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Abstract Control code is a concept that is closely related to a fretiyeancur-
ring practitioner’s view on what is a program: code that ipatge of controlling
the behaviour of some machine. We present a logical approaekplain issues
concerning control codes that are independent of the detiihe behaviours that
are controlled. Using this approach, such issues can baiegplat a very abstract
level. We illustrate this among other things by means of @angde about the pro-
duction of a new compiler from an existing one. The approadiased on abstract
machine models, called machine structures. We introducedehof systems that
provide execution environments for the executable codewaithine structures
and use it to go into portability of control codes.
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1 Introduction

In theoretical computer science, the meaning of programallysplays a promi-
nent part in the explanation of many issues concerning progr Moreover, what
is taken for the meaning of programs is mathematical by eatn the other hand,
it is customary that practitioners do not fall back on thelmeatatical meaning of
programs in case explanation of issues concerning progsameeded. More often
than not, they phrase their explanations from the viewpb@tta program is code
that is capable of controlling the behaviour of some macHhiwh theorists and
practitioners tend to ignore the existence of this conttasirder to break through
this, we as theorists make in this paper an attempt to mapheuivaly in which
practitioners explain issues concerning programs.
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We informally define control code as code that is capable atrodling the
behaviour of some machine. There are control codes thatofajualify as pro-
grams according to any conceivable theory of programmiogttat reason, we
make the distinction between control codes and programseier, there are is-
sues concerning programs that can be explained at the [eéeehtrol codes by
considering them as control codes that qualify as progr&tekative to a fixed
machine, the machine-dependent concept of control codetiadifies as program
is more abstract than the machine-independent concepbgfgm: control code
that qualifies as program is just representative (on the fixachine) of behaviour
associated with a program with which it is possible to expthe behaviour. This
might be an important motive to explain issues concerningams at the level
of control codes.

To simplify matters, we consider in this paper non-intavadbehaviour only.
We consider this simplification desirable to start with. Eleforth, control codes
are implicitly assumed to control non-interactive behavienly and the be-
haviours associated with programs are implicitly assurodzbtnon-interactive.

Our attempt to map out the way in which practitioners expisgnes concern-
ing programs yields a logical approach to explain issuesearing control codes
that are independent of the details of the behaviours tleat@ntrolled. Machine
structures are used as a basis of the approach. They areethéyi the machine
functions introduced in_[13] to provide a mathematical bder the T-diagrams
proposed in[[11]. A machine structure offers a machine madtal very abstract
level.

We illustrate the approach by means of some examples. Thesigxplained
in the examples are well understood for quite a time. They&drearily meant to
demonstrate the effectiveness of the approach. In the ridas given, we have
consciously been guided by empirical viewpoints usualketaby practitioners
rather than theoretical viewpoints. Those empirical vieinfs may be outside the
perspective of some theorists.

Mapping out the way in which practitioners explain issueacaning pro-
grams, phrased as a matter of applied mathematics, seepadtahavoidably to
unexpected concepts and definitions. This means among thiingis that steps
made in this paper cannot always be motivated directly floengractice that we
map out. This is an instance of a general property of appliathematics that we
have to face: the design of a mathematical theory does niofaoimperatively
from the problems of the application area concerned.

We believe that the presented approach is useful becauseious areas fre-
guently no distinction is made between programs and cootrés and interest is
primarily in issues concerning control codes that are ietdelent of the details of
the behaviours that are controlled. Some examples of seels are software asset
sourcing and software pateE]tMoreover, we find that control code production is
in the end what software construction is about.

! Software asset sourcing is an important part of IT sourcieg, e.g.[[20.24,.12]. An
extensive study of software patents and their implicatmmsoftware engineering practices
can be found in[5].
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Machine structures in themselves are not always sufficemixplain issues
concerning control codes that are independent of the detbihe behaviours that
are controlled. If systems that provide execution envirenta for the executable
codes of machine structures are involved, then more is medtie introduce an
execution architecture for machine structures as a modaia systems and ex-
plain portability of control codes using this executionhatecture. An extension
of basic thread algebra, introduced|in [6] under the nam Ipedarized process
algebra, is used to describe processes that operate upexdtigion architecture.
The reason to use basic thread algebra is that it has beamddsis an algebra
of processes that interact with machines of the kind to whisl the execution
architecture belongs. It is quite awkward to describe mees of that kind using a
general process algebra such as ACP [14], CCS [21] or CSP [17]

This paper is organized as follows. First, we introduce nreestructures (Sec-
tion[2). Next, we introduce control code notations and paognotations (Sec-
tion[3). Then, we present our approach to explain issuesernimgy control codes
by means of examples about the production of a new assemndifey an existing
one and the production of a new compiler using an existing(Seetior 4). We
also use this approach to explain the relation between ders@nd interpreters
(Section’b). Following this, we sum up the effects of withwdireg a simplifying
assumption concerning the representation of control cogete in the foregoing
(Sectiori6). After that, we outline an execution architegfor machine structures
(SectiorY). Then, we review the extension of basic thregelah that covers the
effects of applying threads to services (Secfibn 8). Fahgwhis, we formalize
the execution architecture for machine structures and el family of services
determined by it (Sectionl 9). After that, we explain porliépiof control codes
using thread algebra and the execution architecture ssr{®ection 10). Finally,
we make some concluding remarks (Secfiioh 11).

Up to Section]7, this paper is a major revision(df [3]. It hasrbsubstantially
rewritten so as to streamline the material. Several impotechnical aspects have
been significantly modified.

2 Machine Functions and Machine Structures

In this section, machine structures are introduced. Macsiructures are the basis
for our approach to explain issues concerning control cofesy are very abstract
machine models and cover non-interactive machine behagidy.

First, we introduce the notion of machine function introeda [3]. It general-
izes the notion of machine function introducedinl[13] by earg machines with
several outputs. Machine functions are very abstract maamiodels as well, but
they are less suited than machine structures to model dgneyzose machines
such as computers. Machine structures can easily be defitiealsvreference to
machine functions. The introduction of machine functi@sainly for expository
reasons.



4 J.A. Bergstra, C.A. Middelburg

2.1 Machine Functions

A machine functiory is actually a family of functions: it consists of a function
1y, for each natural number > 0. Those functions map each finite sequence of
bit sequences to either a bit sequenc&loor D. Here,M stands for meaningless
andD stands for divergent. A machine function is supposed to madeachine
that takes several bit sequences as its inputs and prodexEskbit sequences as
its outputs unless it does not halt on the inputs. gt . ., x,, be bit sequences.
Then the connection between the machine functiand the machine modelled
by it can be understood as folloWs:

—if pn((z1,...,2m,)) is a bit sequence, then the machine functiomodels a
machine that produces, ({x1, ..., x,)) as itsnth output on it takingey, . . .,
T, @S its inputs;

— if up({x1,...,zm)) is M, then the machine functigm models a machine that
produces less thamoutputs on it taking:1, ..., z,, as its inputs;

— if un((x1,...,zm)) is D, then the machine functiom models a machine that
does not produce any output on it takimg, ..., z,, as its inputs because it
does not halt on the inputs.

Concerning the machine modelled by a machine function, werase the follow-
ing:

if it does not halt, then no output gets produced;

if it does halt, then only finitely many outputs are produced;

if it does not halt, then this cannot be prevented by progdirore inputs;

if it does halt, then the number of outputs cannot be inciaseproviding
less inputs.

The intuitions behind the first two assumptions are obvidh intuition behind
the third assumption is that, with respect to not halting,achine does not use
more inputs than it needs. The intuition behind the last mgtion is that, with
respect to producing outputs, a machine does not use mastsitiyan it needs.

Henceforth, we writdsS for the se{0, 1}" of bit sequencedt is assumed that
M ¢ BS andD ¢ BS.

We now define machine functions in a mathematically preceg w
Let BS C BS. Then amachine functiom. on BS is a family of functions

{ttn : BS* — (BS U {D,M}) | n € N}

2 We write () for the empty sequencéz) for the sequence having as sole element,
andx ~ x' for the concatenation of finite sequencesand x'. We use(z1, ..., z,) as
a shorthand fofz,) ~ ... ~ (z,). We write X™ for the set of all finite sequences with
elements from sek.



Machine Structure Oriented Control Code Logic 5

satisfying the following rules:

Anert(Amen(tn(x) =D = pm(x) = D)) |
/\neN(“" )#D = (VmeN s Bm (X) = M))
Aner (Amermon(Bn(X) =M = pm(x) =M)) ,
Nnen(tin(x) =D = pn(x ~x') =D),
Noen(tin(x > X) =M = pn(x) =M) .

We write MF for the set of all machine functions.

Example 1Take a high-level programming languagd, and an assembly lan-
guageAL. Consider a machine functiotf, which models a machine dedicated
to compiling PL programs, and a machine functidfi, which models a machine
dedicated to disassembling executable codes. Suppogshelatmpiling machine
takes a bit sequence representinglaprogram as its only input and produces a
bit sequence representing drl. version of thePL program as its first output, a
bit sequence representing a listing of error messages asdtsid output, and an
executable code for thBL program as its third output. Moreover, suppose that the
disassembling machine takes an executable code as itsngmilyand producing a
bit sequence representing drl. version of the executable code as its first output
and a bit sequence representing a listing of error messagis second output.
The relevant properties of the machines modelledpgnd df that may now be
formulated include:

cf o ((x)) = () = of1((x)) # (),
dfy((x)) = () = df1((=)) # (),
cf o((x)) = () = df1(cf3((x))) = cf1({x)) -
These formulas express that executable code is producduebgompiling ma-

chine unless errors are found, disassembly succeeds wmtess are found, and
disassembly is the inverse of assembly.

Machines such as the compiling machine and the disassegnblithine are
special purpose machines. They are restricted to exhibégtrécplar type of be-
haviour. Computers are general purpose machines that téitedifferent types
of behaviour at different times. This is possible becausemders are code con-
trolled machines. A code controlled machine takes one apegut that controls
its behaviour. In general, not all bit sequences that a codéalled machine can
take as its inputs are capable of controlling the behavibtivad machine. The bit
sequences that are capable of controlling its behaviolreven as its executable
codes. Note that executable code is a machine-dependergmton

Machine functions can be used to model code controlled mastas well. We
will use the phrase code controlled machine function for mae functions that
are used to model a code controlled machine. We will use theectgion that the
first bit sequence in the argument of the functions that make code controlled
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machine function corresponds to the special input thatrotathe behaviour of the
machine modelled. Because, in general, not all bit sequsahega code controlled
machine can take as its inputs are executable codes, margu$taa machine

function is needed to model a code controlled machine. Bhahly we introduce

machine structures.

2.2 Machine Structures

A machine structur@i consists a set of bit sequendgs, functionsy,, that make

up a machine function o®S, and a subsel’ of BS. If E is empty, then the
machine structur@ is essentially the same as the machine function contained in
it. If E is not empty, then the machine struct@eis supposed to model a code
controlled machine. In the case whelkeis not empty, the connection between
the machine structur®t and the code controlled machine modelled by it can be
understood as follows:

— BS is the set of all bit sequences that the code controlled maammiodelled
by 97t can take as its inputs;

— if x € E, then the bit sequencebelongs to the executable codes of the code
controlled machine modelled By;

— if z € E, then the functiong.,, that are defined by.,({(y1,...,ym)) =
tn((z,y1, - .., ym)) Mmake up a machine function diS modeling a machine
that exhibits the same behaviour as the code controlled imachodelled by
2 exhibits under control of the executable cade

The assumptions made about the machine modelled by a mathicture are the
same as the assumptions made before about the machine edoolelh machine
function. Itis tempting to add the following assumption:

— if the special input meant to control its behaviour does redoihg to its exe-
cutable codes, then the machine halts without having pediaay output.

We refrain from adding this assumption because it is to beeteol that: (a) we
can do without it in explaining issues concerning contrales (b) it does not hold
good for all machines that we may encounter. Moreover, ie gaswould incor-
porate this assumption in the notion of machine structasgould not supersede
the notion of machine function.

We now define machine structures in a mathematically precse

A machine structurét is a structure composed of

— asetBS C BS,
— aunary functionu,, : BS* — (BS U {D, M}), for eachn € N,
— aunary relatiorF C BS,

where the family of function§p,, : BS* — (BSU{D, M}) | n € N} is a machine
function onBS. We say thaf)t is acode controlled machine structuie E # (),
and we say that is adedicated machine structuie £ = (.
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LetMt = (BS, {un | n € N}, E) be a code controlled machine structure, and
letz € E. Then themeaningof x with respect tat, written|z|™, is the machine
function

{4, : BS* — (BSU{D,M}) | n € N},

where the functiong!, are defined by

o (Y1s -5 ym)) = ({2,915 -+ Ym)) -

Moreover, letr’, " € E. Thenz' is behaviourally equivalerto ="/ on9t, written
o' =0 2 if 2|7 = |2 .
Let 9 = (BS,{u. | n € N}, E) be a code controlled machine structure.

Then we will write

oo Y1, ..., Ym for p,({z,y1,....Ym)) -

Moreover, we will write

TO0y Y, Yy fOr T L Yl Y
We will also omitt if the machine structure is clear from the context.

Example ZTake a code controlled machine struct®e = (BS,{u, | n €
N}, E). Consider again the machine functioffsand df from ExampldL. These
machine functions model a machine dedicated to compilimgams in some
high-level programming languagel, and a machine dedicated to disassembling
executable codes, respectively. ket, eqr € E be such that

lees ' = ¢f and feq [t = df .

Thene.; andeyy are executable codes that control the behaviour of the cole ¢
trolled machine modelled bt such that this machine behaves the same as the
dedicated machine modelled lay and the dedicated machine modelled dfy
respectively. This implies that for all € BS andn € N:

eof oo @ = cf o ((2)) and e ooy & = df ,((z)) -

Note that forcf there may be an,; € E with /. # e.s such thalie’cf|im = cf,
and likewise fordf. ' ‘ '

A code controlled machine structud® = (BS, {u,, | n € N}, E) determines
all by itself a machine model. For an execution, which takemgle step, an ex-
ecutable code € FE, a sequencéy,...,y,) € BS™ of inputs and the machine
function{u, | n € N} are needed. The executable code is not integrated in the
machine in any way. In particular, it is not stored in the niaehAs nothing is
known about any storage mechanism involved, due to theaaibstature of ma-
chine structures, it is not plausible to classify the moded atored code machine
model.
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2.3 ldentifying the Input that Controls Machine Behaviour

It is a matter of convention that the first bit sequence in tigeiment of the func-
tions that make up the machine function of a code controlledhime structure
corresponds to the special input that controls the behawabthhe machine mod-
elled. The issue is whether a justification for this corresfence can be found in
properties of the code controlled machine structure. Thisunts to identifying
the input that controls the behaviour of the machine modelle

Take the simple case where always two inputs are neededdagz@ny output
and always one output is produced. Then a justification ferdbrrespondence
mentioned above can be found only if the machine functioalired is asymmetric
and moreover the first bit sequence in the argument of thdiumthat yields the
first output overrules the second bit sequence. Here, by iy is meant being
more in control.

In this simple case, the criteria of asymmetry and overgutian easily be made
more precise. Suppose thtat = (BS,{u, | n € N}, F) is a code controlled
machine structure that models a machine that needs alwayisputs to produce
any output and produces always one output. Then the maalme&dn{u,, | n €
N} is asymmetric if there exist, y € BS such thafu (x, y) # p1(y, x). The first
bit sequence in the argument of the functignoverrules the second one if there
existry,xo € E andzq, 2o € BS with 21 # 2z such thatu; (z1,y) = z; and
w1 (ze,y) = 2o forall y € BS. Itis easily proved that the first bit sequence in
the argument of the functiop; overrules the second one only if the second bit
sequence in the argument of the functiondoes not overrule the first one.

The criterion of overruling becomes more interesting if entiran two inputs
may be needed to produce any output, because this is usuattase with general-
purpose machines. For example, on a general-purpose neattéfirst input may
be an executable code for an interpreter of intermediatesprbduced by a com-
piler for some high-level programming langua@g, the second input may be a bit
sequence representing the intermediate code fof. arogram, and one or more
subsequent inputs may be bit sequences representing éatachiey that program.
In this example, the first input overrules the second inpat subsequent inputs
present and in addition the second input overrules the thpdt and subsequent
inputs present.

3 Control Code Notations and Program Notations

In this section, we introduce the concepts of control codatian and program
notation in the setting of machine structures and discusgliffierences between
these two concepts. The underlying idea is that a controé ¢®d code that is
capable of controlling the behaviour of some machine andgram is a control
code that is acquired by programming. The point is that teeist control codes
that are not acquired by programming. In|[18], which appeafer the report
version of the current paperl[8], a conceptual distinctomade between proper
programs and dark programs. We found that proper programesmmnd with
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control codes that are acquired by programming and darkranag correspond
with control codes that are not acquired by programming. As#ter of fact, the

notion of machine structure allows for the discussion ofjgraand dark programs
in [18] to be made more precise.

3.1 Control Code Notations

The intuition is that, for a fixed code controlled machineyttol codes are objects
(usually texts) representing executable codes of that codi&olled machine. The
principal examples of control codes are the executable ctiemselves. Note
that, like the concept of executable code, the concept afabcode is machine-
dependent. A control code notation for a fixed code contlati@chine is a collec-
tion of objects together with a function which maps each efdbjects from that
collection to a particular executable code of the code cdiett machine.

In order to make a code controlled machine transform mendfense control
code notation into members of another control code notailanin compiling and
assembling, control codes that are not bit sequences musphesented by bit se-
guences. To simplify matters, we will assume that all cdrtoale notations are
collections of bit sequences. Assuming this amounts totifyémg control codes
with the bit sequences representing them. In Se€fion 6, Wawitihdraw this as-
sumption.

Let M = (BS,{un | n € N}, F) be a code controlled machine structure.
Then acontrol code notatiorior 9t consists of a se€CN C BS and a function
1:CCN — E.The members of CN are calleccontrol codegor 1. The function
1) is called amachine structure projection

Let (CCN, ) be a control code notation for a code controlled machinestru
ture(BS, {un | n € N}, E). Then we assume thétc) = cforallc € CCNNE.

Let 9 be a code controlled machine structure(l8CN , v)) be a control code
notation forO, and letc € CCN. Then themeaningof ¢ with respect tan,
written |c|[2%y, is [1(c) ™",

Control codes, like executable codes, are given a meaniaigdeto one code
controlled machine structure. The executable codes of a codtrolled machine
structure themselves make up a control code notation femtlaghine structure.
Letd = (BS, {un | n € N}, E) be a code controlled machine structure, and let
1g be the identity function oiy. Then(E, 1) is a control code notation fapt.
We trivially havele|2t = |e|™ for all e € E. Henceforth, we loosely writ& for
the control code notatiof&, 1 ).

3.2 Program Notations

To investigate the conditions under which it is appropriatay that a control code
notation qualifies as a program notation, it is in fact immiaténow the concept of
program is defined. However, it is at least convenient to nlak@ssumption that,
whatever the program notation, there is a hypothetical inacmodel by means
of which the intended behaviour of programs from the progrextation can be
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explained at a level that is suited to our purpose. We betieatthis assumption
is realistic.

Let some theory of programming be given that offers a redia@finition of
the concept of program. Then acknowledged program notatias a setPGN
of programs. It is assumed that there is a well-understoqatmgtical machine
model by means of which the intended behaviour of programs fPGN can
be explained at a level that allows for the input-outputtietaof programs from
PGN, i.e. the kind of behaviour modelled by machine functioo®é derived. Itis
also assumed that this hypothetical machine model detemairiunction_|pcy :
PGN — MF which maps programs to the machine functions modelling thei
behaviour at the abstraction level of input-output relagio

In [6], a theory, called program algebra, is introduced irickra. program is
a finite or infinite sequence of instructions. Moreover, thiemded behaviour of
instruction sequences is explained at the level of inpapaturelations by means
of a hypothetical machine model which involves processihgne instruction at
a time, where some machine changes its state and produgely anrease the in-
struction is not a jump instruction. This hypothetical maehmodel is an analytic
execution architecture in the sense(of|[10]. In the curreptp, the definition of
the concept of program frorhl[6] could be used. However, wemat fixed a par-
ticular concept of program because we intend to abstract fr@ details involved
in any such conceptual definition.

Note that programs, unlike control codes, are given a mgamsing a hypo-
thetical machine model. This means that the given meaningtiselated to some
code controlled machine structure.

3.3 Control Code Notations Qualifying as Program Notations

The intuition is that a control code notation for a code colfeéd machine qualifies
as a program notation if there exist an acknowledged progiation and a func-
tion from the control code notation to the program notatteat maps each control
code to a program such that, at the level of input-outputicela, the machine
behaviour under control of the control code coincides wihth behaviour that is
associated with the corresponding program. If a controegumtation qualifies as
a program notation, then its elements are considered pregra

Let 9t be a code controlled machine structure, and{&’'N , ¢) be a control
code notation fof)t. Then(CCN , ¢) qualifiesas a program notation if there exist
an acknowledged program notatiézN and a functiony : CCN — PGN such
that for allc € CCN:

()™ = |g(c)lpen -

This definition implies that, in the case of a control codeatioh that qualifies
as a program notation, control codes can be given a meanimg asiypothetical
machine model. Control code by itself is just represergativmachine behaviour
without any indication that it originates from a programwithich it is possi-
ble to explain the behaviour by means of a well-understogubthetical machine
model. The functiom whose existence is demanded in the definition is suggestive
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of reverse engineering: by its existence, control codels fode implementations
of programs on a code controlled machine. We might say tleatetdson for clas-
sifying a control code notation in the ones that qualify asagpmm notation lies
in the possibility of reverse engineering. The functipis the opposite of a repre-
sentation. It might be called a co-representation.

Suppose thaflt = (BS,{u., | n € N}, E) is a code controlled machine
structure and E, 1) qualifies as a program notation. The8R models a code
controlled machine whose executable codes constituteteoteonde notation that
qualifies as a program notation. Therefore, it is approptiatcall 0t a program
controlled machine structure. A program controlled maehstructure is a code
controlled machine structure, but there is additionalimfation which is consid-
ered to make it more easily understood from the traditionoofijguter program-
ming: each executable code can be taken for a program anctémeled behaviour
of that program can be explained by means of a well-undeddtgpothetical ma-
chine model. It is plausible that, for any code controllecthiae structure model-
ing a real machine, there is additional information whichassidered to make it
more easily understood from some tradition or another.

We take the view that a code controlled machine structurénbavwoth exe-
cutable codes that can be considered programs and exexuataids that cannot
be considered programs are improper. Therefore, we intethe notion of proper
code controlled machine structure.

Let M = (BS,{u. | n € N}, E) be a code controlled machine structure.
Then is aproper code controlled machine structure(i£’, 1z/) qualifies as a
program notation for some’ C E only if (F, 1g) qualifies as a program notation.

3.4 Control Code Notations Not Qualifying as Program Natas

The question arises whether all control code notationsifyuaé program nota-
tions. If that were true, then the conceptual distinctiotwiaen control code no-
tations and program notations is small. If a control codetion qualifies as a
program notation, then all control codes concerned can bsidered the result of
implementing a program on a code controlled machine. ThiE@tes that coun-
terexamples to the hypothesis that all control code natatiualify as program
notations will concern control codes that do not originatarf programming. We
give two counterexamples where control codes arise froificzat intelligence.

Consider a neural network in hardware form, which is able#or while work-
ing on a problem and thereby defining parameter values foyfiramg thresholds
for artificial neurons. The parameter values for a particptablem may serve as
input for a machine that needs to address that problem. Tgrebéem dependent
parameter inputs can be considered control codes by all snetanvever, there is
no conceivable theory of programming according to whicls¢hgroblem depen-
dent parameter inputs can be considered programs. Thededtneural networks
that is important here is their ability to acquire controtedby another process
than programming.

Consider a purely hardware made robot that processes geuggh data
loaded into it to find a target location. The loaded geogregditata constitute the
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only software that determines the behaviour of the robatrétore, the loaded ge-
ographical data constitute control code. However, theme isonceivable theory of
programming according to which such control codes can bsidered programs.
They are certainly acquired by another process than pragiam

In the case of control code notations that qualify as prognatations, the
control codes are usually produced by programming follolwgdompiling or
assembling. The examples illustrate different forms oftadrcode production
that involve neither programming nor compiling or assentliThe first example
shows that control codes can be produced without programtyimmeans of arti-
ficial intelligence based techniques. The second examplesthat the behaviour
of machines applying artificial intelligence based techeggcan be controlled by
control codes that are produced without programming.

4 Assemblers and Compilers

In the production of control code, practitioners oftenidigtiish two kinds of con-
trol codes in addition to executable codes: assembly caugsaurce codes. An
assembler is a control code corresponding to an executatk @f a code con-
trolled machine that controls the behaviour of that coderodied machine such
that it transforms assembly codes into executable codea @oadnpiler is a con-
trol code corresponding to an executable code of a codeditmitrmachine that
controls the behaviour of that code controlled machine shighit that transforms
source codes into assembly codes or executable codes.

In this section, we consider the issue of producing a newnalsise for some
assembly code notation using an existing one and the simgae of producing
a new compiler for some source code notation using an egistire. Whether an
assembly code notation or a source code notation qualifiagpasgram notation
is not relevant to these issues.

4.1 Assembly Code Notations and Source Code Notations

At the level of control codes for machine structures, thetmdrcode notations
that are to be considered assembly code notations and ttrlcocmde notations
that are to be considered source code notations cannot bectdérdzed. The level
is too abstract. It happens to be sufficient for many issuasemming assemblers
and compilers, including the ones considered in this sectiosimply assume that
some collection of control code notations comprises theraby/ code notations
and some other collection of control code notations corepribe source code
notations.

Henceforth, we assume that, for each machine strucfiredisjoint sets
ACNon andSCNay of control code notations fadt have been given. The members
of ACNon andSCNyy are calledassembly code notatiorfisr 9t andsource code
notationsfor 91, respectively.

The following gives an idea of the grounds on which contralemotations
are classified as assembly code notation or source codéamotAssembly code
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is control code that is very close to executable code. Thisns¢hat there is a
direct translation of assembly codes into executable cadteassembly code no-
tation is specific to a machine. Source code is control codeisnot very close
to executable code. The translation of source code intoutable code is more
involved than the translation of assembly code into exddataode. Usually, a
source code notation is not specific to a machine.

A high-level programming language, such as Java [15] or &} & consid-
ered a source code notation. The term high-level programiaimguage suggests
that it concerns a notation that qualifies as a program motatiowever, as men-
tioned above, whether a source code notation qualifies asgagim notation is not
relevant to the issues considered in this section.

4.2 Control Code Notations Involved in Assemblers and Clarsgpi

Three control code notations are involved in an assemblayropiler: it lets a code
controlled machine transform members of one control cod&tiom into members
of another control code notation and it is itself a memberawhe control code
notation. We introduce a special notation to describe teat of assemblers and
compilers succinctly.

Let M = (BS,{u. | n € N}, E) be a code controlled machine structure,
and let(CCN, ), (CCN', ") and(CCN" ") be control code notations fon.
Then we writecc [CCN' — CCN"]: CCN for

cc € CON AVec! € CCN' o (Fec” € CCN" o p(cc) ooy, cc’ = ') .

We say thatec is in executable fornif CCN C E, thatcc is in assembly fornif
CCN € ACNay, and thatce is in source fornif CCN € SCNon.

4.3 The Assembler Fixed Point

In this subsection, we consider the issue of producing a resembler for some
assembly code notation using an existing one.

Let O = (BS, {u | n € N}, E) be a code controlled machine structure, and
let (ACN, 1) be a control code notation féit that belongs te4CNoy. Suppose
thatass [ACN — E] : E is an existing assembler fotCN. This assembler is in
executable form. Suppose further that a new assembéfACN — E|: ACN for
ACN is made available. This new assembler is not in executahte. fib needs to
be assembled by means of the existing assembler. The nemlassés considered
correct if behaviourally equivalent executable codes apelyced by the existing
assembler and the one obtained by assembling the new assdiyibheans of the
existing assembler, i.e.

Yac € ACN e ass ee ac =10 (ass ee ass') ee ac . 1)

Let ass” be the new assembler in executable form obtained by assegnbk’
by means ofiss, i.e. ass” = ass ee ass’. Now, ass’ could be assembled by means
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of ass” instead ofass. In caseuss” produces more compact executable codes than
ass, this would result in a new assembler in executable formithaipre compact.
Let ass’”” be the new assembler in executable form obtained by assegnils’

by means ofuss”, i.e. ass”’ = ass” ee ass’ = (ass ee ass’) ee ass’. If ass’ is
correct, theruss” andass”’ produce the same executable codes. That is,

ass”" = ass” . ()
This is easy to see: rewriting in terms @fs andass’ yields
ass ee ass' =p (ass ee ass') ee ass’ (3)

which follows immediately from[{1).
Now, ass’ could be assembled by meanswt”’ instead ofass”. However, if
ass’ is correct, this would result inss”’ again. That is,

ass”’ = ass" e® ass’ . 4)
This is easy to see as well: rewriting the left-hand side im#eof ass’ and ass”
yields

ass” ee ass’ = ass’’ ee ass’ | (5)

which follows immediately from{2). The phenomenon expesdsy equatiori {4)
is called the assembler fixed point.

In theoretical computer science, correctness of a progsaaken to mean that
the program satisfies a mathematically precise specificatigt. For the assem-
bler ass’, Yac € ACN e 1)(ass’) e ac = 1 (ac) would be an obvious math-
ematically precise specification. More often than not, fitiacers have a more
empirical view on the correctness of a program that is a n@gnam serving as a
replacement for an old one on a specific machine: correctfele new program
is taken to mean that the old program and the new program ggea the same
behaviour on that machine. The correctness criterion far agsemblers given
above, as well as the correctness criterion for new congagisen below, is based
on this empirical view.

4.4 The Compiler Fixed Point

In this subsection, we consider the issue of producing a rewpder for some
source code notation using an existing one. Compilers maglyme assembly
code, executable code or both. We deal with the case wherpilssmproduce
assembly code only. The reason for this choice will be erpgldiat the end this
subsection.

Let M = (BS,{un | n € N}, F) be a code controlled machine structure,
let (SCN, ) be a control code notation @t that belongs taSCNoy, and let
(ACN,,) be a control code notation fo1 that belongs todCNyy . Suppose that
com [SCN—ACN]:ACN is an existing compiler fo§CN andass [ACN—E|: E
is an existing assembler fot CN. The existing compiler is in assembly form.
However, a compiler in executable form can always be obthirem a compiler
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in assembly form by means of the existing assembler. Sugfpaser that a new
compilercom’ [SCN — ACN]: SCN for SCN is made available. This new com-
piler is not in assembly form. It needs to be compiled by mezrthe existing
compiler. The new compiler is considered correct if

Vsc € SCN o
ass ee ((ass ee com) ee sc) (6)

=" ass ee ((ass e ((ass ee com) ee com’)) ee sc) .

Let com” be the new compiler in assembly form obtained by compitiong’
by means otom, i.e. com” = (ass ee com) ee com’. Now, com’ could be com-
piled by means oftom’ instead ofcom. In casecom’ produces more compact
assembly codes thawwm, this would result in a new compiler in assembly form
that is more compact. Lebm”’ be the new compiler in assembly form obtained
by compilingcom’ by means ofom”, i.e. com’’ = (ass e® com’) ee com’ =
(assee ((assee com)ee com’))ee com’. If com’ is correct, therwom’ andcom’
produce the same assembly codes. That is,

ass ee com” =% ass ee com’” . (7)

This is easy to see: rewriting in terms @fs, com andcom’ yields

ass ee ((ass ee com) ee com’) (8)
=" ass ee ((ass ee ((ass ee com) ee com’)) ee com’) |
which follows immediately from({6).
Now, com’ could be compiled by means eém’” instead ofcom”. However,
if com’ is correct, this would result inom’” again. That is,

com’" = (ass 8 com’") ee com’ . 9)

This is easy to see as well: rewriting the left-hand side im&eof ass, com’ and
com” yields

(ass e com'’) ee com’ = (ass ee com’”) ee com’ | (10)

which follows immediately from[{[7). The phenomenon expesdsy equatiori {9)
is called the compiler fixed point. It is a non-trivial instgmong practitioners
involved in matters such as software configuration and systéministration.

The explanation of the compiler fixed point proceeds sintitathe explana-
tion of the assembiler fixed point in Sectionl4.3, but it is mooenplicated. The
complication vanishes if compilers that produce execetablle are considered.
In that case, due to the very abstract level at which the ssate considered, the
explanation of the compiler fixed point is essentially thmeaas the explanation
of the assembler fixed point.
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5 Intermediate Code Notations and Interpreters

Sometimes, practitioners distinguish additional kindsaitrol codes. Intermedi-
ate code is a frequently used generic name for those adalitidmds of control
codes. Source code is often implemented by producing exieleutode for some
code controlled machine by means of a compiler or a compildrasm assembler.
Sometimes, source code is implemented by means of a congpitban inter-
preter. In that case, the compiler used produces interrieeciae. The interpreter
is a control code corresponding to an executable code of@a@murolled machine
that makes that code controlled machine behave as if it ithancode controlled
machine controlled by an intermediate code.

In this section, we briefly consider the issue of the corressrof such a com-
bination of a compiler and an interpreter.

5.1 Intermediate Code Notations

At the level of control codes for machine structures, liketbntrol code notations
that are to be considered assembly code notations and trlcomde notations
that are to be considered source code notations, the caottelnotations that are
to be considered intermediate code notations of some kimglatde characterized.
It happens to be sufficient for many issues concerning cargénd interpreters,
including the one considered in this section, to simply assthat some collection
of control code notations comprises the intermediate codgtions of interest.

Henceforth, we assume that, for each machine struére setZCNyy of
control code notations fdt has been given. The membersZaf\Vyy, are called
intermediate code notatiorfer 9t.

The following gives an idea of the grounds on which contralenotations are
classified as intermediate code notation. An intermediade ootation is a control
code notation that resembles an assembly code notatioihjbabt specific to any
machine. Often, it is specific to a source code notation onalyaof source code
notations.

An intermediate code notation comes into play if source dsd@aplemented
by means of a compiler and an interpreter. However, congpflar intermediate
code notations are found where interpretation is largdtpiehted in favour of
just-in-time compilation, see e.@.l[2], which is mater@mkbntemporary program-
ming languages such as Java and C#.

In the case where an intermediate code notation is specHitamily of source
code notations, it is a common intermediate code notatioth®ysource code no-
tations concerned. The Common Intermediate Language fnemNET Frame-
work [25] is an example of a common intermediate code natatio

5.2 Interpreters

Interpreters are quite different from assemblers and clemgiAn assembler for
an assembly code notation makes a code controlled machingférm members
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of the assembly code notation into executable codes and pilasrfor a source
code notation makes a code controlled machine transformbmenof the source
code notation into members of an assembly code notation esuéable codes,
whereas an interpreter for an intermediate code notatidema code controlled
machine behave as if it is a code controlled machine for wtiiehmembers of the
intermediate code notation serve as executable codes.

We consider the correctness of an interpreter combinedangbmpiler going
with it. The correctness criterion given below is in the gmif the empirical view
on correctness discussed at the end of SeLtidn 4.3.

Letd = (BS,{un | n € N}, E) be a code controlled machine structure, let
(SCN , ) be a control code notation fé#t that belongs t&CNoy, let (ICN, )
be a control code notation &9 that belongs t&CNoy, and let(ACN , +,) be a
control code notation foit that belongs t04CNyy. Suppose thatom, [SCN —
ACN] : ACN is an existing compiler foSCN and ass [ACN — E]: E is an
existing assembler fad CN. The compilercom,, lets Mt transform source codes
into assembly codes. Suppose further that a new comgitey [SCN — ICN] :
ACN for SCN and a new interpretent € F for ICN are made available. The
compilercom; letsOt transform source codes into intermediate codes.

The combination otom; andint is considered correct if

Vsc € SCN, (bs1,...,b8m) € BS* o
(ass ooy, ((ass eeyy com,) eeyy sc)) ®egy bsy, ..., bsy, (12)
= int eey, ((ass ee,y com;) ey, sc), bs1, ..., DS, .

While being controlled by an interpreter, the behaviour aode controlled
machine can be looked upon as another code controlled neachimhich the ex-
ecutable codes are the intermediate codes involved. Ttee laaichine might ap-
propriately be called a virtual machine. By means of intetgns, the same virtual
machine can be obtained on different machines. Thus, alhimealependencies
are taken care of by interpreters. A well-known virtual nmiaetis the Java Virtual
Machine [19].

6 Bit Sequence Represented Control Code Notations

In order to make a code controlled machine transform memifeasie control
code notation into members of another control code notalila in assembling
and compiling, control codes that are not bit sequences baeustpresented by bit
sequences. To simplify matters, we assumed up to now thedadiol code nota-
tions are collections of bit sequences. In this section, vesgnt the adaptations
needed in the preceding sections when withdrawing thisnaggan. It happens
that the changes are small.

The Concept of Bit Sequence Represented Control Code dlotati

First of all, we have to generalize the concept of controlkcodtation slightly.
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Let M = (BS,{un | n € N}, F) be a code controlled machine structure.
Then abit sequence represented control code notafimnt consists of a set
CCN, a functiony : CCN — F, and an injective functiop : CCN — BS.
Forallc € CCN, p(c) is called thebit sequence representatiaf ¢ on 9. The
functionp is called thebs-representation functioof CCN'.

Let (CCN, 1, p) be a bit sequence represented control code notation for a
code controlled machine structuiB8S, {u,, | n € N}, E'). Then we assume that
Y(c) =cforallce CCNNE, p(c) = foralld € CCNNBS, andp(c") = ¢’
for all ¢/ € CCN with p(¢”) € E. The last assumption can be paraphrased as
follows: if an executable code is the bit sequence repratentof some control
code, then it is its own bit sequence representation. luebed bs-representation
functions that inadvertently produce executable codes.

The Special Notatioac [CCN' — CCN"]: CCN

We have to change the definition of the special notatid CN’'— CCN"]: CCN
slightly.

LetMt = (BS, {un | n € N}, E) be a code controlled machine structure, and
let(CCN, 4, p), (CCN', 4, p')and(CCN" 4", p") be bit sequence represented
control code notations fant. Then we writecc [CCN' — CCN"]: CCN for

cc € CCN AVed' € CCN' o (Fec” € CON" 0 1p(cc) ooy, p'(cc’) = p”(ec)) .

The Explanation of the Assembler Fixed Point

In the explanation of the assembler fixed point given in $edd.3, we have

to replace the definitions ofiss” and ass” by ass” = ass ee p(ass’) and

ass’" = (assee p(ass’)) ee p(ass’), assuming that is the bs-representation func-

tion of ACN. Moreover, we have to adapt Formulgk (L), B), (4), &hd (ghsy.
Formula[(1) must be replaced by

Vac € ACN e ass e p(ac) =, (ass ee p(ass’)) ee p(ac) .
Formula[3) must be replaced by
ass ee p(ass’) = (ass ee p(ass’)) ee p(ass’) .

Formula[(4) must be replaced by

ass” = ass" e® p(ass’) .
Formula[%) must be replaced by

ass” ee p(ass’) = ass’’ ee p(ass’) .
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The Explanation of the Compiler Fixed Point

In the explanation of the compiler fixed point given in Secf#b4, we have to re-
place the definitions aforn” andcom’’ by com” = (asseep,(com))ee ps(com’)
andcom’’ = (assee ((assee p,(com))ee ps(com’)))ee ps(com’), assuming that
ps is the bs-representation function 8€N andp, is the bs-representation func-
tion of ACN. Moreover, we have to adapt Formulgk (B), @B), (9), (Hghtdy.
Formula[[6) must be replaced by

Vsc € SCN o
ass ee ((ass ee p,(com)) ee py(sc))

= ass ee ((ass ee ((ass ee p,(com)) ee ps(com’))) ee ps(sc)) .

Formula[8) must be replaced by

ass ee ((ass ee p,(com)) ee ps(com’))

. ass ee ((ass we ((ass o® pa(com)) e py(com’))) ee py(com’)) .
Formula[[®) must be replaced by
com”" = (ass ee com’") ee p(com’) .

Formula[[Z0) must be replaced by

(ass e® com'’) ee ps(com’) = (ass ee com’") ee ps(com’) .

The Correctness Criterion for Interpreters

The correctness criterion for interpreters given in Sedid, i.e. Formula{11),
must be replaced by

Vsc € SCN, (bs1,...,bsm) € BS™ o

(ass ooy, ((ass gy pa(com,)) eeyy ps(sc))) ey bsi, ..., bspy,

= int eey, ((ass eeyy pa(com;)) eeyy ps(sc)), bsi,. .., bspy, ,

assuming thap is the bs-representation function 8CN and p, is the bs-
representation function AACN.
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7 An Execution Architecture for Machine Structures

Machine structures in themselves are not always sufficeakplain issues con-
cerning control codes that are independent of the detaithebehaviours that
are controlled. In cases where systems that provide execetivironments for
the executable codes of machine structures are involvet, as in the case of
portability of control codes, an abstract model of suchaystis needed. In this
section, we outline an appropriate model. This model isrreéeto as the execu-
tion architecture for code controlled machine structultés.a synthetic execution
architecture in the sense of [10]. It can be looked upon asbatract model of

operating systems restricted to file management facititiesfacilities for loading

and execution of executable codes.

The execution architecture for code controlled machinecstires, which is
parameterized by a code controlled machine strucliites an abstract model
of a system that provides an execution environment for tiee@able codes of
M. It can be looked upon as a machine. This machine is opergtedelans of
instructions that either yield a reply or diverge. The pblssireplies arel and
F. File names are used in the instructions to refer to the kjtiseces present in
the machine. It is assumed that a countably infinite B¢€tn of file nameshas
been given. While designing the instruction set, we focdigse convenience of
use rather than minimality.

Let M = (BS,{u. | n € N}, E) be a code controlled machine structure.
Then the instruction set consists of the following instiwts:

— for eachf € FA'm andbs € BS, asetinstructionset:f:bs;

— for eachf € F\'m, aremoveinstructionrm:f;

— for eachfy, fo € FN'm, acopyinstructioncp:f; :fo;

— for eachfy, o € FN'm, amoveinstructionmv:fi:fs;

— for eachfi, o € F\'m, aconcatenatiofinstructioncat:f; : f;

— for eachfy, fo € FN'm, atest on equalitynstructiontsteq:fi :f>;

— for eachfy, f € FN'm, atest on differencenstructiontstne:fi:f>;

— for eachf € F\'m, atest on existenciastructiontstex:f;

— for eachf € F\'m, aloadinstructionload:f;

—for each fi,....fm,f{s- -\ [ € JFNm, an execute instruction

We write I for this instruction set.

We say that a file name is in use if it has a bit sequence assignstte of
the machine comprises the file names that are in use, thegpiesees assigned to
those file names, a flag indicating whether there is a loadeduable code, and
the loaded executable code if there is one.

The instructions can be explained in terms of the effectttina have and the
reply that they yield as follows:

— set:f:bs: the file namef is added to the file names in use if it is not in use, the
bit sequenceés is assigned tg, and the reply isT;

— rm:f: if the file namef is in use, then it is removed from the file names in use
and the reply isT; otherwise, nothing changes and the repll;is
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— cp:fi:fo: if the file namef; is in use, then the file namf is added to the file
names in use if it is not in use, the bit sequence assigngds@ssigned tg;,
and the reply idl'; otherwise, nothing changes and the repll;is

— mv:fi:fo: if the file namef; is in use, then the file name is added to the file
names in use if it is not in use, the bit sequence assigngds@ssigned tg;,
f1 is removed from the file names in use, and the replly,istherwise, nothing
changes and the reply ks

— cat:fy:f5: if the file namesf; andf, are in use, then the concatenation of the
bit sequence assignedfoand the bit sequence assigneditts assigned tg,
and the reply isT; otherwise, nothing changes and the repll;is

— tsteq:fi:fo: if the file nameg; andf, are in use and the bit sequence assigned
to fi equals the bit sequence assigneg tahen nothing changes and the reply
is T; otherwise, nothing changes and the repll;is

— tstne:fi:fo: if the file nameg; andf; are in use and the bit sequence assigned
to fi does not equal the bit sequence assignefd, tthen nothing changes and
the reply isT; otherwise, nothing changes and the replf;is

— tstex:f: if the file namef is in use, then nothing changes and the reply;is
otherwise, nothing changes and the repli;is

— load:f: if the file namef is in use and the bit sequence assigned is a
member ofF, then the bit sequence assigned tis loaded and the reply i§;
otherwise, nothing changes and the repl;is

— exec:fi:...ifm>f:. ..o f): if the file namedf, . . ., /i, have bit sequences as-
signed, sayss, . . ., bs,,, and there is a loaded executable code asakien:
— if z 00l bsy,..., bs,, € BS, then:
oz oog'm bs1, ..., bsy, is assigned tg; for eachi with 1 < i < n such
thatz eely, bsy, ..., bsy, € BS,
e f/is removed from the file names in use for edalith 1 < i < n
such that: eel; bsq, ..., bsy, = M,
and the reply isT;
— if z e} bsy,..., bs,, = M, then nothing changes and the repl¥is
—ifz ooéﬁ bs1,..., bs, = D, then the machine does not halt;

otherwise, nothing changes and the replf.is

yields the replyF: (a) there is no loaded executable code; (b) there is some file
name amond, . . ., f,,, thatis notin use; (c) there is no output produced, although
the machine halts.

The instructions of which the effect depends on the coderoted machine
structureé®t are the load and execute instructions only. All other ircttams could
be eliminated in favour of executable codes, assigned ta/friite names. How-
ever, we believe that elimination of these instructions Mfawt contribute to a
useful execution architecture. The distinction made betwleading and execu-
tion of executable codes allows for telling load-time esrfsom run-time errors.
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8 Thread Algebra

The execution architecture for code controlled machingcstires outlined above
can be looked upon as a machine which is operated by meanstafdtions that
yield T or F as reply. In cases where this execution architecture isatttedexplain
issues concerning control codes, such as in the case objitytaf control codes,
processes that operate upon the execution architectueetbdwe described. An
existing extension of BTA (Basic Thread Algebra), first meted in[[9], is tailored
to the description of processes that operate upon machimies kind to which the
execution architecture belongs. Therefore, we have chiosgse in Section 10 the
extension of BTA in question to describe processes thati@epon the execution
architecture. In this section, we review BTA, including gieed recursion and the
approximation induction principle, and the relevant exten.

8.1 Basic Thread Algebra

BTA is concerned with the behaviours produced by determiinégquential pro-
grams under execution. The behaviours concerned are ¢hteads It does not
matter how programs are executed: threads may originate &xecution by a
computer, or they may originate from execution by a humamaipe In [6], BTA
is introduced under the name BPPA (Basic Polarized Proclgghre).

In BTA, it is assumed that there is a fixed but arbitrary setadic actionsA.
The intuition is that each basic action performed by a thisadken as a com-
mand to be processed by a service provided by the executisroement of the
thread. The processing of a command may involve a changatefatthe service
concerned. At completion of the processing of the commadredservice produces
areply value. This reply is eithér or F and is returned to the thread concerned.

Although BTA is one-sorted, we make this sort explicit. Thagon for this is
that we will extend BTA with additional sorts in Section8.2.

The algebraic theory BTA has one sort: the sBrbf threads BTA has the
following constants and operators:

— thedeadlockconstanD : T;

— theterminationconstant : T;

— for eacha € A, the binarypostconditional compositioaperator. <a > _ :
TxT—T.

Terms of sorfT" are built as usual. Throughout the paper, we assume thataher
infinitely many variables of soff, includingu, v, w.

We use infix notation for postconditional composition. Wraduceaction
prefixingas an abbreviatiomop, wherep is a term of sorfl’, abbreviatep<ta >p.

Let p andq be closed terms of sofif anda € A. Thenp <a > ¢ will perform
actiona, and after that proceed asif the processing ot leads to the repiy
(called a positive reply) and proceed@s the processing ofi leads to the reply
F (called a negative reply).
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Table 1 Axioms for guarded recursion

(X|E) = (tx|E) ifX=tx € E RDP
E = X = (X|E) if X € V(E) RSP

Table 2 Approximation induction principle

/\nZO Tn(u) = m(v) = u=1v AIP

Each closed term of soff from the language of BTA denotes a finite thread,
i.e. a thread of which the length of the sequences of actiwatsttcan perform is
bounded. Guarded recursive specifications give rise toti@fihreads.

A guarded recursive specificatiaaver BTA is a set of recursion equations
E={X =tx | X € V}, whereV is a set of variables of soff and each x
is a term of sorfT" that has the fornD, S or¢ <a > t'. We write V(E) for the set
of all variables that occur on the left-hand side of an equnith £. We are only
interested in models of BTA in which guarded recursive digtions have unique
solutions, such as the projective limit model of BTA presekin [4].

We extend BTA with guarded recursion by adding constantsdutions of
guarded recursive specifications and axioms concernisg thgditional constants.
For each guarded recursive specificattband eachX € V(E), we add a constant
of sort T standing for the unique solution @& for X to the constants of BTA.
The constant standing for the unique solutionfofor X is denoted by X |E).
Moreover, we add the axioms for guarded recursion given bield to BTA,
where we writg(t x | E') for tx with, for allY € V(E), all occurrences of in tx
replaced by(Y'|E)). In this table X, t x andF stand for an arbitrary variable of sort
T, an arbitrary term of soff’ from the language of BTA, and an arbitrary guarded
recursive specification over BTA, respectively. Side ctinds are added to restrict
the variables, terms and guarded recursive specificatmmsifich X, tx and F
stand. The equationsX |E) = (tx|FE) for a fixed E express that the constants
(X|E) make up a solution oF. The conditional equations8 = X = (X|E)
express that this solution is the only one.

We will write BTA+REC for BTA extended with the constants fwlutions of
guarded recursive specifications and axioms RDP and RSP.

In [[7], we show that the processes considered in BTA+REC eavidwed as
processes that are definable over ACE [14].

Closed terms of sorl' from the language of BTA+REC that denote the
same infinite thread cannot always be proved equal by meatieadxioms of
BTA+REC. We introduce the approximation induction prifeipo remedy this.
The approximation induction principle, AIP in short, is bdon the view that two
threads are identical if their approximations up to any dirdepth are identical.
The approximation up to depth of a thread is obtained by cutting it off after
performing a sequence of actions of length

AIP is the infinitary conditional equation given in Table Zt#d, following [6],
approximation of depth is phrased in terms of a unapyojectionoperatorr,,.
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Table 3 Axioms for projection operators

mo(u) =D PO
Tn+1(S) =S P1
Tns1(D) = D P2
Tnt1(u<a>v) =mp(u) Jal> m,(v) P3

The axioms for the projection operators are given in Tabla tis tablea stands
for an arbitrary member ofl.

8.2 Applying Threads to Services

We extend BTA+REC to a theory that covers the effects of dpglyhreads to
services.

It is assumed that there is a fixed but arbitrary setoof 7 and a fixed but
arbitrary set ofethodsM. For the set of basic action4, we take the sef'M =
{fm| f € F, me M} Eachfocusplays the role of a name of a service provided
by the execution environment that can be requested to m@esmmand. Each
method plays the role of a command proper. Performing a leaion f.m is
taken as making a request to the service najhedprocess the command.

We introduce a second sort: the sB8rof services However, we will not in-
troduce constants and operators to build terms of this Soi. a parameter of
theories with thread-to-service applicatidh.is considered to stand for the set
of all services. It is assumed that each service can be mmesby a function
H: M* — {T,F,D} with the property that/ (y) = D = H(y~ (m)) = D for
all y € M* andm € M. This function is called theeply function of the service.
Given a reply functior and a methodh € M, thederivedreply function of H
after processingn, written -2- 1, is defined by2- H () = H({m) ~ ).

The connection between a reply functiGhand the service represented by it
can be understood as follows:

— if H({(m)) = T, the request to process commands accepted by the service,
the reply is positive and the service proceed%angdf ;

— if H({(m)) = F, the request to process commands accepted by the service,
the reply is negative and the service proceed§naél;

— if H({m)) = D, either the processing of commandby the service does not
halt or the processing of a previous command by the servitadtihalt.

Henceforth, we will identify a reply function with the secei represented by it.

It is assumed that there is andefined servicé¢ with the property that(v) =
D forall vy € M.

For eachf € F, we introduce the binargpplyoperator. ey _: T x S — T.
Intuitively, pe s H is the service that evolves froffi on processing all basic actions
performed by threag that are of the forny.m by H. When a basic actiori.m
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Table 4 Axioms for apply

weyt =17 TSAO
Se;H=H TSA1
De; H=1 TSA2
(udgm>wv)ey H=" iff#£g TSA3
(udfm>v)e H=ue; ;2 H if H((m)) =T TSA4
(udfm>v)e; H=ve; 2 H if H((m)) =F TSA5
(ud fm>v)es H=1 if H((m)) =D TSAG6
(Apsomn(u)ef H="1) = uey H=1 TSA7

performed by threag is processed by, p proceeds on the basis of the reply
value produced.

The axioms for the apply operators are given in Table 4. Istdible,f andg
stand for arbitrary foci frond# andm stands for an arbitrary method fram. The
axioms show that e ; 4 does not equalt only if threadp performs no other basic
actions than ones of the forifvm and eventually terminates successfully.

Letp be a closed term of sofif from the language of BTA+REC and be a
closed term of so$. Thenp convergesrom H on f if there exists am € N such
that, (p) ey H # 1. Notice that axiom TSA7 can be read as followsu ifloes
not converge fronH on f, thenu ey H equalst.

The extension of BTA introduced above originates from [B]tHe remainder
of this paper, we will use just one focus. We have introdubedjeneral case here
because the use of several foci might be needed on furthssraléon of the work
presented in this paper.

9 The Execution Architecture Services

In order to be able to use the extension of BTA presented atmoslescribe pro-
cesses that operate upon the execution architecture fer caatrolled machine
structures outlined in Sectidn 7, we have to associate acsenith each state of
the execution architecture. In this section, we first foimeathe execution archi-
tecture for code controlled machine structures and theocads a service with
each of its states.

9.1 The Execution Architecture Formalized

The execution architecture for code controlled machingctlires consists of an
instruction set, a state set, an effect function, and a ¥ieldtion. The effect and
yield functions give, for each instructianand states, the state and reply, respec-
tively, that result from processingin states.
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Table 5 Effect function for an execution architecturieq I)

eff (set:f:bs, (o,2)) = (0 @ [f — bs], x)

eff (rm:f, (0, 2)) = (0 < {f}, =)

eff (cp:fi:fo, (0,2)) = (0 @ [fo = o ()], 2) if fi € dom(o)

eff (cp:fiifor (0,2)) = (0, 2) it /i ¢ dom(o)

eff (i, (0,2)) = (0. [ = o (1)) < {i},2) i fi € dom(o)

eff (i, (0,2)) = (0, 2) it /i ¢ dom(o)

eff (cat:fiifo, (5,2)) = (0 & [fo = o) ~ o ()], ) if fi € dom(o) A fs € dom(o)

eff (cat:fi:fe, (0, z)) = (0, ) if fi € dom(o)V fo & dom(o)

eff (tsteq:f1:f2, (0, ) = (0, x)

eff (tstne:fi:f2, (0, z)) = (0, )

eff (tstex:f, (o, x)) = (0, x)

eff (load:f, (o, z)) = (o,0(f)) if f € dom(c) Ao(f) € E

eff (load:f, (0, 2)) = (0, ) it f ¢ dom(e) V o(f) ¢ B

eff (exec:fii...:fm>flie . ifny(0,2)) = ((.. . (6 DoY) ... Do), x)
where o) = [f/ — x eely o(f1),...,0(fn)] if zeely a(fi),...,0(fn) € BS

o =] if zeoedy o(fi),...,0(fn) =M

ifz € EAfi €dom(a)A...Afm € dom(c) Axeety o(fi),...,o(fm) € BS

eff (exec:fii...ifm>fl1 . ifn, ((r z)) = (o,x)

ifz g EVfi gdom(o) V...V f, &dom(c)Vzeey, o(fi),...,o(fm) =M
eff (exec:fi: ... :fm>fli. . :fo, ((r x)) =sp

ifr g EVfi gdom(c) V...V f, &dom(c)V xeey, a(fi),...,o(fm) =
eff (i,sp) = sp

Itis assumed thato & (Upep,, (vim) (F — BS)) x (BS U {M}). Here,sp
stands for a state of divergence.

Let M = (BS,{un | n € N}, F) be a code controlled machine structure.
Then theexecution architecturéor 9t consists of

— the instruction sef defined in Sectiohl7;
— the state se$ defined by

S = <<F€Pf9mm)(F - BS)> x (EU {M})) U{sp} ;

— the effect functioreff : I x S — S defined in Tabl&l5;
— the yield functionyld : I x S — {T,F,D} defined in Tabl&l6.

We use the following notation for functions:for the empty functionfd — r] for
the functionf with dom(f) = {d} such thatf(d) = r; f & g for the functionh
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Table 6 Yield function for an execution architectured I)

yld(set:f:bs, (o,2)) =T
yld(rm:f, (o,2)) =T if f € dom(o)
yld(rm:f, (o,z)) =F if f & dom(o)
yld(cp:fifa, (0,2)) =T  if i € dom(o)
yld(cp:fi:fa, (o,2)) =F  if fi € dom(o)
yld(mv:fi:fo, (o,2)) =T if fi € dom(o)
yld(mv:fi:fo, (o,2)) =F if fi & dom(o)
yld(cat:fi:fo, (o,x)) =T if i € dom(o) A fo € dom(o)
yld(cat:fi:fo, (0,2)) =F if i € dom(o) V fo € dom(o)
yld(tsteq:fi:fa, (0,2)) =T if i € dom(o) A fo € dom(o) Ao (fi) = o(f2)
yld(tsteq:fi:fe, (0,)) = F it fi ¢ dom(a) V fo & dom() V o (f1) # o(fe)
yld(tstne:fi:fo, (0,2)) =T if fi € dom(o) A fo € dom(o) Ao (fi) # o(f2)
yld(tstne:fi:fo, (0,2)) = F if i € dom(o) V fo € dom(o) V o(fi) = o(f2)
yld(tstex:f, (o,z)) =T if f € dom(o)
yld(tstex:f, (o,z)) =F if f ¢ dom(o)
yld(load:f, (o,2)) =T if f € dom(o) Ao(f) € E
yld(load:f, (o,z)) = F if f Zdom(o)Vo(f) € E
yld(exec:fi:..ifm>fle. . ifh (0,2) =T

ifz € EAfi €dom(a)A...A fm € dom(c) Axeety o(fi),...,o(fm) € BS
yld(exec:fi: ... fm>f:. .. :fn, (O’ z))=F

ifz g EVfi g dom(a) V...V fr, €dom(c) Vxeely a(fi),...,o(fm) =

yld(exec:fi: ... :fm>f:. . ifn, (U7 z))=D
ifeg EVfi ¢ dom(o) V...V fn & dom(c)V xeesy o(fi),...,0(fn) =D
yld(i,sp) = D

with dom(h) = dom(f) U dom(g) such that for ald € dom(h), h(d) = f(d)
if d ¢ dom(g) andh(d) = g(d) otherwise; andf < D for the functiong with
dom(g) = dom(f) \ D such that for all € dom(g), g(d) = f(d).

Let (o,x) € S, and letf € FN'm. Thenf is in use iff € dom(c), and there
is a loaded executable codeiif£ M. If f is in use, ther (f) is the bit sequence
assigned tg. If there is a loaded executable code, thes the loaded executable
code.

Execute instructions can diverge. When an instructionrde®, a situation
arises in which no reply can be produced and no further ioStnus can be pro-
cessed. This is modelled kyf producingsp andyld producingD.
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9.2 The Family of Execution Architecture Services

Each state of the execution architecture for code conttoflachine structures can
be looked upon as a service by assuming fhat M and extending the functions
eff andyld from I to M by stipulating thakff (m, s) = sp andyld(m,s) = D
forallm e M\ IandseS.

We define, for each € .S, a cumulative effect functioneff, : M* — S'in
terms ofs andeff as follows:

ceff (()) = s
ceff s(v ~ (m)) = eff (m, ceff , (7)) -

We define, for each € S, anexecution architecture servidé,: M+ — {T,F,D}
in terms ofceff , andyld as follows:

Hy(y ~ (m) = yld(m, ceff (7)) -

For eachs € S, H; is a service indeedd;(y) = D = Hy(y~ (m)) =D
for all v € M* andm € M. This follows from the following property of the
execution architecture for code controlled machine stmest

dsc SeVic Ie
(yld(i,s) =D AVs € Se(yld(i,s') =D = eff(i,s') = s)) .

The witnessing state of this propertysis. This state is connected with the unde-
fined servicet as follows:Hy, = 1.

It is worth mentioning thaH ((m)) = yld(m, s) and % H, = H g (m.s)-

We write £AS™ for the family of serviced H, | s € S}.

10 Control Codes and Execution Architecture Services

In this section, we make precise what it means that a contaié ¢s installed on
an execution architecture service and what it means thattaat@ode is portable
from one execution architecture service to another execatichitecture service.

10.1 Installed Control Codes

The intuition is that a control code is installed on an exieuarchitecture service
if either some file name has assigned an executable versitie abntrol code or
some file name has assigned an interpretable version of titeoteode and an
appropriate interpreter is also installed on the execwichitecture service.

Let M = (BS,{u. | n € N}, E) be a code controlled machine structure,
let (CCN, 1) be a control code notation foft, letc € CCN, and letEAS =
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Hyy € EAS™. Thenc isinstalledon EAS if there existfy, . . ., f; € FN'm with
o(fo) € E such that

v<b51,.. .,b5m> € BS* e
/\ner(c) ool bs1,...,bsm = 0(fy) e} o(fi),...,o(fi), bs1,...,bsm .

A control code is pre-installed on an execution architextervice if the ex-
ecution architecture service can be expanded to one on ithiglnstalled, us-
ing only control codes and data already assigned to file nafitegad algebra
is brought into play to make precise what it means that anwgi@carchitecture
service can be expanded to another execution archited@uories.

Let M = (BS,{un | n € N}, F) be a code controlled machine structure,
let EAS = H, .y € EAS™, and letEAS’ = H(,: 1) € EAS™. ThenEAS is
expansiblgo EAS’ if:

— dom(o) C dom(o’) ando(f) = o’ (f) for all f € dom(o);
— there exists a thregdwithout basic actions of the formm.set:f:bs such that
FAS' = pe., FAS.

Letdt = (BS,{un | n € N}, E) be a code controlled machine structure, let
(CCN 1) be a control code notation foR, letc € CCN, and letEAS € EAS™.
Thenc is pre-installedon EAS if

— cis notinstalledon EAS;
— there exists &AS’ € EAS™ such thatEAS is expansible taEAS” andc is
installedon EAS’.

Example 3Take an assembly code notatiohCN and a source code notation
SCN. Consider an execution architecture servit€S on which file namef has
assigned an executable version of an assemblet €4y, file namef; has assigned
an ACN version of a compiler folSCN, and file name; has nothing assigned.
Suppose that no file name has assigned an executable vefsiba compiler.
Then the compiler is not installed diA.S. However, the compiler is pre-installed
on FAS because it is installed on the expanded execution architeservice
(ea.load:f; o ea.exec:fo>f3) ey EAS.

10.2 Portable Control Codes

We take portability of control code to mean portability frenservice defined by
the execution architecture for one machine structure tondcgedefined by the
execution architecture for another machine structure.

Transportability is considered a property of all bit secpessy i.e. each bit se-
guence can be transported between any two services definexebytion archi-
tectures for machine structures. Therefore, it is assuinaidelvery bit sequence
assigned to a file name on a service can be assigned to a file orameother
service by means of an instruction of the fosen:f:bs.
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A prerequisite for portability of a control code from a seevidefined by the
execution architecture for one machine structure to aceéfined by the execu-
tion architecture for another machine structure is thatafianputs covered by the
former machine structure, the outputs produced under alooitthe control code
coincide for the two machine structures concerned. Monedveaust be possible
to expand the service from which the control code originateh that the control
code is pre-installed on the other service after some bitesecps assigned to file
names on the expanded service are assigned to file namesathénservice.

Let M = (BS,{u, | n € N}, E) andW = (BS',{u!, | n € N}, E’)
be code controlled machine structures such f#stC BS’, let (CCN, ) and
(CCN ,4'") be control code notations fé9t andt’, respectively, let € CCN,
and letEAS) = Hy, o) € EAS™ and BASy = H|,, ., € EAS™ . Thenc is
portablefrom EAS, to EASj if

— V(bs1,...,b8m) € BS™ e
(¢(c) oody bs1, ..., bsy, # D
= N,en¥(c) ooy bsy, ..., bsy, = ' (c) ooy, bsy, ..., bsy,) .
— there exists &@AS1 = H,, .,) € EAS™ such that
— EAS, is expansible taFA S,
— there existfy, . .., fi € dom(o1) \ dom(ay)) such that is pre-installed on
(ea.set:fi:o1(fi) o...0easet:fi:o1(f;)) ®ea EAS),.

Because we assume that the &&fm of file names is countably infinite, this
definition does not imply that the bit sequences to be tramsgddave to be as-
signed to the same file names at both sides.

Example 4Take a source code notaticfCN and an assembly code notation
ACN. Consider an execution architecture servicéS on which file namef;
has assigned an executable version of a compilerSf@N that produces as-
sembly codes fromiCN, file namef, has assigned a source code fréfiV,
and file namef; has nothing assigned. Moreover, consider another execatio
chitecture serviceZAS’ on which file namef; has assigned an executable ver-
sion of an assembler fat CN, and file namef; has nothing assigned. Suppose
that the above-mentioned prerequisite for portability e source code is ful-
filled. Then the source code is portable frdflS to EAS’ because it is pre-
installed orea.set:f;:bs ., FAS’ wherebs is the bit sequence assignedfioon
(ea.load:f; o ea.exec:fo>f3) ey EAS.

11 Conclusions

We have presented a logical approach to explain issues ongeontrol codes
that are independent of the details of the behaviours teatartrolled at a very ab-
stract level. We have illustrated the approach by meansarfiples which demon-
strate that there are non-trivial issues that can be exgdaat this level. In the
explanations given, we have consciously been guided byrezabiiewpoints usu-
ally taken by practitioners rather than theoretical vieimpo The issues that have
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been considered are well understood for quite a time. Agfitia of the approach
to issues that are not yet well understood is left for futuoekwWe think among

other things of applications in the areas of software assatcgng, which is an

important part of IT sourcing, and software patents. Attiéaes concept of control
code can be exploited to put an end to the lack of conceptaatcin these areas
about what is software.

We have based the approach on abstract machine modeld,matdine struc-
tures. If systems that provide execution environmentsHerexecutable codes of
machine structures are involved in the issues to be exmlathen more is needed.
We have introduced an execution architecture for machimetstres as a model of
such systems and have explained portability of control sadéng this execution
architecture and an extension of basic thread algebra. ¥émugon architecture
for machine structures, as well as the extension of bastathalgebra, may form
part of a setting in which the different kinds of processest tire often trans-
ferred when sourcing software assets, in particular soéveaploitation, can be
described and discussed.

We have looked at viewpoints of practitioners from a thaoatiperspective.
Unfortunately, it is unavoidable that the concepts intretlicannot all be asso-
ciated directly with the practice that we are concerned abblis means that
reading of the paper might be difficult for practitionerseféfore, the paper must
be considered a paper for theorists.

We have explained issues originating from the areas of denspand software
portability. The literature on compilers is mainly concedrwith theory and tech-
nigues of compiler construction. A lot of that has been biauggether in text-
books such as [1,26]. To our knowledge, the phenomenon teatall the com-
piler fixed point is not even informally discussed in therkteire on compilers.
The literature on software portability is mainly concermeth tools, techniques
and guidelines to achieve portability. The best-known papa& software porta-
bility are early papers such as [22] 23]. To our knowledge cthncept of portable
program is only very informally discussed in the literataresoftware portability.
Moreover, we are not aware of formal descriptions of comnmdileed point and
portable program in the literature on formal methods.
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