; y, z)

where

K(P ; y, z) = Kso(y, z) ∪
⋃

x∈s(y,P)

Ks(x; y, z) ∪
⋃

x∈o(y,P)

Ko(x; y, z)

Kso(y, z) = {u : pz(u|z) > 0} − {u : py(u|y) > 0}

Ks(x; y, z) = {u : px(u|z) > 0} − {u : px(u|y) > 0}

Ko(x; y, z) = {u : pz(u|x) > 0} − {u : py(u|x) > 0}

s(y, P) = {x ∈ N : xy.P ′ is a subterm of P for some P ′}

and
o(y, P) = {x ∈ N : yx.P ′ is a subterm of P for some P ′}

The meaning of these sets can be easily seen from their definitions. For example,
Ks(x; y, z) is, roughly speaking, the names that will be received from channel x when

25

z is sent but will not be received when y is sent, and s(y, P) is the names that act
as the subjects of some output prefixes in P with y as their objects.

Proof: We proceed by induction on the length of P .

Case 1. P is an output agent. We have to cope with four subcases: P = uv.Q,
P = yv.Q, P = uy.Q or P = yy.Q. We only consider the subcase of P = yv.Q as
an example. Now it holds that P{z/y} = zv.Q{z/y} and

fn∗(P{z/y}) = fn∗(Q{z/y}) ∪ {z} ∪ {w : pz(w|v) > 0}

By the induction hypothesis we have

fn∗(Q{z/y}) ⊆ fn∗(Q) ∪ {z} ∪K(Q; y, z)

Note that K(Q; y, z) ⊆ K(P ; y, z) and

{w : pz(w|v) > 0} ⊆ {w : py(w|v) > 0} ∪Ko(v; y, z)

⊆ {w : py(w|v) > 0} ∪K(P ; y, z)

because v ∈ o(y, P). Then

fn∗(P{z/y}) ⊆ fn∗(Q) ∪ {z} ∪ {w : py(w|v) > 0} ∪K(P ; y, z)

⊆ fn∗(P) ∪ {z} ∪K(P ; y, z)

Case 2. P = (x)Q. From the condition that y, z /∈ bn(P), we have y, z 6= x and
P{z/y} = (x)Q{z/y}. Thus, the induction hypothesis leads to

fn∗(P{z/y}) =
⋃

u=x or u is a new name in Q{z/y}

(fn∗(Q{y/z}{u/x})− {u})

=
⋃

u=x or u is a new name in Q{z/y}

(fn∗(Q{u/x}{y/z})− {u})

⊆
⋃

u=x or u is a new name in Q{z/y}

(fn∗(Q{u/x}) ∪ {z} ∪K(P ; y, z)− {u}

⊆
⋃

u=x or u is a new name in Q

(fn∗(Q{u/x})− {u}) ∪ {z} ∪K(P ; y, z)

= fn∗(P) ∪ {z} ∪K(P ; y, z)

Other cases are omitted. �

We know that fn(P{z/y}) ⊆ (fn(P)− {y}) ∪ {z} if y, z /∈ bn(P). This naturally
suggests us to anticipate an improvement of Lemma 4:

fn∗(P{z/y}) ⊆ (fn∗(P)− {y}) ∪ {z} ∪K(P ; y, z)

26

However, a simple example shows that such an improvement is indeed false: let
P = uv.0, and let pu(v|v) = 0.7 and pu(y|v) = 0.3. Then

fn∗(P{z/y}) = fn∗(P) = {u, v, y} 6⊆ {u, v, z} = (fn∗(P)− {y}) ∪ {z} ∪K(P ; y, z)

We now observe the role of the objects in bound actions. As a direct generaliza-
tion of Lemma 2 in [44, II], we have:

Lemma 5. If P
a(y)[p]−→ P ′ where a = x or a = x, and z /∈ n(P), then there exists

P” ≡α P ′{z/y} such that P
a(z)[p]−→ P” can be derived by an inference of no greater

depth.

Proof: Induction on the depth of inference P
a(y)[p]−→ P ′. �

Note that all of the above lemmas do not depend on the nature of noise in
channels. In other words, they are valid no matter what are the involved noisy
channels. However, in order to give a generalization of Lemma 3 in [44, II] we need
to impose a constraint on channels. Such a constraint is formally presented as the
following:

Definition 1. Let x ∈ N and λ ∈ (0, 1], and let σ be a substitution. If for any
y, z ∈ N it holds that

pxσ(zσ|yσ) ≥ λ · px(z|y)

then channel x is said to be λ−compatible with σ.

Intuitively, the condition in Definition 1 means that if z will be received from
channel x when y is sent, then zσ will be received from channel xσ when yσ is sent,
provided an error ratio λ of probability is allowed.

For the case of λ = 1, a canonical example of λ−compatibility between channel
x and substitution σ is when the channel matrix of xσ is defined by

pxσ(u|yσ) =
∑
zσ=u

px(z|y)

for all u ∈ N. Another example of 1−compatibility is given by noiseless channel-
s. If both x and xσ are noiseless, then x is compatible with σ. In the sequel,
1−compatibility of x with respect to σ will be simply referred to as compatibility.

Now we need to introduce an auxiliary notation. In the next two lemmas, we
have to compare two probabilities p and q. To this end, for any p, q ∈ (0, 1], we
define an implication degree of p and q by:

p ∗ q = min(1,
q

p
)

27

This quantity will also play an important role in the definition of probabilistic bisim-
ulation (see Definition 4 below).

Clearly, it holds that

p · q ≤ r if and only if p ≤ q ∗ r

for any p, q, r ∈ (0, 1]. This means that product · and implication operator ∗ form a
Galois connection. Furthermore, it is easy to derive the following useful properties
of implication degree:

(1) p ∗ q = 1 if and only if p ≤ q.
(2) If p ≤ p′ and q′ ≤ q then p′ ∗ q′ ≤ p ∗ q.
(3) p · (p ∗ q) ≤ q.
(4) (p ∗ q) · (q ∗ r) ≤ p ∗ r.
(5) (p ∗ q) · (p′ ∗ q′) ≤ (p · p′) ∗ (q · q′).
(6) It holds that

inf
i∈I

(pi ∗ qi) ≤ (inf
i∈I

pi) ∗ (inf
i∈I

qi)

whenever infi∈I pi > 0, and

inf
i∈I

(pi ∗ qi) ≤ (sup
i∈I

pi) ∗ (sup
i∈I

qi)

where p, q, r, p′, q′, pi, qi ∈ (0, 1] for each i ∈ I, and I may be any index set.

By the way, we point out that the probabilistic implication operator ∗ was also
used by the author in reasoning about probabilistic sequential programs [60].

The next lemma shows how a probabilistic transition of agent Pσ can be derived
from a transition of P , and it generalizes Lemma 3 in [44, II].

Lemma 6. Suppose that P
α[p]−→ P ′, bn(α) ∩ fn(P ′σ) = ∅ and σdbn(α) = id

(see page 9 for the definition of operator d), and suppose that the subjects of output

actions appeared in the inference for deriving P
α[p]−→ P ′ are all λ−compatible with

σ. Then there are q ∈ (0, 1] and P” ≡α P ′σ such that p ∗ q ≥ λ, and Pσ
ασ[q]−→ P”

can be derived with an inference of no greater depth.

Proof: Induction on the depth of inference P
α[p]−→ P ′. We only consider the case

where the last rule is OUTPUT-ACT (and the other cases are the same as in π).

Now it holds that P = xy.Q
xz[px(z|y)]−→ Q, and

Pσ = xσyσ.Qσ
xσu[pxσ(u|yσ)]−→ Qσ

Let u = zσ. Then we have xσu = (xz)σ, pxσ(u|yσ) ≥ λ · px(z|y) and px(z|y) ∗
pxσ(u|yσ) ≥ λ. �

28

We write

c(x, σ) = inf
y,z∈N with px(z|y)>0

pxσ(zσ|yσ)

px(z|y)

and call it the compatibility index of x with respect to σ. Then Lemma 6 may be
equivalently restated in terms of c(x, σ) as the following:

Lemma 6’. Suppose that P
α[p]−→ P ′, bn(α) ∩ fn(P ′σ) = ∅ and σdbn(α) = id.

Then there are q ∈ (0, 1] and P” ≡α P ′σ such that p∗ q ≥ minx c(x, σ), and Pσ
ασ[q]−→

P” can be derived with an inference of no greater depth, where x ranges over the

subjects of output actions involved in inferring P
α[p]−→ P ′. �

Next we are going to establish a partial converse of Lemma 6. This requires us
to introduce some new conditions on communication channels.

Definition 2. Let z, w ∈ N and λ ∈ (0, 1].

(1) If pu(z|v) = 0 for all u, v 6= z, then z is said to be normal.

(2) If the following conditions (i)-(vi) are satisfied, then z and w are said to be
λ−compatible:

(i) max{pz(w|z), pz(z|z)} ≥ λ · pw(w|w);

(ii) max{pu(w|z), pu(z|z)} ≥ λ · pu(w|w) for all u 6= z;

(iii) max{pz(w|v), pz(z|v)} ≥ λ · pw(w|v) for all v 6= z;

(iv) pu(y|z) ≥ λ · pu(y|w) for all y 6= z, w and for all u 6= z;

(v) pz(y|v) ≥ λ · pw(y|v) for all y 6= z, w and for all v 6= z; and

(vi) pz(y|z) ≥ λ · pw(y|w) for all y 6= z, w.

The conditions in Definition 2 put certain constraints on the channels. Intuitive-
ly, normality of z means that it is impossible to receive z from a channel u (6= z)
when v (6= z) is emitted; in other words, z cannot be produced at the output merely
due to noise in channel u. Obviously, if all u 6= z are noiseless, then z is normal.
The conditions (i)-(vi) for λ−compatibility between z and w become much more
understandable when λ = 1. For example, (iii) indicates that if w will be received
from channel w after v (6= z) is sent, then either w or z will be received from channel
z with no smaller probability. At this moment, these conditions are imposed mainly
for the technical reason. The intuition behind them is not very clear.

We shall simply say that z and w are compatible when they are 1−compatible.
Note that all these conditions are satisfied well by noiseless channels. For instance,
if channels w and z are noiseless, then pw(w|v) > 0 implies v = w and pz(w|v) = 1,
and it follows that max{pz(w|v), pz(z|v)} = 1 ≥ pw(w|v). This shows that condition
(iv) holds for noiseless channels w and z.

29

The following lemma shows how can we infer the actions of an agent from the
actions of its substitutions. It is a generalization of Lemma 4 in [44, II].

Lemma 7. Suppose that z 6= w, z is normal and z and w are λ−compatible. If

P{w/z} α[p]−→ P ′ where w /∈ fn(P) and bn(α)∩ fn(P,w) = ∅, then there are q ∈ (0, 1],

Q and β such that Q{w/z} ≡α P ′, β{w/z} = α, p ∗ q ≥ λ, and P
β[q]−→ Q may be

derived by an inference of no greater depth.

Proof: We proceed by induction on the depth of inference P{w/z} α[p]−→ P ′.
Only the case that the last rule is OUTPUT-ACT needs a careful examination (and
based on this case, the other cases are similar to the corresponding arguments in
the π−calculus). We write σ for {w/z} and assume that P = uv.U . Then

Pσ = uσvσ.Uσ
uσy[puσ(y|vσ)]−→ Uσ

is the unique transition possible for Pσ. This leads to α = uσy, p = puσ(y|vσ) and
P ′ = Uσ. On the other hand,

P
ux[pu(x|v)]−→ U

is the unique transition possible for P . So, we have to take Q = U . Now it suffices
to prove the following

Claim: if puσ(y|vσ) > 0 then there exists x such that y = xσ and p∗pu(x|v) ≥ λ.

It is easy to see that uσ, vσ 6= z because we suppose that z 6= w. Thus, from
condition (i) we know that y 6= z.

Subcase 1. y = w. Then wσ = zσ = y. We set β = uw or β = uz. It follows
that βσ = α,

P
uw[pu(w|v)]−→ U

and

P
uz[pu(z|v)]−→ U

Consequently, we may take q = max{pu(w|v), pu(z|v)}, and what we still need to
check is that p ∗ q ≥ λ. When u 6= z and v 6= z, we have p = pu(w|v), and q ≥ p is
valid automatically. If u = z or v = z, then p ∗ q ≥ λ is guaranteed by conditions
(ii) to (iv).

Subcase 2. y 6= w. Since y 6= z, we have yσ = y. Let β = uy and q = pu(y|v).
Then βσ = α. Furthermore, q = p is always true when u, v 6= z, and p ∗ q ≥ λ
follows from conditions (v)-(vii) when u = z or v = z. �

30

By introducing a new index of compatibility, we are able to present Lemma 7 in
a way similar to Lemma 6’. Let

l1(z, w) =
max{pz(w|z), pz(z|z)}

pw(w|w)

if pw(w|w) > 0, and l1(z, w) = 1 if pw(w|w) = 0,

l2(z, w) = inf
u6=z

max{pu(w|z), pu(z|z)}
pu(w,w)

,

l3(z, w) = inf
v 6=z

max{pz(w|v), pz(z|v)}
pw(w|v)

,

l4(z, w) = inf
y 6=z,w and u6=z

pu(y|z)
pu(y|w)

,

l5(z, w) = inf
y 6=z,w and v 6=z

pz(y|v)

pw(y|v)

and

l6(z, w) = inf
y 6=z,w

pz(y|z)
pw(y|w)

Then

l(z, w) =
6

min
i=1

li(z, w)

is called the compatibility index of z and w.

It is easy to see that the indexes l1(z, w) to l6(z, w) exactly correspond to the
conditions (i)-(vi) in Definition 2(2).

Now the above lemma can be restated as the following:

Lemma 7’. Suppose that z 6= w and z is normal. If P{w/z} α[p]−→ P ′ where
w /∈ fn(P) and bn(α) ∩ fn(P,w) = ∅, then there are q ∈ (0, 1], Q and β such that

Q{w/z} ≡α P ′, β{w/z} = α, p ∗ q ≥ l(z, w), and P
β[q]−→ Q may be derived by an

inference of no greater depth. �

It was shown that transitions in the π−calculus are preserved well by alpha-
conversion (see [44, II], Lemma 5). This is obviously a very useful tool in reasoning
about the behavior of agents, and we hope to generalize it into the πN−calculus.
However, the case of πN is much more complicated because we need to take care of
the influence of renaming on the channel matrixes of bound names. To overcome this
difficulty, we have to impose some conditions on channel matrixes. We distinguish
free names and bound names from the beginning, namely, let N = FN∪BN, where
FN stands for the set of free names and BN the set of bound names, and it is
required that FN∩BN = ∅. Then assume that free names (resp. bound names) in

31

all agents must be taken from FN (resp. BN). This way of treating free names and
bound names is not new, and it follows many standard textbooks of mathematical
logic. Furthermore, we need the following two hypotheses:

(H1) px(z|y) = px(y|z) = 0 for any x ∈ N, y ∈ FN and z ∈ BN; and

(H2) px1(z|y) = px2(z|y) and pz(y|x1) = pz(y|x2) for any x1, x2 ∈ BN and for
any y, z ∈ N.

Indeed, these hypotheses are very natural. (H1) indicates that free names and
bound names cannot be confused by noise in channels. Roughly speaking, (H2)
means that any two bound names are interchangeable. This hypothesis is reasonable
because bound names are seen as dumb variables in our calculus.

It is easy to see that in essence distinguishing FN and BN and adding the
hypotheses (H1) and (H2) do not decrease the expressive power of πN .

Lemma 8. Suppose that (H1) and (H2) are valid. Let P ≡α Q.

(i) If P
α[p]−→ P ′ and α is a free action, then there exists Q′ ≡α P ′ such that

Q
α[p]−→ Q′ can be derived by an inference of no greater depth.

(ii) If P
a(y)[p]−→ P ′ with a = x or a = x, and z /∈ n(Q), then there exists Q′ such

that P ′{z/y} ≡α Q′, and Q
a(z)[p]−→ Q′ can be derived by an inference of no greater

depth.

Proof: Induction on the depth of inference in the premises. �

The following example illustrates that the hypotheses (H1) and (H2) are neces-
sary in Lemma 8.

Example 5. Let py(x|z) = 1, P = (x)yz.0 and Q = (u)yz.0. It is obvious

that P ≡α Q. On the other hand, we have P
y(w)−→ 0 for any w, and Q

yz−→ 0. So,
the conclusion of Lemma 8 does not hold in this case. The reason is that (H1) is
violated by py(x|z) = 1.

Suppose that px(u|z) = py(v|z) = 1. Let P = (x)(xz.0|x(u).uu.0) and Q =

(y)(yz.0|y(u).uu.0) Then P ≡α Q, and we have P
τ−→ (x)(0|uu.0) and Q

τ−→
(y)(0|vv.0). We see that the conclusion of Lemma 8 is also not true in this case
because the first part of (H2) is violated by the channel matrixes of bound names x
and y.

Suppose that px(y|a) = 1
2 , px(y|b) = 1

3 , P = (a)xa.0 and Q = (b)xb.0. Now, the
second part of (H2) is violated. We have P ≡α Q, but the conclusion of Lemma 8

32

is not true because P
xy[1

2
]

−→ 0 and Q
xy[1

3
]

−→ 0.

For simplicity of presentation, in what follows we uniformly assume that the
hypotheses (H1) and (H2) hold although some results do not need them.

To conclude this section, we give the image-finiteness of the probabilistic tran-
sitional semantics of πN . This property depends heavily on a certain finiteness of
noise in communication channels, which is formally defined by the following:

Definition 3. (1) A channel name x in N is said to be support-finite if for any
y ∈ N, the support set of channel x with respect to y

supp(x, y) = {z ∈ N : px(z|y) > 0}

is a finite set.

(2) An agent P is said to be support-finite if the subject of every output prefix in
P is support-finite.

Lemma 9. Suppose that P is support-finite, and suppose that the defining a-
gent of each agent identifier occurring in P is weakly guarded (see page 10 for the
definition of a weakly guarded agent). Then (up to alpha-convertibility ≡α) we have:

(i) {(p, P ′) : P
τ [p]−→ P ′} is a finite set;

(ii) {(x, y, p, P ′) : P
xy[p]−→ P ′} is a finite set;

(iii) for any x there are a finite number of agents P1, ..., Pn (n ≥ 0) and z /∈ fn(P)

such that if P
x(y)−→ P ′ then P ′ = Pi{y/z} for some i ≤ n; and

(iv) for any x there are a finite number of p1, p2, ..., pm (m ≥ 0), a finite number

of agents P1, ..., Pn (n ≥ 0) and z /∈ fn(P) such that if P
x(y)[p]−→ P ′ then p = pi for

some i ≤ m and P ′ = Pj{y/z} for some j ≤ n.

Proof: (1) We first prove the conclusion for all finite agents P . This may be
done simultaneously for all the items (i) to (iv) by induction on the length of P .
Note that the condition of support-finiteness is used in the case of P = xy.P ′.

(2) We now consider agent identifier P = A(ỹ). If A(x̃)
def
= Q, then A(ỹ)

α[p]−→ P ′

if and only if Q{ỹ/x̃} α[p]−→ P ′. Let Q0, P
′
0 be the agents resulting from replacing

all agent identifiers in Q and P ′, respectively, by 0. Then Q0 is a finite agent.
Furthermore, since each agent identifier in Q is weakly guarded, by induction on

depth of inference we are able to show that if Q{ỹ/x̃} α[p]−→ P ′ then Q0{ỹ/x̃}
α[p]−→ P ′0.

Thus, from (1) it is known that the conclusion also holds for agent identifier.

(3) Finally, using (1) and (2) we may proceed by induction on the length of P
to prove the proposition. �

33

It is obvious that the above lemma is a generalization of Lemmas 1.4.4 and 1.4.5
in [50]. But we should note that in the above lemma a condition of weak guardedness
is imposed. Indeed, without this condition the above lemma is no longer valid. This
will further violate the validity of Propositions 4 and 15 below. On the other hand,
such a condition is unnecessary for Lemmas 1.4.4 and 1.4.5 in [50]. The reason is
that in the syntax of our calculus agent identifiers are used to represent recursion,
whereas in [50] replication construct is adopted for the same purpose.

5. Strong Bisimilarity

Bisimilarity is one of the most important behavioral equivalences in process
algebras. Roughly speaking, it equates two processes whenever their (external)
actions are identical. The notion of bisimilarity has been generalized into proba-
bilistic process algebras in two different ways: exact probabilistic bisimilarity and
approximate probabilistic bisimilarity. λ−bisimilarity defined in [57-59] and [61] is
a version of approximate probabilistic bisimilarity. In this section, we extend it into
the πN−calculus. We only introduce the notion of λ−strong bisimulation here. A
treatment of λ−weak bisimulations will be given in another paper.

Definition 4. Let S be a binary relation on agents and λ ∈ (0, 1]. Then S is
called a λ−(strong) simulation if for all agents P, Q with PSQ, we have:

(i) if P
α[p]−→ P ′, and α is a free action, then there are agent Q′, and q ∈ (0, 1]

such that Q
α[q]−→ Q′, P ′SQ′ and p ∗ q ≥ λ (see page 27 for the definition of operation

∗);

(ii) if P
x(y)−→ P ′, and y /∈ n(P,Q), then there is Q′ such that Q

x(y)−→ Q′, and
P ′{w/y}SQ′{w/y} for all names w; and

(iii) if P
x(y)[p]−→ P ′, and y /∈ n(P,Q), then there exist Q′, and q ∈ (0, 1] such that

Q
x(y)[q]−→ Q′, P ′SQ′ and p ∗ q ≥ λ.
A binary relation S on agents is called a λ−(strong) bisimulation if both S and

its inverse S−1 are λ−simulations.

The λ−(strong) bisimilarity
.∼λ is defined as follows: for all agents P and Q,

P
.∼λ Q if and only if PSQ for some λ−bisimulation S. In other words,

.∼λ=
⋃
{λ− bisimulations}

We shall call λ−simulation (λ−bisimulation, λ−bisimilarity) simply simulation
(resp. bisimulation, bisimilarity) and drop the subscript λ of

.∼λ whenever λ = 1.

The design decision of adopting the operator ∗ in the above definition deserves
a careful explanation. As pointed out in [59], the notion of λ−bisimilarity provides

34

us with a continuous spectrum of equivalence relations with parameter λ ranging
from 0 to 1. We first consider a special case of λ = 1, which is at the top of this
spectrum. From the fact that p ∗ q = 1 if and only if p ≤ q, it is easy to see that a
bisimulation equates two processes whenever an action of a process may be simulated
by the same action of the other process with an equal or higher probability. This
is slightly different from the definition of probabilistic strong bisimulation given by
Larsen and Skou [39]. They required that a bisimulation equates two agents only
when these agents perform the same actions with the same probabilities. In our
definition, however, a higher probability of an action is allowed to simulate the same
action. At first glance, it seems that the definition by Larsen and Skou is much
more reasonable. Indeed, our definition is also based on a solid intuition. It is well
known that implication employed in mathematics is always the material implication,
which is different from the strict implication in modal logic (or other philosophical
logics). If ⇒ is the material implication, then φ⇒ ψ is true when φ is false or ψ is
true. The counterpart of this statement in probabilistic logic (or other many-valued
logics) would be that φ ⇒ ψ is true when the truth value of φ is not greater than
that of ψ. On the other hand, roughly speaking, a bisimulation is usually defined
in such a schema that if P

α−→ P ′ then Q
α−→ Q′ for some Q′. In a probabilistic

transition system, P
α[p]−→ P ′ may be understood as that the truth value of proposition

”P
α−→ P ′” in probabilistic logic is p. Then a natural probabilistic generalization of

the above schema should be that if P
α[p]−→ P ′ then Q

α[q]−→ Q′ for some q ≥ p and Q′.
This explains well our design decision in defining 1−bisimulation.

Now we turn to consider the general case of λ < 1. In the definition of λ−bisimulation,

the transition P
α[p]−→ P ′ is required to be simulated by a transition Q

α[q]−→ Q′ with
p ∗ q ≥ λ. It is obvious that a probability value q lower than p is possible because
λ < 1. But the condition p ∗ q ≥ λ indicates that the value of q is not allowed to be
too low. Indeed, the quantity p ∗ q can be imagined as an index which measures the
truth of the statement that p is not less than q. Thus, p ∗ q ≥ λ means intuitively
that the statement that p is not less that q is ”quite true”. Note that we use ∗
instead of the operator ~ introduced below, as what was done in [59]. The reason is
that p∗q measures the truth of the statement that p is not less than q, whereas p~q
measures the truth of the statement that p is equal to q. It is interesting to see that
for the special case of λ = 1, if ~ was adopted then our notion of λ−bisimulation
would coincide with Larsen and Skou’s probabilistic strong bisimulation.

To illustrate the above definition further, let us consider some simple examples.
This requires us to define the operator ~ first. For any p, q ∈ (0, 1], a nearness (or
biimplication) degree of p and q is defined by:

p~ q = min(
p

q
,
q

p
)

Some basic properties of ~ are displayed as follows:

(1) p~ q = min(p ∗ q, q ∗ p) = (p ∗ q) · (q ∗ p).
(2) p~ q = 1 if and only if p = q.

35

(3) limp→0(p~ q) = 0.

(4) (p~ q) · (p′ ~ q′) ≤ (p · p′)~ (q · q′).
(5) p~ q = q ~ p.

(6) (p~ q) · (q ~ r) ≤ p~ r.
(7) p ≤ p′ ≤ q′ ≤ q implies p~ q ≤ p′ ~ q′.
(8) It holds that

inf
i∈I

(pi ~ qi) ≤ (inf
i∈I

pi)~ (inf
i∈I

qi)

inf
i∈I

(pi ~ qi) ≤ (sup
i∈I

pi)~ (sup
i∈I

qi)

The above property (1) indicates clearly the relationship between operators ∗ and
~. It was pointed out before that ∗ is indeed an implication operator in probabilistic
logic. Then ~ should be seen as an biimplication operator in probabilistic logic.

Let x ∈ N. We define a mapping ρx : N × N −→ (0, 1] as follows: for any
u, v ∈ N,

ρx(u, v) = inf
w∈N

[px(w|u)~ px(w|v)]

Intuitively, the quantity px(w|u) ~ px(w|v) stands for the nearness degree of the
probabilities that the same name w is received at the output of channel x when
the names u and v are sent, respectively, and ρx(u, v) is the greatest lower bound
of px(w|u) ~ px(w|v) as w traverses N. Thus, ρx(u, v) may be seen as a similarity
degree between the outcomes of emitting u and v through channel x. It is easy from
the above properties of ~ to see that

(i) ρx(u, u) = 1;

(ii) ρx(u, v) = ρx(v, u); and

(iii) ρx(u, v) · ρx(v, w) ≤ ρx(u,w).

This further yields a metric dx on N by defining

dx(u, v) = − log ρx(u, v)

for all u, v ∈ N.

With these preparations, we are ready to give some simple examples of λ−bisimilarity.

Example 6. Consider the agent identifier

A(x, y)
def
= xy.A(x, y)

It sends name y repeatedly from channel x. If u 6= v, then A(u, y) and A(v, y) send
the same name y via different channels u and v. For any λ > 0, it does not hold
that A(u, y)

.∼λ A(v, y). On the other hand, we have:

A(x, u)
.∼ρx(u,v) A(x, v)

Note that A(x, u) and A(x, v) send their values from the same channel x. The
difference between them is that in A(x, u) what is sent to channel x is u and in

36

A(x, v) the name sent to channel x is v. Since x may be subject to noise, it might
happen that the same name is received although the names sent through channel x
are different. Here, the quantity ρx(u, v) is used to represent such a possibility.

Example 7. It is known in the π−calculus that if x 6= y and u 6= v then

xu.0|y(v).0
.∼ xu.y(v).0 + y(v).xu.0 (2)

On the other hand, we have:

xu.0|x(v).0
.
6∼ xu.x(v).0 + x(v).xu.0 (3)

and
xu.0|y(u).0

.
6∼ xu.y(u).0 + y(u).xu.0 (4)

Furthermore, it follows from Eq. (3) that

z(y).(xu.0|y(v).0)
.
6∼ z(y).(xu.y(v).0 + y(v).xu.0) (5)

This is a typical example demonstrating that strong bisimilarity is not preserved by
input prefix. We now reconsider this example in the πN−calculus. First, it holds
that

xu.0|y(w).0
.∼ρx(u,v) xv.y(w).0 + y(w).xv.0 (6)

provided x 6= y and w 6= v. Indeed, for instance, the transition

xu.0|y(w).0
xz[px(z|u)]−→ 0|y(w).0

is simulated by

xv.y(w).0 + y(w).xv.0
xz[px(z|v)]−→ y(w).0

and the nearness degree of probabilities is px(z|u) ∗ px(z|v) ≥ ρx(u, v). For the case
of u = v, Eq. (6) degenerates to Eq. (2). As a generalization of Eqs. (2) and (4),
we have:

xu.0|x(v).0
.
6∼λ xu.x(v).0 + x(v).xu.0 (7)

and
z(y).(xu.0|y(v).0)

.
6∼λ z(y).(xu.y(v).0 + y(v).xu.0) (8)

for any λ > 0. It is interesting to note that in contrast Eq. (3) cannot be simply
generalized into the πN−calculus; we have instead:

xu.0|y(u).0
.∼infw 6=x,y ρx(u,w) xu.y(u).0 + y(u).xu.0 (9)

It is quite often that only a finite number of names in N are truly involved in real
applications. In such a case, it is possible that infw 6=x,y ρx(u,w) > 0, and the agents
in the two sides of Eq. (3) may be bisimilar with a certain degree, although not
absolutely bisimilar. �

37

The following three propositions presents some basic properties of λ−bisimulations.

Proposition 1. (1) The relation ≡α of alpha-convertibility on agents is a
(1−)bisimulation.

(2) If S is a λ−bisimulation, then S−1 is also a λ−bisimulation.

(3) If Si is a λ−bisimulation for each i ∈ I, then
⋃
i∈I Si is also a λ−bisimulation.

(4)
.∼λ is a λ−bisimulation.

Proof: (1) is a simple corollary of Lemma 8, (2) is obvious, (3) may be directly
proved using Definition 4, and (4) is immediate from (3). �

From Proposition 1(4) we know that
.∼λ is the biggest λ−bisimulation. The

following corollary shows that
.∼ includes alpha-convertibility ≡α and

.∼λ is sym-
metric. From Definition 4 it is obvious that if λ < µ then each µ−bisimulation
is a λ−bisimulation, and

.∼µ⊆
.∼λ. Thus, for any λ > 0,

.∼λ includes ≡α and it is
reflexive.

Corollary 1. (1) If P ≡α Q then P
.∼ Q. �

(2) P
.∼λ Q implies Q

.∼λ P.

The next proposition gives an equivalent characterization of λ−bisimilarity.

Proposition 2. P
.∼λ Q if and only if

(i) whenever P
α[p]−→ P ′ and α is a free action, there are Q′ and q ∈ (0, 1] such

that Q
α[q]−→ Q′, P ′

.∼λ Q′ and p ∗ q ≥ λ;

(ii) whenever P
x(y)[p]−→ P ′ and y /∈ n(P,Q), there are Q′ and q ∈ (0, 1] such that

Q
x(y)[q]−→ Q′, P ′{w/y} .∼λ Q′{w/y} for all w and p ∗ q ≥ λ;

(iii) whenever P
x(y)[p]−→ P ′ and y /∈ n(P,Q), there are Q′ and q ∈ (0, 1] such that

Q
x(y)[q]−→ Q′, P ′

.∼λ Q′ and p ∗ q ≥ λ; and the symmetric forms of (i), (ii) and (iii).

Proof: Similar to Proposition 4.4 in [42]. �

The following proposition is a probabilistic version of transitivity of bisimilarity.

Proposition 3. If P
.∼λ1 Q and Q

.∼λ2 R, then P
.∼λ1λ2 R. Moreover,

.∼ is an
equivalence relation.

38

Proof: The idea is similar to the proof of Theorem 2(a) in [44, II]. We show that
.∼λ1

.∼λ2 is a λ1λ2−bisimulation. Let P
.∼λ1

.∼λ2 R. Then P
.∼λ1 Q and Q

.∼λ2 R for

some agentQ. Suppose that P
α[p]−→ P ′ and α is a free action. Then from P

.∼λ1 Q and

Proposition 2 it follows that for some Q′ and q, Q
α[q]−→ Q′, P ′

.∼λ1 Q′ and p ∗ q ≥ λ1.
Furthermore, from Q

.∼λ2 R we obtain that for some R′ and r, R
α[r]−→ R′, Q′

.∼λ2 R′
and q ∗ r ≥ λ2. Now, it holds that P ′

.∼λ1
.∼λ2 R′ and p ∗ r ≥ (p ∗ q) · (q ∗ r) ≥ λ1λ2.

For the case of input actions or bound output actions, a procedure is needed
for a suitable rearrangement of names. This may be done by simply following the
corresponding parts in the proof of [44, II], Theorem 2(a) and by using Lemma 2.
�

The notion of bisimilarity may be described in a different way; that is, we can
use a real number in the unit interval to measure bisimilarity between two agents.

Definition 5. Let P and Q be two agents. Then the bisimilarity degree of them
is defined by

Sim(P,Q) = sup{λ ∈ (0, 1] : P
.∼λ Q}

With the above definition, Corollary 1 and Proposition 3 may be equivalently
restated as the following:

Corollary 2. (1) If P ≡α Q then Sim(P,Q) = 1.

(2) Sim(P,Q) = Sim(Q,P).

(3) Sim(P,Q) · Sim(Q,R) ≤ Sim(P,R). �

The quantity Sim(P,Q) measures (bi)similarity between two agents P and Q:
the bigger Sim(P,Q) is, the more (bi)similar P and Q are. A much more familiar
mathematical notion that can be used to measure similarity is metric. It is clear
that Sim(·, ·) is not a metric on agents. But a simple transformation of Sim(·, ·)
gives a metric. For any two agents P and Q, we define

d(P,Q) := − log Sim(P,Q)

Then from the above corollary we see that d(·, ·) is a metric on agents. Obviously,
the smaller d(P,Q) is, the more (bi)similar P and Q are. Furthermore, from this
metric we can construct a topological structure on agents in a standard way. The
convergence of agents in πN according to this metric topology is an interesting topic
for further researches (cf. [57]).

39

The next proposition establishes a close link between λ−bisimilarity and bisim-
ilarity degree. Also, it demonstrates that λ−bisimilarity

.∼λ is left-continuous with
respect to variable λ. We first need to introduce some notations. Let P be an agent
and α an action. Then we define D(P, α) to be the set of immediate derivatives
after performing action α, together with transition probabilities from P , namely,

D(P, α) = {(p, P ′) : P
α[p]−→ P ′}

If P
α[p]−→ P ′ for some action α and p ∈ (0, 1], then P ′ is called an immediate deriva-

tives of P . The set of all immediate derivatives of P is denoted by D(P). Moreover,
if there are n ≥ 0, p1, ..., pn ∈ (0, 1], actions α1, ..., αn and agents P1, ..., Pn−1 such
that

P
α1[p1]−→ P1

α2[p2]−→ P2 ...
αn−1[pn−1]−→ Pn−1

αn[pn]−→ P ′

then P ′ is called a derivative of P . We write D∗(P) for the set of all derivatives of
P .

Proposition 4. Suppose that each P ′ in D∗(P) ∪ D∗(Q) is support-finite and
the defining agent of each agent identifier occurring in P ′ is weakly guarded. Then
it holds that

P
.∼Sim(P,Q) Q

for any agents P and Q.

Proof: Suppose that {λn}∞n=1 is an increasing sequence of real numbers in the
unit interval [0, 1], λn < Sim(P,Q) for each n = 1, 2, ..., and limn→∞ λn = Sim(P,Q).
From Definition 5 it is easy to see that P

.∼λn Q for any n = 1, 2, Thus, we have
(P,Q) ∈

⋂∞
n=1

.∼λn .

Let D∗ = D∗(P)∪D∗(Q). The key idea is to show that (
⋂∞
n=1

.∼λn)∩ (D∗×D∗)
is a Sim(P,Q)−bisimulation. If

(U, V) ∈ (
∞⋂
n=1

.∼λn) ∩ (D∗ ×D∗)

and U
α[p]−→ U ′ where α is a free action, then for each n = 1, 2, ..., we have (U, V) ∈ .∼λn .

Since
.∼λn is a λn−bisimulation, it implies in turn that there exist Vn and qn ∈ (0, 1]

with V
α[qn]−→ Vn, U ′

.∼λn Vn and p ∗ qn ≥ λn. Note that V ∈ D∗. Then V is support-
finite and the defining agent of each agent identifier in V is weakly guarded. From
Lemma 9 we know that

{(qn, Vn) : n = 1, 2, ...} ⊆ D(V, α)

is a finite set. Hence, there are V ′ and q ∈ (0, 1] and an increasing sequence {ni}∞i=1

of positive integers such that (qni , Vni) = (q, V ′) for all i = 1, 2, Now it follows

40

that

P
α[q=qni]−→ Vni = V ′

For each i, we have (U ′, V ′) = (U ′, Vni) ∈
.∼λni , and it follows that

(U ′, V ′) ∈
∞⋂
i=1

.∼λni=
∞⋂
n=1

.∼λn

Furthermore, noting that U ′, V ′ ∈ D∗, we obtain

(U ′, V ′) ∈ (

∞⋂
n=1

.∼λn) ∩ (D∗ ×D∗)

On the other hand, for each i, p ∗ q = p ∗ qni ≥ λni . Noting that

lim
i→∞

λni = lim
n→∞

λn = Sim(P,Q)

we assert that p ∗ q ≥ Sim(P,Q).

For input actions and bound output actions we have a similar argument. This
leads to the conclusion that (

⋂∞
n=1

.∼λn) ∩ (D∗ ×D∗) is a Sim(P,Q)−bisimulation,
and consequently we complete the proof. �

Note that the preceding proposition depends heavily on Lemma 9. Thus, it does
not hold whenever some involved channels are not support-finite.

We now turn to show that λ−bisimilarity is congruent for some combinators in
the π−calculus. First, it is demonstrated that λ−bisimilarity is preserved by certain
substitutions of a single name. To this end, some notations are needed. Let t be a

probabilistic transition P
α[p]−→ P ′. We write so(t) for the set of subjects of output

actions involved in t. More concretely,

so(t) =

∅, if α is an input action, or α = τ is obtained by using TAU-ACT

{x}, if

α = xy or x(y), or α = τ is obtained by using COM on output

action xy and a complementary input action, or by using CLOSE

on bound output action x(y) and a complementary input action

Furthermore, for any agent P , we define

so(P) =
⋃
{so(t) : t is a possible probabilistic transition of P}

The definitions of so(P) and son(P) given in page 22 are quite different, but the
following lemma indicates that they are indeed the same thing.

Lemma 10. For any agent P , son(P) = so(P).

41

Proof. Induction on the length of P . �

Proposition 5. Suppose that z 6= w, z is normal, and z and w are compatible
(see Definition 2). Also, suppose that each channel x ∈ son(P)∪son(Q) is compatible
with {w/z} (see Definition 1). If P

.∼λ Q and w /∈ fn(P,Q), then P{w/z} .∼λ
Q{w/z}. Thus, for any w /∈ fn(P,Q), we have:

Sim(P,Q) ≤ Sim(P{w/z}, Q{w/z})

Proof: The idea is similar to the proof of Lemma 6 in [44, II]. We set

S0 =
.∼λ

Sn+1 = {(P{w/z}, Q{w/z}) : PSnQ,w /∈ fn(P,Q),

z and w are as in the suppostion of the proposition}

for every n ≥ 0, and S =
⋃∞
n=0 Sn.

It suffices to show that S is a λ−bisimulation. Let USV . Then USnV for some
n ≥ 0. We first use induction on n to prove the following

Claim: If U
α[p]−→ U ′ and α is a free action, then there exist q ∈ (0, 1] and Q′ such

that V
α[q]−→ V ′, p ∗ q ≥ λ and U ′SV ′.

For the case of n = 0, Sn =
.∼λ, it is clear. We now assume that USn+1V , i.e.

U = P{w/z} and V = Q{w/z} where PSnQ, and z and w are as in the assumption
of the proposition. With Lemma 7 we can find some p′, P ′ and β such that p′ ≥ p,

P ′{w/z} ≡α U ′, β{w/z} = α and P
β[p′]−→ P ′. Now by the induction hypothesis we

have Q
β[q′]−→ Q′ for some q′ and Q′ with p′ ∗ q′ ≥ λ and P ′SQ′. Furthermore, from

Lemma 10 and the assumption of the proposition it follows that the subjects of

output actions involved in Q
β[q′]−→ Q′ are compatible with {w/z}, and from Lemma

3 we know that there are q ≥ q′ and V ′ ≡α Q′{w/z} with

V = Q{w/z} α=β{w/z}[q]−→ V ′

Then it follows that p ∗ q ≥ p′ ∗ q′ ≥ λ and U ′ ≡α P ′{w/z}SQ′{w/z} ≡α V ′.
For input actions and bound output actions a similar argument enables us to

complete the proof. �

42

The proof of congruence property of λ−bisimilarity requires the technique of
bisimulation up to restriction, and it is introduced in the following definition.

Definition 6. Let λ ∈ (0, 1]. Then a binary relation S on agents is called a
λ−(strong) simulation up to restriction if for all agents P, Q with PSQ, we have:

(1) if w /∈ fn(P,Q), then P{w/z}SQ{w/z}; and

(2.i) whenever P
xy[p]−→ P ′, then there are agent Q′, and q ∈ (0, 1] such that

Q
xy[q]−→ Q′, P ′SQ′ and p ∗ q ≥ λ;

(2.ii) whenever P
τ [p]−→ P ′, then there are agent Q′, and q ∈ (0, 1] such that Q

τ [q]−→
Q′, p ∗ q ≥ λ, and P ′SQ′ or for some P”, Q” and w, P ′ ≡α (w)P”, Q′ ≡α (w)Q”
and P”SQ”;

(2.iii) whenever P
x(y)−→ P ′, and y /∈ n(P,Q), then there exists Q′ such that

Q
x(y)−→ Q′, and P ′{w/y}SQ′{w/y} for all names w; and

(2.iv) whenever P
x(y)[p]−→ P ′, and y /∈ n(P,Q), then there exist Q′, and q ∈ (0, 1]

such that Q
x(y)[q]−→ Q′, P ′SQ′ and p ∗ q ≥ λ.

A binary relation S on agents is called a λ−(strong) bisimulation up to restriction
if both S and its inverse S−1 are λ−simulations up to restriction.

The following lemma guarantees validity of the technique of bisimulation up to
restriction.

Lemma 11. If S is a λ−strong bisimulation up to restriction, then S ⊆ .∼λ .

Proof: Similar to Lemma 7 in [44, II]. We set S0 = S,

Sn+1 = {((w)P, (w)Q) : PSnQ,w ∈ N}

and

S∗ =
∞⋃
n=0

Sn

Then it may be shown that S∗ is a λ−bisimulation. �

Now we are able to show that under certain conditions on communication chan-
nels λ−bisimilarity is preserved by various combinators in the π−calculus.

Proposition 6. (1) If P
.∼λ Q, then

τ.P
.∼λ τ.Q

43

xy.P
.∼min(λ,ρx(y,z)) xz.Q

[x = y]P
.∼λ [x = y]Q; and

P +R
.∼λ Q+R

(2) Suppose that for any

z ∈
⋃

R∈D∗(P)∪D∗(Q)

fn(R),

w /∈
⋂

R∈D∗(P)∪D∗(Q)

fn(R)

and
x ∈

⋃
R∈D∗(P)∪D∗(Q)

so(R),

z is normal, z and w are compatible, and x is compatible with {w/z} (see Definitions
1 and 2). If P

.∼λ Q, then P |R .∼λ Q|R.

(3) Suppose that z is normal, and suppose that z and w are compatible, and x is
compatible with {w/z} for any

w /∈
⋂

R∈D∗(P)∪D∗(Q)

n(R)

and for any

x ∈
⋃

R∈D∗(P)∪D∗(Q)

so(R)

If P
.∼λ Q, then (z)P

.∼λ (z)Q.

(4) Suppose that y is normal, and suppose that for any z /∈ fn(P,Q, y) and for
any x ∈ son(P)∪ son(Q), y and z are compatible and x is compatible with {z/y}. If
for all w ∈ fn(P,Q, y), P{w/y} .∼λ Q{w/y}, then

x(y).P
.∼λ x(y).Q

Proof: (1) We only prove the second conclusion, and the others are similar. We
show that

S = {(xy.P, xz.Q)}∪ .∼λ
is a min(λ, ρx(y, z))−bisimulation. In fact, transition

xy.P
xu[px(u|y)]−→ P

44

is simulated by

xz.Q
xu[px(u|z)]−→ Q

and at the same time we have

px(u|z) ∗ px(u|y) ≥ ρx(y, z) ≥ min(λ, ρx(y, z))

and P
.∼λ Q, which implies P

.∼min(λ,ρx(y,z)) Q.

(2) With Lemma 11, it suffices to show that

S = {(U |R, V |R) : U
.∼λ V, U ∈ D∗(P) and V ∈ D∗(Q)}

is a λ−bisimulation up to restriction. To verify that S satisfies condition (1) in
Definition 6 we only need to show that for all w /∈ fn(U, V) and for all z, U

.∼λ V ,
U ∈ D∗(P) and V ∈ D∗(Q) imply U{w/z} .∼λ V {w/z}. If z /∈ fn(U, V), then
U{w/z} = U and V {w/z} = V . It is obvious. For the case of z ∈ fn(U, V), such an
implication is warranted by Proposition 5 and the assumption on the channels. It
is routine to check that S satisfies condition (2) of Definition 6.

(3) Let
S0 =

.∼λ ∩(D∗(P)×D∗(Q))

and
S =

.∼λ ∪{((z)P ′, (z)Q′) : (P ′, Q′) ∈ S0}

Then it suffices to show that S is a λ−bisimulation. For any (P ′, Q′) ∈ S0, we only

consider the case of bound output actions by (z)P ′ and (z)Q′. If (z)P ′
y(w)[p]−→ U ,

and w /∈ n((z)P ′, (z)Q′) = n(P ′, Q′, z), then z 6= y, and P ′
y(z)[p]−→ P” and U =

P”{w/z} for some P”. Since P ′
.∼λ Q′, there must be Q”, and q ∈ (0, 1] such that

Q′
y(z)[q]−→ Q”, P”

.∼λ Q” and p ∗ q ≥ λ. Consequently, (z)Q′
y(w)−→ Q”{w/z}. Note

that P”, Q” ∈ D∗(P) ∪ D∗(Q). With Proposition 5 we have U
.∼λ Q”{w/z} and

(U,Q”{w/z}) ∈ S.

(4) For any u /∈ n(x(y).P, x(y).Q) = n(P,Q, x, y), we have x(y).P
x(u)−→ P{u/y}

and x(y).Q
x(u)−→ Q{u/y}. With Proposition 2 it suffices to show that for all names

w, we have
P{u/y}{w/u} .∼λ Q{u/y}{w/u}

Noting that u /∈ n(P,Q, x, y), we obtain P{u/y}{w/u} = P{w/y} andQ{u/y}{w/u} =
Q{w/y}. For the case of w ∈ fn(P,Q, y), it is already given by the assumption. On
the other hand, let w = y in the assumption. Then it holds that P

.∼λ Q, and further-
more by using Proposition 5 we obtain P{w/y} .∼λ Q{w/y} for all w /∈ fn(P,Q, y).
�

In [44, II] the way of proving that P
.∼ Q implies (z)P

.∼ (z)Q is to show that
.∼ is a bisimulation up to restriction and then to use the construction S∗ for S =

.∼.

45

However, this method does not work in the πN−calculus because it requires us to
use Proposition 5 for all names z. In turn, such a global application of Proposition
5 needs the assumption that all names z are normal. It is easy to see that all names
will be noiseless and πN will degenerate to π whenever all names are normal. Note
that the way in which we prove the implication from P

.∼λ Q to (z)P
.∼λ (z)Q here

is in fact a localization of Proposition 5 at the fixed name z.

The above proposition may be equivalently restated in terms of bisimilarity de-
gree as the following:

Corollary 3. (1) It holds that

Sim(P,Q) ≤ Sim(τ.P, τ.Q)

min[Sim(P,Q), ρx(y, z)] ≤ Sim(xy.P, xz.Q)

Sim(P,Q) ≤ Sim([x = y]P, [x = y]Q); and

Sim(P,Q) ≤ Sim(P +R,Q+R)

(2) With the same assumption as in Proposition 6(2), we have

Sim(P,Q) ≤ Sim(P |R,Q|R)

(3) With the same assumption as in Proposition 6(3), we have

Sim(P,Q) ≤ Sim((w)P, (w)Q); and

(4) With the same assumption as in Proposition 6(4), we have

inf
w∈fn(P,Q,y)

Sim(P{w/y}, Q{w/y}) ≤ Sim(x(y).P, x(y).Q)

Proof: Immediate from Proposition 6. �

Some basic equational laws for (1−)bisimilarity are presented in the next propo-
sition. These laws are concerned with prefix, summation, matching and restriction.
Some equational laws for parallel composition will be given later since their proofs
require new proof techniques.

Proposition 7. (1) P + 0
.∼ P ;

(2) P + P
.∼ P ;

46

(3) P1 + P2
.∼ P2 + P1;

(4) P1 + (P2 + P3)
.∼ (P1 + P2) + P3;

(5) If A(x̃)
def
= P , then A(ỹ)

.∼ P{ỹ/x̃};
(6) [x = y]P

.∼ 0 if x 6= y;

(7) [x = x]P
.∼ P ;

(8) (y)P
.∼ P if y /∈ fn∗(P);

(9) (y)(z)P
.∼ (z)(y)P ;

(10) (y)(P +Q)
.∼ (y)P + (y)Q;

(11) (y)α.P
.∼ α.(y)P if α is not a (free) output action and y /∈ n(α);

(12) (y)xz.P
.∼ xz.(y)P if y 6= x and px(y|z) = 0; and

(13) (y)α.P
.∼ 0 if y is the subject of α.

Proof: Similar to Theorems 3-6 in [44, II]. �

Proposition 7(8) is a generalization of Theorem 6(a) in [44, II]. However, the
condition in πN to warrant (y)P

.∼ P is slightly stronger than that in π; that is, it
is required in πN that y /∈ fn∗(P), but in π we only need to assume that y /∈ fn(P).
The following example will show that the condition y /∈ fn(P) is not sufficient in
the πN−calculus. Also, Propositions 7(11) and (12) are counterparts of Theorem
6(d) in [44, II]. For the case that α is not a (free) output action, the conditions to
guarantee (y)α.P

.∼ α.(y)P in π and in πN are the same, namely, y /∈ n(α). But
when α = xz is an output action, such a condition has to be strengthened to y 6= x
and px(y|z) = 0. The necessity of this modification is explained by the following
example too.

Example 8. Let N = {x1, x2, x3, ...} be the set of names. Suppose that
px1(x1|x2) = 0 and

px1(xn|x2) =
1

2n−1

for all n ≥ 2. Then for any λ > 0,

(x3)x1x2.0
.∼λ x1x2.0

does not hold although x3 /∈ fn(x1x2.0). In fact,

x1x2.0
x1x3[

1
4
]

−→ 0

cannot be simulated by any transition of (x3)x1x2.0.

Similarly, we can see that x3 /∈ n(x1x2) but

(x3)x1x2.0
.∼λ x1x2.(x3)0

47

does not hold for all λ > 0.

In order to prove some useful equational laws for parallel composition, we need
to introduce two new proof techniques, namely, bisimulation up to bisimilarity and
bisimulation up to bisimilarity and restriction. They will be formally defined in Def-
initions 7 and 8, and their validity will be shown by Lemmas 12 and 13, respectively.

Definition 7. A binary relation S on agents is called a λ−(strong) simulation
up to

.∼µ if for all agents P, Q with PSQ, we have:

(i) if P
α[p]−→ P ′, and α is a free action, then there are agent Q′, and q ∈ (0, 1]

such that Q
α[q]−→ Q′, P ′

.∼µ S
.∼µ Q′ and p ∗ q ≥ λ;

(ii) if P
x(y)−→ P ′, and y /∈ n(P,Q), then there exits Q′ such that Q

x(y)−→ Q′, and
P ′{w/y} .∼µ S

.∼µ Q′{w/y} for all names w; and

(iii) if P
x(y)[p]−→ P ′, and y /∈ n(P,Q), then there exist Q′, and q ∈ (0, 1] such that

Q
x(y)[q]−→ Q′, P ′

.∼µ S
.∼µ Q′ and p ∗ q ≥ λ.

A relation S on agents is called a λ−(strong) bisimulation up to
.∼µ if both S

and its inverse S−1 are λ−simulations up to
.∼µ.

Lemma 12. Let S be a λ−bisimulation up to
.∼. Suppose that

(i) for any agents P , Q, U and V with P
.∼ USV .∼ Q, there is a normal name

z /∈ n(P,Q,U, V);

(ii) each normal name z and each name w are compatible (see Definition 2); and

(iii) for any names x and w, and for any normal name z, x is compatible with
{w/z} (see Definition 1).

Then we have S ⊆ .∼λ.

Proof: We construct S∗ in a way similar to the proof of Lemma 9 in [44, II]:

S∗ =

∞⋃
n=0

Sn

where
S0 =

.∼ S .∼, and

Sn+1 = {(P{w/z}, Q{w/z}) : PSnQ, z is a normal name, and w /∈ fn(P,Q)}

for each n ≥ 0. Now we show that S∗ is a λ−bisimulation. Suppose that PS∗Q.
Then PSnQ for some n ≥ 0. We proceed by induction on n.

For the case of n = 0, we only consider the transitions with bound output actions.

Since PS0Q, it holds that P
.∼ USV

.∼ Q for some agents U and V . If P
x(y)[p]−→ P ′

48

and y /∈ n(P,Q), then we can choose a normal name z /∈ n(P,Q,U, V). From Lemma

5 it holds that P
x(z)[p]−→ P ′{z/y}. Note that z /∈ n(P,U) and P

.∼ U . Then there

is an agent U ′ such that U
x(z)[p]−→ U ′ and P ′{z/y} .∼ U ′. Furthermore, since S is a

λ−bisimulation up to
.∼ and z /∈ n(U, V), there exist V ′ and q ∈ (0, 1] such that

V
x(z)[q]−→ V ′, U ′

.∼ S
.∼ V ′ and p ∗ q ≥ λ. Thus, we have Q

x(z)[q]−→ Q” and V ′
.∼ Q”

for some agent Q”. Let Q′ = Q”{y/z}. Then it holds that Q
x(y)[q]−→ Q′. In addition,

P ′{z/y} .∼ U ′ .∼ S .∼ V ′ .∼ Q”, P ′{z/y}S0Q”, and P ′ = P ′{z/y}{y/z}S1Q”{y/z} =
Q′.

In general, suppose that PSn+1Q. Then P = U{w/z}, Q = V {w/z} for some
w, U and V with USnV and w /∈ fn(U, V). Now we only consider the case of free

actions. If P
α[p]−→ P ′, then from Lemma 7 we have U

β[p]−→ U ′ for some β and U ′

with β{w/z} = α and U ′{w/z} ≡α P ′. With the induction hypothesis, we obtain

V
β[q]−→ V ′, U ′S∗V ′ and p ∗ q ≥ λ for some V ′ and q ∈ (0, 1]. Furthermore, from

Lemma 6 we know that Q
α[q]−→ Q′ ≡α V ′{w/z}, and P ′S∗Q′. �

As a combination of Definitions 6 and 7, we introduce the notion of λ−bisimulation
up to

.∼µ and restriction.

Definition 8. Let λ, µ ∈ (0, 1]. Then a binary relation S on agents is called a
λ−(strong) simulation up to

.∼µ and restriction if for all agents P, Q with PSQ, we
have:

(1) if w /∈ fn(P,Q), then P{w/z}SQ{w/z}; and

(2.i) whenever P
xy[p]−→ P ′, then there are agent Q′, and q ∈ (0, 1] such that

Q
xy[q]−→ Q′, P ′

.∼µ S
.∼µ Q′ and p ∗ q ≥ λ;

(2.ii) whenever P
τ [p]−→ P ′, then there are agent Q′, and q ∈ (0, 1] such that

Q
τ [q]−→ Q′, p ∗ q ≥ λ, and P ′

.∼µ S
.∼µ Q′ or for some P”, Q” and w, P ′

.∼µ (w)P”,
Q′

.∼µ (w)Q” and P”SQ”;

(2.iii) whenever P
x(y)−→ P ′, and y /∈ bn(P,Q), then there exists Q′ such that

Q
x(y)−→ Q′, and P ′{w/y} .∼µ S

.∼µ Q′{w/y} for all names w; and

(2.iv) whenever P
x(y)[p]−→ P ′, and y /∈ bn(P,Q), then there exist Q′, and q ∈ (0, 1]

such that Q
x(y)[q]−→ Q′, P ′

.∼µ S
.∼µ Q′ and p ∗ q ≥ λ.

A binary relation S on agents is called a λ−(strong) bisimulation up to
.∼µ and

restriction if both S and its inverse S−1 are λ−simulations up to restriction.

Lemma 13. With the same assumption as in Lemma 12, if S is a λ−bisimulation
up to

.∼ and restriction, then S ⊆ .∼λ.

49

Proof: It is similar to the proof of Lemma 12 to prove that S∗ =
⋃∞
n=0 Sn is a

λ−bisimulation, where
S0 =

.∼ S .∼, and

Sn+1 =
.∼ {((w)P, (w)Q) : PSnQ and w is a name} .∼

for all n ≥ 0. �

It should be noted that in the definition of λ−bisimulation up to
.∼µ (and re-

striction), the parameter µ is allowed to be less than 1. But we only considered
the case of µ = 1 in Lemmas 12 and 13. This special case is sufficient to prove
the following proposition. The general case will be discussed in Section 7, after the
notion of (λ, µ)−stratified bisimulation is introduced.

We are now ready to show some basic equational laws for parallel composition.

Proposition 8. (1) P |0 .∼ P ;

(2) P1|P2
.∼ P2|P1;

(3) (y)P1|P2
.∼ (y)(P1|P2) if y /∈ fn∗(P2), and (y)(P1|P2)

.∼ (y)P1|(y)P2 if y /∈
fn∗(P1) ∩ fn∗(P2); and

(4) (P1|P2)|P3
.∼ P1|(P2|P3).

Proof: (1) and (2) are easy and omitted here.

(3) The second part is a simple corollary of the first one. To prove the first part,
it amounts to show that

S = {((y)P1|P2, (y)(P1|P2)) : P1, P2 are agents, and y /∈ fn∗(P2)} ∪ Id

is a strong bisimulation up to
.∼ and restriction, where Id is the identity relation

on agents. The details are similar to the proof of Theorem 8(c) in [44, II]. The
fact that S is a bisimulation up to

.∼ and restriction does not automatically imply
(y)P1|P2

.∼ (y)(P1|P2) whenever y /∈ fn∗(P2), and Lemma 13 is needed in order
to warrant such an implication. However, applying Lemma 13 requires us to find
normal names z which satisfy the conditions (i), (ii) and (iii) in Lemma 12. This is
completely different from the case of channels without noise. Usually, such normal
names may not exist. This forces us to add some new names into the set N of
names and expand N. The idea of expanding the syntax (or language) of π is
indeed inspired by Henkin’s method of constructing models from new constants in
model theory [22, Chapter 2]. Let z∗ /∈ N. We set N′ = N∪{z∗}. For any x, y ∈ N,
the probability distribution px(.|y) on N is extended to a probability distribution
on N′ by simply letting px(z∗|y) = 0. And we define

pz∗(x|y) =

{
1, if x = y

0, if x 6= y

50

for all x, y ∈ N′. Thus, we can develop the πN−calculus with the name set N′. For
convenience, this expanded πN−calculus is denoted by π′N . Then it is routine to
check the following two claims.

Claim 1: for any agents P and Q in πN , P
.∼λ Q holds in πN if and only if

P
.∼λ Q holds in π′N .

Claim 2: in π′N , z∗ is a normal name, z∗ and each w ∈ N′ are compatible, and
each x ∈ N′ is compatible with {w/z∗} for any w ∈ N′.

Now using Claim 2 and Lemma 13 we are able to show that (y)P1|P2
.∼ (y)(P1|P2)

in π′N , and this together with Claim 1 yields that (y)P1|P2
.∼ (y)(P1|P2) in πN

provided y /∈ fn∗(P2).

(4) It may be carried out by combining the ideas of (3) and the proof of Theorem
8(d) in [44, II]. The details are very complicated and dull, and we omit them. �

In the π−calculus, it is merely required that y /∈ fn(P2) in order to guarantee
(y)P1|P2

.∼ (y)(P1|P2). But in Proposition 8(3) this condition is strengthened to
y /∈ fn∗(P2). The following example illustrates that y /∈ fn(P2) is not sufficient for
(y)P1|P2

.∼ (y)(P1|P2) in the πN−calculus.

Example 9. Let P1 = 0 and P2 = xu.0|x(v).vz.0. Then y /∈ fn(P2). Suppose
that px(u|u) = 0.6, px(y|u) = 0.4 and py(z|z) = 1. We have

(y)P1|P2
xy[0.4]−→ (y)0|(0|yz.0)

yz−→ (y)0|(0|0)

and

(y)(P1|P2)
xy[0.4]−→ (y)(0|(0|yz.0))

The second transition of (y)P1|P2 cannot be simulated by (y)(P1|P2), and it does
not hold that (y)P1|P2

.∼λ (y)(P1|P2) for any λ > 0.

The expansion law in CCS or the π−calculus is a convenient mathematical tool
in reasoning about behavior of parallel composition because it is able to unfold a
composition of agents to a summation with all of its capabilities for action explicit.
We now intend to establish an expansion law in the πN−calculus. As pointed out
before, πN has the same syntax as π. However, the expansion law cannot be ex-
pressed in the original language of π. Instead, we have to introduce a probabilistic
extension of π. This is an interesting feature of πN distinct from π.

What is needed to add into the syntax of π is simply a probabilistic summation.
Thus, the syntax of the extended π is given by

P ::= 0 |yx.P | y(x).P | τ.P | P1+P2 |
∑
i

[pi]Pi | P1|P2 | (x)P | [x = y]P | A(y1, ..., yn)

51

where i ranges over a finite or countably infinite set of indexes, and it is required that∑
i[pi] = 1. It should be noted that in this new language both nondeterministic choice

and probabilistic choice are allowed. The transitional semantics of the additional
construct, probabilistic summation, is given by the following inference rule:

SUM:

Pj
α[q]−→ P ′

∑
i[pi]Pi

α[piq]−→ P ′

To present the expansion law in a compact way, we also need to make a con-
vention of notation: the action symbols αi and βj in the following proposition are
allowed to be not only ordinary prefixes but also derived prefixes of the form (u)xy
with x 6= y. In other words, αi and βj may range over the set {τ} ∪ {xy, x(y) :
x, y ∈ N} ∪ {(u)xy : u, x, y ∈ N and x 6= y}. Note that if αi = (u)xy, then αi.Pi
stands for agent (u)xy.Pi, and if βj = (u)xy, then βj .Qj is agent (u)xy.Qj (see [44,
II], Definition 16).

With the above preliminaries, the expansion laws with respect to bisimilarity in
the πN−calculus can be stated as follows:

Proposition 9. (The expansion law for
.∼) Suppose that P =

∑
i αi.Pi and Q =∑

j βj .Qj, and suppose that for all i, j, if αi = x(y) then y /∈ fn(Q), if αi = (u)xy
then u /∈ fn∗(Q), if βj = x(y) then y /∈ fn(P), and if βj = (u)xy then u /∈ fn∗(P).
Then we have

P |Q .∼
∑
i

αi.(Pi|Q) +
∑
j

βj .(P |Qj) +
∑

αi comp βj

Rij

where the relation ”αi comp βj” holds in the following four cases:

(1) αi is xu and βj is x(v); then

Rij =
∑

y:px(y|u)>0

[px(y|u)]τ.(Pi|Qj{y/v})

(2) αi is (u)xy and βj is x(v); then

Rij =
∑

z:px(z|y)>0

[px(z|y)]τ.((u)Pi|Qj{z/v})

if px(u|y) = 0, and

Rij =
∑

z:px(z|y)>0

[px(z|y)]τ.((u)Pi|Qj{z/v}) + [px(u|y)]τ.(w)(Pi{w/u}|Qj{w/v})

52

if px(u|y) > 0, where w /∈ fn((u)Pi, (v)Qj);

(3) αi is x(v) and βj is xu; then

Rij =
∑

y:px(y|u)>0

[px(y|u)]τ.(P{y/v}|Qj)

(4) αi is x(v) and βj is (u)xy; then

Rij =
∑

z:px(z|y)>0

[px(z|y)]τ.(Pi{z/v}|(u)Qj)

if px(u|y) = 0, and

Rij =
∑

y:px(y|u)>0

[px(y|u)]τ.(P{y/v}|(u)Qj) + [px(u|y)]τ.(w)(Pi{w/v}|Qj{w/u}

if px(u|y) > 0, where w /∈ fn((v)Pi, (u)Qj).

Proof: For any agents P and Q, we write R(P,Q) for the agent in the right-hand
side of the bisimilarity in the conclusion part of the proposition. Let

S = {(P |Q,R(P,Q)) : P,Q are agents}

Then it is easy to show that S∪Id is a bisimulation, where Id is the identity relation
on agents. �

Originally, information about noise is hidden behind syntax and it cannot be
seen directly. Now through the expansion law it is brought out to surface, and it
appears explicitly in syntax. This is exactly why we need to extend the syntax of π
(and πN) in order to present the expansion law in πN .

6. Strong (D-)Equivalence

It was observed in the last section that λ−bisimilarity is not preserved by sub-
stitutions of free names. To overcome this objection, in this section we introduce
a refined version of λ−bisimilarity, namely, λ−equivalence. It is defined to be a
λ−bisimilarity under all substitutions of free names. The notion of λ−equivalence
is clearly a probabilistic generalization of equivalence introduced in Definition 10 of
[44, II].

As was done in Definition 12 of [44, II], λ−equivalence can be further refined by
allowing only some special substitutions of free names to be used. The constraint
imposed on these substitutions is represented by the notion of distinction. Recall
that a distinction is a symmetric and irreflexive relation D between names (see [44,

53

II], Definition 11). If A ⊆ N, then we sometimes use A to abbreviate the distinction
A × A − IdN, in which all different names in A are treated as distinct. For any
distinction D, we write D � A for D∩ (A×A), the restriction of D on A. Let x ∈ N.
Then Dr x means the distinction D− (({x} ×N)∪ (N× {x})), where the name x
is excluded from the distinction D.

A substitution is a function σ from N to itself such that σx = x for all but a
finite number of names x. If σx 6= σy for all (x, y) ∈ D, then we say that σ respects
D. In other words, substitution σ respects a distinction D if and only if all names
distinguished by D cannot be identified by σ

Now we are able to introduce the main notion of this section.

Definition 9. Let D be a distinction and λ ∈ (0, 1], and let P and Q be two
agents.

(1) If Pσ
.∼λ Qσ for all substitutions σ respecting D, then P and Q are said to

be (strongly) (D,λ)−equivalent, and we write P ∼D,λ Q.

(2) The (strong) D−equivalence degree between P and Q is defined by

EqD(P,Q) = sup{λ ∈ (0, 1] : P ∼D,λ Q}

In particular, if D = ∅, then ∼D,λ is simply called (strong) λ−equivalence and
abbreviated to ∼λ. It is obvious that P and Q are λ−equivalent if and only if
Pσ

.∼ Qσ for all substitutions σ. Similarly, ∅−equivalence degree Eq∅ will be called
(strong) equivalence degree, and the subscript ∅ will be dropped for simplicity. Also,
we shall drop λ from ∼D,λ whenever λ = 1.

Intuitively, λ−bisimilarity can be thought of as an equivalence relation where
different names will not be identified, whereas λ−equivalence is an equivalence re-
lation under the assumption that all free names may be identified. In the middle,
there is the notion of D−equivalence which only allows us to identify free names
that are not related by the distinction D.

Propositions 3 and 6 may be then generalized to the case of (D,λ)−bisimilarity.
It is indicated that (D,λ)−equivalence is transitive, and it is preserved by the com-
binators in π under certain conditions on channels.

Proposition 10. For all distinctions D and λ ∈ (0, 1], we have:

(1) ∼D,λ is reflexive and symmetric, and P ∼D,λ1 Q and Q ∼D,λ2 R imply
P ∼D,λ1λ2 R. In particular, ∼D is an equivalence relation.

(2) If P ∼D,λ Q, then
τ.P ∼D,λ τ.Q

xy.P ∼D,min[λ,infσ respects D ρxσ(yσ,zσ)] xz.Q

54

In particular,
xy.P ∼D,min[λ,ρx(y,z)] xz.Q

whenever for all σ respecting D, channel x is compatible with σ;

[x = y]P ∼D,λ [x = y]Q; and

P +R ∼D,λ Q+R

(3) Suppose that for any

z ∈
⋃

σ respects D

⋃
R∈D∗(Pσ)∪D∗(Qσ)

fn(R),

w /∈
⋂

σ respects D

⋂
R∈D∗(Pσ)∪D∗(Qσ)

fn(R)

and
x ∈

⋃
σ respects D

⋃
R∈D∗(Pσ)∪D∗(Qσ)

so(R),

z is a normal name, z and w are compatible, and x is compatible with {w/z}. If
P ∼D,λ Q, then P |R ∼D,λ Q|R.

(4) Suppose that z is normal, and suppose that z and w are compatible, and x is
compatible with {w/z} for any

w /∈
⋃

σ respects D

⋂
R∈D∗(Pσ)∪D∗(Qσ)

n(R)

and for any

x ∈
⋃

σ respects D

⋃
R∈D∗(Pσ)∪D∗(Qσ)

so(R)

If P ∼D,λ Q, then (z)P ∼D,λ (z)Q.

(5) Suppose that y is a normal name, and suppose that for any

z /∈
⋂

σ respects D

fn(Pσ,Qσ, y)

and for any

y ∈
⋃

σ respects D

(so(Pσ) ∪ so(Qσ))

y and z are compatible and x is compatible with {z/y}. If P ∼D,λ Q and P{v/y} ∼D,λ
Q{v/y} for all v ∈ fn(P,Q) such that (v, y) ∈ D, then

x(y).P ∼D,λ x(y).Q

55

Proof: Immediate from Propositions 3 and 6. �

The above proposition may be equivalently presented in terms of D−equivalence
degree as the following:

Corollary 4. (1) It holds that

EqD(P, P) = 1, EqD(P,Q) = EqD(Q,P)

and
EqD(P,Q) · EqD(Q,R) ≤ EqD(P,R)

(2) We have:
EqD(P,Q) ≤ EqD(τ.P, τ.Q)

min[EqD(P,Q), inf
σ respects D

ρx(y, z)] ≤ EqD(xy.P, xz.Q)

In particular,
min[EqD(P,Q), ρx(y, z)] ≤ EqD(xy.P, xz.Q)

if channel x is compatible with all substitutions σ which respect D;

EqD(P,Q) ≤ EqD([x = y]P, [x = y]Q)

EqD(P,Q) ≤ EqD(P +R,Q+R)

(3) With the same assumption as in Proposition 10(3), we have:

EqD(P,Q) ≤ EqD(P |R,Q|R)

(4) With the same assumption as in Proposition 10(4), we have:

EqD(P,Q) ≤ EqD((w)P, (w)Q)

(5) With the same assumption as in Proposition 10(5), we have:

min[EqD(P,Q), inf
v∈fn(P,Q) and (v,y)∈D

EqD(P{v/y}, Q{v/y}] ≤ EqD(x(y).P, x(y).Q)

Proof. Immediate from Proposition 10 and Definition 9(2). �

56

Proposition 7 can also be generalized to the case of D−equivalence in a quite
direct way, and this gives some basic equational laws for D−equivalence.

Let substitution σ = {u1/y1, ..., un/yn} and let K(⊆ N) be a set of names. If for
any i, j ≤ n and x ∈ K, the three sets {z ∈ N : pui(z|x) > 0}, {z ∈ N : pui(z|uj) >
0} and {z ∈ N : px(z|ui) > 0} are all finite, then we say that σ is support-finite
with respect to K.

With this new concept of support-finiteness, the (D−)equivalence generalization
of Proposition 7 may be stated as follows.

Proposition 11. (1) P + 0 ∼ P ;

(2) P + P ∼ P ;

(3) P1 + P2 ∼ P2 + P1;

(4) P1 + (P2 + P3) ∼ (P1 + P2) + P3;

(5) If A(x̃)
def
= P , then A(ỹ) ∼ P{ỹ/x̃};

(6) [x = y]P ∼{x,y} 0;

(7) [x = x]P ∼ P ;

(8) Suppose that fn∗(P) is a finite set, and any substitution σ respecting D is
support-finite with respect to fn(P). Then (y)P ∼D P whenever y /∈ fn∗(P);

(9) (y)(z)P ∼ (z)(y)P ;

(10) (y)(P +Q) ∼ (y)P + (y)Q;

(11) (y)α.P ∼D α.(y)P if α is not a (free) output action and y /∈
⋃
σ respects D n(ασ);

(12) (y)xz.P ∼D xz.(y)P if y 6= xσ and pxσ(y|zσ) = 0 for all substitutions σ
respecting D;

(13) (y)α.P ∼ 0 if y is the subject of α;

(14) P |0 ∼ P ;

(15) P1|P2 ∼ P2|P1;

(16) (y)P1|P2 ∼D (y)(P1|P2) if

y /∈
⋃

σ respects D

fn∗(P2σ),

and (y)(P1|P2) ∼D (y)P1|(y)P2 if

y /∈
⋃

σ respects D

fn∗(P1σ) ∩ fn∗(P2σ); and

(17) (P1|P2)|P3 ∼ P1|(P2|P3).

Proof: We only prove (8), and the others are immediate from Proposition 7.

Suppose that σ = {u1/y1, ..., un/yn} is a substitution and it respects D. We

57

need to prove that ((y)P)σ
.∼ Pσ. From the assumption we see that

M =
⋃

i≤n,x∈fn(P)

({z ∈ N : pui(z|x) > 0} ∪ {z ∈ N : px(z|ui) > 0})

∪
⋃
i,j≤n
{z ∈ N : pui(z|uj) > 0}

is finite because fn(P) is a finite set. We choose v /∈ M ∪ fn∗(P). Since y /∈
fn∗(P) ⊇ fn(P), we have (y)P ≡α (v)P{v/y} = (v)P and ((y)P)σ ≡α ((v)P)σ.
Then with Corollary 1(1) we obtain ((y)P)σ

.∼ ((v)P)σ = (v)(Pσ). Note that
v /∈ M ∪ fn∗(P). This implies v /∈ fn∗(Pσ). Hence, from Proposition 7(8) it follows
that (v)(Pσ)

.∼ Pσ. �

Note that some items of Proposition 11 are given without subscripts D,λ in the
equivalence symbol. This means that they are true when D is the empty set and
λ = 1. Of course, they are also valid for the case of D 6= ∅ and λ < 1 because
∼=∼∅,1 is the strongest one in the family of equivalence relations ∼D,λ, namely,
∼⊆∼D,λ for any D 6= ∅ and λ < 1.

We also have an expansion law for (1−)equivalence. The only difference between
Proposition 9 and the following proposition is that certain matching constructs must
be added in the case of strong equivalence in order to distinguish different names.

Proposition 12. (The expansion law for ∼) Suppose that P =
∑

i αi.Pi and
Q =

∑
j βj .Qj, where αi and βj are as in Proposition 9, and suppose that for all

i, j, if αi = x(y) then y /∈ fn(Q), if αi = (u)xy then u /∈ fn∗(Q), if βj = x(y) then
y /∈ fn(P), and if βj = (u)xy then u /∈ fn∗(P). Then

P |Q ∼
∑
i

αi.(Pi|Q) +
∑
j

βj .(P |Qj) +
∑

αi opp βj

[xi = yj]Rij

where the relation ”αi opp βj” holds in the following four cases:

(1) αi is xiu and βj is yj(v); then

Rij =
∑

z:pxi (z|u)>0

[pxi(z|u)]τ.(Pi|Qj{z/v})

(2) αi is (u)xit and βj is yj(v); then

Rij =
∑

z:pxi (z|t)>0

[pxi(z|t)]τ.((u)Pi|Qj{z/v})

if pxi(u|t) = 0, and

Rij =
∑

z:pxi (z|t)>0

[pxi(z|t)]τ.((u)Pi|Qj{z/v}) + [pxi(u|t)]τ.(w)(Pi{w/u}|Qj{w/v})

58

if pxi(u|t) > 0, where w /∈ fn((u)Pi, (v)Qj);

(3) αi is xi(v) and βj is yju; then

Rij =
∑

z:pyj (z|u)>0

[pyj (z|u)]τ.(P{z/v}|Qj)

(4) αi is xi(v) and βj is (u)yjt; then

Rij =
∑

z:pyj (z|t)>0

[pyj (z|t)]τ.(Pi{z/v}|(u)Qj)

if pyj (u|t) = 0, and

Rij =
∑

z:pyj (z|u)>0

[pyj (z|u)]τ.(P{z/v}|(u)Qj) + [pyj (u|t)]τ.(w)(Pi{w/v}|Qj{w/u}

if pyj (u|t) > 0, where w /∈ fn((v)Pi, (u)Qj).

Proof: Proposition 9 enables us to show that applying a substitution σ to both
sides of the expansion law yields two bisimilar agents. The key technique is using
alpha-conversion to avoid name capture in αiσ and Qσ as well as in βjσ and Pσ. �

The following proposition is a simple generalization of Theorem 16 in [44, II],
and it exposes an interesting connection of bound names and distinctions.

Proposition 13. (1) If P ∼D,λ Q, then (x)P ∼Drx,λ (x)Q.

(2) If P ∼Drx,λ Q, then y(x).P ∼D,λ y(x).Q.

(3) If P ∼D,λ Q, then P ∼D�fn(P,Q),λ Q.

Or equivalently in terms of D−equivalence degree, we have:

(1)’ EqD(P,Q) ≤ EqDrx((x)P, (x)Q).

(2)’ EqDrx(P,Q) ≤ EqD(y(x).P, y(x).Q).

(3)’ EqD(P,Q) ≤ EqD�fn(P,Q)(P,Q).

Proof: Similar to Theorem 16 in [44, II]. �

An axiomatization of strong bisimilarity in π was found in [44], and it was proved
to be complete over finite agents. The main aim of introducing D−equivalence in
[44] is to give a simple axiomatization of equivalence in π. To conclude this section,
we would like to point out that in the πN−calculus it is still an open problem to
find a corresponding axiomatization for λ−bisimilarity or D,λ−equivalence.

59

7. Stratified (Strong) Bisimilarity

It was shown in Proposition 5 that λ−bisimilarity is preserved by some substi-
tutions of a single name. This is a basis of many other important algebraic prop-
erties of λ−bisimilarity. However, in Proposition 5 the condition on the channel
names involved in these substitutions is very strict. The main aim of this section
is to remove part of this condition. This will be done by introducing the notion of
(λ, µ)−stratified bisimilarity, which is much weaker than λ−bisimilarity.

Definition 10. Let {Sn}∞n=0 be an increasing sequence of binary relations on
agents, i.e. Sn ⊆ Sn+1 for every n ≥ 0, and let λ, µ ∈ (0, 1]. Then {Sn}∞n=0 is called
a (λ, µ)−stratified (strong) simulation if for any n ≥ 0 and for any (P,Q) ∈ Sn,

(i) whenever P
α[p]−→ P ′, and α is a free action, then there are agent Q′, and

q ∈ (0, 1] such that Q
α[q]−→ Q′, P ′Sn+1Q

′ and p ∗ q ≥ λ · µn (see page 27 for the
definition of operation ∗);

(ii) if P
x(y)−→ P ′, and y /∈ n(P,Q), then there is Q′ such that Q

x(y)−→ Q′, and
P ′{w/y}Sn+1Q

′{w/y} for all names w; and

(iii) if P
x(y)[p]−→ P ′, and y /∈ n(P,Q), then there exist Q′, and q ∈ (0, 1] such that

Q
x(y)[q]−→ Q′, P ′Sn+1Q

′ and p ∗ q ≥ λ · µn.

An increasing sequence {Sn}∞n=0 of binary relations on agents is called a (λ, µ)−stratified
(strong) bisimulation if both {Sn}∞n=0 and {S−1n }∞n=0 are (λ, µ)−stratified simulation-
s.

Definition 11. Let P and Q be two agents. If there exists a (λ, µ)−stratified
bisimulation {Sn}∞n=0 such that (P,Q) ∈ S0, then P and Q are said to be (λ, µ)−stratification-
bisimilar, and we write P

.∼λ,µ Q.

Obviously, (λ, µ)−stratified bisimulation is a generalization of λ−bisimulation. If
S is a λ−bisimulation, then the constant sequence {Sn = S}∞n=0 is a (λ, 1)−stratified
bisimulation. Conversely, if {Sn}∞n=0 is a (λ, 1)−stratified bisimulation, then ∪∞n=0Sn
is a λ−bisimulation. Thus, P

.∼λ Q if and only if P
.∼λ,1 Q.

The intuition behind the above definitions is that two processes are equated by a
stratified bisimilarity if , roughly speaking, in few steps the difference between their
transition probabilities is small enough. Note that the recursive construction in a
bisimulation is unfolded as a sequence {Sn}∞n=0 of relations in a (λ, µ)−stratified
bisimulation. When considering a pair of agents related by relation Sn, the nearness
of their transition probabilities, represented by p ∗ q, is only required not to be less
than the value λ · µn, which will become smaller and smaller as n increases.

The following example explains that (λ, µ)−stratified bisimilarity is really weaker
that λ−bisimilarity.

60

Example 10. Let 0 < p < q < 1 and p+ q ≤ 1, and let

An
def
= xny.An+1 and Bn

def
= xnz.Bn+1

for all n ≥ 0. Moreover, suppose that

pxn(y|y) = pn+1, pxn(z|y) = 1− pn+1,

pxn(y|z) = qn+1 and pxn(z|z) = 1− qn+1

for each n ≥ 0. Then it is easy to see that A0
.∼λ B0 does not hold for any λ > 0.

On the other hand, let
Sn = {(Ai, Bi) : 0 ≤ i ≤ n}

for every n ≥ 0. Then {Sn}∞n=0 is a (pq ,
p
q)−stratified bisimulation, and we have

A0
.∼ p
q
, p
q
B0. In fact,

An
xny[pn+1]−→ An+1

is simulated by

Bn
xny[qn+1]−→ Bn+1

and vice versa, and

An
xnz[1−pn+1]−→ An+1

is simulated by

Bn
xnz[1−qn+1]−→ Bn+1

and vice versa. The pair (An, Bn) of agents in Sn has the pair (An+1, Bn+1) of
derivatives in Sn+1. In addition, we have

pn+1 ∗ qn+1 = (1− qn+1) ∗ (1− pn+1) = 1,

qn+1 ∗ pn+1 =
pn+1

qn+1

and

(1− pn+1) ∗ (1− qn+1) =
1− qn+1

1− pn+1
≥ pn+1

qn+1
=
p

q
(
p

q
)n

since pn+1 + qn+1 < p+ q ≤ 1.

We now are ready to present an improvement of Proposition 5. We can see that
(1−)compatibility of z and w and (1−)compatibility of x with respect to {w/z} in
Proposition 5 are weakened to µ−compatibility and θ−compatibility, respectively,
in the following proposition.

61

Proposition 14. Suppose that z 6= w, and z is normal. If z and w are
µ−compatible, each x ∈ so(P) ∪ so(Q) is θ−compatible with {w/z}, P .∼λ Q and
w /∈ fn(P,Q), then

P{w/z} .∼λ,µθ Q{w/z}

Equivalently, if P
.∼λ Q and w /∈ fn(P,Q), then

P{w/z} .∼λ,l(z,w)·infx∈so(P)∪so(Q) c(x,{w/z}) Q{w/z}

Proof. Similar to Proposition 5. �

Except improving Proposition 5, (λ, µ)−stratified bisimilarity can be used in
many other ways. It may be observed that in Lemmas 11 and 12 we only con-
sider λ−bisimilarity up to

.∼µ (and restriction) for the case of µ = 1. Now by
introducing the notion of (λ, µ)−stratified bisimilarity we are allowed to deal with
λ−bisimulation up to

.∼µ (and restriction) for µ < 1.

Lemma 13. Let S be a λ−bisimulation up to
.∼µ. We write N0 for the set of

all normal names. Suppose that N0 ∩ n(P,Q,U, V) 6= ∅ for any agents P,Q,U and
V with P

.∼µ USV
.∼µ Q. Then we have

S ⊆ .∼λ,µ2·θ·δ

where
θ = inf

z∈N0,w∈N
l(z, w)

and
δ = inf

z∈N0,x,w∈N
c(x, {w/z})

Proof. We set S0 = S and

Sn+1 = {(P{w/z}, Q{w/z}) : P
.∼µ Sn

.∼µ Q, z is a normal name, and w /∈ fn(P,Q)}

and want to show that {Sn}∞n=0 is a (λ, µ2 ·θ ·δ)−stratified bisimulation. We assume
that PSnQ and proceed by induction on n to demonstrate that the three conditions
in Definition 10 are satisfied. The case of n = 0 is immediate from Definition

7. In general, if PSn+1Q, P
x(y)[p]−→ P ′ and y /∈ n(P,Q), then there are agents

U1, U2, V1 and V2 such that P = U1{w/z}, Q = V1{w/z}, U1
.∼µ U2SnV2

.∼µ V1,
z is a normal name, and w /∈ fn(U1, V1). By Lemma 7’, there are name u, agent

U ′1 and p′ ∈ (0, 1] such that U1
u(y)[p′]−→ U ′1, u{w/z} = x, P ′ ≡α U ′1{w/z} and

62

p ∗ p′ ≥ θ. With the assumption, we can find a normal name z′ /∈ n(U1, U2, V1, V2).

Then it holds that U1
u(z′)[p′]−→ U ′1{z′/y}. Since U1

.∼µ U2, we have U2
u(z′)[p”]−→ U ′2,

p′ ∗ p” ≥ µ and U ′1{z′/y}
.∼µ U ′2 for some U ′2 and p” ∈ (0, 1]. Now using the

induction hypothesis, there should be V ′2 and q” ∈ (0, 1] such that V2
u(z′)[q”]−→ V ′2 ,

U ′2Sn+1V
′
2 and p” ∗ q” ≥ λ · (µ2 · θ · δ)n. Furthermore, from V2

.∼µ V1 we obtain

V1
u(z′)[q′]−→ V ′1 , q” ∗ q′ ≥ µ and V ′2

.∼µ V ′1 for some agent V ′1 and q′ ∈ (0, 1]. And from
Lemma 6’ it follows that

Q = V1{w/z}
x(z′)[q]−→ Q” ≡α V ′1{w/z}

for some Q” and q ∈ (0, 1] with q′ ∗ q ≥ δ. Therefore,

p ∗ q ≥ (p ∗ p′) · (p′ ∗ p”) · (p” ∗ q”) · (q” ∗ q′) · (q′ ∗ q)

≥ θ · µ · λ · (µ2 · θ · δ)n · µ · δ = λ · (µ2 · θ · δ)n+1

On the other hand, we have Q
x(y)[q]−→ V ′1{w/z}{y/z′},

P ′ ≡α U ′1{w/z} ≡α U ′1{z′/y}{y/z′}{w/z}

and U ′1{z′/y}
.∼µ Sn+1

.∼µ V ′1 . This implies that (P ′, V ′1{w/z}{y/z′) ∈ Sn+2. The
cases for other actions are similar, and we complete the proof. �

Lemma 14. With the same assumption and notation in Lemma 13, if S is a
λ−bisimulation up to

.∼µ and restriction, then S ⊆ .∼λ,µ2·θ·δ.

Proof. Similar to Lemma 13. �

Before concluding this section, it should be pointed out that (λ, µ)−stratified
bisimulation still needs an elaboration. It seems that (λ, µ)−stratified bisimulation
is a very useful mathematical tool in reasoning about the behavior of probabilistic
systems, in particular, in coping with recursion constructs in probabilistic process
algebras, and the above two lemmas will provide a powerful proof technique for this
purpose.

8. Reliability of Agents in π−Calculus

In Sections 5, 6 and 7, what concerns us is a comparison of the behaviors of
two different agents in the πN−calculus. In contrast, the aim of this section is to
compare the behavior of an agent in the environment of noiseless channels and that
of the same agent in the environment of noisy channels. Such a comparison is carried
out by introducing the notions of λ−reliability bisimulation and reliability degree.

63

Definition 12. Let S be a binary relation on agents, and let λ ∈ (0, 1]. Then S
is called a λ−reliability bisimulation if for any agents P,Q, PSQ implies

(i) whenever P
α−→ P ′ in π and α is a free action then for some Q′ and p ≥ λ,

Q
α[p]−→ Q′ in πN and P ′SQ′;

(ii) whenever P
x(y)−→ P ′ (in π) and y /∈ n(P,Q) then for some Q′, Q

x(y)−→ Q′ (in
πN) and for all noiseless channels w, P ′{w/y}SQ′{w/y};

(iii) whenever P
x(y)−→ P ′ in π and y /∈ n(P,Q) then for some Q′ and p ≥ λ,

Q
x(y)[p]−→ Q′ in πN and P ′SQ′;

(iv) whenever Q
α[p]−→ Q′ in πN , α is a free action and p > 1 − λ then for some

P ′, P
α−→ P ′ in π and P ′SQ′;

(v) whenever Q
x(y)−→ Q′ (in πN) and y /∈ n(P,Q) then for some P ′, P

x(y)−→ P ′ (in
π) and for all noiseless channels w, P ′{w/y}SQ′{w/y};

(vi) whenever Q
x(y)[p]−→ Q′ in πN , y /∈ n(P,Q) and p > 1 − λ then for some P ′,

P
x(y)−→ P ′ in π and P ′SQ′.

Definition 13. (1) An agent P is said to be λ−reliable if there is a λ−reliability
bisimulation S such that PSP .

(2) The reliability degree of an agent P is defined to be

rel(P) = sup{λ ∈ (0, 1] : P is a λ− reliable}

When agent P is 1−reliable, we simply say that it is reliable. Note that in
clauses (ii) and (v) of Definition 12, channels w are assumed to be noiseless. Also
see clauses (2.iii) and (2.vii) in Definition 14 below. This requirement is mainly for
the technical reason.

To illustrate the above two definitions, let us see a very simple example.

Example 11. Suppose that x is a binary symmetric channel, and its channel
matrix is given by px(y|y) = 0.85, px(z|y) = 0.15, px(y|z) = 0.15 and px(z|z) = 0.85.
Then a routine calculation shows that P = xy.0 + xz.0 is 0.85−reliable.

The following lemma indicates that the class of λ−reliability bisimulations is
closed under the operation of any union. It will be frequently used in the proofs of
some sequent propositions.

Lemma 15. If Si is a λ−reliability bisimulation for all i ∈ I, then
⋃
i∈I Si is

also a λ−reliability bisimulation.

64

Proof. Immediate from Definition 12. �

The next proposition demonstrates certain left-continuity of λ−reliability bisim-
ulation in variable λ. It is in a sense similar to Proposition 4.

Proposition 15. Suppose that each P ′ in D∗(P) is support-finite and the defin-
ing agent of each agent identifier in P ′ is weakly guarded. Then P is rel(P)−reliable.

Proof. From Definition 13 we know that there is an increasing sequence {λn}∞n=1

of real numbers in the unit interval with limn→∞ λn = rel(P), λn < rel(P) and P is
λn−reliable for all n ≥ 1. Thus from Definition 13, there should be a λn−reliability
bisimulation Sn such that PSnP for each n ≥ 1. Without any loss of generality,
we can assume that {Sn}∞n=1 is an decreasing sequence. (Indeed, if not so, we let
S∗n =

⋃∞
k=n Sk. Note that Sk is a λn−reliability bisimulation when k ≥ n. Then it

follows from Lemma 15 that S∗n is also a λn−reliability bisimulation, the sequence
{S∗n}∞n=0 is decreasing, and we may use {S∗n}∞n=0 to replace {Sn}∞n=1.)

We write D∗0(P) for the set of all derivatives of P in the π−calculus, and set

S = (

∞⋂
n=1

Sn) ∩ (D∗0(P)×D∗(P))

An argument similar to the demonstration that (
⋂∞
n=0

.∼λn) ∩ (D∗ × D∗) is a
Sim(P,Q)−bisimulation in the proof of Proposition 4 enables us to assert that S is
a rel(P)−reliability bisimulation. Note that here we have to use Corollary 1.4.6 in
[50] to warrant the image-finiteness of transition relation

α−→ in the π−calculus for
a fixed action α. Thus, it is obvious that PSP and we complete the proof. �

The following proposition establishes a link between λ−reliability and bisimilar-
ity. Thus, it allows us to consider correctness properties and reliability of a system
in a single framework.

Proposition 16. If P is λ−reliable, and both in π and in πN we have P
.∼ Q,

then Q is also λ−reliable. Consequently, if it holds that P
.∼ Q both in π and πN ,

then we have rel(P) = rel(Q).

Proof. We assume that S is the greatest λ−reliability bisimulation. The existence
of S is guaranteed by Lemma 15. Then similar to Proposition 3 we can prove that
.∼ S

.∼ is a λ−reliability bisimulation, where the first
.∼ is the bisimilarity relation

in π, and the second one is the (1−)bisimilarity relation in πN . �

65

The above proposition enables us to infer that rel(P) = rel(Q) when P and
Q are bisimilar both in π and in πN . Then, what can we infer if we only know
that P

.∼λ Q with λ < 1 in πN? Indeed, we hope to find a function R(λ) of the
bisimilarity parameter λ such that |rel(P) − rel(Q)| = R(λ) when P

.∼ Q in π and
P

.∼λ Q in πN . This is still an open problem.

Corollary 4. If P ≡α Q then rel(P) = rel(Q).

Proof. Obvious from Theorem 1 in [44, II] and Proposition 16. �

A simple application of Proposition 16 gives us a set of agent pairs that have
the same reliability degree. This set of reliability laws are very useful in analyzing
reliability of complex mobile systems, and they allow us to use equational reasoning
techniques in reliability analysis.

Corollary 5. (1) rel(P + 0) = rel(P);

(2) rel(P + P) = rel(P);

(3) rel(P1 + P2) = rel(P2 + P1);

(4) rel(P1 + (P2 + P3)) = rel((P1 + P2) + P3);

(5) If A(x̃)
def
= P , then rel(A(ỹ)) = rel(P{ỹ/x̃});

(6) rel((y)P) = rel(P) if y /∈ fn∗(P);

(7) rel(y)(z)P = rel((z)(y)P);

(8) rel((y)(P +Q)) = rel((y)P + (y)Q);

(9) rel((y)α.P) = rel(α.(y)P) if α is not a (free) output action and y /∈ n(α);

(10) rel((y)xz.P) = rel(xz.(y)P) if y 6= x, z and px(y|z) = 0;

(11) rel((y)α.P) = 1 if y is the subject of α;

(12) rel(P |0) = rel(P);

(13) rel(P1|P2) = rel(P2|P1);

(14) rel((y)P1|P2) = rel((y)(P1|P2)) if y /∈ fn∗(P2), and rel((y)(P1|P2)) = rel((y)P1|(y)P2)
if y /∈ fn∗(P1) ∩ fn∗(P2); and

(15) rel((P1|P2)|P3) = rel(P1|(P2|P3)).

Proof. Immediate from Theorems 3-8 in [44, II] and Propositions 7, 8 and 16. �

The remainder of this section is devoted to derive some useful algebraic prop-
erties of reliability. To this end, we have to introduce a proof technique similar to
λ−bisimulation up to restriction. We first give a counterpart of Proposition 5 in the
setting of reliability.

66

Lemma 16. Let S be the greatest λ−reliability bisimulation, i.e. the union
of all λ−reliability bisimulations. Suppose that z is a normal name, z and w are
compatible, and each x ∈ so(P) ∪ so(Q) is compatible with {w/z} (see Definitions 1
and 2), and w /∈ fn(P,Q). Then PSQ implies P{w/z}SQ{w/z}.

Proof. It is given by an argument similar to the proof of Proposition 5. Note
that here we need to use Lammas 3 and 4 in [44, II] as well. The details are omitted.
�

It seems that we can improve Lemma 16 in the way of Proposition 14 by in-
troducing a stratified generalization of the notion of λ−reliability bisimulation (cf.
Definitions 10 and 11).

Definition 14. Let λ ∈ (0, 1]. Then a binary relation S on agents is called a
λ−reliability bisimulation up to restriction if for all agents P,Q with PSQ, we have:

(1) if w /∈ fn(P,Q), then P{w/z}SQ{w/z}; and

(2.i) whenever P
xy−→ P ′ in π, then for some Q′ and p ≥ λ, Q

xy[p]−→ Q′ in πN and
P ′SQ′;

(2.ii) whenever P
τ−→ P ′ in π, then for some Q′ and p ≥ λ, Q

τ [p]−→ Q′ in πN

and P ′SQ′, or for some P”, Q”, w and p ≥ λ, Q
τ [p]−→ Q′ in πN and P ′ ≡α (w)P”,

Q ≡α (w)Q′ and P”SQ”;

(2.iii) whenever P
x(y)−→ P ′ (in π) and y /∈ n(P,Q), then for some Q′, Q

x(y)−→ Q′

(in πN) and P ′{w/y}SQ′{w/y} for all noiseless channels w;

(2.iv) whenever P
x(y)−→ P ′ in π and y /∈ n(P,Q), then for some Q′ and p ≥ λ,

Q
x(y)[p]−→ Q′ in πN and P ′SQ′;

(2.v) whenever Q
xy[p]−→ Q′ in πN and p > 1− λ, then for some P ′, P

xy−→ P ′ in π
and P ′SQ′;

(2.vi) whenever Q
τ [p]−→ Q′ in πN and p > 1 − λ, then for some P ′, P

τ−→ P ′

in π and P ′SQ′, or for some P”, Q” and w, P
τ−→ P ′ in π and P ′ ≡α (w)P”,

Q′ ≡α (w)Q” and P”SQ”;

(2.vii) whenever Q
x(y)−→ Q′ (in πN) and y /∈ n(P,Q), then for some P ′, P

x(y)−→ P ′

(in π) and P ′{w/y}SQ′{w/y} for all noiseless channels w; and

(2.viii) whenever Q
x(y)[p]−→ Q′ in πN , y /∈ n(P,Q) and p > 1 − λ, then for some

P ′, P
x(y)−→ P ′ in π and P ′SQ′.

The validity of the technique of λ−reliability bisimulation up to restriction is
then guaranteed by the following lemma.

67

Lemma 17. If S is a λ−reliability bisimulation up to restriction, then it is
included in the greatest λ−reliability bisimulation.

Proof. Similar to Lemma 10. �

We also have an equivalent characterization of the greatest λ−reliability bisim-
ulation in a way similar to Proposition 2.

Lemma 18. Let S be the greatest λ−reliability bisimulation. Then PSQ if and
only if

(i) whenever P
α−→ P ′ in π and α is a free action then for some Q′ and p ≥ λ,

Q
α[p]−→ Q′ in πN and P ′SQ′;

(ii) whenever P
x(y)−→ P ′ (in π) and y /∈ n(P,Q) then for some Q′, Q

x(y)−→ Q′ (in
πN) and for all noiseless channels w, P ′{w/y}SQ′{w/y};

(iii) whenever P
x(y)−→ P ′ in π and y /∈ n(P,Q) then for some Q′ and p ≥ λ,

Q
x(y)[p]−→ Q′ in πN and P ′SQ′;

(iv) whenever Q
α[p]−→ Q′ in πN , α is a free action and p > 1 − λ then for some

P ′, P
α−→ P ′ in π and P ′SQ′;

(v) whenever Q
x(y)−→ Q′ (in πN) and y /∈ n(P,Q) then for some P ′, P

x(y)−→ P ′ (in
π) and for all noiseless channels w, P ′{w/y}SQ′{w/y}; and

(vi) whenever Q
x(y)[p]−→ Q′ in πN , y /∈ n(P,Q) and p > 1 − λ then for some P ′,

P
x(y)−→ P ′ in π and P ′SQ′.

Proof. Similar to Proposition 4.4 in [42]. �

We are now able to prove the following proposition. It asserts that reliability
is preserved by the basic combinators of π, and thus provides us with some useful
mathematical tools to analyze reliability of a complex system in a modularized (or
compositional) way.

Proposition 17. (1) τ.P is λ−reliable if and only if P is λ−reliable. Thus,
rel(τ.P) = rel(P).

(2) If P is λ−reliable, then xy.P is min(λ, px(y|y))−reliable; and

rel(xy.P) ≥ min(px(y|y), rel(P))

68

(3) [x = y]P is reliable, that is, rel([x = y]P) = 1 when x 6= y, and [x = x]P is
λ−reliable if and only if P is λ−reliable and rel([x = x]P) = rel(P).

(4) If both P and Q are λ−reliable, then P +Q is also λ−reliable; and

rel(P +Q) ≥ min(rel(P), rel(Q))

(5) Suppose that for any

z ∈
⋃

R∈D∗(P)∪D∗(Q)

fn(R),

w /∈
⋂

R∈D∗(P)∪D∗(Q)

fn(R)

and
x ∈

⋃
R∈D∗(P)∪D∗(Q)

so(R),

z is a normal name, z and w are compatible, and x is compatible with {w/z} (see
Definitions 1 and 2). If P and Q are all λ−reliable, then P |Q is λ−reliable too; and

rel(P |Q) ≥ min(rel(P), rel(Q))

(6) Suppose that z is a normal name, and suppose that z and w are compatible,
and x is compatible with {w/z} for all

w /∈
⋂

Q∈D∗(P)

n(Q) and x ∈
⋃

Q∈D∗(P)

so(Q)

If P is λ−reliable then so is (z)P ; and rel((z)P) ≥ rel(P).

(7) Suppose that y is a normal name, and suppose that for any z /∈ fn(P, y)
and for any x ∈ so(P), y and z are compatible, and x is compatible with {z/y}. If
P{w/y} is λ−reliable for all w /∈ fn(P, y), then x(y).P is also λ−reliable; and

rel(x(y).P) ≥ inf
w/∈fn(P,y)

rel(P{w/y})

Proof. (1) If τ.P is λ−reliable, then there is a λ−reliability bisimulation S
such that (τ.P, τ.P) ∈ S. With Definition 12 it is easy to see that (P, P) ∈ S.
So P is λ−reliable too. Conversely, if PSP and S is a λ−reliability bisimulation,
then S ∪ {(τ.P, τ.P)} is also a λ−reliability bisimulation and we know that τ.P is
λ−reliable.

69

(2) Suppose that S is a λ−reliability bisimulation and PSP . Then we put

S′ = S ∪ {(xy.P, xy.P)}

and want to show that S′ is a λ′-reliability bisimulation, where λ′ = min(λ, px(y|y)).

Indeed, xy.P
xy−→ P in π is simulated by

xy.P
xy[px(y|y)]−→ P

in πN and px(y|y) ≥ λ′. Conversely, if

xz.P
xz[px(z|y)]−→ P

in πN and px(z|y) > 1 − λ, then z = y. Otherwise, we have 1 = λ′ + (1 − λ′) <
px(y|y) + px(z|y) ≤ 1, a contradiction. Thus, the probabilistic transition in πN may

be simulated by xy.P
xy−→ P in π.

(3) Immediate from Theorem 5 in [44, II] and Propositions 7(6), (7) and 16.

(4) Let S1 and S2 be two λ−reliability bisimulations, and let PS1P and QS2Q.
Then it is easy to show that {(P+Q,P+Q)}∪S1∪S2 is a λ−reliability bisimulation.

(5) With Lemma 15, we may assume that S is the greatest λ−reliability bisim-
ulation. Then PSP and QSQ. Let

S = {(P1|Q1, P2|Q2) : P1SP2, Q1SQ2 P1, P2 ∈ D∗(P) and Q1, Q2 ∈ D∗(Q)}

With Lemma 16, it suffices to show that S is a λ−reliability bisimulation up to
restriction. The condition (1) of Definition 14 is verified by using Lemma 16, and
the condition (2) of Definition 14 is proven by a thorough case analysis.

(6) Similar to the proof of Proposition 6(3). In the definitions S0 and S there,
the relation of λ−bisimilarity,

.∼λ, must be replaced by the greatest λ−reliability
bisimulation.

(7) We assume that for each w /∈ fn(P, y), P{w/z} is λ−reliable and want to
show that x(y).P is λ−reliable. Let S be the greatest λ−reliability bisimulation.
Then we only need to show that (x(y).P, x(y).P) ∈ S. This may be done by using
Lemma 18 and an argument similar to the proof of Proposition 6(4). �

9. Conclusion

The π−calculus is one of the most important models of mobile processes, in
which agents may not only communicate with each other but also dynamically re-
configure their communication topology with passing of channel names. An implicit
but fundamental assumption in the π−calculus is that communication channels are
all noiseless. Such an abstraction from noise in channels considerably simplifies the
presentation of π and gives us an elegant theory of mobile processes. However, it is
not realistic in many applications where channel noise cannot be neglected.

70

This paper proposes an extension of π that accommodates noise in channels well,
namely, πN . The two calculi of π and πN have the same syntax but different seman-
tics. The semantical difference between them is due to their different assumptions
on the nature of channels. In the πN−calculus, noise in a channel is assumed, and
it is represented by a family of probability distributions, which evaluates the prob-
ability that a channel name is sent via this channel but another name is received at
its output. This statistical representation of noise follows a basic idea from Shan-
non’s information theory. The operational semantics of πN is given in terms of
probabilistic transition systems.

The notion of λ−bisimulation is introduced in πN , and it equates two processes
whenever the difference between their probabilities of performing the same actions
does not exceed the given threshold λ. A set of algebraic (equational) laws for
λ−bisimiliarity

.∼λ is derived, and it is shown that
.∼λ is preserved by the basic

combinators in π. This generalizes the corresponding results in the π−calculus. At
the same time, some interesting distinctions related to bisimilarity between π and
πN are also observed. From Example 8 we see that there exist agents P and Q
which are bisimilar in π, but not λ−bisimilar in πN for any λ > 0. On the other
hand, Example 7 shows that for some agents P and Q, P

.∼ Q does not hold in π,
but P

.∼λ Q is valid in πN with a certain λ > 0.

The relations of λ−bisimulation compare the behaviors of two different agents in
the same framework of πN . We also propose the notion of λ−reliability bisimulation
which may be used to compare the different behaviors of the same agent in π and
πN . An agent is defined to be λ−reliable when its behavior in πN is not far from that
in π, with λ binding the deviation probability. It is proved that two agents bisimilar
both in π and πN have the same reliability degree. This establishes an interesting
link between the two notions of bisimulation and reliability. Also, we show that
reliability is preserved by compositions of agents using the basic constructs provided
in π.

Of course, this paper is only a preliminary approach to the πN−calculus. A
more thorough study of πN is anticipated, and we believe that the full power of
πN is still to be exploited. To conclude this paper, we propose some problems for
further research.

We only treat the strong version of λ−bisimulation in the present paper. A
weak version of λ−bisimulation in πN , which ignores invisible internal actions, and
an algebraic theory for it will be introduced in a continuation of this paper.

Recursive definitions are very useful in modelling infinite behavior of processes,
and uniqueness of recursive equations in the sense of bisimilarity provides us with
a powerful tool for reasoning about correctness of implementations with respect to
specifications in various process algebras, including CCS [42], π [44] and higher-order
process calculi [49, 54, 55, 62]. However, the construct of recursion is not carefully
examined in this paper. The reason is that some technical difficulties are not easy
to overcome when dealing with iterations in the probabilistic setting. Since the
operation that we use to evaluate the probability of consecutive events is product,

71

powers pn of a probability value p < 1 will often be involved when we consider
bisimulation between two recursively defined agents. This causes sometimes a very
serious difficulty because as the exponential n increases rapidly, pn will vanish and
probability information carried by p will be lost. A similar situation also arises in
predicate transformer semantics of probabilistic (sequential) recursive programs; see
[60] for a discussion. A notion of stratified bisimulation is already introduced in
Section 7. The basic idea behind stratified bisimulation is that two processes can be
(approximately) equated if the difference between their probabilities of performing
the same actions is small enough in few steps. We believe that it will become a
suitable proof technique in reasoning about recursive agents not only in πN but also
in other probabilistic extensions of process algebras, such as those introduced in [3,
19, 25, 31-33, 40, 48, 52, 59]. However, it seems that this technique still needs a
further development in order to cope with recursion construct in πN .

An interesting question is concerned with the notion of reliability: are there
any agents P and Q such that P

.∼ Q in π (but not in πN) and rel(P) > rel(Q)?
Furthermore, if the answer to the previous question is positive, then given an agent
P , how to find an agent Q with

rel(Q) = max{rel(P ′) : P
.∼ P ′ holds in π}?

A solution to this question is very useful in real applications. For example, sup-
pose a formal specification of a safety-critical system is described as agent P in the
π−calculus. If we are able to find an agent Q which is bisimilar to P in π and which
has the greatest reliability degree, then it is reasonable to choose Q as the optimal
implementation of P . Corollary 5 tells us that it is impossible to find a solution only
by simple equational reasoning.

Specification
(agent S in π)

bisimilarity
(correctness)
⇐⇒

Ideal
implementation
(agent I in π)

Shannon′s information
theory/coding

theory

increase
reliability
−→ m reliability

Real
implementation
(agent I in πN)

Fig.2

72

Indeed, the question concerning reliability has much deeper implications. Re-
call that in the introduction the relation among specification, ideal implementation
and real implementation was visualized by Figure 1, and it can be described very
well by the two notions of bisimulation and reliability developed in this paper. One
of the most interesting and important problems for further studies is how to use
techniques from coding theory [2, 53] to increase reliability of channels involved in
the real implementation, and eventually to improve reliability of the whole system
of the real implementation. Note that the potential improvement of reliability of
a channel is bound by its transmission rate. It is obvious that this problem has a
close link to performance analysis of mobile systems [20]. An extended version of
the π−calculus, called stochastic π−calculus, in which it is possible to effectively
compute performance measures, has already been introduced by Priami [48]. Thus,
a solution to this problem might require us to establish a stochastic π−calculus
with noisy channels, and then to find a tradeoff point between reliability of a mo-
bile system modelled in such a calculus and its performance measures by employing
Shannon’s channel coding theorem and source coding theorem. This idea can be
visualized by the above Figure 2. Furthermore, as is well-known, one of the current
trends in information technology is that computation and communication are merg-
ing together due to the development of computer networks. Thus, a unified formal
framework which is able to accommodate both computation and communication is
highly expected. This suggests us to find a unification of the π−calculus and Shan-
non’s information theory. The πN−calculus developed in the current paper may be
seen as the first step toward such an unification.

Finally, we consider the influence of noise in communication channels on infor-
mation security. The Spi-calculus was proposed by Abadi and Gordon [1] as an
extension of π for the description and analysis of cryptographic protocols. In Spi,
some cryptographic primitives are introduced, and the security properties of proto-
cols may be represented in terms of coarse-grained notions of protocol equivalences.
Security protocols rely not only on cryptography but also on authenticity and pri-
vacy of communication channels. Thus, noise in communication channels will bring
essential difficulty to formal reasoning about security properties of protocols because
noise may cause that a private channel name is wrongly sent to an enemy. A re-
examination of the Spi-calculus in the new environment of noisy channels would be
another interesting problem for future research.

Acknowledgement: The work reported in this paper was carried out when
the author was visiting Institute of Computer Science, University of Mannheim,
Germany. The author is very grateful to Professor Mila Majster-Cederbaum for her
stimulating discussions and for providing the excellent working environment. The
author would like to thank Professor Martin Wirsing for his inspiring discussions.
The author also would like to thank the anonymous referees for their invaluable
criticisms, comments and suggestions which helped to improve considerably the
presentation of this paper. In particular, they pointed out some mistakes in the

73

original versions of Lemmas 3 and 8 and the definition of fn∗(·) and provided Example
5, and one of them kindly outline an asynchronous and reduction-based variant [17,
36, 37] of πN , which is a very interesting topic for the further studies.

References

[1] Abadi, M., and Gordon, A. D, A calculus for cryptographic protocols: The
spi calculus, Information and Computation, 148(1999)1–70. An extended version
appeared as Digital Equipment Corporation Systems Research Center Report No.
149, 1998

[2] P. Abdulla, A. Annichini and A. Bouajjani, Symbolic verification of lossy
channel systems: Application to the bounded retransmission protocol, in: Tools and
Algorithms for the Construction and Analysis of Systems, Proceedings, LNCS 1579,
Springer, 1999, pp. 208-222

[3] P. A. Abdulla, L. Boasson and A. Bouajjani, Effective lossy queue languages,
in: Automata, Languages and Programming, Proceedings, LNCS 2076, Springer,
2001, pp. 639-651

[4] P. A. Abdulla, A. Bouajjani and B. Jonsson, On-the-fly analysis of systems
with unbounded, lossy FIFO channels, in: Computer-Aided Verification, Proceed-
ings, LNCS 1427, Springer, 1998, pp. 305-318

[5] P. A. Abdulla, A. Collomb-Annichini, A. Bouajjani and B Jonsson, Using for-
ward reachability analysis for verification of lossy channel systems, Formal Methods
in System Design, 25(2004)39-65

[6] P. A. Abdulla and B. Jonsson, Verifying programs with unreliable channel,
Information and Computation, 127(1996)91-101

[7] P. A. Abdulla and Jonsson B, Undecidable verification problems for programs
with unreliable channels, Information and Computation, 130 (1996)71-90

[8] P. A. Abdulla and A. Rabinovich, Verification of probabilistic systems with
faulty communication, in: Foundations of Software Science and Computation Struc-
tures, Proceedings, LNCS 2620, Springer, 2003, pp. 39-53

[9] R. B. Ash, Information Theory, Dover, New York, 1990

[10] J. Baeten, J. Bergstra and S. Smolka, Axiomatizing probabilistic processes:
ACP with generative probability, Information and Computation 122(1995)234-255
(Preliminary version appeared in: CONCUR’92, Third International Conference
on Concurrency Theory, Stony Brook, NY, USA, August 24-27, 1992, Proceedings,
LNCS 630, Springer, 1992, pp. 472-485)

[11] C. Baier and B. Engelen, Establishing qualitative properties for probabilistic
lossy channel systems, in: J.-P. Katoen (Ed.), Formal Methods for Real-Time and
Probabilistic Systems: 5th International AMAST Workshop, ARTS’99, Bamberg,
Germany, May 1999. Proceedings, LNCS 1601, Springer, 1999, pp. 34-53

74

[12] M. Berger, Basic theory of reduction congruence for two timed asynchronous
π−calculi, in: P. Gardner, N. Yoshida (eds.), CONCUR 2004 - Concurrency The-
ory: 15th International Conference, London, UK, August 31 - September 3, 2004.
Proceedings, LNCS 3170, Springer, 2004, pp. 115-130

[13] M. Berger, Towards Abstractions for Distributed Systems, Ph.D. Thesis,
Imperial College, London, 2002

[14] M. Berger and K. Honda, The two-phase commit protocol in an extended
π−calculus, in: Proc. EXPRESS’00, 7th International Workshop on Expressiveness
in Concurrency, Penn State University, USA, August 21, 2000

[15] J. A. Bergstra and J. -W. Klop, Algebra of communicating processes with
abstraction, Theoretical Computer Science, 33(1985)77-121

[16] M. Boreale and D. Sangiorgi, Some congruence properties for π−calculus
bisimilarities, Theoretical Computer Science, 198(1998)159-176

[17] G. Boudol, Asynchrony and the π−calculus, Rapport de Recherche 1702,
INRIA, Sophia-Antipolis, 1992

[18] G. Boudol and I. Castellani, A non-interleaving semantics for CCS based on
proved transitions, Fundamenta Informaticae, 11(1988)433-452

[19] F. van Breugel and J. Worrell, Towards quantitative verification of proba-
bilistic transition systems, in: Proceedings of the 23th International Colloquium on
Automata, Languages and Programming, LNCS 2076, Springer, Berlin, 2001, pp.
421-432

[20] E. Brinksma, H. Hermanns and J. -P. Katoen (eds.), Lectures on Formal
Methods and Performance Analysis, LNCS 2090, Springer, Berlin, 2001

[21] S. D. Brookes, C. A. R. Hoare and A. W. Roscoe, A theory of communicating
sequential processes, Journal of the ACM, 31(1984)560-599

[22] C. C. Chang and H. J. Keisler, Model Theory (3rd edition), Studies in Logic
and the Foundations of Mathematics 73, North-Holland, Amsterdam, 1990

[23] R. Cleaveland, Z. Dayar, S. A. Smolka and S. Yuen, Testing preorders for
probabilistic processes, Information and Computation, 154(1999)93-148

[24] R. Cleaveland, S. A. Smolka and A. E. Zwarico, Testing preorders for prob-
abilistic processes, in: W. Kuich (ed.), Automata, Languages and Programming
(ICALP’92), Viena, Proceedings, LNCS 623, Springer, 1992, pp. 708-719

[25] D. Desharnais, V. Gupta, R. Jagadeesan and P. Panangaden, Metrics for
labelled Markov systems, in: Proceedings of the 10th International Conference on
Concurrency Theory, LNCS 1664, Springer, 1999, pp. 258-273

[26] U. Engberg and M. Nielsen, A calculus of communicating systems with
label passing, Report DAIMI PB-208, Computer Science Department, University of
Aarhus, 1986

[27] Y. Feng and S. Y. Zhang, Approximate bisimilarity in probabilistic process
algebras, unpublished note, 2002

[28] N. Francez, Program Verification, Addison-Wesley, Wokingham, 1992

75

[29] R. J. van Glabbeek, S. A. Smolka and B. Steffen, Reactive, generative, and s-
tratified models of probabilistic processes, Information and Computation, 121(1995)59-
80

[30] R. J. van Glabbeek, S. A. Smolka, B. Steffen and C. M. N. Tofts, Reactive,
generative, and stratified models of probabilistic processes, in: Proc. 5th Annual
IEEE Symposium on Logic in Computer Science, Philadelphia, 1990, pp. 130-141

[31] H. A. Hansson and B. Jonsson, A calculus for communicating systems with
time and probability, in: Proceedings of the 11th IEEE Symposium on Real-Time
Systems, Lake Buena Vista, Florida, USA, IEEE Computer Society Press, 1990, pp.
278-287.

[32] O. M. Herescu and C. Palamidessi, Probabilistic asynchronous pi-calculus,
in: J. Tiuryn (ed.), Proceedings of the Third International Conference on Founda-
tions of Software Science and Computation Structures, Held as Part of the Joint
European Conferences on Theory and Practice of Software, LNCS 1784, Springer,
2000, pp. 146–160.

[33] Herescu, The Probabilistic Asynchronous PI-Calculus, Ph.D. Thesis, The
Pennsylvania State University, 2002.

[34] C. A. R. Hoare, Communicating sequential processes, Communications of
the ACM, 21(1978)666-677

[35] C. A. R. Hoare, Communicating Sequential Processes, Prentice Hall, New
York, 1985

[36] K. Honda and M. Tokoro, An object calculus for asynchronous communi-
cation, in: P. America (ed.), Proceedings of the European Conference on Object-
Oriented Programming, LNCS 512, pp. 133-147, Springer-Verlag (Heidelberg, 1991)

[37] K. Honda and N. Yoshida, On reduction-based process semantics, Theoretical
Computer Science, 151(1995)437-486

[38] P. Iyer and M. Narasimha, Probabilistic lossy channel systems, in: M. Bidoit
and M. Dauchet (eds.), TAPSOFT’97, Theory and Practice of Software Developmen-
t, Proceedings, LNCS 1214, Springer, 1997, pp. 667-681

[39] K. G. Larsen and A. Skou, Bisimulation through probabilistic testing, In-
formation and Computation, 94(1991)371-384

[40] R. Q. Lu and Z. C. Wei, Truly Probabilistic Pi-Calculus and Risk Semantics,
Technical Report, Mathematical Institute, Academia Sinica, 2004.

[41] R. Milner, A Calculus of Communicating Systems, Lecture Notes in Com-
puter Science 92, Springer-Verlag, Berlin, 1980

[42] R. Milner, Communication and Concurrency, Prentice-Hall, Englewood Cliff-
s, NJ, 1989

[43] R. Milner, The polyadic π−calculus: a tutorial, Technical Report ECS-
LFCS-91-180, University of Edinburgh, 1991

[44] R. Milner, J. Parrow and D. Walker, A calculus of mobile processes, Parts
I and II, Technical Report ECS-LFCS-89-85 and 86, University of Edinburgh, 1989;
also see Information and Computation 100(1992)1-77

76

[45] R. Milner and D. Sangiorgi, Barbed bisimulation, in: ICALP’92, Automata,
Languages and Programming, LNCS 623, Springer, 1992, 685-695

[46] M. Núñez, Algebraic theory of probabilistic processes, Journal of Logic and
Algebraic Programming, 56(2003)117-177

[47] C. A. Petri, Kommunikation mit Automaten, Schriften des Rheinisch-Westfaelischen,
Institutes fuer instrumentelle Mathematik an der Universitaet, Nr. 2, Bonn, 1962

[48] C. Priami, Stochastic π−calculus, The Computer Journal, 38(1995)578-589

[49] D. Sangiorgi, Bisimulation for higher-order process calculi, Information and
Computation, 131(1996)141-178

[50] D. Sangiorgi and D. Walker, The π−Calculus: A Theory of Mobile Processes,
Cambridge University Press, Cambridge, 2001

[51] P. Schnoebelen, The Verification of Probabilistic Lossy Channel Systems, in:
Christel Baier et al. (eds.), Validation of Stochastic Systems: A Guide to Current
Research Editors, LNCS 2925, Springer, 2004, pp. 445-465

[52] K. Seidel, Probabilistic communicating processes, Theoretical Computer Sci-
ence, 152(1995)219-249

[53] C. E. Shannon, A mathematical theory of communication, I, II, Bell System
Technical Journal, 27(1948)379-423; 623-656

[54] B. Thomsen, Calculi for Higher Order Communicating Systems, ph. D.
thesis, Dept. of Computing, Imperial College, 1990

[55] B. Thomsen, Plain CHOCS, a second generation calculus for higher-order
process, Acta Informatica, 30(1993)1-59

[56] P. Walley, Statistical Reasoning with Imprecise Probabilities, Chapman and
Hall, London, 1991

[57] M. S. Ying, Topology in Process Calculus: Approximate Correctness and
Infinite Evolution of Concurrent Programs, Springer-Verlag, New York, 2001

[58] M. S. Ying, Bisimulation indexes and their applications, Theoretical Com-
puter Science, 275(2002)1-68

[59] M. S. Ying, Additive models of probabilistic processes, Theoretical Computer
Science, 275(2002)481-519

[60] M. S. Ying, Reasoning about probabilistic sequential programs in a proba-
bilistic logic, Acta Informatica, 39(2003)315-389

[61] M. S. Ying and M. Wirsing, Approximate bisimilarity, in: T. Rus (ed.), Alge-
braic Methodology and Software Technology, 8th International Conference, AMAST
2000, Iowa City, USA, May 20-27, 2000, Proceedings, Lecture Notes in Computer
Science 1816, Springer-Verlag, Berlin, pp. 309-321

[62] M. S. Ying and M. Wirsing, Recursive equations in higher-order process
calculi. Theoretical Computer Science, 266(2001)839-852

77

