
ar
X

iv
:0

71
1.

08
36

v3
 [

cs
.S

E
]

4
M

ar
 2

00
9 Machine Structure Oriented Control Code Logic

(Extended Version)

J.A. Bergstra, C.A. Middelburg

Programming Research Group, University of Amsterdam,
Science Park 107, 1098 XG Amsterdam, the Netherlands
e-mail:J.A.Bergstra@uva.nl, C.A.Middelburg@uva.nl

The date of receipt and acceptance will be inserted by the editor

Abstract Control code is a concept that is closely related to a frequently occur-
ring practitioner’s view on what is a program: code that is capable of controlling
the behaviour of some machine. We present a logical approachto explain issues
concerning control codes that are independent of the details of the behaviours that
are controlled. Using this approach, such issues can be explained at a very abstract
level. We illustrate this among other things by means of an example about the pro-
duction of a new compiler from an existing one. The approach is based on abstract
machine models, called machine structures. We introduce a model of systems that
provide execution environments for the executable codes ofmachine structures
and use it to go into portability of control codes.

Keywords control code – machine structure – execution architecture –compiler
fixed point – control code portability

1 Introduction

In theoretical computer science, the meaning of programs usually plays a promi-
nent part in the explanation of many issues concerning programs. Moreover, what
is taken for the meaning of programs is mathematical by nature. On the other hand,
it is customary that practitioners do not fall back on the mathematical meaning of
programs in case explanation of issues concerning programsis needed. More often
than not, they phrase their explanations from the viewpointthat a program is code
that is capable of controlling the behaviour of some machine. Both theorists and
practitioners tend to ignore the existence of this contrast. In order to break through
this, we as theorists make in this paper an attempt to map out the way in which
practitioners explain issues concerning programs.

http://arxiv.org/abs/0711.0836v3

2 J.A. Bergstra, C.A. Middelburg

We informally define control code as code that is capable of controlling the
behaviour of some machine. There are control codes that failto qualify as pro-
grams according to any conceivable theory of programming. For that reason, we
make the distinction between control codes and programs. However, there are is-
sues concerning programs that can be explained at the level of control codes by
considering them as control codes that qualify as programs.Relative to a fixed
machine, the machine-dependent concept of control code that qualifies as program
is more abstract than the machine-independent concept of program: control code
that qualifies as program is just representative (on the fixedmachine) of behaviour
associated with a program with which it is possible to explain the behaviour. This
might be an important motive to explain issues concerning programs at the level
of control codes.

To simplify matters, we consider in this paper non-interactive behaviour only.
We consider this simplification desirable to start with. Henceforth, control codes
are implicitly assumed to control non-interactive behaviour only and the be-
haviours associated with programs are implicitly assumed to be non-interactive.

Our attempt to map out the way in which practitioners explainissues concern-
ing programs yields a logical approach to explain issues concerning control codes
that are independent of the details of the behaviours that are controlled. Machine
structures are used as a basis of the approach. They are inspired by the machine
functions introduced in [13] to provide a mathematical basis for the T-diagrams
proposed in [11]. A machine structure offers a machine modelat a very abstract
level.

We illustrate the approach by means of some examples. The issues explained
in the examples are well understood for quite a time. They areprimarily meant to
demonstrate the effectiveness of the approach. In the explanations given, we have
consciously been guided by empirical viewpoints usually taken by practitioners
rather than theoretical viewpoints. Those empirical viewpoints may be outside the
perspective of some theorists.

Mapping out the way in which practitioners explain issues concerning pro-
grams, phrased as a matter of applied mathematics, seems to lead unavoidably to
unexpected concepts and definitions. This means among otherthings that steps
made in this paper cannot always be motivated directly from the practice that we
map out. This is an instance of a general property of applied mathematics that we
have to face: the design of a mathematical theory does not follow imperatively
from the problems of the application area concerned.

We believe that the presented approach is useful because in various areas fre-
quently no distinction is made between programs and controlcodes and interest is
primarily in issues concerning control codes that are independent of the details of
the behaviours that are controlled. Some examples of such areas are software asset
sourcing and software patents.1 Moreover, we find that control code production is
in the end what software construction is about.

1 Software asset sourcing is an important part of IT sourcing,see e.g. [20,24,12]. An
extensive study of software patents and their implicationson software engineering practices
can be found in [5].

Machine Structure Oriented Control Code Logic 3

Machine structures in themselves are not always sufficient to explain issues
concerning control codes that are independent of the details of the behaviours that
are controlled. If systems that provide execution environments for the executable
codes of machine structures are involved, then more is needed. We introduce an
execution architecture for machine structures as a model ofsuch systems and ex-
plain portability of control codes using this execution architecture. An extension
of basic thread algebra, introduced in [6] under the name basic polarized process
algebra, is used to describe processes that operate upon theexecution architecture.
The reason to use basic thread algebra is that it has been designed as an algebra
of processes that interact with machines of the kind to whichalso the execution
architecture belongs. It is quite awkward to describe processes of that kind using a
general process algebra such as ACP [14], CCS [21] or CSP [17].

This paper is organized as follows. First, we introduce machine structures (Sec-
tion 2). Next, we introduce control code notations and program notations (Sec-
tion 3). Then, we present our approach to explain issues concerning control codes
by means of examples about the production of a new assembler using an existing
one and the production of a new compiler using an existing one(Section 4). We
also use this approach to explain the relation between compilers and interpreters
(Section 5). Following this, we sum up the effects of withdrawing a simplifying
assumption concerning the representation of control codesmade in the foregoing
(Section 6). After that, we outline an execution architecture for machine structures
(Section 7). Then, we review the extension of basic thread algebra that covers the
effects of applying threads to services (Section 8). Following this, we formalize
the execution architecture for machine structures and define the family of services
determined by it (Section 9). After that, we explain portability of control codes
using thread algebra and the execution architecture services (Section 10). Finally,
we make some concluding remarks (Section 11).

Up to Section 7, this paper is a major revision of [3]. It has been substantially
rewritten so as to streamline the material. Several important technical aspects have
been significantly modified.

2 Machine Functions and Machine Structures

In this section, machine structures are introduced. Machine structures are the basis
for our approach to explain issues concerning control codes. They are very abstract
machine models and cover non-interactive machine behaviour only.

First, we introduce the notion of machine function introduced in [3]. It general-
izes the notion of machine function introduced in [13] by covering machines with
several outputs. Machine functions are very abstract machine models as well, but
they are less suited than machine structures to model general purpose machines
such as computers. Machine structures can easily be defined without reference to
machine functions. The introduction of machine functions is mainly for expository
reasons.

4 J.A. Bergstra, C.A. Middelburg

2.1 Machine Functions

A machine functionµ is actually a family of functions: it consists of a function
µn for each natural numbern > 0. Those functions map each finite sequence of
bit sequences to either a bit sequence orM or D. Here,M stands for meaningless
andD stands for divergent. A machine function is supposed to model a machine
that takes several bit sequences as its inputs and produces several bit sequences as
its outputs unless it does not halt on the inputs. Letx1, . . . , xm be bit sequences.
Then the connection between the machine functionµ and the machine modelled
by it can be understood as follows:2

– if µn(〈x1, . . . , xm〉) is a bit sequence, then the machine functionµ models a
machine that producesµn(〈x1, . . . , xm〉) as itsnth output on it takingx1, . . . ,
xm as its inputs;

– if µn(〈x1, . . . , xm〉) isM, then the machine functionµ models a machine that
produces less thann outputs on it takingx1, . . . ,xm as its inputs;

– if µn(〈x1, . . . , xm〉) is D, then the machine functionµ models a machine that
does not produce any output on it takingx1, . . . , xm as its inputs because it
does not halt on the inputs.

Concerning the machine modelled by a machine function, we assume the follow-
ing:

– if it does not halt, then no output gets produced;
– if it does halt, then only finitely many outputs are produced;
– if it does not halt, then this cannot be prevented by providing more inputs;
– if it does halt, then the number of outputs cannot be increased by providing

less inputs.

The intuitions behind the first two assumptions are obvious.The intuition behind
the third assumption is that, with respect to not halting, a machine does not use
more inputs than it needs. The intuition behind the last assumption is that, with
respect to producing outputs, a machine does not use more inputs than it needs.

Henceforth, we writeBS for the set{0, 1}∗ of bit sequences. It is assumed that
M 6∈ BS andD 6∈ BS.

We now define machine functions in a mathematically precise way.
Let BS ⊆ BS. Then amachine functionµ onBS is a family of functions

{µn : BS ∗ → (BS ∪ {D,M}) | n ∈ N}

2 We write 〈 〉 for the empty sequence,〈x〉 for the sequence havingx as sole element,
andχ y χ′ for the concatenation of finite sequencesχ andχ′. We use〈x1, . . . , xn〉 as
a shorthand for〈x1〉 y . . . y 〈xn〉. We writeX∗ for the set of all finite sequences with
elements from setX.

Machine Structure Oriented Control Code Logic 5

satisfying the following rules:

∧

n∈N

(
∧

m∈N
(µn(χ) = D ⇒ µm(χ) = D)

)

,
∧

n∈N

(

µn(χ) 6= D ⇒
(
∨

m∈N,m>n µm(χ) = M
))

,
∧

n∈N

(
∧

m∈N,m>n(µn(χ) = M ⇒ µm(χ) = M)
)

,
∧

n∈N
(µn(χ) = D ⇒ µn(χy χ′) = D) ,

∧

n∈N
(µn(χy χ′) = M ⇒ µn(χ) = M) .

We writeMF for the set of all machine functions.

Example 1Take a high-level programming languagePL and an assembly lan-
guageAL. Consider a machine functioncf , which models a machine dedicated
to compilingPL programs, and a machine functiondf , which models a machine
dedicated to disassembling executable codes. Suppose thatthe compiling machine
takes a bit sequence representing aPL program as its only input and produces a
bit sequence representing anAL version of thePL program as its first output, a
bit sequence representing a listing of error messages as itssecond output, and an
executable code for thePL program as its third output. Moreover, suppose that the
disassembling machine takes an executable code as its only input and producing a
bit sequence representing anAL version of the executable code as its first output
and a bit sequence representing a listing of error messages as its second output.
The relevant properties of the machines modelled bycf anddf that may now be
formulated include:

cf 2(〈x〉) = 〈 〉 ⇒ cf 1(〈x〉) 6= 〈 〉 ,

df 2(〈x〉) = 〈 〉 ⇒ df 1(〈x〉) 6= 〈 〉 ,

cf 2(〈x〉) = 〈 〉 ⇒ df 1(cf 3(〈x〉)) = cf 1(〈x〉) .

These formulas express that executable code is produced by the compiling ma-
chine unless errors are found, disassembly succeeds unlesserrors are found, and
disassembly is the inverse of assembly.

Machines such as the compiling machine and the disassembling machine are
special purpose machines. They are restricted to exhibit a particular type of be-
haviour. Computers are general purpose machines that can exhibit different types
of behaviour at different times. This is possible because computers are code con-
trolled machines. A code controlled machine takes one special input that controls
its behaviour. In general, not all bit sequences that a code controlled machine can
take as its inputs are capable of controlling the behaviour of that machine. The bit
sequences that are capable of controlling its behaviour areknown as its executable
codes. Note that executable code is a machine-dependent concept.

Machine functions can be used to model code controlled machines as well. We
will use the phrase code controlled machine function for machine functions that
are used to model a code controlled machine. We will use the convention that the
first bit sequence in the argument of the functions that make up a code controlled

6 J.A. Bergstra, C.A. Middelburg

machine function corresponds to the special input that controls the behaviour of the
machine modelled. Because, in general, not all bit sequences that a code controlled
machine can take as its inputs are executable codes, more than just a machine
function is needed to model a code controlled machine. That is why we introduce
machine structures.

2.2 Machine Structures

A machine structureM consists a set of bit sequencesBS , functionsµn that make
up a machine function onBS , and a subsetE of BS . If E is empty, then the
machine structureM is essentially the same as the machine function contained in
it. If E is not empty, then the machine structureM is supposed to model a code
controlled machine. In the case whereE is not empty, the connection between
the machine structureM and the code controlled machine modelled by it can be
understood as follows:

– BS is the set of all bit sequences that the code controlled machine modelled
byM can take as its inputs;

– if x ∈ E , then the bit sequencex belongs to the executable codes of the code
controlled machine modelled byM;

– if x ∈ E , then the functionsµ′
n that are defined byµ′

n(〈y1, . . . , ym〉) =
µn(〈x, y1, . . . , ym〉) make up a machine function onBS modeling a machine
that exhibits the same behaviour as the code controlled machine modelled by
M exhibits under control of the executable codex.

The assumptions made about the machine modelled by a machinestructure are the
same as the assumptions made before about the machine modelled by a machine
function. It is tempting to add the following assumption:

– if the special input meant to control its behaviour does not belong to its exe-
cutable codes, then the machine halts without having produced any output.

We refrain from adding this assumption because it is to be expected that: (a) we
can do without it in explaining issues concerning control codes; (b) it does not hold
good for all machines that we may encounter. Moreover, in case we would incor-
porate this assumption in the notion of machine structure, it would not supersede
the notion of machine function.

We now define machine structures in a mathematically preciseway.
A machine structureM is a structure composed of

– a setBS ⊆ BS,
– a unary functionµn : BS ∗ → (BS ∪ {D,M}), for eachn ∈ N,
– a unary relationE ⊆ BS ,

where the family of functions{µn :BS
∗ → (BS ∪{D,M}) | n ∈ N} is a machine

function onBS . We say thatM is acode controlled machine structureif E 6= ∅,
and we say thatM is adedicated machine structureif E = ∅.

Machine Structure Oriented Control Code Logic 7

Let M = (BS , {µn | n ∈ N},E) be a code controlled machine structure, and
let x ∈ E . Then themeaningof x with respect toM, written |x|M, is the machine
function

{µ′
n : BS ∗ → (BS ∪ {D,M}) | n ∈ N} ,

where the functionsµ′
n are defined by

µ′
n(〈y1, . . . , ym〉) = µn(〈x, y1, . . . , ym〉) .

Moreover, letx′, x′′ ∈ E . Thenx′ is behaviourally equivalenttox′′ onM, written
x′ ≡M

beh x
′′, if |x′|M = |x′′|M.

Let M = (BS , {µn | n ∈ N},E) be a code controlled machine structure.
Then we will write

x ••n
M
y1, . . . , ym for µn(〈x, y1, . . . , ym〉) .

Moreover, we will write

x ••
M
y1, . . . , ym for x ••1

M
y1, . . . , ym .

We will also omitM if the machine structure is clear from the context.

Example 2Take a code controlled machine structureM = (BS , {µn | n ∈
N},E). Consider again the machine functionscf anddf from Example 1. These
machine functions model a machine dedicated to compiling programs in some
high-level programming languagePL and a machine dedicated to disassembling
executable codes, respectively. Letecf , edf ∈ E be such that

|ecf |M = cf and |edf |M = df .

Thenecf andedf are executable codes that control the behaviour of the code con-
trolled machine modelled byM such that this machine behaves the same as the
dedicated machine modelled bycf and the dedicated machine modelled bydf ,
respectively. This implies that for allx ∈ BS andn ∈ N:

ecf ••nM x = cf n(〈x〉) and edf ••nM x = df n(〈x〉) .

Note that forcf there may be ane′cf ∈ E with e′cf 6= ecf such that|e′cf |
M = cf ,

and likewise fordf .

A code controlled machine structureM = (BS , {µn | n ∈ N},E) determines
all by itself a machine model. For an execution, which takes asingle step, an ex-
ecutable codex ∈ E , a sequence〈y1, . . . , ym〉 ∈ BS ∗ of inputs and the machine
function{µn | n ∈ N} are needed. The executable code is not integrated in the
machine in any way. In particular, it is not stored in the machine. As nothing is
known about any storage mechanism involved, due to the abstract nature of ma-
chine structures, it is not plausible to classify the model as a stored code machine
model.

8 J.A. Bergstra, C.A. Middelburg

2.3 Identifying the Input that Controls Machine Behaviour

It is a matter of convention that the first bit sequence in the argument of the func-
tions that make up the machine function of a code controlled machine structure
corresponds to the special input that controls the behaviour of the machine mod-
elled. The issue is whether a justification for this correspondence can be found in
properties of the code controlled machine structure. This amounts to identifying
the input that controls the behaviour of the machine modelled.

Take the simple case where always two inputs are needed to produce any output
and always one output is produced. Then a justification for the correspondence
mentioned above can be found only if the machine function involved is asymmetric
and moreover the first bit sequence in the argument of the function that yields the
first output overrules the second bit sequence. Here, by overruling is meant being
more in control.

In this simple case, the criteria of asymmetry and overruling can easily be made
more precise. Suppose thatM = (BS , {µn | n ∈ N},E) is a code controlled
machine structure that models a machine that needs always two inputs to produce
any output and produces always one output. Then the machine function{µn | n ∈
N} is asymmetric if there existx, y ∈ BS such thatµ1(x, y) 6= µ1(y, x). The first
bit sequence in the argument of the functionµ1 overrules the second one if there
existx1, x2 ∈ E andz1, z2 ∈ BS with z1 6= z2 such thatµ1(x1, y) = z1 and
µ1(x2, y) = z2 for all y ∈ BS . It is easily proved that the first bit sequence in
the argument of the functionµ1 overrules the second one only if the second bit
sequence in the argument of the functionµ1 does not overrule the first one.

The criterion of overruling becomes more interesting if more than two inputs
may be needed to produce any output, because this is usually the case with general-
purpose machines. For example, on a general-purpose machine, the first input may
be an executable code for an interpreter of intermediate codes produced by a com-
piler for some high-level programming languagePL, the second input may be a bit
sequence representing the intermediate code for aPL program, and one or more
subsequent inputs may be bit sequences representing data needed by that program.
In this example, the first input overrules the second input and subsequent inputs
present and in addition the second input overrules the thirdinput and subsequent
inputs present.

3 Control Code Notations and Program Notations

In this section, we introduce the concepts of control code notation and program
notation in the setting of machine structures and discuss the differences between
these two concepts. The underlying idea is that a control code is a code that is
capable of controlling the behaviour of some machine and a program is a control
code that is acquired by programming. The point is that thereexist control codes
that are not acquired by programming. In [18], which appeared after the report
version of the current paper [8], a conceptual distinction is made between proper
programs and dark programs. We found that proper programs correspond with

Machine Structure Oriented Control Code Logic 9

control codes that are acquired by programming and dark programs correspond
with control codes that are not acquired by programming. As amatter of fact, the
notion of machine structure allows for the discussion of proper and dark programs
in [18] to be made more precise.

3.1 Control Code Notations

The intuition is that, for a fixed code controlled machine, control codes are objects
(usually texts) representing executable codes of that codecontrolled machine. The
principal examples of control codes are the executable codes themselves. Note
that, like the concept of executable code, the concept of control code is machine-
dependent. A control code notation for a fixed code controlled machine is a collec-
tion of objects together with a function which maps each of the objects from that
collection to a particular executable code of the code controlled machine.

In order to make a code controlled machine transform membersof one control
code notation into members of another control code notation, like in compiling and
assembling, control codes that are not bit sequences must berepresented by bit se-
quences. To simplify matters, we will assume that all control code notations are
collections of bit sequences. Assuming this amounts to identifying control codes
with the bit sequences representing them. In Section 6, we will withdraw this as-
sumption.

Let M = (BS , {µn | n ∈ N},E) be a code controlled machine structure.
Then acontrol code notationfor M consists of a setCCN ⊆ BS and a function
ψ:CCN → E . The members ofCCN are calledcontrol codesforM. The function
ψ is called amachine structure projection.

Let (CCN , ψ) be a control code notation for a code controlled machine struc-
ture(BS , {µn | n ∈ N},E). Then we assume thatψ(c) = c for all c ∈ CCN ∩E .

LetM be a code controlled machine structure, let(CCN , ψ) be a control code
notation forM, and letc ∈ CCN . Then themeaningof c with respect toM,
written |c|MCCN , is |ψ(c)|M.

Control codes, like executable codes, are given a meaning related to one code
controlled machine structure. The executable codes of a code controlled machine
structure themselves make up a control code notation for that machine structure.
Let M = (BS , {µn | n ∈ N},E) be a code controlled machine structure, and let
1E be the identity function onE. Then(E, 1E) is a control code notation forM.
We trivially have|e|ME = |e|M for all e ∈ E. Henceforth, we loosely writeE for
the control code notation(E , 1E).

3.2 Program Notations

To investigate the conditions under which it is appropriateto say that a control code
notation qualifies as a program notation, it is in fact immaterial how the concept of
program is defined. However, it is at least convenient to makethe assumption that,
whatever the program notation, there is a hypothetical machine model by means
of which the intended behaviour of programs from the programnotation can be

10 J.A. Bergstra, C.A. Middelburg

explained at a level that is suited to our purpose. We believethat this assumption
is realistic.

Let some theory of programming be given that offers a reliable definition of
the concept of program. Then anacknowledged program notationis a setPGN

of programs. It is assumed that there is a well-understood hypothetical machine
model by means of which the intended behaviour of programs from PGN can
be explained at a level that allows for the input-output relation of programs from
PGN , i.e. the kind of behaviour modelled by machine functions, to be derived. It is
also assumed that this hypothetical machine model determines a function| |PGN :
PGN → MF which maps programs to the machine functions modelling their
behaviour at the abstraction level of input-output relations.

In [6], a theory, called program algebra, is introduced in which a program is
a finite or infinite sequence of instructions. Moreover, the intended behaviour of
instruction sequences is explained at the level of input-output relations by means
of a hypothetical machine model which involves processing of one instruction at
a time, where some machine changes its state and produces a reply in case the in-
struction is not a jump instruction. This hypothetical machine model is an analytic
execution architecture in the sense of [10]. In the current paper, the definition of
the concept of program from [6] could be used. However, we have not fixed a par-
ticular concept of program because we intend to abstract from the details involved
in any such conceptual definition.

Note that programs, unlike control codes, are given a meaning using a hypo-
thetical machine model. This means that the given meaning isnot related to some
code controlled machine structure.

3.3 Control Code Notations Qualifying as Program Notations

The intuition is that a control code notation for a code controlled machine qualifies
as a program notation if there exist an acknowledged programnotation and a func-
tion from the control code notation to the program notation that maps each control
code to a program such that, at the level of input-output relations, the machine
behaviour under control of the control code coincides with the behaviour that is
associated with the corresponding program. If a control code notation qualifies as
a program notation, then its elements are considered programs.

Let M be a code controlled machine structure, and let(CCN , ψ) be a control
code notation forM. Then(CCN , ψ) qualifiesas a program notation if there exist
an acknowledged program notationPGN and a functionφ : CCN → PGN such
that for allc ∈ CCN :

|ψ(c)|M = |φ(c)|PGN .

This definition implies that, in the case of a control code notation that qualifies
as a program notation, control codes can be given a meaning using a hypothetical
machine model. Control code by itself is just representative of machine behaviour
without any indication that it originates from a program with which it is possi-
ble to explain the behaviour by means of a well-understood hypothetical machine
model. The functionφ whose existence is demanded in the definition is suggestive

Machine Structure Oriented Control Code Logic 11

of reverse engineering: by its existence, control codes look to be implementations
of programs on a code controlled machine. We might say that the reason for clas-
sifying a control code notation in the ones that qualify as a program notation lies
in the possibility of reverse engineering. The functionφ is the opposite of a repre-
sentation. It might be called a co-representation.

Suppose thatM = (BS , {µn | n ∈ N},E) is a code controlled machine
structure and(E, 1E) qualifies as a program notation. ThenM models a code
controlled machine whose executable codes constitute a control code notation that
qualifies as a program notation. Therefore, it is appropriate to callM a program
controlled machine structure. A program controlled machine structure is a code
controlled machine structure, but there is additional information which is consid-
ered to make it more easily understood from the tradition of computer program-
ming: each executable code can be taken for a program and the intended behaviour
of that program can be explained by means of a well-understood hypothetical ma-
chine model. It is plausible that, for any code controlled machine structure model-
ing a real machine, there is additional information which isconsidered to make it
more easily understood from some tradition or another.

We take the view that a code controlled machine structure having both exe-
cutable codes that can be considered programs and executable codes that cannot
be considered programs are improper. Therefore, we introduce the notion of proper
code controlled machine structure.

Let M = (BS , {µn | n ∈ N},E) be a code controlled machine structure.
ThenM is aproper code controlled machine structure if(E′, 1E′) qualifies as a
program notation for someE′ ⊆ E only if (E, 1E) qualifies as a program notation.

3.4 Control Code Notations Not Qualifying as Program Notations

The question arises whether all control code notations qualify as program nota-
tions. If that were true, then the conceptual distinction between control code no-
tations and program notations is small. If a control code notation qualifies as a
program notation, then all control codes concerned can be considered the result of
implementing a program on a code controlled machine. This indicates that coun-
terexamples to the hypothesis that all control code notations qualify as program
notations will concern control codes that do not originate from programming. We
give two counterexamples where control codes arise from artificial intelligence.

Consider a neural network in hardware form, which is able to learn while work-
ing on a problem and thereby defining parameter values for many firing thresholds
for artificial neurons. The parameter values for a particular problem may serve as
input for a machine that needs to address that problem. Theseproblem dependent
parameter inputs can be considered control codes by all means. However, there is
no conceivable theory of programming according to which these problem depen-
dent parameter inputs can be considered programs. The feature of neural networks
that is important here is their ability to acquire control code by another process
than programming.

Consider a purely hardware made robot that processes geographical data
loaded into it to find a target location. The loaded geographical data constitute the

12 J.A. Bergstra, C.A. Middelburg

only software that determines the behaviour of the robot. Therefore, the loaded ge-
ographical data constitute control code. However, there isno conceivable theory of
programming according to which such control codes can be considered programs.
They are certainly acquired by another process than programming.

In the case of control code notations that qualify as programnotations, the
control codes are usually produced by programming followedby compiling or
assembling. The examples illustrate different forms of control code production
that involve neither programming nor compiling or assembling. The first example
shows that control codes can be produced without programming by means of arti-
ficial intelligence based techniques. The second example shows that the behaviour
of machines applying artificial intelligence based techniques can be controlled by
control codes that are produced without programming.

4 Assemblers and Compilers

In the production of control code, practitioners often distinguish two kinds of con-
trol codes in addition to executable codes: assembly codes and source codes. An
assembler is a control code corresponding to an executable code of a code con-
trolled machine that controls the behaviour of that code controlled machine such
that it transforms assembly codes into executable codes anda compiler is a con-
trol code corresponding to an executable code of a code controlled machine that
controls the behaviour of that code controlled machine suchthat it that transforms
source codes into assembly codes or executable codes.

In this section, we consider the issue of producing a new assembler for some
assembly code notation using an existing one and the similarissue of producing
a new compiler for some source code notation using an existing one. Whether an
assembly code notation or a source code notation qualifies asa program notation
is not relevant to these issues.

4.1 Assembly Code Notations and Source Code Notations

At the level of control codes for machine structures, the control code notations
that are to be considered assembly code notations and the control code notations
that are to be considered source code notations cannot be characterized. The level
is too abstract. It happens to be sufficient for many issues concerning assemblers
and compilers, including the ones considered in this section, to simply assume that
some collection of control code notations comprises the assembly code notations
and some other collection of control code notations comprises the source code
notations.

Henceforth, we assume that, for each machine structureM, disjoint sets
ACNM andSCNM of control code notations forM have been given. The members
of ACNM andSCNM are calledassembly code notationsfor M andsource code
notationsfor M, respectively.

The following gives an idea of the grounds on which control code notations
are classified as assembly code notation or source code notation. Assembly code

Machine Structure Oriented Control Code Logic 13

is control code that is very close to executable code. This means that there is a
direct translation of assembly codes into executable codes. An assembly code no-
tation is specific to a machine. Source code is control code that is not very close
to executable code. The translation of source code into executable code is more
involved than the translation of assembly code into executable code. Usually, a
source code notation is not specific to a machine.

A high-level programming language, such as Java [15] or C# [16], is consid-
ered a source code notation. The term high-level programming language suggests
that it concerns a notation that qualifies as a program notation. However, as men-
tioned above, whether a source code notation qualifies as a program notation is not
relevant to the issues considered in this section.

4.2 Control Code Notations Involved in Assemblers and Compilers

Three control code notations are involved in an assembler orcompiler: it lets a code
controlled machine transform members of one control code notation into members
of another control code notation and it is itself a member of some control code
notation. We introduce a special notation to describe this aspect of assemblers and
compilers succinctly.

Let M = (BS , {µn | n ∈ N},E) be a code controlled machine structure,
and let(CCN , ψ), (CCN ′, ψ′) and(CCN ′′, ψ′′) be control code notations forM.
Then we writecc [CCN ′ → CCN ′′] : CCN for

cc ∈ CCN ∧ ∀cc′ ∈ CCN ′
• (∃cc′′ ∈ CCN ′′

• ψ(cc) ••
M

cc′ = cc′′) .

We say thatcc is in executable formif CCN ⊆ E , thatcc is in assembly formif
CCN ∈ ACNM, and thatcc is in source formif CCN ∈ SCNM.

4.3 The Assembler Fixed Point

In this subsection, we consider the issue of producing a new assembler for some
assembly code notation using an existing one.

Let M = (BS , {µn | n ∈ N},E) be a code controlled machine structure, and
let (ACN , ψ) be a control code notation forM that belongs toACNM. Suppose
thatass [ACN → E] : E is an existing assembler forACN . This assembler is in
executable form. Suppose further that a new assemblerass ′ [ACN→E] :ACN for
ACN is made available. This new assembler is not in executable form. It needs to
be assembled by means of the existing assembler. The new assembler is considered
correct if behaviourally equivalent executable codes are produced by the existing
assembler and the one obtained by assembling the new assembler by means of the
existing assembler, i.e.

∀ac ∈ ACN • ass •• ac ≡M

beh (ass •• ass ′) •• ac . (1)

Let ass ′′ be the new assembler in executable form obtained by assemblingass ′

by means ofass , i.e.ass ′′ = ass •• ass ′. Now,ass ′ could be assembled by means

14 J.A. Bergstra, C.A. Middelburg

of ass ′′ instead ofass . In caseass ′′ produces more compact executable codes than
ass , this would result in a new assembler in executable form thatis more compact.
Let ass ′′′ be the new assembler in executable form obtained by assembling ass ′

by means ofass ′′, i.e. ass ′′′ = ass ′′ •• ass ′ = (ass •• ass ′) •• ass ′. If ass ′ is
correct, thenass ′′ andass ′′′ produce the same executable codes. That is,

ass ′′ ≡M

beh ass ′′′ . (2)

This is easy to see: rewriting in terms ofass andass ′ yields

ass •• ass ′ ≡M

beh (ass •• ass ′) •• ass ′ , (3)

which follows immediately from (1).
Now, ass ′ could be assembled by means ofass ′′′ instead ofass ′′. However, if

ass ′ is correct, this would result inass ′′′ again. That is,

ass ′′′ = ass ′′′ •• ass ′ . (4)

This is easy to see as well: rewriting the left-hand side in terms ofass ′ andass ′′

yields
ass ′′ •• ass ′ = ass ′′′ •• ass ′ , (5)

which follows immediately from (2). The phenomenon expresses by equation (4)
is called the assembler fixed point.

In theoretical computer science, correctness of a program is taken to mean that
the program satisfies a mathematically precise specification of it. For the assem-
bler ass ′, ∀ac ∈ ACN • ψ(ass ′) •• ac = ψ(ac) would be an obvious math-
ematically precise specification. More often than not, practitioners have a more
empirical view on the correctness of a program that is a new program serving as a
replacement for an old one on a specific machine: correctnessof the new program
is taken to mean that the old program and the new program give rise to the same
behaviour on that machine. The correctness criterion for new assemblers given
above, as well as the correctness criterion for new compilers given below, is based
on this empirical view.

4.4 The Compiler Fixed Point

In this subsection, we consider the issue of producing a new compiler for some
source code notation using an existing one. Compilers may produce assembly
code, executable code or both. We deal with the case where compilers produce
assembly code only. The reason for this choice will be explained at the end this
subsection.

Let M = (BS , {µn | n ∈ N},E) be a code controlled machine structure,
let (SCN , ψs) be a control code notation forM that belongs toSCNM, and let
(ACN , ψa) be a control code notation forM that belongs toACNM. Suppose that
com [SCN→ACN]:ACN is an existing compiler forSCN andass [ACN→E]:E
is an existing assembler forACN . The existing compiler is in assembly form.
However, a compiler in executable form can always be obtained from a compiler

Machine Structure Oriented Control Code Logic 15

in assembly form by means of the existing assembler. Supposefurther that a new
compilercom ′ [SCN →ACN] : SCN for SCN is made available. This new com-
piler is not in assembly form. It needs to be compiled by meansof the existing
compiler. The new compiler is considered correct if

∀sc ∈ SCN •

ass •• ((ass •• com) •• sc)
≡M

beh ass •• ((ass •• ((ass •• com) •• com ′)) •• sc) .
(6)

Let com ′′ be the new compiler in assembly form obtained by compilingcom ′

by means ofcom , i.e.com ′′ = (ass •• com) •• com ′. Now,com ′ could be com-
piled by means ofcom ′′ instead ofcom. In casecom ′′ produces more compact
assembly codes thancom , this would result in a new compiler in assembly form
that is more compact. Letcom ′′′ be the new compiler in assembly form obtained
by compilingcom ′ by means ofcom ′′, i.e. com ′′′ = (ass •• com ′′) •• com ′ =
(ass •• ((ass •• com)•• com ′))•• com ′. If com ′ is correct, thencom ′′ andcom ′′′

produce the same assembly codes. That is,

ass •• com ′′ ≡M

beh ass •• com ′′′ . (7)

This is easy to see: rewriting in terms ofass , com andcom ′ yields

ass •• ((ass •• com) •• com ′)
≡M

beh ass •• ((ass •• ((ass •• com) •• com ′)) •• com ′) ,
(8)

which follows immediately from (6).
Now, com ′ could be compiled by means ofcom ′′′ instead ofcom ′′. However,

if com ′ is correct, this would result incom ′′′ again. That is,

com ′′′ = (ass •• com ′′′) •• com ′ . (9)

This is easy to see as well: rewriting the left-hand side in terms ofass , com ′ and
com ′′ yields

(ass •• com ′′) •• com ′ = (ass •• com ′′′) •• com ′ , (10)

which follows immediately from (7). The phenomenon expresses by equation (9)
is called the compiler fixed point. It is a non-trivial insight among practitioners
involved in matters such as software configuration and system administration.

The explanation of the compiler fixed point proceeds similarto the explana-
tion of the assembler fixed point in Section 4.3, but it is morecomplicated. The
complication vanishes if compilers that produce executable code are considered.
In that case, due to the very abstract level at which the issues are considered, the
explanation of the compiler fixed point is essentially the same as the explanation
of the assembler fixed point.

16 J.A. Bergstra, C.A. Middelburg

5 Intermediate Code Notations and Interpreters

Sometimes, practitioners distinguish additional kinds ofcontrol codes. Intermedi-
ate code is a frequently used generic name for those additional kinds of control
codes. Source code is often implemented by producing executable code for some
code controlled machine by means of a compiler or a compiler and an assembler.
Sometimes, source code is implemented by means of a compilerand an inter-
preter. In that case, the compiler used produces intermediate code. The interpreter
is a control code corresponding to an executable code of a code controlled machine
that makes that code controlled machine behave as if it is another code controlled
machine controlled by an intermediate code.

In this section, we briefly consider the issue of the correctness of such a com-
bination of a compiler and an interpreter.

5.1 Intermediate Code Notations

At the level of control codes for machine structures, like the control code notations
that are to be considered assembly code notations and the control code notations
that are to be considered source code notations, the controlcode notations that are
to be considered intermediate code notations of some kind cannot be characterized.
It happens to be sufficient for many issues concerning compilers and interpreters,
including the one considered in this section, to simply assume that some collection
of control code notations comprises the intermediate code notations of interest.

Henceforth, we assume that, for each machine structureM, a setICNM of
control code notations forM has been given. The members ofICNM are called
intermediate code notationsfor M.

The following gives an idea of the grounds on which control code notations are
classified as intermediate code notation. An intermediate code notation is a control
code notation that resembles an assembly code notation, butit is not specific to any
machine. Often, it is specific to a source code notation or a family of source code
notations.

An intermediate code notation comes into play if source codeis implemented
by means of a compiler and an interpreter. However, compilers for intermediate
code notations are found where interpretation is largely eliminated in favour of
just-in-time compilation, see e.g. [2], which is material to contemporary program-
ming languages such as Java and C#.

In the case where an intermediate code notation is specific toa family of source
code notations, it is a common intermediate code notation for the source code no-
tations concerned. The Common Intermediate Language from the .NET Frame-
work [25] is an example of a common intermediate code notation.

5.2 Interpreters

Interpreters are quite different from assemblers and compilers. An assembler for
an assembly code notation makes a code controlled machine transform members

Machine Structure Oriented Control Code Logic 17

of the assembly code notation into executable codes and a compiler for a source
code notation makes a code controlled machine transform members of the source
code notation into members of an assembly code notation or executable codes,
whereas an interpreter for an intermediate code notation makes a code controlled
machine behave as if it is a code controlled machine for whichthe members of the
intermediate code notation serve as executable codes.

We consider the correctness of an interpreter combined witha compiler going
with it. The correctness criterion given below is in the spirit of the empirical view
on correctness discussed at the end of Section 4.3.

Let M = (BS , {µn | n ∈ N},E) be a code controlled machine structure, let
(SCN , ψs) be a control code notation forM that belongs toSCNM, let (ICN , ψi)
be a control code notation forM that belongs toICNM, and let(ACN , ψa) be a
control code notation forM that belongs toACNM. Suppose thatcoma [SCN →
ACN] : ACN is an existing compiler forSCN andass [ACN → E] : E is an
existing assembler forACN . The compilercoma letsM transform source codes
into assembly codes. Suppose further that a new compilercom i [SCN → ICN] :
ACN for SCN and a new interpreterint ∈ E for ICN are made available. The
compilercom i letsM transform source codes into intermediate codes.

The combination ofcom i andint is considered correct if

∀sc ∈ SCN , 〈bs1, . . . , bsm〉 ∈ BS ∗
•

(ass ••
M

((ass ••
M

coma) ••M sc)) ••
M

bs1, . . . , bsm
= int ••

M
((ass ••

M
com i) ••M sc), bs1, . . . , bsm .

(11)

While being controlled by an interpreter, the behaviour of acode controlled
machine can be looked upon as another code controlled machine of which the ex-
ecutable codes are the intermediate codes involved. The latter machine might ap-
propriately be called a virtual machine. By means of interpreters, the same virtual
machine can be obtained on different machines. Thus, all machine-dependencies
are taken care of by interpreters. A well-known virtual machine is the Java Virtual
Machine [19].

6 Bit Sequence Represented Control Code Notations

In order to make a code controlled machine transform membersof one control
code notation into members of another control code notation, like in assembling
and compiling, control codes that are not bit sequences mustbe represented by bit
sequences. To simplify matters, we assumed up to now that allcontrol code nota-
tions are collections of bit sequences. In this section, we present the adaptations
needed in the preceding sections when withdrawing this assumption. It happens
that the changes are small.

The Concept of Bit Sequence Represented Control Code Notation

First of all, we have to generalize the concept of control code notation slightly.

18 J.A. Bergstra, C.A. Middelburg

Let M = (BS , {µn | n ∈ N},E) be a code controlled machine structure.
Then abit sequence represented control code notationfor M consists of a set
CCN , a functionψ : CCN → E , and an injective functionρ : CCN → BS .
For all c ∈ CCN , ρ(c) is called thebit sequence representationof c onM. The
functionρ is called thebs-representation functionof CCN .

Let (CCN , ψ, ρ) be a bit sequence represented control code notation for a
code controlled machine structure(BS , {µn | n ∈ N},E). Then we assume that
ψ(c) = c for all c ∈ CCN ∩E , ρ(c′) = c′ for all c′ ∈ CCN ∩BS , andρ(c′′) = c′′

for all c′′ ∈ CCN with ρ(c′′) ∈ E . The last assumption can be paraphrased as
follows: if an executable code is the bit sequence representation of some control
code, then it is its own bit sequence representation. It excludes bs-representation
functions that inadvertently produce executable codes.

The Special Notationcc [CCN ′ → CCN ′′] : CCN

We have to change the definition of the special notationcc [CCN ′→CCN ′′]:CCN
slightly.

Let M = (BS , {µn | n ∈ N},E) be a code controlled machine structure, and
let (CCN , ψ, ρ), (CCN ′, ψ′, ρ′) and(CCN ′′, ψ′′, ρ′′) be bit sequence represented
control code notations forM. Then we writecc [CCN ′ → CCN ′′] : CCN for

cc ∈ CCN ∧ ∀cc′ ∈ CCN ′
• (∃cc′′ ∈ CCN ′′

• ψ(cc) ••
M
ρ′(cc ′) = ρ′′(cc′′)) .

The Explanation of the Assembler Fixed Point

In the explanation of the assembler fixed point given in Section 4.3, we have
to replace the definitions ofass ′′ and ass ′′′ by ass ′′ = ass •• ρ(ass ′) and
ass ′′′ = (ass •• ρ(ass ′))•• ρ(ass ′), assuming thatρ is the bs-representation func-
tion of ACN . Moreover, we have to adapt Formulas (1), (3), (4), and (5) slightly.
Formula (1) must be replaced by

∀ac ∈ ACN • ass •• ρ(ac) ≡M

beh (ass •• ρ(ass ′)) •• ρ(ac) .

Formula (3) must be replaced by

ass •• ρ(ass ′) ≡M

beh (ass •• ρ(ass ′)) •• ρ(ass ′) .

Formula (4) must be replaced by

ass ′′′ = ass ′′′ •• ρ(ass ′) .

Formula (5) must be replaced by

ass ′′ •• ρ(ass ′) = ass ′′′ •• ρ(ass ′) .

Machine Structure Oriented Control Code Logic 19

The Explanation of the Compiler Fixed Point

In the explanation of the compiler fixed point given in Section 4.4, we have to re-
place the definitions ofcom ′′ andcom ′′′ bycom ′′ = (ass••ρa(com))••ρs(com ′)
andcom ′′′ = (ass •• ((ass ••ρa(com))••ρs(com ′)))••ρs(com ′), assuming that
ρs is the bs-representation function ofSCN andρa is the bs-representation func-
tion ofACN . Moreover, we have to adapt Formulas (6), (8), (9), and (10) slightly.
Formula (6) must be replaced by

∀sc ∈ SCN •

ass •• ((ass •• ρa(com)) •• ρs(sc))

≡M

beh ass •• ((ass •• ((ass •• ρa(com)) •• ρs(com
′))) •• ρs(sc)) .

Formula (8) must be replaced by

ass •• ((ass •• ρa(com)) •• ρs(com ′))

≡M

beh ass •• ((ass •• ((ass •• ρa(com)) •• ρs(com ′))) •• ρs(com ′)) .

Formula (9) must be replaced by

com ′′′ = (ass •• com ′′′) •• ρs(com ′) .

Formula (10) must be replaced by

(ass •• com ′′) •• ρs(com ′) = (ass •• com ′′′) •• ρs(com ′) .

The Correctness Criterion for Interpreters

The correctness criterion for interpreters given in Section 5.2, i.e. Formula (11),
must be replaced by

∀sc ∈ SCN , 〈bs1, . . . , bsm〉 ∈ BS ∗
•

(ass ••
M

((ass ••
M
ρa(coma)) ••M ρs(sc))) ••M bs1, . . . , bsm

= int ••
M

((ass ••
M
ρa(com i)) ••M ρs(sc)), bs1, . . . , bsm ,

assuming thatρs is the bs-representation function ofSCN and ρa is the bs-
representation function ofACN .

20 J.A. Bergstra, C.A. Middelburg

7 An Execution Architecture for Machine Structures

Machine structures in themselves are not always sufficient to explain issues con-
cerning control codes that are independent of the details ofthe behaviours that
are controlled. In cases where systems that provide execution environments for
the executable codes of machine structures are involved, such as in the case of
portability of control codes, an abstract model of such systems is needed. In this
section, we outline an appropriate model. This model is referred to as the execu-
tion architecture for code controlled machine structures.It is a synthetic execution
architecture in the sense of [10]. It can be looked upon as an abstract model of
operating systems restricted to file management facilitiesand facilities for loading
and execution of executable codes.

The execution architecture for code controlled machine structures, which is
parameterized by a code controlled machine structureM, is an abstract model
of a system that provides an execution environment for the executable codes of
M. It can be looked upon as a machine. This machine is operated by means of
instructions that either yield a reply or diverge. The possible replies areT and
F. File names are used in the instructions to refer to the bit sequences present in
the machine. It is assumed that a countably infinite setFNm of file nameshas
been given. While designing the instruction set, we focussed on convenience of
use rather than minimality.

Let M = (BS , {µn | n ∈ N},E) be a code controlled machine structure.
Then the instruction set consists of the following instructions:

– for eachf ∈ FNm andbs ∈ BS , asetinstructionset:f :bs ;
– for eachf ∈ FNm, a removeinstructionrm:f ;
– for eachf1, f2 ∈ FNm, acopyinstructioncp:f1:f2;
– for eachf1, f2 ∈ FNm, amoveinstructionmv:f1:f2;
– for eachf1, f2 ∈ FNm, aconcatenationinstructioncat:f1:f2;
– for eachf1, f2 ∈ FNm, a test on equalityinstructiontsteq:f1:f2;
– for eachf1, f2 ∈ FNm, a test on differenceinstructiontstne:f1:f2;
– for eachf ∈ FNm, a test on existenceinstructiontstex:f ;
– for eachf ∈ FNm, a load instructionload:f ;
– for each f1, . . . , fm, f

′
1 , . . . , f

′
n ∈ FNm, an execute instruction

exec:f1: . . . :fm>f
′
1 : . . . :f

′
n.

We writeI for this instruction set.
We say that a file name is in use if it has a bit sequence assigned. A state of

the machine comprises the file names that are in use, the bit sequences assigned to
those file names, a flag indicating whether there is a loaded executable code, and
the loaded executable code if there is one.

The instructions can be explained in terms of the effect thatthey have and the
reply that they yield as follows:

– set:f :bs : the file namef is added to the file names in use if it is not in use, the
bit sequencebs is assigned tof , and the reply isT;

– rm:f : if the file namef is in use, then it is removed from the file names in use
and the reply isT; otherwise, nothing changes and the reply isF;

Machine Structure Oriented Control Code Logic 21

– cp:f1:f2: if the file namef1 is in use, then the file namef2 is added to the file
names in use if it is not in use, the bit sequence assigned tof1 is assigned tof2,
and the reply isT; otherwise, nothing changes and the reply isF;

– mv:f1:f2: if the file namef1 is in use, then the file namef2 is added to the file
names in use if it is not in use, the bit sequence assigned tof1 is assigned tof2,
f1 is removed from the file names in use, and the reply isT; otherwise, nothing
changes and the reply isF;

– cat:f1:f2: if the file namesf1 andf2 are in use, then the concatenation of the
bit sequence assigned tof2 and the bit sequence assigned tof1 is assigned tof2
and the reply isT; otherwise, nothing changes and the reply isF;

– tsteq:f1:f2: if the file namesf1 andf2 are in use and the bit sequence assigned
to f1 equals the bit sequence assigned tof2, then nothing changes and the reply
isT; otherwise, nothing changes and the reply isF;

– tstne:f1:f2: if the file namesf1 andf2 are in use and the bit sequence assigned
to f1 does not equal the bit sequence assigned tof2, then nothing changes and
the reply isT; otherwise, nothing changes and the reply isF;

– tstex:f : if the file namef is in use, then nothing changes and the reply isT;
otherwise, nothing changes and the reply isF;

– load:f : if the file namef is in use and the bit sequence assigned tof is a
member ofE , then the bit sequence assigned tof is loaded and the reply isT;
otherwise, nothing changes and the reply isF;

– exec:f1: . . . :fm>f
′
1 : . . . :f

′
n: if the file namesf1, . . . , fm have bit sequences as-

signed, saybs1, . . . , bsm, and there is a loaded executable code, sayx, then:
– if x ••1

M
bs1, . . . , bsm ∈ BS , then:

• x ••i
M

bs1, . . . , bsm is assigned tof ′i for eachi with 1 ≤ i ≤ n such
thatx ••i

M
bs1, . . . , bsm ∈ BS ,

• f ′i is removed from the file names in use for eachi with 1 ≤ i ≤ n

such thatx ••i
M

bs1, . . . , bsm = M,
and the reply isT;

– if x ••1
M

bs1, . . . , bsm = M, then nothing changes and the reply isF;
– if x ••1

M
bs1, . . . , bsm = D, then the machine does not halt;

otherwise, nothing changes and the reply isF.

Note that there are three cases in which the instructionexec:f1: . . . :fm>f
′
1 : . . . :f

′
n

yields the replyF: (a) there is no loaded executable code; (b) there is some file
name amongf1, . . . , fm that is not in use; (c) there is no output produced, although
the machine halts.

The instructions of which the effect depends on the code controlled machine
structureM are the load and execute instructions only. All other instructions could
be eliminated in favour of executable codes, assigned to known file names. How-
ever, we believe that elimination of these instructions would not contribute to a
useful execution architecture. The distinction made between loading and execu-
tion of executable codes allows for telling load-time errors from run-time errors.

22 J.A. Bergstra, C.A. Middelburg

8 Thread Algebra

The execution architecture for code controlled machine structures outlined above
can be looked upon as a machine which is operated by means of instructions that
yieldT orF as reply. In cases where this execution architecture is needed to explain
issues concerning control codes, such as in the case of portability of control codes,
processes that operate upon the execution architecture have to be described. An
existing extension of BTA (Basic Thread Algebra), first presented in [9], is tailored
to the description of processes that operate upon machines of the kind to which the
execution architecture belongs. Therefore, we have chosento use in Section 10 the
extension of BTA in question to describe processes that operate upon the execution
architecture. In this section, we review BTA, including guarded recursion and the
approximation induction principle, and the relevant extension.

8.1 Basic Thread Algebra

BTA is concerned with the behaviours produced by deterministic sequential pro-
grams under execution. The behaviours concerned are calledthreads. It does not
matter how programs are executed: threads may originate from execution by a
computer, or they may originate from execution by a human operator. In [6], BTA
is introduced under the name BPPA (Basic Polarized Process Algebra).

In BTA, it is assumed that there is a fixed but arbitrary set ofbasic actionsA.
The intuition is that each basic action performed by a threadis taken as a com-
mand to be processed by a service provided by the execution environment of the
thread. The processing of a command may involve a change of state of the service
concerned. At completion of the processing of the command, the service produces
a reply value. This reply is eitherT or F and is returned to the thread concerned.

Although BTA is one-sorted, we make this sort explicit. The reason for this is
that we will extend BTA with additional sorts in Section 8.2.

The algebraic theory BTA has one sort: the sortT of threads. BTA has the
following constants and operators:

– thedeadlockconstantD :T;
– theterminationconstantS :T;
– for eacha ∈ A, the binarypostconditional compositionoperator E aD :
T×T → T.

Terms of sortT are built as usual. Throughout the paper, we assume that there are
infinitely many variables of sortT, includingu, v, w.

We use infix notation for postconditional composition. We introduceaction
prefixingas an abbreviation:a◦p, wherep is a term of sortT, abbreviatespE aDp.

Let p andq be closed terms of sortT anda ∈ A. ThenpE aD q will perform
actiona, and after that proceed asp if the processing ofa leads to the replyT
(called a positive reply) and proceed asq if the processing ofa leads to the reply
F (called a negative reply).

Machine Structure Oriented Control Code Logic 23

Table 1 Axioms for guarded recursion

〈X|E〉 = 〈tX |E〉 if X= tX ∈ E RDP

E ⇒ X = 〈X|E〉 if X ∈ V(E) RSP

Table 2 Approximation induction principle

V

n≥0
πn(u) = πn(v) ⇒ u = v AIP

Each closed term of sortT from the language of BTA denotes a finite thread,
i.e. a thread of which the length of the sequences of actions that it can perform is
bounded. Guarded recursive specifications give rise to infinite threads.

A guarded recursive specificationover BTA is a set of recursion equations
E = {X = tX | X ∈ V }, whereV is a set of variables of sortT and eachtX
is a term of sortT that has the formD, S or tE aD t′. We writeV(E) for the set
of all variables that occur on the left-hand side of an equation inE. We are only
interested in models of BTA in which guarded recursive specifications have unique
solutions, such as the projective limit model of BTA presented in [4].

We extend BTA with guarded recursion by adding constants forsolutions of
guarded recursive specifications and axioms concerning these additional constants.
For each guarded recursive specificationE and eachX ∈ V(E), we add a constant
of sortT standing for the unique solution ofE for X to the constants of BTA.
The constant standing for the unique solution ofE for X is denoted by〈X |E〉.
Moreover, we add the axioms for guarded recursion given in Table 1 to BTA,
where we write〈tX |E〉 for tX with, for all Y ∈ V(E), all occurrences ofY in tX
replaced by〈Y |E〉. In this table,X , tX andE stand for an arbitrary variable of sort
T, an arbitrary term of sortT from the language of BTA, and an arbitrary guarded
recursive specification over BTA, respectively. Side conditions are added to restrict
the variables, terms and guarded recursive specifications for whichX , tX andE
stand. The equations〈X |E〉 = 〈tX |E〉 for a fixedE express that the constants
〈X |E〉 make up a solution ofE. The conditional equationsE ⇒ X = 〈X |E〉
express that this solution is the only one.

We will write BTA+REC for BTA extended with the constants forsolutions of
guarded recursive specifications and axioms RDP and RSP.

In [7], we show that the processes considered in BTA+REC can be viewed as
processes that are definable over ACP [14].

Closed terms of sortT from the language of BTA+REC that denote the
same infinite thread cannot always be proved equal by means ofthe axioms of
BTA+REC. We introduce the approximation induction principle to remedy this.
The approximation induction principle, AIP in short, is based on the view that two
threads are identical if their approximations up to any finite depth are identical.
The approximation up to depthn of a thread is obtained by cutting it off after
performing a sequence of actions of lengthn.

AIP is the infinitary conditional equation given in Table 2. Here, following [6],
approximation of depthn is phrased in terms of a unaryprojectionoperatorπn.

24 J.A. Bergstra, C.A. Middelburg

Table 3 Axioms for projection operators

π0(u) = D P0

πn+1(S) = S P1

πn+1(D) = D P2

πn+1(uE aD v) = πn(u)E aD πn(v) P3

The axioms for the projection operators are given in Table 3.In this table,a stands
for an arbitrary member ofA.

8.2 Applying Threads to Services

We extend BTA+REC to a theory that covers the effects of applying threads to
services.

It is assumed that there is a fixed but arbitrary set offoci F and a fixed but
arbitrary set ofmethodsM. For the set of basic actionsA, we take the setFM =
{f.m | f ∈ F ,m ∈ M}. Each focus plays the role of a name of a service provided
by the execution environment that can be requested to process a command. Each
method plays the role of a command proper. Performing a basicaction f.m is
taken as making a request to the service namedf to process the commandm.

We introduce a second sort: the sortS of services. However, we will not in-
troduce constants and operators to build terms of this sort.S is a parameter of
theories with thread-to-service application.S is considered to stand for the set
of all services. It is assumed that each service can be represented by a function
H :M+ → {T,F,D} with the property thatH(γ) = D ⇒ H(γ y 〈m〉) = D for
all γ ∈ M+ andm ∈ M. This function is called thereply function of the service.
Given a reply functionH and a methodm ∈ M, thederivedreply function ofH
after processingm, written ∂

∂m
H , is defined by ∂

∂m
H(γ) = H(〈m〉 y γ).

The connection between a reply functionH and the service represented by it
can be understood as follows:

– if H(〈m〉) = T, the request to process commandm is accepted by the service,
the reply is positive and the service proceeds as∂

∂m
H ;

– if H(〈m〉) = F, the request to process commandm is accepted by the service,
the reply is negative and the service proceeds as∂

∂m
H ;

– if H(〈m〉) = D, either the processing of commandm by the service does not
halt or the processing of a previous command by the service did not halt.

Henceforth, we will identify a reply function with the service represented by it.
It is assumed that there is anundefined service↑ with the property that↑(γ) =

D for all γ ∈ M+.
For eachf ∈ F , we introduce the binaryapplyoperator •f :T× S → T.

Intuitively,p•fH is the service that evolves fromH on processing all basic actions
performed by threadp that are of the formf.m by H . When a basic actionf.m

Machine Structure Oriented Control Code Logic 25

Table 4 Axioms for apply

u •f ↑ = ↑ TSA0

S •f H = H TSA1

D •f H = ↑ TSA2

(uE g.mD v) •f H = ↑ if f 6= g TSA3

(uE f.mD v) •f H = u •f
∂

∂m
H if H(〈m〉) = T TSA4

(uE f.mD v) •f H = v •f
∂

∂m
H if H(〈m〉) = F TSA5

(uE f.mD v) •f H = ↑ if H(〈m〉) = D TSA6

(
V

n≥0
πn(u) •f H = ↑) ⇒ u •f H = ↑ TSA7

performed by threadp is processed byH , p proceeds on the basis of the reply
value produced.

The axioms for the apply operators are given in Table 4. In this table,f andg
stand for arbitrary foci fromF andm stands for an arbitrary method fromM. The
axioms show thatp •f H does not equal↑ only if threadp performs no other basic
actions than ones of the formf.m and eventually terminates successfully.

Let p be a closed term of sortT from the language of BTA+REC andH be a
closed term of sortS. Thenp convergesfromH onf if there exists ann ∈ N such
thatπn(p) •f H 6= ↑. Notice that axiom TSA7 can be read as follows: ifu does
not converge fromH onf , thenu •f H equals↑.

The extension of BTA introduced above originates from [9]. In the remainder
of this paper, we will use just one focus. We have introduced the general case here
because the use of several foci might be needed on further elaboration of the work
presented in this paper.

9 The Execution Architecture Services

In order to be able to use the extension of BTA presented aboveto describe pro-
cesses that operate upon the execution architecture for code controlled machine
structures outlined in Section 7, we have to associate a service with each state of
the execution architecture. In this section, we first formalize the execution archi-
tecture for code controlled machine structures and then associate a service with
each of its states.

9.1 The Execution Architecture Formalized

The execution architecture for code controlled machine structures consists of an
instruction set, a state set, an effect function, and a yieldfunction. The effect and
yield functions give, for each instructionu and states, the state and reply, respec-
tively, that result from processingu in states.

26 J.A. Bergstra, C.A. Middelburg

Table 5 Effect function for an execution architecture (i ∈ I)

eff (set:f :bs , (σ, x)) = (σ ⊕ [f 7→ bs], x)

eff (rm:f , (σ, x)) = (σ ⊳− {f }, x)

eff (cp:f1:f2, (σ, x)) = (σ ⊕ [f2 7→ σ(f1)], x) if f1 ∈ dom(σ)

eff (cp:f1:f2, (σ, x)) = (σ, x) if f1 6∈ dom(σ)

eff (mv:f1:f2, (σ, x)) = ((σ ⊕ [f2 7→ σ(f1)])⊳− {f1}, x) if f1 ∈ dom(σ)

eff (mv:f1:f2, (σ, x)) = (σ, x) if f1 6∈ dom(σ)

eff (cat:f1:f2, (σ, x)) = (σ ⊕ [f2 7→ σ(f2) y σ(f1)], x) if f1 ∈ dom(σ) ∧ f2 ∈ dom(σ)

eff (cat:f1:f2, (σ, x)) = (σ, x) if f1 6∈ dom(σ) ∨ f2 6∈ dom(σ)

eff (tsteq:f1:f2, (σ, x)) = (σ, x)

eff (tstne:f1:f2, (σ, x)) = (σ, x)

eff (tstex:f , (σ, x)) = (σ, x)

eff (load:f , (σ, x)) = (σ, σ(f)) if f ∈ dom(σ) ∧ σ(f) ∈ E

eff (load:f , (σ, x)) = (σ, x) if f 6∈ dom(σ) ∨ σ(f) 6∈ E

eff (exec:f1: . . . :fm>f ′1 : . . . :f
′
n, (σ, x)) = ((. . . (σ ⊕ σ′

1) . . .⊕ σ′
n), x)

where σ′
i = [f ′i 7→ x ••iM σ(f1), . . . , σ(fm)] if x ••iM σ(f1), . . . , σ(fm) ∈ BS

σ′
i = [] if x ••iM σ(f1), . . . , σ(fm) = M

if x ∈ E ∧ f1 ∈ dom(σ) ∧ . . . ∧ fm ∈ dom(σ) ∧ x ••1M σ(f1), . . . , σ(fm) ∈ BS

eff (exec:f1: . . . :fm>f ′1 : . . . :f
′
n, (σ, x)) = (σ, x)

if x 6∈ E ∨ f1 6∈ dom(σ) ∨ . . . ∨ fm 6∈ dom(σ) ∨ x ••1M σ(f1), . . . , σ(fm) = M

eff (exec:f1: . . . :fm>f ′1 : . . . :f
′
n, (σ, x)) = sD

if x 6∈ E ∨ f1 6∈ dom(σ) ∨ . . . ∨ fm 6∈ dom(σ) ∨ x ••1M σ(f1), . . . , σ(fm) = D

eff (i, sD) = sD

It is assumed thatsD 6∈ (
⋃

F∈Pfin(FNm)(F → BS)) × (BS ∪ {M}). Here,sD
stands for a state of divergence.

Let M = (BS , {µn | n ∈ N},E) be a code controlled machine structure.
Then theexecution architecturefor M consists of

– the instruction setI defined in Section 7;
– the state setS defined by

S =

((

⋃

F∈Pfin(FNm)

(F → BS)

)

× (E ∪ {M})

)

∪ {sD} ;

– the effect functioneff : I × S → S defined in Table 5;
– the yield functionyld : I × S → {T,F,D} defined in Table 6.

We use the following notation for functions:[] for the empty function;[d 7→ r] for
the functionf with dom(f) = {d} such thatf(d) = r; f ⊕ g for the functionh

Machine Structure Oriented Control Code Logic 27

Table 6 Yield function for an execution architecture (i ∈ I)

yld(set:f :bs, (σ, x)) = T

yld(rm:f , (σ, x)) = T if f ∈ dom(σ)

yld(rm:f , (σ, x)) = F if f 6∈ dom(σ)

yld(cp:f1:f2, (σ, x)) = T if f1 ∈ dom(σ)

yld(cp:f1:f2, (σ, x)) = F if f1 6∈ dom(σ)

yld(mv:f1:f2, (σ, x)) = T if f1 ∈ dom(σ)

yld(mv:f1:f2, (σ, x)) = F if f1 6∈ dom(σ)

yld(cat:f1:f2, (σ, x)) = T if f1 ∈ dom(σ) ∧ f2 ∈ dom(σ)

yld(cat:f1:f2, (σ, x)) = F if f1 6∈ dom(σ) ∨ f2 6∈ dom(σ)

yld(tsteq:f1:f2, (σ, x)) = T if f1 ∈ dom(σ) ∧ f2 ∈ dom(σ) ∧ σ(f1) = σ(f2)

yld(tsteq:f1:f2, (σ, x)) = F if f1 6∈ dom(σ) ∨ f2 6∈ dom(σ) ∨ σ(f1) 6= σ(f2)

yld(tstne:f1:f2, (σ, x)) = T if f1 ∈ dom(σ) ∧ f2 ∈ dom(σ) ∧ σ(f1) 6= σ(f2)

yld(tstne:f1:f2, (σ, x)) = F if f1 6∈ dom(σ) ∨ f2 6∈ dom(σ) ∨ σ(f1) = σ(f2)

yld(tstex:f , (σ, x)) = T if f ∈ dom(σ)

yld(tstex:f , (σ, x)) = F if f 6∈ dom(σ)

yld(load:f , (σ, x)) = T if f ∈ dom(σ) ∧ σ(f) ∈ E

yld(load:f , (σ, x)) = F if f 6∈ dom(σ) ∨ σ(f) 6∈ E

yld(exec:f1: . . . :fm>f ′1 : . . . :f
′
n, (σ, x)) = T

if x ∈ E ∧ f1 ∈ dom(σ) ∧ . . . ∧ fm ∈ dom(σ) ∧ x ••1M σ(f1), . . . , σ(fm) ∈ BS

yld(exec:f1: . . . :fm>f ′1 : . . . :f
′
n, (σ, x)) = F

if x 6∈ E ∨ f1 6∈ dom(σ) ∨ . . . ∨ fm 6∈ dom(σ) ∨ x ••1M σ(f1), . . . , σ(fm) = M

yld(exec:f1: . . . :fm>f ′1 : . . . :f
′
n, (σ, x)) = D

if x 6∈ E ∨ f1 6∈ dom(σ) ∨ . . . ∨ fm 6∈ dom(σ) ∨ x ••1M σ(f1), . . . , σ(fm) = D

yld(i, sD) = D

with dom(h) = dom(f) ∪ dom(g) such that for alld ∈ dom(h), h(d) = f(d)
if d 6∈ dom(g) andh(d) = g(d) otherwise; andf ⊳− D for the functiong with
dom(g) = dom(f) \D such that for alld ∈ dom(g), g(d) = f(d).

Let (σ, x) ∈ S, and letf ∈ FNm. Thenf is in use iff ∈ dom(σ), and there
is a loaded executable code ifx 6= M. If f is in use, thenσ(f) is the bit sequence
assigned tof . If there is a loaded executable code, thenx is the loaded executable
code.

Execute instructions can diverge. When an instruction diverges, a situation
arises in which no reply can be produced and no further instructions can be pro-
cessed. This is modelled byeff producingsD andyld producingD.

28 J.A. Bergstra, C.A. Middelburg

9.2 The Family of Execution Architecture Services

Each state of the execution architecture for code controlled machine structures can
be looked upon as a service by assuming thatI ⊆ M and extending the functions
eff andyld from I to M by stipulating thateff (m, s) = sD andyld(m, s) = D

for all m ∈ M \ I ands ∈ S.
We define, for eachs ∈ S, a cumulative effect functionceff s : M

∗ → S in
terms ofs andeff as follows:

ceff s(〈 〉) = s

ceff s(γ y 〈m〉) = eff (m, ceff s(γ)) .

We define, for eachs ∈ S, anexecution architecture serviceHs :M+ → {T,F,D}
in terms ofceff s andyld as follows:

Hs(γ y 〈m〉) = yld(m, ceff s(γ)) .

For eachs ∈ S, Hs is a service indeed:Hs(γ) = D ⇒ Hs(γ y 〈m〉) = D

for all γ ∈ M+ andm ∈ M. This follows from the following property of the
execution architecture for code controlled machine structures:

∃s ∈ S • ∀i ∈ I •

(yld(i, s) = D ∧ ∀s′ ∈ S • (yld(i, s′) = D ⇒ eff (i, s′) = s)) .

The witnessing state of this property issD. This state is connected with the unde-
fined service↑ as follows:HsD

= ↑.
It is worth mentioning thatHs(〈m〉) = yld(m, s) and ∂

∂m
Hs = Heff (m,s).

We writeEASM for the family of services{Hs | s ∈ S}.

10 Control Codes and Execution Architecture Services

In this section, we make precise what it means that a control code is installed on
an execution architecture service and what it means that a control code is portable
from one execution architecture service to another execution architecture service.

10.1 Installed Control Codes

The intuition is that a control code is installed on an execution architecture service
if either some file name has assigned an executable version ofthe control code or
some file name has assigned an interpretable version of the control code and an
appropriate interpreter is also installed on the executionarchitecture service.

Let M = (BS , {µn | n ∈ N},E) be a code controlled machine structure,
let (CCN , ψ) be a control code notation forM, let c ∈ CCN , and letEAS =

Machine Structure Oriented Control Code Logic 29

H(σ,x) ∈ EASM. Thenc is installedonEAS if there existf0, . . . , fl ∈ FNm with
σ(f0) ∈ E such that

∀ 〈bs1, . . . , bsm〉 ∈ BS ∗
•

∧

n∈N
ψ(c) ••n

M
bs1, . . . , bsm = σ(f0) ••nM σ(f1), . . . , σ(fl), bs1, . . . , bsm .

A control code is pre-installed on an execution architecture service if the ex-
ecution architecture service can be expanded to one on whichit is installed, us-
ing only control codes and data already assigned to file names. Thread algebra
is brought into play to make precise what it means that an execution architecture
service can be expanded to another execution architecture service.

Let M = (BS , {µn | n ∈ N},E) be a code controlled machine structure,
let EAS = H(σ,x) ∈ EASM, and letEAS ′ = H(σ′,x′) ∈ EASM. ThenEAS is
expansibletoEAS ′ if:

– dom(σ) ⊆ dom(σ′) andσ(f) = σ′(f) for all f ∈ dom(σ);
– there exists a threadp without basic actions of the formea.set:f :bs such that
EAS ′ = p •ea EAS .

Let M = (BS , {µn | n ∈ N},E) be a code controlled machine structure, let
(CCN , ψ) be a control code notation forM, let c ∈ CCN , and letEAS ∈ EASM.
Thenc is pre-installedonEAS if

– c is not installedonEAS ;
– there exists aEAS ′ ∈ EASM such thatEAS is expansible toEAS ′ andc is

installedonEAS ′.

Example 3Take an assembly code notationACN and a source code notation
SCN . Consider an execution architecture serviceEAS on which file namef1 has
assigned an executable version of an assembler forACN , file namef2 has assigned
anACN version of a compiler forSCN , and file namef3 has nothing assigned.
Suppose that no file name has assigned an executable version of the compiler.
Then the compiler is not installed onEAS . However, the compiler is pre-installed
on EAS because it is installed on the expanded execution architecture service
(ea.load:f1 ◦ ea.exec:f2>f3) •ea EAS .

10.2 Portable Control Codes

We take portability of control code to mean portability froma service defined by
the execution architecture for one machine structure to a service defined by the
execution architecture for another machine structure.

Transportability is considered a property of all bit sequences, i.e. each bit se-
quence can be transported between any two services defined byexecution archi-
tectures for machine structures. Therefore, it is assumed that every bit sequence
assigned to a file name on a service can be assigned to a file nameon another
service by means of an instruction of the formset:f :bs .

30 J.A. Bergstra, C.A. Middelburg

A prerequisite for portability of a control code from a service defined by the
execution architecture for one machine structure to a service defined by the execu-
tion architecture for another machine structure is that, for all inputs covered by the
former machine structure, the outputs produced under control of the control code
coincide for the two machine structures concerned. Moreover, it must be possible
to expand the service from which the control code originatessuch that the control
code is pre-installed on the other service after some bit sequences assigned to file
names on the expanded service are assigned to file names on theother service.

Let M = (BS , {µn | n ∈ N},E) andM
′ = (BS ′, {µ′

n | n ∈ N},E ′)
be code controlled machine structures such thatBS ⊆ BS ′, let (CCN , ψ) and
(CCN , ψ′) be control code notations forM andM′, respectively, letc ∈ CCN ,
and letEAS0 = H(σ0,x0) ∈ EASM andEAS ′

0 = H ′
(σ′

0
,x′

0
) ∈ EASM

′

. Thenc is

portablefromEAS 0 toEAS ′
0 if

– ∀ 〈bs1, . . . , bsm〉 ∈ BS ∗
•

(ψ(c) ••1
M

bs1, . . . , bsm 6= D

⇒
∧

n∈N
ψ(c) ••n

M
bs1, . . . , bsm = ψ′(c) ••n

M′ bs1, . . . , bsm) .

– there exists aEAS 1 = H(σ1,x1) ∈ EASM such that
– EAS0 is expansible toEAS1,
– there existf1, . . . , fl ∈ dom(σ1) \ dom(σ′

0) such thatc is pre-installed on
(ea.set:f1:σ1(f1) ◦ . . . ◦ ea.set:fl:σ1(fl)) •ea EAS

′
0.

Because we assume that the setFNm of file names is countably infinite, this
definition does not imply that the bit sequences to be transported have to be as-
signed to the same file names at both sides.

Example 4Take a source code notationSCN and an assembly code notation
ACN . Consider an execution architecture serviceEAS on which file namef1
has assigned an executable version of a compiler forSCN that produces as-
sembly codes fromACN , file namef2 has assigned a source code fromSCN ,
and file namef3 has nothing assigned. Moreover, consider another execution ar-
chitecture serviceEAS ′ on which file namef1 has assigned an executable ver-
sion of an assembler forACN , and file namef3 has nothing assigned. Suppose
that the above-mentioned prerequisite for portability of the source code is ful-
filled. Then the source code is portable fromEAS to EAS ′ because it is pre-
installed onea.set:f3:bs •ea EAS

′ wherebs is the bit sequence assigned tof3 on
(ea.load:f1 ◦ ea.exec:f2>f3) •ea EAS .

11 Conclusions

We have presented a logical approach to explain issues concerning control codes
that are independent of the details of the behaviours that are controlled at a very ab-
stract level. We have illustrated the approach by means of examples which demon-
strate that there are non-trivial issues that can be explained at this level. In the
explanations given, we have consciously been guided by empirical viewpoints usu-
ally taken by practitioners rather than theoretical viewpoints. The issues that have

Machine Structure Oriented Control Code Logic 31

been considered are well understood for quite a time. Application of the approach
to issues that are not yet well understood is left for future work. We think among
other things of applications in the areas of software asset sourcing, which is an
important part of IT sourcing, and software patents. At least the concept of control
code can be exploited to put an end to the lack of conceptual clarity in these areas
about what is software.

We have based the approach on abstract machine models, called machine struc-
tures. If systems that provide execution environments for the executable codes of
machine structures are involved in the issues to be explained, then more is needed.
We have introduced an execution architecture for machine structures as a model of
such systems and have explained portability of control codes using this execution
architecture and an extension of basic thread algebra. The execution architecture
for machine structures, as well as the extension of basic thread algebra, may form
part of a setting in which the different kinds of processes that are often trans-
ferred when sourcing software assets, in particular software exploitation, can be
described and discussed.

We have looked at viewpoints of practitioners from a theoretical perspective.
Unfortunately, it is unavoidable that the concepts introduced cannot all be asso-
ciated directly with the practice that we are concerned about. This means that
reading of the paper might be difficult for practitioners. Therefore, the paper must
be considered a paper for theorists.

We have explained issues originating from the areas of compilers and software
portability. The literature on compilers is mainly concerned with theory and tech-
niques of compiler construction. A lot of that has been brought together in text-
books such as [1,26]. To our knowledge, the phenomenon that we call the com-
piler fixed point is not even informally discussed in the literature on compilers.
The literature on software portability is mainly concernedwith tools, techniques
and guidelines to achieve portability. The best-known papers on software porta-
bility are early papers such as [22,23]. To our knowledge, the concept of portable
program is only very informally discussed in the literatureon software portability.
Moreover, we are not aware of formal descriptions of compiler fixed point and
portable program in the literature on formal methods.

AcknowledgementsThis research was carried out as part of the Jacquard-project Symbio-
sis, which is funded by the Netherlands Organisation for Scientific Research (NWO).

References

1. Aho, A.V., Ullman, J.D.: Principles of Compiler Design. Addison-Wesley, Reading,
MA (1977)

2. Aycock, J.: A brief history of just-in-time. ACM Computing Surveys35(2), 97–113
(2003)

3. Bergstra, J.A.: Machine function based control code algebras. In: F.S. de Boer, M.M.
Bonsangue, S. Graf, W.P. de Roever (eds.) FMCO 2003,Lecture Notes in Computer
Science, vol. 3188, pp. 17–41. Springer-Verlag (2004)

32 J.A. Bergstra, C.A. Middelburg

4. Bergstra, J.A., Bethke, I.: Polarized process algebra and program equivalence. In:
J.C.M. Baeten, J.K. Lenstra, J. Parrow, G.J. Woeginger (eds.) Proceedings 30th ICALP,
Lecture Notes in Computer Science, vol. 2719, pp. 1–21. Springer-Verlag (2003)

5. Bergstra, J.A., Klint, P.: About “trivial” software patents: The IsNot case. Science of
Computer Programming64(3), 264–285 (2006)

6. Bergstra, J.A., Loots, M.E.: Program algebra for sequential code. Journal of Logic and
Algebraic Programming51(2), 125–156 (2002)

7. Bergstra, J.A., Middelburg, C.A.: Thread algebra with multi-level strategies. Funda-
menta Informaticae71(2/3), 153–182 (2006)

8. Bergstra, J.A., Middelburg, C.A.: Machine structure oriented control code logic. Com-
puter Science Report 07-10, Department of Mathematics and Computer Science, Eind-
hoven University of Technology (2007)

9. Bergstra, J.A., Ponse, A.: Combining programs and state machines. Journal of Logic
and Algebraic Programming51(2), 175–192 (2002)

10. Bergstra, J.A., Ponse, A.: Execution architectures forprogram algebra. Journal of Ap-
plied Logic5(1), 170–192 (2007)

11. Bratman, H.: An alternate form of the UNCOL diagram. Communications of the ACM
4(3), 142 (1961)

12. Delen, G.: Decision and control factors for IT-sourcing. In: J.A. Bergstra, M. Burgess
(eds.) Handbook of Network and Systems Administration, pp.929–946. Elsevier, Am-
sterdam (2007)

13. Earley, J., Sturgis, H.: A formalism for translator interactions. Communications of the
ACM 13(10), 607–617 (1970)

14. Fokkink, W.J.: Introduction to Process Algebra. Texts in Theoretical Computer Sci-
ence, An EATCS Series. Springer-Verlag, Berlin (2000)

15. Gosling, J., Joy, B., Steele, G., Bracha, G.: The Java Language Specification, second
edn. Addison-Wesley, Reading, MA (2000)

16. Hejlsberg, A., Wiltamuth, S., Golde, P.: C# Language Specification. Addison-Wesley,
Reading, MA (2003)

17. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs
(1985)

18. Janlert, L.E.: Dark programming and the case for the rationality of programs. Journal
of Applied Logic6(4), 545–552 (2008)

19. Lindholm, T., Yellin, F.: The Java Virtual Machine Specification. Addison-Wesley,
Reading, MA (1996)

20. Loh, L., Venkatraman, N.: Diffusion of information technology outsourcing, influence
sources and the Kodak effect. Information Systems Research3(4), 334–358 (1992)

21. Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs (1989)
22. Poole, P.C., Waite, W.M.: Portability and adaptability. In: F.L. Bauer (ed.) Software

Engineering, An Advanced Course,Lecture Notes in Computer Science, vol. 30, pp.
183–277. Springer-Verlag (1975)

23. Tanenbaum, A.S., Klint, P., Bohm, W.: Guidelines for software portability. Software –
Practice and Experience8, 681–698 (1978)

24. Verhoef, C.: Quantitative aspects of outsourcing deals. Science of Computer Program-
ming56(3), 275–313 (2005)

25. Watkins, D., Hammond, M., Abrams, B.: Programming in the.NET Environment.
Addison-Wesley, Reading, MA (2003)

26. Wirth, N.: Theory and Techniques of Compiler Construction. Addison-Wesley, Read-
ing, MA (1996)

	Introduction
	Machine Functions and Machine Structures
	Control Code Notations and Program Notations
	Assemblers and Compilers
	Intermediate Code Notations and Interpreters
	Bit Sequence Represented Control Code Notations
	An Execution Architecture for Machine Structures
	Thread Algebra
	The Execution Architecture Services
	Control Codes and Execution Architecture Services
	Conclusions

