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Abstract Let (w) denote the minimum period of the wovd Letw be a primi-
tive word with periodr(w) < |w|, andz a prefix ofw. It is shown that ift(wz) =
m(w), then|z] < m(w) —gcd(|wl, |z|). Detailed improvements of this result are also
proven. As a corollary we give a short proof of the fact that if w are primitive
words such that? is a prefix ofv?, andv? is a prefix ofw?, then|w| > 2|u]. Fi-
nally, we show that each primitive womdhas a conjugate’ = vu, wherew = uv,
such thatt(w) = |w| and|u| < (w).

1 Introduction

Various aspects of periodicity play a centr@dle'in combinatorics on words and its
applications; see Lothaire’s books [8—10]. The notion of periodicity is well posed
in many problems concerning algorithmic aspects of strings: in pattern matching,
compression of strings, sequence analysis, and so forth.

In this paper we study extensions of words with respect to their periodicity.
Letw be a word over a finite alphabat The length ofw is denoted byw|. The
empty word is denoted by. A positive integerp is aperiod of w, if w= (uv)ku
wherep = |uv], k > 1, andv # €. The minimum period ol is denoted byz(w).

For a wordw = uv, the wordu is aprefix of w, denoted byu <, w, andv is
a suffixof w, denoted bw <sw. If v is nonempty, them is a proper prefixof
w, denoted byu <p w. A nonempty wordu is aborder of w, if u is a prefix and
a suffix ofw, i.e.,ux= w = yufor some nonempty wordsandy. Each word has
a unique factorization in the formv = u*v, wherek > 1, v <, u and|u| = m(w).
Hereu is called theoot of w andv theresidueof w. We denote the lengtlv| > 0
of the residuer by p(w).
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A word is primitive if it is not a power of a shorter word, i.e.,f(w) does not
divide |w| properly.

Let w be a word with a nonempty residue and a prefix, w. We show
that if the wordwz has the same minimum period asthat is, 7(wz) = m(w),
then |z| < w(w) —gcd(|wl, |z|), where gcd denotes the greatest common divisor
function. As a corollary we give a short proof of the well known result due to
Crochemore and Rytter [4] stating thauif, w are primitive words such that <,

V2 <p W2, thenu? <pw, i.e.,|w| > 2|u|. Finally, we strengthen the above extension
result by showing that iivis a word withu as a root anev has a nonempty residue,
thenz(wz) > m(w) for all prefixesz <p, wwith |z| > w(w) + 7(u) — p(w) — 1.

In the last section, we study extensiomsthat force the period(wz) = |w|.
This problem is stated for unbordered conjugates. For this;(le} denote the
shortest prefixof the wordw, sayw = 7(w)u, such that the conjugater(w) is
unbordered, i.ez(ut(w)) = |ut(w)|. We show that for each primitive wond it
holds thatr(w) < (w).

2 Extensions of words by periods

It is clear that ifu is a border of a wordalv, then|w| — |u| is a period ofw, and thus
|w| — |u| > m(w). A word w is said to bebordered(or self-correlated[11]), if it
has a border, that is, ¥ has a prefix of length less than| which is also a suffix
of w. If wis not bordered, it is callednbordered Clearly, a wordwv is unbordered
if and only if w(w) = |w|.
We begin with an application of the basic periodicity result of Fine and Wilf [6]:

Theorem 1 (Fine and Wilf) If a word w has two periods p and g such that >
p+q—gcdp,q), then alsagcd(p, q) is a period of w.

Note that ifw has an empty residue, theniwz) = z(w) for all wordsz = wku
with u <, wandk > 0. Therefore, in the sequel we consider words with nonempty

residues. Note that each wordwith a nonempty residue is primitive, and thus
T(W?) = |w| > 7(w).

Theorem 2 Let w be a word with a nonempty residue and a prefi, av.
If m(wz) =n(w) then |z < m(w) —gcd(m(w), |w|).

Proof Clearly m(wz) > n(w). Letd = gcd(w(w), |w|), and suppose that <, w
satisfiesnt(wz) = w(w). Then both|w| and (w) are different periods ofvz If
|wz > (w)+|w| —d, then Theorem 1 implies thdltis a period ofvz In this case,
d = n(w), sincer(wz) > m(w), and sor(w) divides|w| contradicting primitivity
of w; hence the claim follows. O

The following example shows that the bound given in Theorem 2 is optimal
for all lengths.

Example 1Consider the word
w=a"'ba

with the minimum periodz(w) = n, and letz= a"~2 <, w. We haver(wz) = n,
where|z] = |w| — 3= m(w) —gcd(m(w), |w|) — 2, since gcgh,n+ 1) = 1.
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The following example shows that the conditi@h> m(w) — gcd(m(w), |w|)
does not imply thatr(wz) = |w|.

Example 2Consider the word
w = ababaabab
Thenn(w) = |ababg = 5. Letz= aba We havez| = n(w) — 2 and
wz= ababaabababa
with 7(w) =5 < 7= rn(wz) < 9= |w|, since|ababaalpis a period ofwz

The following result is due to Crochemore and Rytter [4]. A short proof due
to Diekert is given in [9, Lemma 8.1.14]. Below we show that this result follows
from Theorem 2. Note that an integek |w| is a period of the worel if and only
if w<pxw, wherex <, wis such thatx| = p.

Corollary 1 Let uv,w be primitive words with &<, v <, w?. Then|w| > 2|u].

Proof Suppose thatw| < 2|ul, and thusv <, v? <, w?. Hencew has a nonempty
residue. Letw = vx. Then|x| is a period ofv, sincevv <, ww = vxvxand so
v <p xv. Now 7(v) < |x|, and, by Theorem 2z(w) > |v|, and som(w) = |v|.
However, alsqu| is a period ofw, sincew <p u?. Thereforev| = m(w) = |u| gives
a contradiction. O

For a wordw with a nonempty residue, let iteaximal extension numbée
defined by

k(w) = max{p| p = |z for a prefixz <p w with ©(wz) = m(w)} .

Theorem 2 x(w) exists and satisfies(w) < 7(w) — 1. For a nonempty word,
letw*® denote the word from which the last letter is removed. For the proof of the
following result, see Berstel and Karhaki [1].

Lemmal Let u and v be two nonempty words. If*u¥ vu® then there exists
aword g such that &= ¢ and v=g! for somejj > 1.

We shall now have a partial improvement of Theorem 2.

Theorem 3 Let w be a word with a nonempty residue and let u be the root of w.
Then
K(w) < m(w) 4+ m(u) — p(w) — 2.

Proof Letu = vywhere|v| = p(w), and letx be the root olu. Assume that there
exists a prefixz <p w such thatt(wz) = 7(w) and|z| = w(w) + 7 (u) —p (W) —1=
|wu| — |v| — 1. By Theorem 2, we have thaiu) < p(w), and thusx <p u. Now,
Iv4 = |ux — 1 and sincevz <p ux, we havevz = ux® = vyX, and thusz = yx*.
Also, z=xy*, sincez <, u andy <, u, for, y <p z <p u andx is the root ofu. By
Lemma 1,yx* = xy* implies that there exists a primitive wogisuch thaix = ¢
andy = g’ for somei, j > 1. Thenv = g'g; for a prefixg; <, g and an integer
t >0, and sa1 = vy=g'g:g'. However, sincea s the root ofu, u = x"x; for some

r > 1 andx; <p X, from which it follows thatu = g**Jg;. In order forg to be
primitive, we must havg = 0, for otherwiseg is a proper conjugate of itself. This
contradicts the fact thgt> 1. O
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The bound given in Theorem 3 is optimal as shown in the following example.
Example 3Consider the words
w, = (aba)"ab

wherer(wn) = 3, m(u) = 2 for the rootu = aba of wy,, andp (w,) = 2. Hence,
k(W) = m(wn) + m(u) — p(wn) — 2 = 1. Indeed, the extensiom,ab has a larger
period than 3, namely(wnab) = 3n+ 2.
Also, for
Un = (ab)"aab

of length 21+ 3, we haver(u,) = 2n+ 1, and the lengtp (u) of the residue ofi,
is 2. Hencek(up) = 2n— 1= zt(up) + n((ab)"a) — p (un) — 2.

3 Critical points and extensions

Every primitive wordw has an unbordered conjugate. For instance, consider the
least conjugate of with respect to some lexicographic ordering, that is, a Lyndon
conjugate ofw; see e.g. Lothaire [8]. Denote by(w) the shortest prefixof w,

w = 7(w)u, such that the conjugater(w) is unbordered. HenceQ t(w) < |w|.

Lemma 2 Each primitive word w has a factorizationuv such that the conju-
gate vu is unbordered and eithp < z(w) or |v| < m(w).

Proof Let w = u¥z, whereu is the root ofw, k > 1, andz <p U. Suppose thatv

has no conjugate as stated in the claim. wet yu'zd—1x be an unbordered
conjugate ofw, whereu = xy. (Take, for instance, a Lyndon conjugate vai)
It follows thati = k or i = 1, for otherwiseyx is a border ofw'. If i = 1, then
W = yu<1zxis a required conjugater = (yu<1z)(x). Assume then that= k, we
havew = yzd~x and thus <p X; otherwise agailyxis a border ofv’. However,
noww = (y2)(u¢1x) is a required conjugate. O

In the following we say that an integgrwith 1 < p < |w| is apointin the
wordw. A nonempty wordi is called arepetition wordat p if w= xywith x| = p
and there exist worde andy’ such thau is a suffix ofx'x andu is a prefix ofyy.
Let

m(w, p) = min{|u| | uis a repetition word ap}

denote thdocal periodat pointp in w. In general, we have that(w, p) < m(w).
A factorizationw = uv, with u,v # € and|u| = p, is calledcritical, andp is a
critical point, if m(w, p) = m(w).

The Critical Factorization Theorem (CFT) is a fundamental result on periodic-
ity. It was first conjectured by Séitzenberger [12] and then proved bgsari and
Vincent [2]. Later it was developed into its present form by Duval [5]. We refer
to [7] for a short proof of the theorem giving a technically improved version of the
proof by Crochemore and Perrin [3].

Theorem 4 (CFT)Let w be a word with at least two different letters. Then w has
a critical point p such that p< (w).
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The following lemma rests on the CFT.

Lemma 3 Let w be an unbordered word wittv| > 2, and let w= uv be such that
p = |u is any critical point of w. Then also the conjugate vu is unbordered.

Proof Without loss of generality we can assume that< |v|. Now m(w) = |w],
sincew is unbordered. Assume, contrary to the claim, that the waid bordered.
We have two cases to consider. (1) AssumevhasV andu = u'sfor a nonempty
words. Thenz(w, |u|) <|s| < |w]| contradicting the assumption tHat is a critical
point. (2) Assume that = sut Thenz(w, |u|) < |sy < |w|, and agaifju| is not a
critical point; a contradiction. These cases prove the claim. ad

The following theorem states the main result of this section.
Theorem 5 Let w be a primitive word. Then(w) < m(w).

Proof Suppose first that(w) > |w|/2. Assume thaitv = xyz where|xy| = w(w),
z<p Xy, and|x| is a critical point ofw such thatx| < 7(w) provided by Theorem 4.
Suppose that the conjugaté = yzx is bordered, and lat be its shortest border.
Since|x| is a critical point inw andu is a local repetition afx| in w, we haveu| >
m(w), and henceu| > |yx|. Sinceu is unbordered, it does not overlap with itself,
and thereforeyzy > 2|u|, which implies thatyzx > 2|yx| and hencéz| > |yx; a
contradiction. Hence the conjugaté= yzx is unbordered, and sgw) < m(w).

Assume then that(w) < |w|/2, and et be the root ofv. Thenw = ukzwhere
n(w) = |u] andz <p uandk > 2.

Assume thatr(w) > m(w), and thus that(w) > m(w). By Lemma 2, there
exists an unbordered conjugaté= vu—1t of w, wherev <sw such thatjv| <
m(w). Consider a critical poinp of w/, sayw’ = gh, where|g| = p.

First, v is a suffix ofuz, and thus the critical poinp is not inv, i.e., p > |v,
sincen(W) = |W| andv occurs inu*-1t. Similarly, p < |vul, since all suffixes
of w’ starting from a positiom > |vu| occur inw starting from the poing— |u|
and thus there is a local repetition at paindf length at mostu|. Now we have
Iv| < |g| < |vu] and the conjugathgis unbordered by Lemma 3. Lat=rs such
thatg = vr. Thenhg = su1zr and 1< |r| < |u| as required. O

The following example illustrates that it is not enough to just consider critical
points for proving Theorem 5.

Example 41t is not true that a conjugateu with respect to a critical poinjul

of w = uvis unbordered. Consider for instance the ware- abcbababcbabab
wheren(w) = 6, andp = 3 is a critical point, but the corresponding conjugate
w = bababcbabababhas a bordebababc

Note that we always have(w<z) < |w| for prefixesz <, w and nonnegative
integersk. Theorem 5 gives a complementary result to Theorem 2 and 3.

Corollary 2 Letw be a word with a nonempty residue and a prefis,av.

If |2 > m(w) then m(wz) = |w|.
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Proof Let |z| > m(w). By Theorem 5w has an unbordered conjugaté = vu
wherew = uv and|u| < m(w). Then we haver(wu) = |w| for the extensiomwu,
sincer(wu) is at least the length of the longest unbordered factenofThe claim
follows now fromwu <, wz

The following example elaborates on the differences between Theorem 2 and
Corollary 2.

Example 5Consider the word
w = aaabaa

for which |w| = 6 andz(w) = 4 and gcdn(w), |w|) = 2 so that we gerr(w) —
gedm(w),|w|) = 2. We haver(wz) > r(w) for each extensiomwz with z <, w
and |z] > 2, by Theorem 2. The shortest extension increasing the period is for
z= aa, that is,w.aa= aaabaaaawith 7(waa) = 5.

However, we haver(wz) < |w| and the corresponding conjugave= abaaaa
of w is bordered. In this example, we need an extengienaaa of length 3 in
order to obtaint(wz) = |w|.
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