Tero Harju 🕖 Dirk Nowotka

Periods in Extensions of Words

Received: date / Revised: date

Abstract Let $\pi(w)$ denote the minimum period of the word *w*. Let *w* be a primitive word with period $\pi(w) < |w|$, and *z* a prefix of *w*. It is shown that if $\pi(wz) = \pi(w)$, then $|z| < \pi(w) - \gcd(|w|, |z|)$. Detailed improvements of this result are also proven. As a corollary we give a short proof of the fact that if u, v, w are primitive words such that u^2 is a prefix of v^2 , and v^2 is a prefix of w^2 , then |w| > 2|u|. Finally, we show that each primitive word *w* has a conjugate w' = vu, where w = uv, such that $\pi(w') = |w'|$ and $|u| < \pi(w)$.

1 Introduction

Various aspects of periodicity play a central rôle in combinatorics on words and its applications; see Lothaire's books [8–10]. The notion of periodicity is well posed in many problems concerning algorithmic aspects of strings: in pattern matching, compression of strings, sequence analysis, and so forth.

In this paper we study extensions of words with respect to their periodicity. Let *w* be a word over a finite alphabet *A*. The length of *w* is denoted by |w|. The empty word is denoted by ε . A positive integer *p* is a *period* of *w*, if $w = (uv)^k u$ where $p = |uv|, k \ge 1$, and $v \ne \varepsilon$. The minimum period of *w* is denoted by $\pi(w)$.

For a word w = uv, the word u is a *prefix* of w, denoted by $u \leq_p w$, and v is a *suffix* of w, denoted by $v \leq_s w$. If v is nonempty, then u is a *proper prefix* of w, denoted by $u <_p w$. A nonempty word u is a *border* of w, if u is a prefix and a suffix of w, i.e., ux = w = yu for some nonempty words x and y. Each word has a unique factorization in the form $w = u^k v$, where $k \geq 1$, $v <_p u$ and $|u| = \pi(w)$. Here u is called the *root* of w and v the *residue* of w. We denote the length $|v| \geq 0$ of the residue v by $\rho(w)$.

Department of Mathematics, University of Turku, 20014 Turku, Finland, E-mail: harju@utu.fi · Institute of Formal Methods in Computer Science, University of Stuttgart, 70569 Stuttgart, Germany, E-mail: nowotka@fmi.uni-stuttgart.de

A word is *primitive* if it is not a power of a shorter word, i.e., if $\pi(w)$ does not divide |w| properly.

Let *w* be a word with a nonempty residue and a prefix $z \leq_p w$. We show that if the word wz has the same minimum period as *w*, that is, $\pi(wz) = \pi(w)$, then $|z| < \pi(w) - \gcd(|w|, |z|)$, where gcd denotes the greatest common divisor function. As a corollary we give a short proof of the well known result due to Crochemore and Rytter [4] stating that if u, v, w are primitive words such that $u^2 <_p v^2 <_p w^2$, then $u^2 <_p w$, i.e., |w| > 2|u|. Finally, we strengthen the above extension result by showing that if *w* is a word with *u* as a root and *w* has a nonempty residue, then $\pi(wz) > \pi(w)$ for all prefixes $z \leq_p w$ with $|z| \ge \pi(w) + \pi(u) - \rho(w) - 1$.

In the last section, we study extensions wz that force the period $\pi(wz) = |w|$. This problem is stated for unbordered conjugates. For this, let $\tau(w)$ denote the *shortest prefix* of the word w, say $w = \tau(w)u$, such that the conjugate $u\tau(w)$ is unbordered, i.e., $\pi(u\tau(w)) = |u\tau(w)|$. We show that for each primitive word w it holds that $\tau(w) < \pi(w)$.

2 Extensions of words by periods

It is clear that if *u* is a border of a word *w*, then |w| - |u| is a period of *w*, and thus $|w| - |u| \ge \pi(w)$. A word *w* is said to be *bordered* (or *self-correlated* [11]), if it has a border, that is, if *w* has a prefix of length less than |w| which is also a suffix of *w*. If *w* is not bordered, it is called *unbordered*. Clearly, a word *w* is unbordered if and only if $\pi(w) = |w|$.

We begin with an application of the basic periodicity result of Fine and Wilf [6]:

Theorem 1 (Fine and Wilf) If a word w has two periods p and q such that $|w| \ge p+q-\gcd(p,q)$, then also $\gcd(p,q)$ is a period of w.

Note that if *w* has an empty residue, then $\pi(wz) = \pi(w)$ for all words $z = w^k u$ with $u \leq_p w$ and $k \geq 0$. Therefore, in the sequel we consider words with nonempty residues. Note that each word *w* with a nonempty residue is primitive, and thus $\pi(w^2) = |w| > \pi(w)$.

Theorem 2 Let w be a word with a nonempty residue and a prefix $z \leq_p w$.

If
$$\pi(wz) = \pi(w)$$
 then $|z| < \pi(w) - \gcd(\pi(w), |w|)$

Proof Clearly $\pi(wz) \ge \pi(w)$. Let $d = \gcd(\pi(w), |w|)$, and suppose that $z \le_p w$ satisfies $\pi(wz) = \pi(w)$. Then both |w| and $\pi(w)$ are different periods of *wz*. If $|wz| \ge \pi(w) + |w| - d$, then Theorem 1 implies that *d* is a period of *wz*. In this case, $d = \pi(w)$, since $\pi(wz) \ge \pi(w)$, and so $\pi(w)$ divides |w| contradicting primitivity of *w*; hence the claim follows.

The following example shows that the bound given in Theorem 2 is optimal for all lengths.

Example 1 Consider the word

$$w = a^{n-1}ba$$

with the minimum period $\pi(w) = n$, and let $z = a^{n-2} \leq_p w$. We have $\pi(wz) = n$, where $|z| = |w| - 3 = \pi(w) - \gcd(\pi(w), |w|) - 2$, since $\gcd(n, n+1) = 1$.

The following example shows that the condition $|z| \ge \pi(w) - \gcd(\pi(w), |w|)$ does not imply that $\pi(wz) = |w|$.

Example 2 Consider the word

w = ababaabab.

Then $\pi(w) = |ababa| = 5$. Let z = aba. We have $|z| = \pi(w) - 2$ and

wz = ababa.abab.aba

with $\pi(w) = 5 < 7 = \pi(wz) < 9 = |w|$, since |*ababaab*| is a period of *wz*.

The following result is due to Crochemore and Rytter [4]. A short proof due to Diekert is given in [9, Lemma 8.1.14]. Below we show that this result follows from Theorem 2. Note that an integer $p \le |w|$ is a period of the word *w* if and only if $w \le_p xw$, where $x \le_p w$ is such that |x| = p.

Corollary 1 Let u, v, w be primitive words with $u^2 <_p v^2 <_p w^2$. Then |w| > 2|u|.

Proof Suppose that $|w| \le 2|u|$, and thus $w <_p v^2 <_p w^2$. Hence *w* has a nonempty residue. Let w = vx. Then |x| is a period of *v*, since $vv \le_p ww = vxvx$ and so $v \le_p xv$. Now $\pi(v) \le |x|$, and, by Theorem 2, $\pi(w) \ge |v|$, and so $\pi(w) = |v|$. However, also |u| is a period of *w*, since $w <_p u^2$. Therefore $|v| = \pi(w) = |u|$ gives a contradiction.

For a word *w* with a nonempty residue, let its *maximal extension number* be defined by

$$\kappa(w) = \max\{p \mid p = |z| \text{ for a prefix } z \leq_p w \text{ with } \pi(wz) = \pi(w)\}$$

Theorem 2, $\kappa(w)$ exists and satisfies $\kappa(w) < \pi(w) - 1$. For a nonempty word *w*, let w^{\bullet} denote the word from which the last letter is removed. For the proof of the following result, see Berstel and Karhumäki [1].

Lemma 1 Let u and v be two nonempty words. If $uv^{\bullet} = vu^{\bullet}$ then there exists a word g such that $u = g^{i}$ and $v = g^{j}$ for some $i, j \ge 1$.

We shall now have a partial improvement of Theorem 2.

Theorem 3 *Let w be a word with a nonempty residue and let u be the root of w. Then*

$$\kappa(w) \leq \pi(w) + \pi(u) - \rho(w) - 2$$

Proof Let u = vy where $|v| = \rho(w)$, and let x be the root of u. Assume that there exists a prefix $z \leq_p w$ such that $\pi(wz) = \pi(w)$ and $|z| = \pi(w) + \pi(u) - \rho(w) - 1 = |wu| - |v| - 1$. By Theorem 2, we have that $\pi(u) < \rho(w)$, and thus $x <_p u$. Now, |vz| = |ux| - 1 and since $vz \leq_p ux$, we have $vz = ux^{\bullet} = vyx^{\bullet}$, and thus $z = yx^{\bullet}$. Also, $z = xy^{\bullet}$, since $z \leq_p u$ and $y <_p u$, for, $y <_p z <_p u$ and x is the root of u. By Lemma 1, $yx^{\bullet} = xy^{\bullet}$ implies that there exists a primitive word g such that $x = g^{i}$ and $y = g^{j}$ for some $i, j \geq 1$. Then $v = g^{it}g_{1}$ for a prefix $g_{1} <_{p} g$ and an integer $t \geq 0$, and so $u = vy = g^{it}g_{1}g^{j}$. However, since x is the root of $u, u = x^{r}x_{1}$ for some $r \geq 1$ and $x_{1} <_{p} x$, from which it follows that $u = g^{it+j}g_{1}$. In order for g to be primitive, we must have j = 0, for otherwise g is a proper conjugate of itself. This contradicts the fact that $j \geq 1$.

The bound given in Theorem 3 is optimal as shown in the following example.

Example 3 Consider the words

$$w_n = (aba)^n ab$$

where $\pi(w_n) = 3$, $\pi(u) = 2$ for the root u = aba of w_n , and $\rho(w_n) = 2$. Hence, $\kappa(w) = \pi(w_n) + \pi(u) - \rho(w_n) - 2 = 1$. Indeed, the extension $w_n ab$ has a larger period than 3, namely $\pi(w_n ab) = 3n + 2$.

Also, for

$$u_n = (ab)^n aab$$

of length 2n+3, we have $\pi(u_n) = 2n+1$, and the length $\rho(u_n)$ of the residue of u_n is 2. Hence, $\kappa(u_n) = 2n-1 = \pi(u_n) + \pi((ab)^n a) - \rho(u_n) - 2$.

3 Critical points and extensions

Every primitive word *w* has an unbordered conjugate. For instance, consider the least conjugate of *w* with respect to some lexicographic ordering, that is, a Lyndon conjugate of *w*; see e.g. Lothaire [8]. Denote by $\tau(w)$ the *shortest prefix* of *w*, $w = \tau(w)u$, such that the conjugate $u\tau(w)$ is unbordered. Hence $0 \le \tau(w) < |w|$.

Lemma 2 Each primitive word w has a factorization w = uv such that the conjugate vu is unbordered and either $|u| < \pi(w)$ or $|v| < \pi(w)$.

Proof Let $w = u^k z$, where u is the root of $w, k \ge 1$, and $z <_p u$. Suppose that w has no conjugate as stated in the claim. Let $w' = yu^{k-i}zu^{i-1}x$ be an unbordered conjugate of w, where u = xy. (Take, for instance, a Lyndon conjugate of w.) It follows that i = k or i = 1, for otherwise yx is a border of w'. If i = 1, then $w' = yu^{k-1}zx$ is a required conjugate: $w' = (yu^{k-1}z)(x)$. Assume then that i = k, we have $w' = yzu^{k-1}x$ and thus $z <_p x$; otherwise again yx is a border of w'. However, now $w' = (yz)(u^{k-1}x)$ is a required conjugate.

In the following we say that an integer p with $1 \le p < |w|$ is a *point* in the word w. A nonempty word u is called a *repetition word* at p if w = xy with |x| = p and there exist words x' and y' such that u is a suffix of x'x and u is a prefix of yy'. Let

$$\pi(w, p) = \min\{|u| \mid u \text{ is a repetition word at } p\}$$

denote the *local period* at point *p* in *w*. In general, we have that $\pi(w, p) \le \pi(w)$. A factorization w = uv, with $u, v \ne \varepsilon$ and |u| = p, is called *critical*, and *p* is a *critical point*, if $\pi(w, p) = \pi(w)$.

The Critical Factorization Theorem (CFT) is a fundamental result on periodicity. It was first conjectured by Schützenberger [12] and then proved by Césari and Vincent [2]. Later it was developed into its present form by Duval [5]. We refer to [7] for a short proof of the theorem giving a technically improved version of the proof by Crochemore and Perrin [3].

Theorem 4 (CFT) Let w be a word with at least two different letters. Then w has a critical point p such that $p < \pi(w)$.

The following lemma rests on the CFT.

Lemma 3 Let w be an unbordered word with $|w| \ge 2$, and let w = uv be such that p = |u| is any critical point of w. Then also the conjugate vu is unbordered.

Proof Without loss of generality we can assume that $|u| \le |v|$. Now $\pi(w) = |w|$, since *w* is unbordered. Assume, contrary to the claim, that the word *vu* is bordered. We have two cases to consider. (1) Assume that v = sv' and u = u's for a nonempty word *s*. Then $\pi(w, |u|) \le |s| < |w|$ contradicting the assumption that |u| is a critical point. (2) Assume that v = sut. Then $\pi(w, |u|) \le |su| < |w|$, and again |u| is not a critical point; a contradiction. These cases prove the claim.

The following theorem states the main result of this section.

Theorem 5 Let w be a primitive word. Then $\tau(w) < \pi(w)$.

Proof Suppose first that $\pi(w) > |w|/2$. Assume that w = xyz, where $|xy| = \pi(w)$, $z <_p xy$, and |x| is a critical point of w such that $|x| < \pi(w)$ provided by Theorem 4. Suppose that the conjugate w' = yzx is bordered, and let u be its shortest border. Since |x| is a critical point in w and u is a local repetition at |x| in w, we have $|u| \ge \pi(w)$, and hence $|u| \ge |yx|$. Since u is unbordered, it does not overlap with itself, and therefore $|yzx| \ge 2|u|$, which implies that $|yzx| \ge 2|yx|$ and hence $|z| \ge |yx|$; a contradiction. Hence the conjugate w' = yzx is unbordered, and so $\tau(w) < \pi(w)$.

Assume then that $\pi(w) < |w|/2$, and et *u* be the root of *w*. Then $w = u^k z$ where $\pi(w) = |u|$ and $z <_p u$ and $k \ge 2$.

Assume that $\tau(w) \ge \pi(w)$, and thus that $\tau(w) > \pi(w)$. By Lemma 2, there exists an unbordered conjugate $w' = vu^{k-1}t$ of w, where $v \le_s w$ such that $|v| < \pi(w)$. Consider a critical point p of w', say w' = gh, where |g| = p.

First, *v* is a suffix of *uz*, and thus the critical point *p* is not in *v*, i.e., p > |v|, since $\pi(w') = |w'|$ and *v* occurs in $u^{k-1}t$. Similarly, p < |vu|, since all suffixes of *w'* starting from a position $q \ge |vu|$ occur in *w'* starting from the point q - |u| and thus there is a local repetition at point *q* of length at most |u|. Now we have |v| < |g| < |vu| and the conjugate *hg* is unbordered by Lemma 3. Let u = rs such that g = vr. Then $hg = su^{k-1}zr$ and $1 \le |r| < |u|$ as required.

The following example illustrates that it is not enough to just consider critical points for proving Theorem 5.

Example 4 It is not true that a conjugate *vu* with respect to a critical point |u| of w = uv is unbordered. Consider for instance the word w = abcbababcbabab, where $\pi(w) = 6$, and p = 3 is a critical point, but the corresponding conjugate w' = bababcbabababc has a border *bababc*.

Note that we always have $\pi(w^k z) \le |w|$ for prefixes $z \le_p w$ and nonnegative integers k. Theorem 5 gives a complementary result to Theorem 2 and 3.

Corollary 2 *Let w be a word with a nonempty residue and a prefix* $z \leq_p w$ *.*

If
$$|z| \ge \pi(w)$$
 then $\pi(wz) = |w|$.

Proof Let $|z| \ge \pi(w)$. By Theorem 5, *w* has an unbordered conjugate w' = vu where w = uv and $|u| < \pi(w)$. Then we have $\pi(wu) = |w|$ for the extension *wu*, since $\pi(wu)$ is at least the length of the longest unbordered factor of *wu*. The claim follows now from $wu \le_p wz$.

The following example elaborates on the differences between Theorem 2 and Corollary 2.

Example 5 Consider the word

w = aaabaa

for which |w| = 6 and $\pi(w) = 4$ and $gcd(\pi(w), |w|) = 2$ so that we get $\pi(w) - gcd(\pi(w), |w|) = 2$. We have $\pi(wz) > \pi(w)$ for each extension wz with $z \leq_p w$ and $|z| \geq 2$, by Theorem 2. The shortest extension increasing the period is for z = aa, that is, *w.aa* = *aaabaaaa* with $\pi(waa) = 5$.

However, we have $\pi(wz) < |w|$ and the corresponding conjugate w' = abaaaa of *w* is bordered. In this example, we need an extension z = aaa of length 3 in order to obtain $\pi(wz) = |w|$.

References

- Berstel, J., Karhumäki, J.: Combinatorics on words A tutorial. Bull. EATCS 79, 178–229 (2003)
- Césari, Y., Vincent, M.: Une caractérisation des mots périodiques. C. R. Acad. Sci. Paris Sér. A 286, 1175–1177 (1978)
- 3. Crochemore, M., Perrin, D.: Two-way string-matching. J. ACM 38(3), 651-675 (1991)
- Crochemore, M., Rytter, W.: Squares, cubes, and time-space efficient string searching. Algorithmica 13(5), 405–425 (1995)
- Duval, J.P.: Périodes et répétitions des mots de monoïde libre. Theoret. Comput. Sci. 9(1), 17–26 (1979)
- Fine, N.J., Wilf, H.S.: Uniqueness theorem for periodic functions. Proc. Amer. Math. Soc. 16, 109–114 (1965)
- Harju, T., Nowotka, D.: Density of critical factorizations. Theor. Inform. Appl. 36(3), 315– 327 (2002)
- Lothaire, M.: Combinatorics on Words, *Encyclopedia of Mathematics*, vol. 17. Addison-Wesley, Reading, MA (1983. Reprinted in the Cambridge Mathematical Library, Cambridge Univ. Press, 1997)
- 9. Lothaire, M.: Algebraic Combinatorics on Words, *Encyclopedia of Mathematics and its Applications*, vol. 90. Cambridge University Press, Cambridge, United Kingdom (2002)
- Lothaire, M.: Algorithmic Combinatorics on Words. Cambridge University Press, Cambridge, United Kingdom (2005)
- Morita, H., van Wijngaarden, A.J., Vinck, A.J.H.: On the construction of maximal prefixsynchronized codes. IEEE Trans. Inform. Theory 42, 2158–2166 (1996)
- Schützenberger, M.P.: A property of finitely generated submonoids of free monoids. In: Algebraic theory of semigroups (Proc. Sixth Algebraic Conf., Szeged, 1976), *Colloq. Math. Soc. János Bolyai*, vol. 20, pp. 545–576. North-Holland, Amsterdam (1979)