Two- versus three-dimensional connectivity testing of first-order queries to semi-algebraic sets

Floris Geerts, Lieven Smits, and Jan Van den Bussche ${ }^{\dagger}$

Abstract

This paper addresses the question whether one can determine the connectivity of a semi-algebraic set in three dimensions by testing the connectivity of a finite number of two-dimensional "samples" of the set, where these samples are defined by first-order queries. The question is answered negatively for two classes of first-order queries: cartesian-product-free, and positive one-pass.

1 Introduction

Semi-algebraic sets provide a useful model for spatial datasets CDB. Firstorder logic over the reals (FO) then provides a basic query language for expressing queries about such spatial data. The power of FO, however, is too limited. In particular, testing whether a set in \mathbb{R}^{n} is topologically connected is not expressible in FO for $n \geqslant 2$ (for $n=1$ it is easily expressed).

The obvious reaction to this limitation of FO is to enrich it with an explicit operator for testing connectivity, as proposed by Giannella and Van Gucht [GVG] and by Benedikt et al. [BGLS. This operator can be applied not just to the dataset itself, but also to any set derived from the original set by an FO query.

[^0]The question now arises whether the connectivity of a set in \mathbb{R}^{n} can be tested by testing the connectivity of a finite number of sets in \mathbb{R}^{n-1}, constructed from the original set by FO queries. For $n=2$, the answer is clearly negative, because connectivity in \mathbb{R}^{1} is expressible in FO , and therefore a positive answer would imply that also connectivity in \mathbb{R}^{2} would be expressible in FO, which we know is not true. It is intuitive to conjecture that the answer is negative for all $n \geqslant 2$.

While this conjecture in its generality remains open (and seems very hard to prove), we have proven it for two fragments of FO. In the first fragment, cartesian product is disallowed. In the second fragment, negation is disallowed, and the query must be "one pass" in a sense that can be made precise. Our treatment of the second fragment is for $n=3$ only.

2 Preliminaries

Semi-algebraic sets A semi-algebraic set in \mathbb{R}^{n} is a finite union of sets definable by conditions of the form $f_{1}(\vec{x})=\cdots=f_{k}(\vec{x})=0, g_{1}(\vec{x})>0, \ldots$, $g_{\ell}(\vec{x})>0$, with $\vec{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$, and where $f_{1}(\vec{x}), \ldots, f_{k}(\vec{x}), g_{1}(\vec{x})$, $\ldots, g_{\ell}(\vec{x})$ are multivariate polynomials in the variables x_{1}, \ldots, x_{n} with real coefficients.

Semi-algebraic sets form a very robust class; for example, any set definable by a formula with quantifiers in first-order logic over the reals is semi-algebraic (i.e., definable also without quantifiers; this is the TarskiSeidenberg principle [BCR].

Relational algebra To express first-order queries about a set S in \mathbb{R}^{n}, we use not the formalism of first-order logic, but the equivalent formalism of relational algebra expressions (RAEs). These are inductively defined as follows. The symbol S is a RAE, of arity n. Any constant semi-algebraic set in \mathbb{R}^{k}, for any k, is a RAE of arity k. If e_{1} and e_{2} are REAs of arities k_{1} and k_{2} respectively, then the cartesian product $\left(e_{1} \times e_{2}\right)$ is a RAE of arity $k_{1}+k_{2}$, and provided that $k_{1}=k_{2}=k$, the union $\left(e_{1} \cup e_{2}\right)$, the intersection $\left(e_{1} \cap e_{2}\right)$ and the difference $\left(e_{1}-e_{2}\right)$ are RAEs of arity k. Finally, if e is a RAE of arity k, and $i_{1}, \ldots, i_{p} \in\{1, \ldots, k\}$, then the projection $\pi_{i_{1}, \ldots, i_{p}}(e)$ is a RAE of arity p.

When applied to a given set A in \mathbb{R}^{n}, a RAE e of arity k evaluates in the natural way to a set $e(A)$ in \mathbb{R}^{k}. When A is semi-algebraic, $e(A)$ is too, by
the Tarski-Seidenberg principle.

Notation We will use the following notations.

- The topological closure of a set $A \subseteq \mathbb{R}^{n}$ is denoted by $\operatorname{cl}(A)$, its interior is denoted by $\operatorname{int}(A)$ and its boundary $\operatorname{cl}(A)-\operatorname{int}(A)$ is denoted by $\operatorname{bd}(A)$.
- The n-dimensional closed unit ball centered around the origin is denoted by \quad; the n-dimensional unit sphere centered around the origin by \square; and the union $\square \cup\{\overrightarrow{0}\}$ by \square.
- The set of affine transformations from \mathbb{R}^{n} to \mathbb{R}^{n} (compositions of a scaling and a translation) is denoted by \mathbb{A}.

3 Cartesian-product-free queries

A RAE is called cartesian-product-free if it does not use cartesian product. An example of such a RAE is

$$
\pi_{1,2}\left(\left(S \cap \Gamma_{1}\right) \cup\left(\Gamma_{2}-S\right)\right)-\pi_{1,3}\left(S \cup \Gamma_{3}\right)
$$

where Γ_{1}, Γ_{2} and Γ_{3} can be arbitrary semi-algebraic sets in \mathbb{R}^{3} and S is ternary (i.e., stands for a set in \mathbb{R}^{3}).

In this section, we prove that the connectivity of a semi-algebraic set in \mathbb{R}^{3} cannot be determined by sampling it using a finite number of binary cartesian-product-free RAEs.

Theorem 1. Let S range over sets in \mathbb{R}^{3}. For any finite collection e_{1}, \ldots, e_{ℓ} of binary cartesian-product-free RAEs over S, there exist two semi-algebraic sets A and B in \mathbb{R}^{3} such that

1. A is connected;
2. B is disconnected;
3. $e_{i}(A)=e_{i}(B)$ for $i=1, \ldots, \ell$.

Toward the proof, we start with the following observation.

Lemma 1. Let $\Lambda_{0}, \Lambda_{1}, \ldots, \Lambda_{k}$ be nonempty semi-algebraic sets in \mathbb{R}^{3}, where Λ_{0} is open. Then there exists a partition $\{I, J\}$ of $\{1, \ldots, k\}$ and an open semi-algebraic set $V \subseteq \Lambda_{0}$ such that

- $V \subseteq \Lambda_{i}$ for $i \in I$, and
- $V \cap \Lambda_{j}=\varnothing$ for $j \in J$.

Proof. By induction on k. If $k=0$, set $I=\{0\}, J=\varnothing$, and $V=\Lambda_{0}$.
If $k>0$, consider the set $\left\{\Lambda_{0}, \Lambda_{1}, \ldots, \Lambda_{k-1}\right\}$. Then by the induction hypothesis, there is a partition $\left\{I^{\prime}, J^{\prime}\right\}$ of $\{1, \ldots, k-1\}$ and an open set $V^{\prime} \subseteq$ Λ_{0} satisfying the condition as stated in the lemma for $k-1$. Since $V^{\prime}=\left(V^{\prime} \backslash\right.$ $\left.\Lambda_{k}\right) \cup\left(V^{\prime} \cap \Lambda_{k}\right)$, since $\operatorname{dim} V^{\prime}=3$, and since $\operatorname{dim}(A \cup B)=\max \{\operatorname{dim} A, \operatorname{dim} B\}$ for semi-algebraic sets A and B, at least one of the following two cases occurs:

1. $\operatorname{dim}\left(V^{\prime} \backslash \Lambda_{k}\right)=3$, in which case we choose V an open subset of $V^{\prime} \backslash \Lambda_{k}$, and set $I=I^{\prime}$ and $J=J^{\prime} \cup\{k\}$.
2. $\operatorname{dim}\left(V^{\prime} \cap \Lambda_{k}\right)=3$, in which case we choose V an open subset of $V^{\prime} \cap \Lambda_{k}$, and set $I=I^{\prime} \cup\{k\}$ and $J=J^{\prime}$.

The following lemma is the crucial element in our proof of the theorem.
Lemma 2. For a given open semi-algebraic set $U \subseteq \mathbb{R}^{3}$, and any ternary cartesian-product-free $R A E$ e, there exists an open set $V \subseteq U$ such that e is equivalent to an expression of one of the four possible forms

$$
\Gamma, \quad S, \quad S \cup \Gamma, \quad \Gamma-S
$$

on all sets $S \subseteq V$, where Γ denotes a constant set in \mathbb{R}^{3}. Moreover, in the last form, V is included in the interior of Γ.

Proof. Since both the input S to e and the output of e are ternary, and e is cartesian-product-free, e must be projection-free as well. By rewriting $\left(e_{1} \cap e_{2}\right)$ as $\left(e_{1}-\left(e_{2}-e_{1}\right)\right)$ we can ignore the intersection operator. We now proceed by induction on the structure of e. The base cases where e is S or e is constant are already in the right form.

For the cases $e=\left(e_{1} \cup e_{2}\right)$ and $e=\left(e_{1}-e_{2}\right)$, by induction we can find an open set $V_{1} \subseteq U$ such that e_{1} has one of the four possible forms within V_{1}, and we can further find an open set $V_{2} \subseteq V_{1}$ such that e_{2} has one of the four possible forms within V_{2}. This means that we have to consider $2 \times 4 \times 4$

Table 1: Proof of Lemma 2, possibilities for $e_{1} \cup e_{2}$.

\cup	S	Γ_{2}
S	S	$S \cup \Gamma_{2}$
Γ_{1}	$S \cup \Gamma_{1}$	$\Gamma_{1} \cup \Gamma_{2}$
$S \cup \Gamma_{1}$	$S \cup \Gamma_{1}$	$S \cup\left(\Gamma_{1} \cup \Gamma_{2}\right)$
$\Gamma_{1}-S$	Γ_{1}	$\left\{\Gamma_{1} \cup \Gamma_{2},\left(\Gamma_{1} \cup \Gamma_{2}\right)-S\right\}$
\cup	$S \cup \Gamma_{2}$	$\Gamma_{2}-S$
S	$S \cup \Gamma_{2}$	Γ_{2}
Γ_{1}	$S \cup\left(\Gamma_{1} \cup \Gamma_{2}\right)$	$\left\{\Gamma_{1} \cup \Gamma_{2},\left(\Gamma_{1} \cup \Gamma_{2}\right)-S\right\}$
$S \cup \Gamma_{1}$	$S \cup\left(\Gamma_{1} \cup \Gamma_{2}\right)$	$S \cup\left(\Gamma_{1} \cup \Gamma_{2}\right)$
$\Gamma_{1}-S$	$S \cup\left(\Gamma_{1} \cup \Gamma_{2}\right)$	$\left(\Gamma_{1} \cup \Gamma_{2}\right)-S$

Table 2: Proof of Lemma 2, possibilities for $e_{1}-e_{2}$.

-	S	Γ_{2}
S	\varnothing	$\{\varnothing, S\}$
Γ_{1}	$\Gamma_{1}-S$	$\Gamma_{1}-\Gamma_{2}$
$S \cup \Gamma_{1}$	$\left\{\Gamma_{1}, \Gamma_{1}-S\right\}$	$\left\{\Gamma_{1}-\Gamma_{2},\left(\Gamma_{1}-\Gamma_{2}\right) \cup S\right\}$
$\Gamma_{1}-S$	$\Gamma_{1}-S$	$\left\{\Gamma_{1}-\Gamma_{2},\left(\Gamma_{1}-\Gamma_{2}\right)-S\right\}$
-	$S \cup \Gamma_{2}$	$\Gamma_{2}-S$
S	\varnothing	S
Γ_{1}	$\left\{\Gamma_{1}-\Gamma_{2},\left(\Gamma_{1}-\Gamma_{2}\right)-S\right\}$	$\left\{\Gamma_{1}-\Gamma_{2},\left(\Gamma_{1}-\Gamma_{2}\right) \cup S\right\}$
$S \cup \Gamma_{1}$	$\left\{\Gamma_{1}-\Gamma_{2},\left(\Gamma_{1}-\Gamma_{2}\right)-S\right\}$	$S \cup\left(\Gamma_{1}-\Gamma_{2}\right)$
$\Gamma_{1}-S$	$\left\{\Gamma_{1}-\Gamma_{2},\left(\Gamma_{1}-\Gamma_{2}\right)-S\right\}$	$\left\{\Gamma_{1}-\Gamma_{2},\left(\Gamma_{1}-\Gamma_{2}\right)-S\right\}$

possibilities (actually less, as there are symmetries), shown in Tables $\mathbb{1}$ and [2]

Take, for example, $e=\left(\Gamma_{1}-S\right) \cup \Gamma_{2}$. By applying Lemma to $\Lambda_{0}=V_{2}$ and $\Lambda_{1}=\Gamma_{1}$, we get a $V \subseteq V_{2}$ such that either $V \subseteq \Gamma_{1}$ or $V \cap \Gamma_{1}=\varnothing$. In the latter case, e is equivalent to $\Gamma_{1} \cup \Gamma_{2}$ within V. In the former case, e is equivalent to $\left(\Gamma_{1} \cup \Gamma_{2}\right)-S$ within V, and we can always shrink V a bit so that it is included in the interior of $\Gamma_{1} \cup \Gamma_{2}$, in accordance with the statement of the lemma. In both cases e is in a desired form. We summarize this in the corresponding entry in Table All other entries in the tables are proven similarly, or are trivial.

We are now ready for the
Proof of Theorem 1. A binary cartesian-product-free RAE e over ternary S can be viewed as an expression built up, using the operators \cup and - , from binary constant sets and binary projections of ternary cartesian-product-free RAEs. If $\pi_{i, j}(c)$ is such a projection occurring in e, we call c a component of e.

By a series of applications of Lemma 2, we can get all components of all the given binary expressions e_{1}, \ldots, e_{ℓ} in one of the four normal forms mentioned in the lemma. The first application starts with $U=\mathbb{R}^{3}$, and every next application takes as U the V produced by the previous application. Within the V produced by the final application, all components are in normal form.

Choose $\tau \in \mathbb{A}$ such that $\tau(\square) \subset V$, and consider the sets $A=\tau(\square)$ (which is connected) and $B=\tau(\square)$ (which is disconnected). Now any binary projection $\pi_{i, j}$ of a component c in normal form yields the same result whether applied to A or to B. Indeed, if c is of the form Γ, S, or $S \cup \Gamma$ this is clear; if c is of the form $\Gamma-S$ then we recall that Lemma 2 guarantees that V is fully included in the interior of Γ, so $\pi_{i, j}(\Gamma-S)=\pi_{i, j}(\Gamma)$.

We can thus conclude that $e_{i}(A)=e_{i}(B)$ for $i=1, \ldots, \ell$ as desired.
For simplicity of exposition, in this section, we have stated and proved Theorem 1 in three dimensions only. However, the argument readily generalizes to prove for any $n>2$ that the connectivity of a semi-algebraic set in \mathbb{R}^{n} cannot be determined by sampling it using a finite number of $n-1$-ary cartesian-product-free RAEs.

Theorem. Let $n>2$, and let S range over sets in \mathbb{R}^{n}. For any finite collection e_{1}, \ldots, e_{ℓ} of $n-1$-ary cartesian-product-free RAEs over S, there exist two semi-algebraic sets A and B in \mathbb{R}^{n} such that

1. A is connected;
2. B is disconnected;
3. $e_{i}(A)=e_{i}(B)$ for $i=1, \ldots, \ell$.

4 Positive one-pass queries

A RAE is called positive one-pass if it does not use the difference operator, and mentions S only once. An example is

$$
\pi_{3,5}\left(\Lambda_{1} \cup\left(\Lambda_{2} \cap\left(S \times \mathbb{R}^{2}\right)\right)\right)
$$

where S is ternary, and Λ_{1} and Λ_{2} are arbitrary semi-algebraic sets in \mathbb{R}^{5}. As a matter of fact, this example is very representative, in view of the following:

Lemma 3. Every binary positive one-pass $R A E$ can be written in the form

$$
\pi_{i_{1}, i_{2}}\left(\Lambda_{1} \cup\left(\Lambda_{2} \cap\left(S \times \mathbb{R}^{k}\right)\right)\right)
$$

More generally, it can be verified by induction that every p-ary positive one-pass RAE can be written in the form of the above lemma, with $\pi_{i_{1}, i_{2}}$ replaced by $\pi_{i_{1}, \ldots, i_{p}}$.

In this section, we prove that the connectivity of a semi-algebraic set in \mathbb{R}^{3} cannot be determined by sampling it using a finite number of binary positive one-pass RAEs.

Theorem 2. Let S range over sets in \mathbb{R}^{3}. For any finite collection e_{1}, \ldots, e_{ℓ} of binary positive one-pass RAEs over S, there exist two semi-algebraic sets A and B in \mathbb{R}^{3} such that

1. A is connected;
2. B is disconnected;
3. $e_{i}(A)=e_{i}(B)$ for $i=1, \ldots, \ell$.

The following lemma essentially proves the theorem.
Lemma 4. For a given open semi-algebraic set $U \subseteq \mathbb{R}^{3}$, any semi-algebraic sets Λ_{1} and Λ_{2} in \mathbb{R}^{3+k}, and any $i_{1}, i_{2} \in\{1,2,3, \ldots, k+3\}$, we can always find an open set $V \subseteq U$ such that for any $\tau \in \mathbb{A}$ with $\tau(\boldsymbol{\square}) \subset V$,

$$
\pi_{i_{1}, i_{2}}\left(\Lambda_{1} \cup\left(\Lambda_{2} \cap\left(\tau(\square) \times \mathbb{R}^{k}\right)\right)\right)=\pi_{i_{1}, i_{2}}\left(\Lambda_{1} \cup\left(\Lambda_{2} \cap\left(\tau(\square) \times \mathbb{R}^{k}\right)\right)\right)
$$

Assuming this lemma, we can give the
Proof of Theorem [2. By a series of applications of Lemma 4, we obtain a V such that for any $\tau \in \mathbb{A}$ for which $\tau(\boldsymbol{\square}) \subset V$, we have $e_{i}(\tau(\square))=e_{i}(\tau(\boldsymbol{\square}))$ for $i=1, \ldots, \ell$. Since every e_{i} is positive (does not use the difference operator), every e_{i} is monotone with respect to the subset order. Hence, $e_{i}(\tau(\square)) \subseteq$ $e_{i}(\tau(\square)) \subseteq e_{i}(\tau(\square))$ and thus $e_{i}(\tau(\square))=e_{i}(\tau(\square))$. Taking $A=\tau(\square)$ and $B=\tau(\square)$ thus proves the theorem.

To prove Lemma 4 we will use the regular cell decomposition of semialgebraic sets, whose definition we recall next. A function $f: C \rightarrow \mathbb{R}$, where $C \subseteq \mathbb{R}^{n}$, is called regular if it is continuous and for each $i \in\{1, \ldots, n\}$ either strictly increasing, strictly decreasing, or constant in the $i^{\text {th }}$ coordinate. (Which of these three cases holds may depend on i.) Also, we call f semialgebraic if its graph is semi-algebraic.

We define a regular cell by induction on the number of dimensions. Regular cells in \mathbb{R} are singletons $\{a\}$, or open intervals $(a, b),(-\infty, a)$, or $(a,+\infty)$. Now assume that $C \subseteq \mathbb{R}^{n}$ is a regular cell, and $f, g: C \rightarrow \mathbb{R}$ are regular semi-algebraic functions on C, with $f(\vec{x})<g(\vec{x})$ for all $\vec{x} \in C$. Then the sets $\{(\vec{x}, f(\vec{x})) \mid \vec{x} \in C\}$ and $\{(\vec{x}, r) \mid \vec{x} \in C, f(\vec{x})<r<g(\vec{x})\}$ are regular cells in \mathbb{R}^{n+1}. In the latter case, f can be $-\infty$, and g can be ∞.

A regular cell decomposition of \mathbb{R}^{n} is a special kind of partition of \mathbb{R}^{n} into a finite number of regular cells. This is also defined by induction on n. A regular decomposition of \mathbb{R} is just any finite partition of \mathbb{R} in regular cells. For $n>1$, a regular cell decomposition of \mathbb{R}^{n} is a finite partition $\left\{\mathcal{S}_{1}\right.$, $\left.\ldots, \mathcal{S}_{k}\right\}$ of \mathbb{R}^{n} in regular cells such that $\left\{\pi\left(\mathcal{S}_{1}\right), \ldots, \pi\left(\mathcal{S}_{k}\right)\right\}$ is a regular cell decomposition of \mathbb{R}^{n-1}. Here, $\pi:\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(x_{1}, \ldots, x_{n-1}\right)$ is the natural projection of \mathbb{R}^{n} onto \mathbb{R}^{n-1}.

Let A be a semi-algebraic set in \mathbb{R}^{n}. A regular cell decomposition of \mathbb{R}^{n} is said to be compatible with A if A is a union of regular cells from this decomposition.

Fact ([VDD]). For every semi-algebraic set A in \mathbb{R}^{n} there exists a regular cell decomposition of \mathbb{R}^{n} compatible with A.

Toward the proof of Lemma 4, we start with the following observation.
Lemma 5. Let $A \subseteq \mathbb{R}^{3}$ be a compact semi-algebraic set and let $f: A \rightarrow \mathbb{R}$ be a regular function. Then $\min _{A} f=\min _{\mathrm{bd}(A)} f$ and $\max _{A} f=\max _{\mathrm{bd}(A)} f$. If moreover $\operatorname{bd}(A)$ is connected, then $f(\operatorname{bd}(A))$ equals the interval $\left[\min _{A} f\right.$, $\left.\max _{A} f\right]$.

Proof. Since A is closed, $\operatorname{bd}(A) \subseteq A$ and thus $\min _{A} f \geqslant \min _{\operatorname{bd}(A)} f$. To show the reverse inequality, we need to find for any point in $A-\operatorname{bd}(A)$ another point in $\operatorname{bd}(A)$ with the same or lower f-value. Take a point $(x, y, z) \in A-\operatorname{bd}(A)$, and shoot a straight ray out of that point in any direction. Since A is bounded, the ray will intersect $\operatorname{bd}(A)$. Let us focus on the two rays orthogonal to the $x y$ plane. If f is strictly decreasing in z, shoot the ray in increasing z direction to obtain an intersection point with $\operatorname{bd}(A)$ with lower f-value as desired. If f is strictly increasing, follow the converse direction, and if f is constant, any direction will do to find a point in $\operatorname{bd}(A)$ with the same f-value. The equality $\max _{A} f=\max _{\mathrm{bd}(A)} f$ is proven in the same way.

Now assume $\operatorname{bd}(A)$ is connected. Choose $\vec{x}_{\max } \in \operatorname{bd}(A)$ with maximal f-value, and choose $\vec{x}_{\text {min }} \in \operatorname{bd}(A)$ with minimal f-value. Since for semialgebraic sets, connectivity coincides with path connectivity [BCR], there is a continuous path $\gamma:[0,1] \rightarrow \operatorname{bd}(A)$ such that $\gamma(0)=\vec{x}_{\text {min }}$ and $\gamma(1)=\vec{x}_{\text {max }}$. Since f is continuous, so is the composition $f \circ \gamma$. Since $[0,1]$ is closed and connected, $f \circ \gamma([0,1])$ must be a closed and connected set in \mathbb{R}, and must therefore equal the interval $\left[\min _{A} f, \max _{A} f\right]$.

We are now ready to embark on the
Proof of Lemma 4 First note that $\pi_{i_{1}, i_{2}}\left(\Lambda_{1} \cup\left(\Lambda_{2} \cap\left(S \times \mathbb{R}^{k}\right)\right)\right)$ is equivalent to $\pi_{i_{1}, i_{2}}\left(\Lambda_{1}\right) \cup \pi_{i_{1}, i_{2}}\left(\Lambda_{2} \cap\left(S \times \mathbb{R}^{k}\right)\right)$. So we may focus on expressions of the form

$$
\begin{equation*}
\pi_{i_{1}, i_{2}}\left(\Lambda \cap\left(S \times \mathbb{R}^{k}\right)\right) \tag{1}
\end{equation*}
$$

We only need to prove the inclusion

$$
\begin{equation*}
\pi_{i_{1}, i_{2}}\left(\Lambda \cap\left(\tau(\square) \times \mathbb{R}^{k}\right)\right) \subseteq \pi_{i_{1}, i_{2}}\left(\Lambda \cap\left(\tau(\square) \times \mathbb{R}^{k}\right)\right) \tag{2}
\end{equation*}
$$

the other direction being trivial. The proof consists of several cases depending on the indices i_{1}, i_{2}.

Case 1: $i_{1}, i_{2} \in\{1,2,3\}$
Expression (II) is equivalent to $\pi_{i_{1}, i_{2}}(E)$, where E is $\pi_{1,2,3}\left(\Lambda \cap\left(S \times \mathbb{R}^{k}\right)\right)$. Applying Lemma to $\Lambda_{0}=\mathbb{R}^{3}$ and $\Lambda_{1}=\pi_{1,2,3}(\Lambda)$, we get an open set V such that we are in one of the following two cases.

1. $V \cap \Lambda_{1}=\varnothing$.

Within V, expression E, and hence also (II), reduces to the empty set, so the inclusion (2) to be proven trivially holds within V.
2. $V \subset \Lambda_{1}$.

Within V, expression E now reduces to S, so expression (I) reduces to $\pi_{i_{1}, i_{2}}(S)$. In particular this holds for both $S=\tau(\mathbf{\square})$ and $S=\tau(\square)$, where $\tau \in \mathbb{A}$ such that $\tau(\boldsymbol{\square}) \subset V$. Since $\pi_{i_{1}, i_{2}} \tau(\boldsymbol{\square})=\pi_{i_{1}, i_{2}} \tau(\square)$, the inclusion (2) holds within V.

Case 2: $i_{1} \in\{1,2,3\}, i_{2} \notin\{1,2,3\}$
Expression (11) is now equivalent to $\pi_{i_{1,4}}(E)$, where E now is $\pi_{1,2,3, i_{2}}(\Lambda \cap(S \times$ $\left.\mathbb{R}^{k}\right)$). Applying Lemma to $\Lambda_{0}=\mathbb{R}^{3}$ and $\Lambda_{1}=\pi_{1,2,3}(\Lambda)$, we get an open set $V^{(0)}$ such that we are in one of the following cases.

1. $V^{(0)} \cap \Lambda_{1}=\varnothing$.

Within $V^{(0)}$, expression E, and hence also (II), reduces to the empty set, so the inclusion (2) holds within $V^{(0)}$.
2. $V^{(0)} \subset \Lambda_{1}$.

Within $V^{(0)}$, expression E now reduces to $A \cap(S \times \mathbb{R})$, with $A=$ $\pi_{1,2,3, i_{2}}(\Lambda)$. Consider a regular cell decomposition of \mathbb{R}^{4} compatible with A, and write the projection of this decomposition onto \mathbb{R}^{3} as $\left\{C_{1}, \ldots, C_{\ell}\right\}$. Applying Lemma प to $\Lambda_{0}^{(1)}=V^{(0)}$, and $\Lambda_{i}^{(1)}=C_{i} \cap V^{(0)}$ for $i=1, \ldots, \ell$, we get an open set $V^{(1)} \subset V^{(0)}$ contained in a unique cell C_{j}. Due to our regular cell decomposition, in particular the parts based on C_{j}, within $V^{(1)}$ the expression $E=A \cap(S \times \mathbb{R})$ can now be written as a union of sets of the form

$$
E_{1}=\{(x, y, z, v) \mid(x, y, z) \in S \wedge v=f(x, y, z)\}
$$

or

$$
E_{2}=\{(x, y, z, v) \mid(x, y, z) \in S \wedge f(x, y, z)<v<g(x, y, z)\}
$$

where f and g are regular functions.
Assume that $i_{1}=3$, so that the inclusion (2) to be proven becomes $\pi_{3,4}(E(\tau(\square))) \subseteq \pi_{3,4}(E(\tau(\square)))$. The cases $i_{1}=1$ and $i_{1}=2$ are analogous. Since the projection of a union is the union of the projections, we can restrict attention to the cases $E=E_{1}$ and $E=E_{2}$.
(a) $E=E_{1}$.

Let $\tau \in \mathbb{A}$ such that $\tau(\boldsymbol{\square}) \subset V^{(1)}$. Take an arbitrary element $\left(z_{0}, f\left(x_{0}, y_{0}, z_{0}\right)\right) \in \pi_{3,4}(E(\tau(\square)))$. Since $\{(x, y, z) \in \tau(■) \mid z=$ $\left.z_{0}\right\}$ is compact with connected boundary, we can apply Lemma 5 to obtain $\left(x_{1}, y_{1}, z_{0}\right) \in \tau(\square)$ with $f\left(x_{1}, y_{1}, z_{0}\right)=f\left(x_{0}, y_{0}, z_{0}\right)$. Hence, $\left(z_{0}, f\left(x_{0}, y_{0}, z_{0}\right)\right) \in \pi_{3,4}(E(\tau(\square)))$ as desired.
(b) $E=E_{2}$.

By continuity of f and g, and because $f<g$, there exists an open set $V^{(2)} \subset V^{(1)}$ within which $f<C<g$ for some constant C. Within $V^{(2)}$, we can then break up E_{2} into three sets

$$
\begin{aligned}
& B_{1}=\{(x, y, z, v) \mid(x, y, z) \in S \wedge f(x, y, z)<v<C\} \\
& B_{2}=\{(x, y, z, v) \mid(x, y, z) \in S \wedge C<v<g(x, y, z)\} \\
& B_{3}=\{(x, y, z, v) \mid(x, y, z) \in S \wedge v=C\}
\end{aligned}
$$

The set B_{3} is an instance of case (2a). We now show that the set B_{1} (and, analogously, B_{2}) can be reduced to that case as well. Indeed, within $V^{(2)}$,

$$
B_{1}=\bigcup_{t \in(0,1)}\{(x, y, z, v) \mid(x, y, z) \in S \wedge v=t f(x, y, z)+(1-t) C\}
$$

We now observe that for any $t \in(0,1)$, the function $t f+(1-t) C$ is regular, so case (2a) applies to each t individually.

Case 3: $i_{1}, i_{2} \notin\{1,2,3\}$
Expression (11) is now equivalent to $\pi_{4,5}(E)$, where E now is $\pi_{1,2,3, i_{1}, i_{2}}(\Lambda \cap$ $\left.\left(S \times \mathbb{R}^{k}\right)\right)$. Applying, as always, Lemma to $\Lambda_{0}=\mathbb{R}^{3}$ and $\Lambda_{1}=\pi_{1,2,3}(\Lambda)$, we get an open set $V^{(0)}$ such that either $V^{(0)} \cap \Lambda_{1}=\varnothing$ or $V^{(0)} \subset \Lambda_{1}$.

If $V^{(0)} \cap \Lambda_{1}=\varnothing$, within $V^{(0)}$, expression E, and hence also (1), reduces to the empty set, so the inclusion (21) holds within $V^{(0)}$.

So we can assume that $V^{(0)} \subset \Lambda_{1}$. Within $V^{(0)}$, expression E now reduces to $A \cap\left(S \times \mathbb{R}^{2}\right)$, with $A=\pi_{1,2,3, i_{1}, i_{2}}(\Lambda)$. Consider a regular cell decomposition of \mathbb{R}^{5} compatible with A, and write the projection of this decomposition onto \mathbb{R}^{3} as $\left\{C_{1}, \ldots, C_{\ell}\right\}$. Applying Lemma to $\Lambda_{0}^{(1)}=V^{(0)}$, and $\Lambda_{i}^{(1)}=C_{i} \cap V^{(0)}$ for $i=1, \ldots, \ell$, we get an open set $V^{(1)} \subset V^{(0)}$ contained in a unique cell C_{j}. Due to our regular cell decomposition, in particular the parts based on C_{j}, within $V^{(1)}$ the expression $E=A \cap\left(S \times \mathbb{R}^{2}\right)$ can now be written as a union of sets of the form

$$
\begin{aligned}
E_{1}= & \{(x, y, z, u, v) \mid(x, y, z) \in S \\
E_{2}= & \wedge(x, y, z, u, v) \mid(x, y, z) \in S \\
& S \wedge u=f(x, y, z) \wedge v=g(x, y, z, u)\}, \\
& \left.\wedge g_{1}(x, y, z, u)<v<g_{2}(x, y, z, u)\right\}, \\
E_{3}=\{(x, y, z, u, v) \mid(x, y, z) \in S & \wedge f_{1}(x, y, z)<u<f_{2}(x, y, z) \\
& \wedge v=g(x, y, z, u)\}, \text { or } \\
E_{4}=\{(x, y, z, u, v) \mid(x, y, z) \in & S \wedge f_{1}(x, y, z)<u<f_{2}(x, y, z) \\
& \left.\wedge g_{1}(x, y, z, u)<v<g_{2}(x, y, z, u)\right\},
\end{aligned}
$$

where $f, f_{1}, f_{2}, g, g_{1}$, and g_{2} are regular functions.
We need to prove $\pi_{4,5}(E(\tau(\square))) \subseteq \pi_{4,5}(E(\tau(\square)))$. Since the projection of an union is the union of the projections, we can restrict attention to the cases $E=E_{1}, E=E_{2}, E=E_{3}$, and $E=E_{4}$.

1. $E=E_{1}$.
(a) If f is constant, with value $u_{0}, \pi_{4,5}\left(E_{1}\right)$ reduces to

$$
\left\{\left(u_{0}, g\left(x, y, z, u_{0}\right)\right) \mid(x, y, z) \in S\right\}
$$

which can be handled by the same reasoning as in Case 2, (2a).
(b) Now assume f is not constant in x; the cases y and z are analogous. Look at the projection $\pi_{2,3,4,5}\left(E_{1}\right)$:

$$
\{(y, z, u, v) \mid \exists x((x, y, z) \in S \wedge u=f(x, y, z) \wedge v=g(x, y, z, u))\}
$$

This set can be written as

$$
\begin{equation*}
E_{1}^{\prime}=\{(y, z, u, v) \mid(y, z, u) \in h(S) \wedge v=k(y, z, u)\} \tag{3}
\end{equation*}
$$

where $h:(x, y, z) \mapsto(y, z, f(x, y, z))$, and

$$
k:(y, z, u) \mapsto g\left(h_{x}^{-1}(y, z, u), y, z, u\right)
$$

where h_{x}^{-1} is the function defined by $h\left(h_{x}^{-1}(y, z, u), y, z\right)=(y, z, u)$. This inverse function exists; in fact, because f is regular and nonconstant in x, h is a homeomorphism within $V^{(1)}$.
Within $W^{(0)}=h\left(V^{(1)}\right)$, we can find an open set $W^{(1)} \subset W^{(0)}$ such that k is regular. Since h is a homeomorphism, we also can find an open set $V^{(2)} \subset V^{(1)}$ such that $h\left(V^{(2)}\right) \subset W^{(1)}$. Since $\pi_{4,5}\left(E_{1}\right)$ reduces to $\pi_{3,4}\left(E_{1}^{\prime}\right)$, we can, within $V^{(2)}$, now again reason analogously as in Case 2, (2a).
2. $E=E_{2}$.

By continuity of f, g_{1} and g_{2}, and because $g_{1}<g_{2}$, we can find an open set $V^{(2)} \subseteq V^{(1)}$ within which

$$
g_{1}(x, y, z, f(x, y, z))<C<g_{2}(x, y, z, f(x, y, z))
$$

for some constant C. Now reason repeatedly as in case (11) on the following sets:
$B_{1}=\left\{(x, y, z, u, v) \mid(x, y, z) \in S \wedge u=f(x, y, z) \wedge v=g_{1}(x, y, z, u)\right\}$ $B_{2}=\left\{(x, y, z, u, v) \mid(x, y, z) \in S \wedge u=f(x, y, z) \wedge v=g_{2}(x, y, z, u)\right\}$ $B_{3}=\{(x, y, z, u, v) \mid(x, y, z) \in S \wedge u=f(x, y, z) \wedge v=C)$

We thus obtain $V^{(3)} \subseteq V^{(2)}$ within which $\pi_{4,5}\left(B_{i}(\tau(\boldsymbol{\square}))\right) \subseteq \pi_{4,5}\left(B_{i}(\tau(\square))\right)$ for $i=1,2,3$. We then break up E_{2} in $B_{3} \cup B_{4} \cup B_{5}$, where
$B_{4}=\left\{(x, y, z, u, v) \mid(x, y, z) \in S \wedge u=f(x, y, z) \wedge g_{1}(x, y, z, u)<v<C\right\}$ $B_{5}=\left\{(x, y, z, u, v) \mid(x, y, z) \in S \wedge u=f(x, y, z) \wedge C<v<g_{2}(x, y, z, u)\right\}$

It remains to treat B_{4} and B_{5}, and we do this as follows, similarly to what we did in Case 2, (2b). Reasoning as in case (1), we have written $\pi_{4,5}\left(B_{1}\right)$ as $\pi_{3,4}(\{(y, z, u, v) \mid(y, z, u) \in h(S) \wedge u=k(y, z, u)\})$. We then can write $\pi_{4,5}\left(B_{4}\right)$ as

$$
\bigcup_{t \in(0,1)} \pi_{3,4}(\{(y, z, u, v) \mid(y, z, u) \in h(S) \wedge v=t k(y, z, u)+(1-t) C\})
$$

We now observe that for any $t \in(0,1)$, the function $t k+(1-t) C$ is regular, so we can reason analogously as in Case 2, (2a) for each $t \in(0,1)$ individually. We treat B_{5} in the same way, now using the h and k from B_{2}.
3. $E=E_{3}$.

We begin again by determining an open set $V^{(2)} \subset V^{(1)}$ within which $f_{1}<C<f_{2}$ for some constant C, and break up E_{3} in the following sets:
$B_{1}=\left\{(x, y, z, u, v) \mid(x, y, z) \in S \wedge f_{1}(x, y, z)<u<C \wedge v=g(x, y, z, u)\right\}$
$B_{2}=\left\{(x, y, z, u, v) \mid(x, y, z) \in S \wedge C<u<f_{2}(x, y, z) \wedge v=g(x, y, z, u)\right\}$
$B_{3}=\{(x, y, z, u, v) \mid(x, y, z) \in S \wedge u=C \wedge v=g(x, y, z, u)\}$
On B_{3} we can reason as in case (1) and obtain an open set $V^{(3)} \subset V^{(2)}$ within which $\pi_{4,5}\left(B_{3}(\tau(\boldsymbol{\square}))\right) \subseteq \pi_{4,5}\left(B_{3}(\tau(\square))\right)$.

We show how to treat B_{1}; the treatment of B_{2} is analogous. Within a certain open set V to be determined, we are going to break up B_{1} in a special way in two overlapping parts of the following form:

$$
\begin{aligned}
B_{1,1}= & \bigcup_{t \in(0, \delta)}\{(x, y, z, u, v) \mid(x, y, z) \in S \wedge u=f(x, y, z)+t \\
& \wedge v=g(x, y, z, u)\} \\
B_{1,2}= & \bigcup_{t \in\left(c_{V}, C\right)}\{(x, y, z, u, v) \mid(x, y, z) \in S \wedge u=t \wedge v=g(x, y, z, u)\}
\end{aligned}
$$

for certain δ and c_{V}, which we are now going to define.
If f is constant, then $\delta:=0$, and c_{V} is the constant value of f.
So, suppose that f is not constant in x; the cases y and z are analogous. Then $h_{t}:(x, y, z) \mapsto(y, z, f(x, y, z)+t)$ is a homeomorphism for every t. Let

$$
k:(y, z, u, t) \mapsto g\left(\left(h_{t}\right)_{x}^{-1}(y, z, u), y, z, u\right),
$$

where $\left(h_{t}\right)_{x}^{-1}$ is the function defined by $h_{t}\left(\left(h_{t}\right)_{x}^{-1}(y, z, u), y, z\right)=u$.
We now want to find a δ such that $k_{t}:(y, z, u) \mapsto k(y, z, u, t)$ is regular for every $t \in(0, \delta)$. Thereto, consider the (semi-algebraic) set

$$
D=\left\{(y, z, u, t) \left\lvert\,(y, z, u) \in h_{0}\left(V^{(3)}\right) \wedge 0<t<1 \wedge \frac{\partial k}{\partial y}(y, z, u, t)=0\right.\right\}
$$

Using a cell decomposition of \mathbb{R}^{4} compatible with D, we can find an open set $W^{(0)} \subseteq h_{0}\left(V^{(3)}\right)$ and a $\delta^{(0)}>0$ such that on $W^{(0)} \times\left(0, \delta^{(0)}\right)$ either $\frac{\partial k}{\partial y}=0$, i.e., k is constant in y, or $\frac{\partial k}{\partial y} \neq 0$, i.e., k is strictly monotone in y. Proceeding similarly, we can find $W^{(2)} \subseteq W^{(1)} \subseteq W^{(0)}$ and $0<\delta^{(2)}<\delta^{(1)}<\delta^{(0)}$ such that k is either constant or strictly monotone in z on $W^{(1)} \times\left(0, \delta^{(1)}\right)$, and k is either constant or strictly monotone in u on $W^{(2)} \times\left(0, \delta^{(2)}\right)$. Hence, within $W^{(2)}, k_{t}$ is regular for every $t \in\left(0, \delta^{(2)}\right)$.
Next, choose an open set $V^{(4)} \subset V^{(3)}$ and $0<\delta^{(3)}<\delta^{(2)}$ such that $h_{t}\left(V^{(4)}\right) \subset W^{(2)}$ for every $t \in\left(0, \delta^{(3)}\right)$. We then restrict $V^{(4)}$ even further to an open set $V^{(5)}$, and simultaneously choose $\delta^{(4)}$ such that the following conditions are satisfied:

$$
\begin{gathered}
C-\sup _{V^{(5)}} f>\delta^{(4)}>0 \\
\sup _{V^{(5)}} f-\inf _{V^{(5)}} f<\min \left\{\delta^{(3)}, \delta^{(4)}\right\}
\end{gathered}
$$

It is now clear that, within $V:=V^{(5)}$, we have $B_{1}=B_{1,1} \cup B_{1,2}$ where we put $c_{V}:=\sup _{V^{(5)}} f$ and $\delta:=\min \left\{\delta^{(3)}, \delta^{(4)}\right\}$.
It remains to deal with $B_{1,1}$ and $B_{1,2}$, but this poses no longer any problems:
$B_{1,1}$: By construction, $k(y, z, u, t)$ is regular for every $t \in(0, \delta)$. This implies that we can work with the sets

$$
\left\{(y, z, u, v) \mid(y, z, u) \in h_{t}(S) \wedge v=k(y, z, u, t)\right\}
$$

as in case (11).
$B_{1,2}$: Here, for every t, we are back in Case 2, (2a).
4. $E=E_{4}$. We begin again by determining an open set $V^{(2)} \subset V^{(1)}$ within which $f_{1}<C<f_{2}$ for some constant C, and break up E_{4} in the following sets:

$$
\begin{aligned}
B_{1}=\{(x, y, z, u, v) \mid(x, y, z) \in S & \wedge f_{1}(x, y, z)<u<C \\
& \left.\wedge g_{1}(x, y, z, u)<v<g_{2}(x, y, z, u)\right\} \\
B_{2}=\{(x, y, z, u, v) \mid(x, y, z) \in S & \wedge C<u<f_{2}(x, y, z) \\
& \left.\wedge g_{1}(x, y, z, u)<v<g_{2}(x, y, z, u)\right\}
\end{aligned}
$$

$$
\begin{aligned}
B_{3}=\{(x, y, z, u, v) \mid(x, y, z) \in S & \wedge u=C \\
& \left.\wedge g_{1}(x, y, z, u)<v<g_{2}(x, y, z, u)\right\}
\end{aligned}
$$

On B_{3} we can reason as in case (2) and obtain an open set $V^{(3)} \subset V^{(2)}$ within which $\pi_{4,5}\left(B_{3}(\tau(\boldsymbol{\square}))\right) \subseteq \pi_{4,5}\left(B_{3}(\tau(\square))\right)$.

We show how to treat B_{1}; the treatment of B_{2} is analogous. By the same procedure as in case (31), but now working with two functions k_{1} and k_{2} (one for g_{1} and one for g_{2}), we break up B_{1} within a certain open set V :

$$
\left.\begin{array}{rl}
B_{1,1}= & \bigcup_{t \in(0, \delta)}\left\{(x, y, z, u, v) \left\lvert\, \begin{array}{rl}
(x, y, z) \in S \wedge u=f(x, y, z)+t \\
& \wedge
\end{array} g_{1}(x, y, z, u)<v<g_{2}(x, y, z, u)\right.\right\}
\end{array}\right\} \begin{aligned}
B_{1,2}= & \bigcup_{t \in\left(c_{V}, C\right)}\{(x, y, z, u, v) \mid \\
& \wedge g_{1}(x, y, z) \in S \wedge u=t
\end{aligned}
$$

We finally deal with $B_{1,1}$ and $B_{1,2}$ as follows:
$B_{1,1}$: By construction, $\left(k_{1}\right)_{t}$ and $\left(k_{2}\right)_{t}$ are regular for every $t \in(0, \delta)$. Writing $\pi_{4,5}\left(B_{1,1}\right)$ as

$$
\begin{aligned}
\bigcup_{t \in(0, \delta)} \pi_{3,4}(\{(y, z, u, v) \mid & (y, z, u) \in h_{t}(S) \\
& \left.\left.\wedge k_{1}(y, z, u, t)<v<k_{2}(y, z, u, t)\right\}\right)
\end{aligned}
$$

we can therefore reason analogously as in Case 2, (2b) for every t individually.
$B_{1,2}$: Here, for every t individually, we are straight back in Case 2, (2b). The proof of Lemma 4 is complete.

5 Concluding remarks

We have treated the positive-one pass queries for three-dimensional datasets only. Our proof uses only fairly elementary mathematics. By using more heavy machinery, one can probably prove our Theorem 2 in general for n dimensional datasets and $n-1$-ary queries. Conceivably this generalisation can also be performed starting from our own proof, but that will be exceedingly laborious.

Extending our proof technique to larger classes of RAEs is not obvious to us. For instance, when relaxing the one-pass restriction, it is not clear how to find a good $\tau \in \mathbb{A}$ such that $\tau(\boldsymbol{\square}) \times \tau(\boldsymbol{\square})$ is nicely located. When negation is allowed, the normal form of Lemma 3 becomes much more complex, with consequences for the case analysis.

Ultimately, one can even go further than the problem posed in the Introduction, and throw in connectivity testing of parameterized queries, which can then even be nested [BGLS, GVG].

References

[BGLS] M. Benedikt, M. Grohe, L. Libkin, and L. Segoufin. Reachability and connectivity queries in constraint databases. Journal of Computer and System Sciences, 66(1):169-206, 2003.
[BCR] J. Bochnak, M. Coste, and M.-F. Roy. Real Algebraic Geometry. Springer, 1998.
[GVG] C. Giannella and D. Van Gucht. Adding a path connectedness operator to FO+poly (linear). Acta Informatica, 38(9):621-648, 2002.
[CDB] G.M. Kuper, J. Paredaens, and L. Libkin, editors. Constraint Databases. Springer, 2000.
[VDD] L. van den Dries. Tame Topology and O-minimal Structures. Cambridge University Press, 1998.

[^0]: *Contact author. Address: Helsinki Institute for Information Technology, Basic Research Unit, PO Box 26 (Teollisuuskatu 23), FIN-00014, Finland. Phone: +3589 19144037. Fax: +358 9191 44441. Email: floris.geerts@cs.helsinki.fi
 ${ }^{\dagger}$ Limburgs Universitair Centrum, Diepenbeek, Belgium.

