
Newcastle University e-prints

Date deposited: 8th
 January 2013

Version of file: Author final

Peer Review Status: Peer reviewed

Citation for item:

Zuliani P. Reasoning about faulty quantum programs. Acta Informatica 2009, 46(6), 403-432.

Further information on publisher website:

http://link.springer.com

Publisher’s copyright statement:

The definitive version of this article is published by Springer-Verlag, 2009 and is available at:

http://dx.doi.org/10.1007/s00236-009-0100-0

Always use the definitive version when citing.

Use Policy:

The full-text may be used and/or reproduced and given to third parties in any format or medium,

without prior permission or charge, for personal research or study, educational, or not for profit

purposes provided that:

• A full bibliographic reference is made to the original source

• A link is made to the metadata record in Newcastle E-prints

• The full text is not changed in any way.

The full-text must not be sold in any format or medium without the formal permission of the

copyright holders.

 Robinson Library, University of Newcastle upon Tyne, Newcastle upon Tyne.

NE1 7RU. Tel. 0191 222 6000

Reasoning about faulty quantum

programs

Paolo Zuliani

Computer Science Department

Carnegie Mellon University

Pittsburgh, PA 15213, USA

pzuliani@cs.cmu.edu

Abstract

We show how to use a programming language for formally describ-
ing and reasoning about errors in quantum computation. The formali-
sation is based on the concept of performing the correct operation with
probability at least p, and the erroneous one with probability at most
1-p. We apply the concept to two examples: Bell’s inequalities and
the Deutsch-Jozsa quantum algorithm. The former is a fundamental
thought experiment aimed at showing that Quantum Mechanics is not
“local and realist”, and it is used in quantum cryptography protocols.
We study it assuming faulty measurements, and we derive hardware
reliability conditions that must be satisfied in order for the experiment
to support its conclusions. The latter is a quantum algorithm for ef-
ficiently solving a classification problem for Boolean functions. The
algorithm solves the problem with no error, but when we introduce
faulty operations it becomes a two-sided error algorithm. Reasoning is
accomplished via standard programming laws and quantum laws.

1 Introduction

In this paper we use the quantum programming language qGCL for reason-
ing about errors in quantum computation. The effects of faulty hardware on
computation is an inherently important topic, which is even more important
for quantum computation. As a matter of fact, the speed-up promised by
quantum computers can be realised only by relatively error-free components.
The presence of noise (via interaction with the environment) translates into
errors for the quantum computer, which thus deviates from its proposed
task. The fundamental threshold theorem for quantum computation states

1

that if the error rate is below a certain threshold, it is possible to carry
out successfully an arbitrarily long quantum computation (by using suitable
quantum error-correcting codes; see Chapter 10 of [15]). Therefore, from a
theoretical point of view quantum computers are realisable. However, inad-
equacy of current technology severely limits the demonstration of feasibility
of quantum computing.

qGCL [17] was developed as a superset of the probabilistic guarded-
command language pGCL [14]. One of the most important features of pGCL
is its treatment of both probabilistic choice and demonic choice, which is
the basis for our work. Other quantum programming languages, such as
Selinger’s QPL [18] or Altenkirch and Grattage’s QML [2], do not offer
demonic choice (probabilistic choice is implicitly offered in the quantum
model). For a survey of other quantum programming languages see [10].

A quantum computation is usually composed of initialisation followed
by evolution and finally by finalisation. In this work we provide a simple
model for faulty initialisation and finalisation (a model for error propagation
in evolution is being investigated, and it is sketched in Section 6). The
formalisation is based on the concept of performing the correct operation
with probability at least p, and the erroneous one with probability at most
1 − p. The technical foundation is provided by the combined treatment of
probabilistic choice and demonic choice in pGCL. This enables a rigorous
formalisation to be given of the error model.

We apply the concept to two examples: Bell’s inequalities and the Deutsch-
Jozsa quantum algorithm. The former is a fundamental thought experiment
aimed at showing that Quantum Mechanics cannot be “local and realist”,
like Classical Mechanics. By local it is meant that any physical system can-
not influence another at a speed greater than the speed of light. Realist
means that any physical property of a system is well-determined at any one
time, and in particular it does not depend on other, distant, systems. As
known, Bell [4] devised a thought experiment and derived from it a set of
inequalities which are true in any local and realist theory, but fail within
Quantum Mechanics. Experiments performed by Aspect et al. [3] confirmed
the violation of Bell inequalities, in the way predicted by quantum theory.
Ekert [8] used the violation of Bell inequalities to detect eavesdropping in
a quantum key-distribution protocol (in such a protocol keys are securely
distributed between two partners, and then used as one-time pads). An im-
plementation of Ekert’s protocol has been successfully tested over a freespace
distance of 144km [19]. Recently, physicists have been able to transmit en-
tangled photon pairs over the same distance [9], showing that multi-photons
protocols (e.g., quantum dense coding [5]) are also feasible over freespace

2

channels. We study Bell’s thought experiment assuming faulty measure-
ments, and we derive hardware reliability conditions that must be satisfied
in order for the experiment to violate the inequalities.

The Deutsch-Jozsa quantum algorithm [7] is one of the few known quan-
tum algorithms and efficiently solves a classification problem: given a Boolean
function f which is “promised” to be either constant or balanced, find which
holds. A classical algorithm must evaluate f an exponential number of times
in the worst case, while the Deutsch-Jozsa algorithm always needs only a
single evaluation. The quantum algorithm solves the problem with no er-
ror, but when we introduce faulty operations it becomes a two-sided error
algorithm. We also derive a lower bound on the probability that it replies
correctly.

The aim of this work is not to provide a detailed model of faulty quan-
tum computation, such as the superoperator quantum circuits of Aharonov
et al. [1]. That is a very important approach useful for performing precise
calculations about errors. We instead aim at giving a higher-level descrip-
tion which, while being more abstract, is nonetheless rigorous, allow mixing
quantum and classical code, and makes use of programming laws (thus pos-
sibly looking more familiar to computer scientists).

2 Quantum programming

2.1 Quantum types

We define the type B =̂ {0, 1}, which we will treat as Booleans or bits,
depending on convenience. A classical register of size n:N+ is a vector of
n Booleans. The type of all registers of size n is then defined to be the set
of Boolean-valued functions on {0, 1, . . . , n − 1}, i.e. B n =̂ [n] −→ B . The
quantum analogue of B n is the set of complex-valued functions on B n whose
squared modulus sum to 1:

q(B n) =̂ {χ:B n −→ C |
∑

x:B n

|χ(x)|2 = 1} .

An element of q(B) is called a qubit and that of q(B n) a qureg. Classical
state is embedded in its quantum analogue by the Dirac delta function:

δ:B n −→ q(B n)
δx(y) =̂ (y = x) .

3

The range of δ, {δx | x:B n}, forms a basis for quantum states, that is:

∀χ ∈ q(B n) χ =
∑

x:B n

χ(x)δx .

The Hilbert space B n −→ C (with the structure making it isomorphic to
C2n

) is called the enveloping space of q(B n). The usual scalar product
becomes the application 〈·, ·〉:q(B n) × q(B n) → C defined by:

〈ψ, φ〉 =̂
∑

x:B n

ψ(x)∗φ(x)

where z∗ is the complex conjugate of z:C . The length of ψ is defined
‖ψ‖ =̂ 〈ψ,ψ〉 1

2 .
In standard computation we can describe the state space of a program

having multiple component variables as the Cartesian product of the single
components. In quantum computation the analogue construction is rep-
resented by the tensor product of the components. The tensor product of
(standard) registers is defined

⊗ : Bm×B n → Bm+n

(x⊗ y)(i) =̂ x(i div n) · y(i mod n)

and readily shown to be surjective. That definition lifts, via δ and linearity,
to quantum registers

⊗ : q(Bm)×q(B n) → q(Bm+n) .

For sets E and F of quregs we write

E ⊗ F =̂ {χ⊗ ξ | χ ∈ E ∧ ξ ∈ F} .
The following isomorphism is easy to prove

q(Bm×B n) ∼= q(Bm) ⊗ q(B n) .

In order to simplify notation, we shall not write the tensor symbol for the
elements of the standard basis {δx | x:B n}. For example, in q(B 2) we shall
write δ01 for δ0 ⊗ δ1.

Next tensor product of functions on registers is defined

⊗ : (Bm → Bm) × (B n → B n) → (Bm+n → Bm+n)

(A⊗B)(x⊗ y) =̂ A(x) ⊗B(y) .

Finally ⊗ is extended by linearity to functions on quantum registers, for
which we follow tradition and use the same symbol yet again

⊗ : q(Bm → B
m) × q(B n → B

n) → q(Bm+n → B
m+n) .

More facts on the tensor product are provided in Appendix C.

4

2.2 Quantum language qGCL

qGCL is an extension of pGCL [14], which in turn extends Dijkstra’s guarded-
command language with a probabilistic choice constructor in order to ad-
dress probabilism. The syntax of pGCL (without iteration) is:

prg =̂ skip | abort | x := e | prg # prg | if 8 bi → prgi fi | prg ⊓ prg
| var v:D • prg rav | prg p⊕ prg

The probabilistic combinator p⊕ executes its LHS (RHS) with probability
p (p̄). For probability p we define p̄ =̂ 1 − p. Both probabilistic and non-
deterministic choice may be written using a prefix notation. Let {(Pj , rj)}
for j ∈ [m] be a finite indexed family of (program, number) pairs with∑
rj = 1, then the probabilistic choice in which Pj is chosen with probabil-

ity rj is written in prefix form: [Pj @ rj | j ∈ [m]]. For nondeterministic
choice the notation is similar. Semantics for pGCL can be given in terms of
expectation-transformers, which is a generalisation of the usual predicate-
transformer semantics (see Appendix B for more details).

A quantum program is a pGCL program invoking quantum procedures
and the resulting language is called qGCL. Quantum procedures can be
of three different kinds: Initialisation (or state preparation) followed by
Evolution and finally by Finalisation (or observation).

Initialisation prepares a qureg for further computation, via a simple
assignment: e.g. χ := 1√

2
(δ00 − δ11), where χ:q(B 2).

Quantum-mechanical systems evolve over time under the action of uni-
tary transformations:

U :q(B n) → q(B n) , linear

U unitary iff ‖Uψ‖ = ‖ψ‖ iff UU † = U †U = I

where I is the identity transform and U † is the conjugate transpose of U
(in matrix representation). Evolution consists of iteration of unitary trans-
formations on quantum state. In our formalism, evolution of qureg χ under
unitary operator U is described by the assignment:

χ := Uχ.

The content of a qureg can be read (measured) through quantum pro-
cedure Finalisation and suitable observables. In general, an observable is
represented by a self-adjoint operator and the measurable values are exactly
the eigenvalues of that operator (we recall that the eigenvalues of a self-
adjoint operator are real numbers). By the well-known spectral theorem the

5

eigenspaces of a self-adjoint operator are pairwise orthogonal and complete
in the enveloping space. The axioms of quantum mechanics assert that the
measurement reduces the state vector χ:q(B n) to state Piχ

‖Piχ‖ with proba-

bility 〈χ, Piχ〉, where Pi is the projector over the eigenspace corresponding
to eigenvalue i. In our notation we write Fin(O, r, χ) for the measurement
of O on a quantum system described by state χ:q(B n); r holds the return
eigenvalue. Finalisation is therefore defined

Definition 2.1.

Fin (O, r, χ) =̂

[(
r, χ := i,

Piχ

‖Piχ‖

)
@ 〈χ, Piχ〉 | i ∈ ΛO

]

where ΛO is the set of eigenvalues of O.

An observable is said degenerate when at least one of its eigenspaces has
dimension greater than one - i.e. the associated eigenvalue is degenerate in
the usual sense.

2.3 Probabilistic and demonic nondeterminism

In pGCL refinement P ⊑ Q means that Q is at least as deterministic as P :

P ⊑ Q iff P ⊓Q = P (1)

In pGCL (demonic) nondeterminism is expressed semantically as the
combination of all possible probabilistic resolutions

P ⊓Q = ⊓{P r⊕Q | 0 6 r 6 1} . (2)

Thus a (demonic) nondeterministic choice between two programs is refined
by any probabilistic choice between them

∀ r ∈ [0, 1] P ⊓Q ⊑ P r⊕Q . (3)

We introduce an important notation which we use in the paper: P >r⊕Q
is equal to P with probability at least r and otherwise is equal to Q.

Definition 2.2. For any r ∈ [0, 1]

P >r⊕Q =̂ ⊓ { P p⊕Q | r 6 p 6 1 }

It can be proved that P >r⊕Q = (P r⊕Q) ⊓ P .

6

3 Faulty measurement

In this section we study the situation in which the quantum measurement
devices are faulty. In our formalism, a measurement device being faulty
means that procedure Fin deviates from standard Definition 2.1. We restrict
our model to nondegenerate observables.

We start by defining the worst measurement: it is the nondeterministic
choice among all possible outcomes and final states. The possible outcomes
form a finite set, so a nondeterministic choice (assignment) among them is
readily defined. The state after finalisation is instead a vector belonging to
some eigenspace, thus an infinite set. An unbounded nondeterministic as-
signment does not semantically correspond to any pGCL code, so it cannot
be defined. However, the axioms of Quantum Mechanics come to help. Let
O be a nondegenerate observable, λ an eigenvalue and µ an associated (nor-
malised) eigenvector. Since O is nondegenerate, the eigenspace associated
to λ is unidimensional, thus spanned by µ. If we measure O in state v we
know that the final state is (see Definition 2.1):

Pλv

‖Pλv‖
=

µ〈µ, v〉
‖µ〈µ, v〉‖ =

µ〈µ, v〉
|〈µ, v〉| ‖µ‖ =

µ〈µ, v〉
|〈µ, v〉| .

But 〈µ,v〉
|〈µ,v〉| is a complex number of modulus 1, and Quantum Mechanics tells

us that when we multiply a vector by an arbitrary complex number of mod-
ulus 1 we obtain an “equivalent” vector. That is, there is no measurement
that could distinguish between the two states so, for all practical purposes
they represent the same state (see (9) in Appendix C). Therefore, the final
state is just µ, independent from v. Of course the choice of µ is arbitrary
but again, any other normalised λ-eigenvector is a multiple of µ, thus indis-
tinguishable from it. Finally, we know that by the spectral theorem we can
always find an orthonormal basis made of eigenvectors.

We can now define the worst measurement.

Definition 3.1. For nondegenerate observable O over qureg χ, the worst
(most nondeterministic) measurement is

Fin⊓(O, r, χ) =̂ ⊓ [r, χ := i, µi | i ∈ ΛO]

where ΛO is the set of eigenvalues of O and µi the (normalised) eigenvector
associated to eigenvalue i.

The faulty measurement is defined as follows.

7

Definition 3.2. For any c ∈ [0, 1] and nondegenerate observable O, the
faulty measurement is

Finc(O, r, χ) =̂ Fin(O, r, χ) c⊕ Fin⊓(O, r, χ) .

Because nondeterministic choice is refined by any probabilistic choice,
we have that the standard measurement Fin refines the worst measurement
Fin⊓, as we now show. In order to simplify notation, we omit signatures
when equal (although we shall write them when needed in proofs).

Lemma 3.1. For any nondegenerate observable

Fin⊓ ⊑ Fin

Proof. We reason:

Fin (O, r, χ)

= definition of Fin
[(

r, χ := i, Piχ
‖Piχ‖

)
@ 〈χ, Piχ〉 | i ∈ ΛO

]

= definition of projector
[(

r, χ := i,
µi〈µi,χ〉

‖µi〈µi,χ〉‖

)
@ 〈χ, Piχ〉 | i ∈ ΛO

]

= µi normalised, 〈µi,χ〉
|〈µi,χ〉| has modulus 1

[(r, χ := i, µi) @ 〈χ, Piχ〉 | i ∈ ΛO]

⊒ p⊕ refines ⊓ (3), def of Fin⊓

Fin⊓(O, r, χ)

By Lemma 3.1 and law P-1 we immediately have

Corollary 3.2. For any c ∈ [0, 1] and nondegenerate observable

Finc ⊑ Fin .

The use of the “approximate” probabilistic choice >c⊕ does not give a
different definition of faulty measurement.

Theorem 3.3. For any c ∈ [0, 1] and nondegenerate observable

Finc = Fin >c⊕ Fin⊓

8

Proof. We reason from the right-hand side:

Fin >c⊕ Fin⊓

= definition of >c⊕
(Fin c⊕ Fin⊓) ⊓ Fin⊓

= ⊓ commutative (law N-1) and law P-2

Fin ⊓ (Fin⊓ c̄⊕ Fin)

= laws P-3 and P-2

Fin c⊕ (Fin ⊓ Fin⊓)

= Lemma 3.1 and (1)

Fin c⊕ Fin⊓

= definition of Finc

Finc

We now present a few laws regarding the sequential composition of mea-
surements.

Laws for measurements

Fin # Fin = Fin

Fin⊓ # Fin⊓ = Fin⊓

Fin # Fin⊓ = Fin⊓

Fin⊓ # Fin = Fin⊓

Finc # Finc = Finc2

From the first two laws we gather that Fin and Fin⊓ are idempotent; the
next two laws express the fact that Fin⊓ is both right and left zero for Fin.
The last law tells us that performing twice the same faulty measurement
will decrease quadratically our chance to see the correct result. Proofs of
the above laws can be found in Appendix A.

We observe that from the third and fourth law we get that Fin⊓ #Fin =
Fin # Fin⊓. This expresses some interesting behaviour of the combination
of probabilistic and nondeterministic choice in this particular setting. In

9

general, it is known that

prg1 # (prg2 r⊕ prg3) ⊒ (prg1 # prg2) r⊕ (prg1 # prg3)

for (possibly nondeterministic) programs prg1, prg2, and prg3. In particular,
equality between RHS and LHS is ruled out by the following simple example.
Consider the two programs

P =̂ (x := 0 1

2

⊕ x := 1) # y := 0 ⊓ y := 1

Q =̂ (y := 0 ⊓ y := 1) # x := 0 1

2

⊕ x := 1 .

By using pGCL semantics with post-expectation [x = y] (see Appendix B)
we can show that program Q guarantees x = y with probability at least
1
2 , while P cannot guarantee x = y at all. This implies that P 6= Q, and
that nondeterministic choice does not in general commute with probabilistic
choice.

3.1 A simplified model

For our application we shall not need to perform further quantum evolu-
tions after a measurement, so we define a variant of finalisation in which
quantum state is left untouched. As a matter of fact, the principal quan-
tum algorithms (i.e. Grover’s, Deutsch-Jozsa’s and Shor’s) do not perform
any unitary evolution after a finalisation, so update of the quantum state is
irrelevant. Furthermore, the quantum circuit model assumes that there is
only one measurement, at the end of the unitary evolution. This assumption
is grounded in the Principle of Deferred Measurement, which states that all
measurements can be moved at the end of a quantum computation, without
affecting the output distribution [15, Section 4.4]. We therefore have the
following definition.

Definition 3.3. For observable O we define standard measurement as

fin (O, r, χ) =̂ [r := i @ 〈χ, Piχ〉 | i ∈ ΛO] .

We observe that Definition 3.3 is a special case of the well-known POVM
formalism [15, Section 2.2.6], where the measurement operators are simply
projectors. Our next definition does not have a counterpart in Quantum
Mechanics, yet.

For any finite set S we write s:S for ⊓[s := i | i ∈ S]. The worst
measurement simply returns any eigenvalue via demonic choice, and a faulty
measurement is then defined as following.

10

Definition 3.4. For any c ∈ [0, 1] and observable O, the faulty measurement
is

finc(O, r, χ) =̂ fin(O, r, χ) c⊕ r:ΛO .

We have that finc executes fin (the correct behaviour) with probability
c, and nondeterministically chooses any result with probability c̄. Note that
the definition is for any (possibly degenerate) observable. We implicitly
assumed that the finalisation always returns an answer: for example, when
a particle is fired towards a detector, that particle is always detected and
the measured value returned. We do not consider here the case in which the
detector does not detect anything at all.

Though simple, Definition 3.4 abstracts a large class of probabilistic
faulty measurements.

Lemma 3.4. For any c ∈ [0, 1]

finc(O, r, χ) = fin(O, r, χ) >c⊕ r:ΛO .

Proof. We first note that since a nondeterministic choice is refined by any
probabilistic choice (see (3)), we have that r:ΛO ⊑ fin(O, r, χ). The proof
now follows the same steps of that of theorem 3.3, except that instead of
lemma 3.1 we use the fact r:ΛO ⊑ fin(O, r, χ).

Also, if {pi} is any probability distribution (possibly dependent on χ)
over the eigenvalues, it follows straightly from Lemma 3.4 and (3) that

finc(O, r, χ) ⊑ fin(O, r, χ) >c⊕ [r := j @ pj | j ∈ ΛO].

The informal meaning is that any behaviour exhibited by the RHS cannot
be worse than that of finc.

4 Example: Bell’s inequalities

In this section we model Bell’s thought experiment in qGCL, assuming that
the quantum measurements are faulty. Since real-world conditions seldom
correspond to ideal ones, it makes sense to study whether we could establish
Quantum Mechanics as a non local-realist theory even with faulty appara-
tuses. Our aim is to derive hardware reliability conditions that must be
satisfied in order for the experiment to violate the Bell inequalities. In par-
ticular, we consider a variant of Bell’s experiment due to Clauser, Horne,
Shimony, and Holt [6], which is also known as the CHSH experiment.

11

The experiment assumes a source emitting pairs of photons polarised
in the “singlet” state 1√

2
(δ01 − δ10). The photons are arranged to move

away from each other in opposite directions, towards observers Alice and
Bob. Now, Alice and Bob measure the polarisation of their incoming photon
along different directions: Alice may choose to measure along a or a′, while
Bob along b or b′. In any case, the result of their measurements is either
“vertical” or “horizontal” polarisation, which correspond to values −1 and 1
respectively. Next, a series of repeated measurements is performed on pairs
of photons prepared in the singlet state.

If we are to model this experiment by a “realist-local” theory, one as-
sumes that each photon has a well defined value at any time for any direction
of measurement, independent on the alteration of a remote measuring equip-
ment. We denote by an the polarisation measured by Alice along direction
a in the n-th repetition of the experiment, similarly for bn and Bob.

The Bell inequalities are derived studying the correlation between mea-
surements made by Alice and Bob along the four directions. For directions
a, b that is defined as:

C(a, b) =̂ lim
N→∞

1

N

N∑

n=1

anbn

and similarly for the three remaining pairs. Note that if the measured po-
larisations are always correlated then C(a, b) = 1, while C(a, b) = −1 if they
are always anticorrelated, and C(a, b) = 0 if they are uncorrelated. Now,
the quantity

cn =̂ anbn + anb
′
n + a′nbn − a′nb

′
n (4)

can be easily proved to evaluate only to ±2 (each term of the sum can only
be ±1). Therefore we can write

∣∣∣∣∣
1

N

N∑

n=1

cn

∣∣∣∣∣ =

∣∣∣∣∣
1

N

N∑

n=1

anbn +
1

N

N∑

n=1

anb
′
n +

1

N

N∑

n=1

a′nbn −
1

N

N∑

n=1

a′nb
′
n

∣∣∣∣∣ 6 2 .

Taking the limit N → ∞ we have the Bell inequality:

∣∣C(a, b) + C(a′, b) + C(a, b′) − C(a′, b′)
∣∣ 6 2 . (5)

4.1 Inequality violation in Quantum Mechanics

We now describe how Quantum Mechanics violates inequality (5). The
polarisation of a photon can be described by a qubit; the measurement of

12

polarisation along a direction at angle θ with the incident photon is described
by the self-adjoint operator:

Sθ =̂

(
cos 2θ sin 2θ

sin 2θ − cos 2θ

)

whose eigenvalues are 1 (horizontal polarisation) and −1 (vertical), and the
corresponding eigenvectors are

hθ =̂ cos θδ0 + sin θδ1 vθ =̂ − sin θδ0 + cos θδ1 .

A measurement of a photon in state δ0 will return 1 with probability

〈δ0, Phθ
δ0〉 = 〈δ0, hθ〈hθ, δ0〉〉 = cos2 θ

and therefore will return −1 with probability sin2 θ.
A pair of photons is thus described by χ:q(B 2) and the singlet state is

χ = 1√
2
(δ01 − δ10). Each observer can obviously measure its photon only, so

the joint observables for Alice and Bob are respectively Sa ⊗ I and I ⊗ Sb,
where a and b are the angles and I is the identity transform on a qubit.
For the distributivity of tensor products over matrix multiplication we have
that:

(Sa ⊗ I) · (I ⊗ Sb) = (I ⊗ Sb) · (Sa ⊗ I) = Sa ⊗ Sb (6)

which amounts to say that observables Sa and Sb are simultaneously mea-
surable (i.e. the order in which they are measured does not affect the final
outcome), and their joint operator is Sa ⊗ Sb; we shall denote the joint
observable by Sab.

The eigenvalues of Sab are the product of the eigenvalues of Sa, Sb, there-
fore they are just {1,−1}, thus degenerate. Eigenvalue 1 represents the
fact that the detectors have measured the same polarisation (1 = (±1)2),
while eigenvalue −1 the fact that they measure different polarisations (−1 =
(±1) · (∓1)). The eigenvectors are given by the tensor products of the eigen-
vectors of Sa, Sb:

µ1 =̂ ha ⊗ hb µ2 =̂ va ⊗ vb

λ1 =̂ ha ⊗ vb λ2 =̂ va ⊗ hb

where of course {µ1, µ2} are associated to eigenvalue 1, while {λ1, λ2} to
−1. Since the eigenvectors are pairwise orthogonal, we define the projectors
for the joint observable Sab:

P+
ab =̂ Pµ1

+ Pµ2

P−
ab =̂ Pλ1

+ Pλ2

13

where for a vector v the projector over the span of v is defined by

∀w • Pvw =̂ v〈v, w〉 .

With these definitions the probability that Alice and Bob measure cor-
related values (i.e. a measurement of Sab returns 1) in the singlet state is

Prob(Alice and Bob correlated) = 〈χ, P+
abχ〉

= 〈χ, (Pµ1
+ Pµ2

)χ〉
= 〈 1√

2
(δ01 − δ10), (Pµ1

+ Pµ2
) 1√

2
(δ01 − δ10)〉

= sin2(b− a)

which of course implies that Prob(Alice and Bob anticorrelated) = cos2(b−
a). Finally, the correlation between the measurements is simply the expected
value

Cq(a, b) = 1 · sin2(b− a) + (−1) · cos2(b− a) = − cos 2(b− a)

from which we define the quantity B

B =̂
∣∣Cq(a, b) + Cq(a

′, b) + Cq(a, b
′) − Cq(a

′, b′)
∣∣ . (7)

By choosing b − a = b − a′ = b′ − a = π
8 and b′ − a′ = 3π

8 we have that

B = 2
√

2, thus violating inequality (5). Aspect et al. [3] actually performed
this experiment in the laboratory, obtaining a violation of the Bell inequality
for the amount predicted by Quantum Mechanics.

The recent work of Ursin et al. [19] confirmed the same results in an
open-space experiment where Alice and Bob were separated by 144km.

The correlation between measurements can also be obtained by comput-
ing the expected value of Sab. For an observable O and state ψ, the expected
value of the result of measuring O on a system in state ψ is 〈ψ,Oψ〉 (see
Appendix C). Recalling that by the spectral theorem any self-adjoint oper-
ator can be decomposed as a sum of the projectors over its eigenspaces, we
get that 〈χ, Sabχ〉 = Cq(a, b), as it should be. We took the longer route in
order to give a step-by-step explanation of the quantum rule.

4.2 Quantum program and faulty measurement

We model in qGCL the photon experiment, with one (not significant) dif-
ference. Instead of considering the observable Sab, whose eigenvalues are −1
and 1, we consider

Oab =̂ Sab + 1

14

i.e. we simply add 1 to the outcome of a measurement of Sab. Thus, a
measurement of Oab will return either 0 or 2 (we have defined a so-called
function of an operator, see again Appendix C). In particular, the self-
adjoint operator corresponding to Oab is Sa⊗Sb+ I, where I is the identity
transform over q(B 2).

It is straightforward to check that the eigenvalues of Oab are 0 and 2,
and its expected value in the singlet state is

〈Oab〉χ = 〈Sa ⊗ Sb + I〉χ = 〈Sa ⊗ Sb〉χ + 〈I〉χ = Cq(a, b) + 1

which is thus greater or equal to 0, since −1 6 Cq(a, b) 6 1. The projectors
over the eigenspaces remain unchanged:

P 2
ab =̂ P+

ab , P 0
ab =̂ P−

ab .

The positivity of the return values (the eigenvalues) is required by our
future program manipulation involving pGCL’s expectation-transformer se-
mantics, in which possibly negative variables might conflict with the se-
mantic requirement for positive expectations (see Appendix B for further
details). Ours is actually an example in which negative variables do cause
problems, as we later report.

Program E describes the measurement of polarisation made by Alice and
Bob along any two directions at angles a and b:

E =̂

var χ:q(B 2), r:{0, 2}•
χ := 1√

2
(δ01 − δ10) # fin(Oab, r, χ)

rav

It is a straightforward application of pGCL laws to prove that E correctly
implements the experiment. However, we are more interested in studying
the behaviour of E when fin is replaced by finc, its faulty companion. Our
aim is to find the range of values for parameter c for which the quantum
predictions of the experiments are satisfied, thereby showing that Quantum
Mechanics is not realist-local. The faulty version of E is program Ec

Ec =̂

var χ:q(B 2), r:{0, 2}•
χ := 1√

2
(δ01 − δ10) # finc(Oab, r, χ)

rav

where c is an arbitrary probability. We now reason:

15

Ec

= definition of finc

χ := 1√
2
(δ01 − δ10) # fin(Oab, r, χ) c⊕ r:{0, 2}

= law A-1
(
χ := 1√

2
(δ01 − δ10) # fin(Oab, r, χ)

)
c⊕ (χ := 1√

2
(δ01 − δ10) # r:{0, 2})

= definition of fin and law A-1
[(

χ := 1√
2
(δ01 − δ10) # r := i

)
@ 1

2〈δ01 − δ10, P
i
ab(δ01 − δ10)〉 | i ∈ {0, 2}

]
c⊕

(χ := 1√
2
(δ01 − δ10) # r:{0, 2})

⊒ de-initialise χ and linear algebra

(r := 2 sin2(b−a)⊕ r := 0) c⊕ r:{0, 2}
= law P-4 and notation

r := 2 @ c · sin2(b− a)

r := 0 @ c · cos2(b− a)

r:{0, 2} @ c̄ .

=̂ definition

E′
c

We note that the abstraction introduced in the penultimate step is due to
χ so, as far as r is concerned, no determinism is “lost”. We now want
to calculate the minimal value of c for which the faulty quantum program
violates Bell’s inequality.

Proposition 4.1. Bell’s inequality is violated only for c > 2
1+

√
2
≈ 83%.

Proof. We first calculate the expected value of r after the execution of E′
c,

depending on the angles a, b and parameter c. Next we calculate the quantity
Bc, defined analogously to quantity B of (7), which will depend on the four
angles a, b, a′, b′ and parameter c. Finally, we fix the angles in Bc at the
four values giving B = 2

√
2, and calculate a lower bound on c by imposing

a violation of Bell’s inequality (which will be slightly modified, since the
return values are “shifted” by 1).

We now calculate the expected value of r, by simply applying the se-
mantics of E′

c to the post-expectation r. We reason on E′
c:

wp.E′
c.r

16

= definition of E′
c, semantics of p⊕

c · sin2(b− a) · wp.(r := 2).r

+c · cos2(b− a) · wp.(r := 0).r

+c̄ · (wp.(r := 2).r ⊓ wp.(r := 0).r)

= assignment semantics

c · sin2(b− a) · r[r\2]

+c · cos2(b− a) · r[r\0]

+c̄ · (r[r\2] ⊓ r[r\0])

= arithmetic

2c · sin2(b− a)

= trigonometry

−c cos 2(b− a) + c

= definition of Cq

c(Cq(a, b) + 1).

The quantity Bc is thus defined analogously to B (7), by summing the four
correlations c(Cq(a, b) + 1):

Bc =̂
∣∣c(Cq(a, b) + Cq(a

′, b) + Cq(a
′, b′) − Cq(a, b

′)) + 2c
∣∣ . (8)

Since we calculated the quantum correlation of Alice and Bob’s results plus
one, we cannot directly compare that with inequality (5). The proper in-
equality is derived by considering, analogously to cn in (4), the sum

anbn + 1 + a′nbn + 1 + a′nb
′
n + 1 − anb

′
n − 1 = cn + 2

which evaluates either 0 or 4, since cn is ±2. The Bell inequality thus
becomes:

0 6 C(a, b) + C(a′, b) + C(a, b′) − C(a′, b′) 6 4 .

Finally, we fix as before the angles b−a = b−a′ = b′−a = π
8 and b′−a′ = 3π

8 ,

and we have that Bc = c2
√

2+2c. To violate Bell’s inequality Bc > 4, which
implies c > 2

1+
√

2
≈ 0.828.

We note that the detectors used in Aspect et al.’s experiment [3] had an
efficiency between 0.92 and 0.95, so well above the required value.

17

One can verify that if we had used the observable Sab we would have ob-
tained that c should be greater than 1√

2
≈ 0.707. Therefore, we would have

not only applied pGCL semantics erroneously, but we would have obtained
a more relaxed, thus wrong, bound on c.

4.3 Informal reasoning

The same result can be obtained in a less formal, though rigorous, way. We
could compute the minimum and maximum probabilities of obtaining r = 1
and r = −1. Then, we calculate the usual expected value of r and study
when it is minimum (i.e. the worst case). Finally, we fix the four angles and
compare the minimum expectation of r with Bell’s inequality (5) to derive
a lower bound for c.

Consider a program which behaves like

r := 1 @ c · sin2(b− a)

r := −1 @ c · cos2(b− a)

r:{1,−1} @ c̄

that is, it performs the correct operation with probability c and chooses
nondeterministically with probability c̄ (we can keep r in {1,−1} because
we shall not use pGCL semantics). Now, notwithstanding the action of the
demon, we must have that

Prob(r = 1) > c · sin2(b− a) =̂ p+
min

which implies that

Prob(r = −1) 6 c̄ · sin2(b− a) =̂ p−max .

Given any distribution r over {1,−1} defined by probabilities p+, p−, the
expected value E[r] is

E[r] = 1 · p+ + (−1)p− = p+ − p− .

The demon works against us, so it tries to lower our expectation over r. It
is easy to show that the minimal value for E[r] is

E[r]min = p+
min − p−max

= c · sin2(b− a) − 1 + c · sin2(b− a)

= 2c · sin2(b− a) − 1

= c · Cq(a, b) + c− 1 .

18

The sum of the four correlations would then be

B′
c =̂

∣∣c(Cq(a, b) + Cq(a
′, b) + Cq(a

′, b′) − Cq(a, b
′)) + 2c− 2

∣∣

and by fixing the usual four “violating” angles we get thatB′
c = c2

√
2+2c−2.

In order to violate Bell’s inequality, B′
c has to be greater than 2, which

implies c > 2
1+

√
2
, as before.

We observe that using a formal method such as qGCL, instead of the
ad hoc argument above, is not a pure exercise of style. The interplay be-
tween probabilistic and demonic nondeterminism can be quite subtle, and
counter-intuitive quantum effects further complicate the setting. It is there-
fore important to have a general, formal framework in which to cast our
reasonings - this is indeed the reason why so much effort has been (and is
still being) devoted in studying formal methods for computing systems.

4.4 Comparison with deterministic probabilism

It is useful to compare our model for faulty measurement with one in which
(demonic) nondeterminism is absent, i.e. errors are purely probabilistic. For
example, we could define a faulty measurement for which erroneous be-
haviour is represented by the toss of a fair coin:

fin′
c(O, r, χ) =̂ fin(O, r, χ) c⊕ (r := 0 1

2

⊕ 2) .

We plug this definition into program E and by using a similar reasoning as
in Proposition 4.1 we obtain the following program D:

D =̂

r := 2 @ c · sin2(b− a)

r := 0 @ c · cos2(b− a)

r := 0 1

2

⊕ 2 @ c̄ .

The expected value of r is again calculated as wp.D.r:

wp.D.r

= definition of D, semantics of p⊕
c · sin2(b− a) · wp.(r := 2).r + c · cos2(b− a) · wp.(r := 0).r

+c̄ · (wp.(r := 0 1

2

⊕ 2).r)

= semantics of assignment and p⊕
2c · sin2(b− a) + c̄

2(wp.(r := 0).r + wp.(r := 2).r)

19

= assignment semantics

2c · sin2(b− a) + c̄

= definition of Cq

cCq(a, b) + 1.

By summing the four correlations set at the known four angles we get the
quantity

c2
√

2 + 2

which has to be greater than 4 if we want to violate Bell’s inequality, and
that implies c > 1√

2
≈ 0.707.

5 Faulty initialisation

In this section we provide a model for the case of error-prone quantum ini-
tialisations. A correct initialisation of qureg χ is modelled by the assignment
χ := v, where v is some constant qureg. A faulty initialisation is modelled
by the probabilistic choice in which to χ is assigned v with probability at
least p, and some other v′ with probability at most p̄. In our notation

χ := v >p⊕ χ := v′ .

We now study the sequential composition of a faulty initialisation and a
faulty measurement.

The following lemma is a straightforward application of law A-1.

Lemma 5.1. For any c ∈ [0, 1]

χ := v # finc(O, r, χ) = χ := v # finc(O, r, v).

Proof. We reason from the LHS:

χ := v # finc(O, r, χ)

= definition of finc and law A-1

χ := v # fin(O, r, χ) c⊕ χ := v # fin⊓(O, r, χ)

= definition of fin and law A-1

[(χ := v # r := i) @ 〈v, Piv〉 | i ∈ ΛO] c⊕ χ := v # fin⊓(O, r, χ)

= law A-1

χ := v # [r := i @ 〈v, Piv〉 | i ∈ ΛO] c⊕ χ := v # fin⊓(O, r, χ)

20

= definition of fin

χ := v # fin(O, r, χ) c⊕ χ := v # fin⊓(O, r, χ)

= law A-1 and definition of finc

χ := v # finc(O, r, v)

Lemma 5.2. Let Q be the program defined as

Q =̂ (χ := v >p⊕ χ := v′ # finc(O, r, χ)) .

Then:
∀i ∈ ΛO • Prob(after Q r = i) > cti + cp̄(0 ⊓ (t′i − ti))

where ti =̂ 〈v, Piv〉 and t′i =̂ 〈v′, Piv′〉.

Proof. First we reason on Q, then we use pGCL semantics to calculate the
required probability:

χ := v >p⊕ χ := v′ # finc(O, r, χ)

= law S-3

χ := v # finc(O, r, χ) >p⊕ χ := v′ # finc(O, r, χ)

= lemma 5.1

χ := v # finc(O, r, v) >p⊕ χ := v′ # finc(O, r, v′)
⊒ de-initialise χ

finc(O, r, v) >p⊕ finc(O, r, v′)
= definition of finc

(fin(O, r, v) c⊕ r:ΛO) >p⊕ (fin(O, r, v′) c⊕ r:ΛO)

= law S-4

(fin(O, r, v) >p⊕ fin(O, r, v′)) c⊕ r:ΛO

= definition of >p⊕
(fin(O, r, v) p⊕ fin(O, r, v) ⊓ fin(O, r, v′)) c⊕ r:ΛO

= law P-4 and notation

fin(O, r, v) @ cp

fin(O, r, v) ⊓ fin(O, r, v′) @ cp̄

r:ΛO @ c̄ .

21

=̂ define Q′

Q′

so that we have Q ⊒ Q′. Again, since we are only interested in the final value
of r, there is no harm in using Q′ instead of Q. In particular, the probability
that after executingQ′ r equals i is calculated as the expectation-transformer
semantics of Q′ applied to the post-expectation [r = i] (see Appendix B),
that is

Prob(after Q′ r = i) > wp.Q′.[r = i] .

We reason:

wp.Q′.[r = i]

= semantics of p⊕
cp · wp.fin(O, r, v).[r = i]

+cp̄ · wp.(fin(O, r, v) ⊓ fin(O, r, v′)).[r = i]

+c̄ · wp.r:ΛO.[r = i]

= semantics of ⊓
cp · wp.fin(O, r, v).[r = i]

+cp̄ · (wp.fin(O, r, v).[r = i] ⊓ wp.fin(O, r, v′).[r = i])

+c̄ · wp.r:ΛO.[r = i]

= definition of fin and semantics of p⊕
cp · 〈v, Piv〉
+cp̄ · (〈v, Piv〉 ⊓ 〈v′, Piv′〉)
+c̄ · wp.r:ΛO.[r = i]

= definition of r:ΛO and semantics of ⊓
cp · 〈v, Piv〉 + cp̄ · (〈v, Piv〉 ⊓ 〈v′, Piv′〉)
+c̄ · ⊓j∈ΛO

{wp.r := j.[r = i]}
= semantics of assignment and logic

cp · 〈v, Piv〉 + cp̄ · (〈v, Piv〉 ⊓ 〈v′, Piv′〉)
= a ⊓ b = a+ (0 ⊓ (b− a))

c · 〈v, Piv〉 + cp̄ · (0 ⊓ (〈v′, Piv′〉 − 〈v, Piv〉))
= definition of ti, t

′
i

22

cti + cp̄(0 ⊓ (t′i − ti)).

It is worth noting that the left-hand summand does not depend on p,
the minimal probability of a correct initialisation. Such dependency is only
present in the right-hand summand via p̄, and it is proportional to the (trun-
cated) difference between the perturbed and correct probabilities. This con-
firms intuition: since the demon always tries to lower the post-expectation,
the faulty initialisation is effective only when the demon can take advantage
of it (i.e., when t′i − ti < 0).

5.1 Example: Deutsch-Jozsa quantum algorithm

We apply the concepts of faulty initialisation and measurements to the
Deutsch-Jozsa algorithm [7]. For n ∈ N+, a function f :B n → B is con-
stant iff it takes only a single value. It is balanced iff it takes 0 and 1 equally
often, i.e. # f−1(0) = # f−1(1). Any constant Boolean function f is not
balanced, and any balanced function is not constant. The Deutsch-Jozsa
classification problem is to decide, for a given function which is either con-
stant or balanced, which actually holds. The quantum algorithm is expressed
in qGCL:

DJ =̂

var χ:q(B n), r:B •
χ := 1√

2n

∑
i∈B n δi#

χ := Tfχ#

fin(V, r, χ)

rav

where Boolean finalisation V is defined by the family of spaces {V0, V1}, with
V0 =̂ C

∑
y∈B n δy and V1 the orthogonal complement of V0 (note that V0

is a unidimensional complex space, so V1 is a (n − 1)-dimensional complex
space). Initialisation is efficiently accomplished by the Hadamard transform
(see [17] for details). Transformation Tf :q(B

n) → q(B n) is defined by

∀i ∈ B n Tfχ(i) =̂ (−1)f(i)χ(i)

that is, Tf inverts the sign of χ(i) if f(i) = 1 and leaves it unchanged
otherwise; Tf is clearly unitary. The output of the algorithm is encoded in
variable r: 0 indicates “constant”, 1 indicates “balanced”.

23

The quantum algorithm thus solves the Deutsch-Jozsa problem with a
single evaluation of f (that of Tf). A standard algorithm instead evaluates
f at least O(2n) times in the worst case and on average evaluates f thrice.

Let us now consider the faulty version of this algorithm. We replace Fin

with finc; with respect to initialisation and Tf evolution, we simplify things
by composing both assignments into one and then replacing that by a single
faulty assignment:

DJ ′ =̂ χ := w >p⊕ w′ # finc(V, r, χ)

where w = 1√
2n

∑
i∈B n(−1)f(i)δi and w′ is the erroneous value (which will

in general depend on f). It is obviously DJ ′ ⊑ DJ .
By applying Lemma 5.2 we can calculate the probabilities of program

DJ ′ giving the correct results. They are:

if f constant Prob(r = 0) > c+ cp̄(t′0 − 1) = cp+ cp̄t′0

if f balanced Prob(r = 1) > c+ cp̄(t′1 − 1) = cp+ cp̄t′1

where t′i = 〈w′, Piw′〉. Since (t′i − 1) is in general negative, it follows that
DJ ′ is guaranteed to be correct only with probability smaller than c, thus
making it a two-sided error algorithm.

When the t′i’s are bounded by some positive constant ǫ (i.e., 0 < t′i < ǫ),
we can use the relations above to find bounds on the parameters p and c.
Since we are now dealing with a probabilistic algorithm, we may just ask
for DJ ′ to be correct with some probability q greater than 1

2 , so we would
need to have

cp+ cp̄ǫ > q

which for example implies that

c >
q

p+ p̄ǫ
.

6 Faulty evolution

In this section we sketch a model for the case of error-prone quantum evo-
lutions. A correct evolution of unitary U is modelled by the assignment
χ := Uχ. A faulty evolution is modelled by the probabilistic choice in which
U gets executed with at least probability p, and some other unitary U ′ gets
executed with probability at most 1 − p. In our notation we write

χ := Uχ >p⊕ χ := U ′χ .

24

Before considering the sequential composition of two faulty gates we need
the following lemma.

Lemma 6.1. For programs prg1, prg2, prg3, prg4 and probabilities p, q we
have

(prg1 >q⊕ prg2) >p⊕ (prg3 >q⊕ prg4)

⊒
prg1 >pq⊕ (prg2 ⊓ prg3 ⊓ prg4) .

Proof. See Appendix B.

Proposition 6.2. For unitaries U, V, U ′, V ′ and probabilities p, q we have

χ := Uχ >p⊕ χ := U ′χ # χ := V χ >q⊕ χ := V ′χ

⊒
χ := V Uχ >pq⊕ (χ := V ′Uχ ⊓ χ := V U ′χ ⊓ χ := V ′U ′χ) .

Proof. We reason:

χ := Uχ >p⊕ χ := U ′χ # χ := V χ >q⊕ χ := V ′χ

= law S-3

χ := Uχ # (χ := V χ >q⊕ χ := V ′χ)>p⊕
χ := U ′χ # (χ := V χ >q⊕ χ := V ′χ)

= laws A-4 and A-3

(χ := V Uχ >q⊕ χ := V ′Uχ) >p⊕ (χ := V U ′χ >q⊕ χ := V ′U ′χ)

⊒ Lemma 6.1

χ := V Uχ >pq⊕ (χ := V ′Uχ ⊓ χ := V U ′χ ⊓ χ := V ′U ′χ)

We now perform a faulty finalisation (with no quantum state update, as
per Definition 3.4) after the two faulty evolutions.

Proposition 6.3. For unitaries U, V, U ′, V ′, observable O, and probabilities
p, q, c we have

(χ := Uχ >p⊕ χ := U ′χ) # (χ := V χ >q⊕ χ := V ′χ) # finc(O, r, χ)

⊒
(fin(O, r, V Uχ) >pq⊕ (fin(O, r, V ′Uχ) ⊓ fin(O, r, V U ′χ) ⊓ fin(O, r, V ′U ′χ))

c⊕ r:ΛO .

25

Proof. For simplicity we abbreviate finc(O, r, χ) and fin(O, r, χ) by finc(χ)
and fin(χ) respectively. We reason from the LHS:

(χ := Uχ >p⊕ χ := U ′χ) # (χ := V χ >q⊕ χ := V ′χ) # finc(χ)

⊒ Proposition 6.2

χ := V Uχ >pq⊕ (χ := V ′Uχ ⊓ χ := V U ′χ ⊓ χ := V ′U ′χ) # finc(χ)

= law S-3

χ := V Uχ # finc(χ) >pq⊕ (χ := V ′Uχ⊓
χ := V U ′χ ⊓ χ := V ′U ′χ # finc(χ))

= law S-2

χ := V Uχ # finc(χ) >pq⊕ ((χ := V ′Uχ # finc(χ))⊓
(χ := V U ′χ # finc(χ)) ⊓ (χ := V ′U ′χ # finc(χ)))

= Lemma 5.1

χ := V Uχ # finc(V Uχ) >pq⊕ ((χ := V ′Uχ # finc(V
′Uχ))⊓

(χ := V U ′χ # finc(V U
′χ)) ⊓ (χ := V ′U ′χ # finc(V

′U ′χ)))

⊒ de-initialise χ

finc(V Uχ) >pq⊕ (finc(V
′Uχ) ⊓ finc(V U

′χ) ⊓ finc(V
′U ′χ))

= definition of finc

finc(V Uχ) >pq⊕ ((fin(V ′Uχ) c⊕ r:ΛO)⊓
(fin(V U ′χ) c⊕ r:ΛO) ⊓ (fin(V ′U ′χ) c⊕ r:ΛO))

= law P-3 twice

finc(V Uχ) >pq⊕ ((fin(V ′Uχ) ⊓ fin(V U ′χ) ⊓ fin(V ′U ′χ)) c⊕ r:ΛO)

= definition of finc

(fin(V Uχ) c⊕ r:ΛO) >pq⊕ ((fin(V ′Uχ)⊓
fin(V U ′χ) ⊓ fin(V ′U ′χ)) c⊕ r:ΛO)

= law S-4

(fin(V Uχ) >pq⊕ (fin(V ′Uχ) ⊓ fin(V U ′χ) ⊓ fin(V ′U ′χ))) c⊕ r:ΛO

We see that the correct operation fin(O, r, V Uχ) is executed with prob-
ability at least cpq, and therefore the erroneous behaviour has overall prob-
ability at most 1 − cpq. However, the erroneous behaviour due to faulty

26

evolutions has probability at most c(1 − pq), while erroneous (fully nonde-
terministic) behaviour due to the faulty measurement has probability 1− c.

To quantify the difference between the “correct” and “wrong” measure-
ment statistics one usually employs the total variation distance of the output
distributions. For distributions {ai} and {bi} over some finite set S, their
total variation distance is

∑
i∈S |ai − bi|. Aharonov et al. [1] proved that

maximal total variation distance between two distributions taken over all
possible observables equals the trace distance between the density matrices
representing the quantum states. However, this approach cannot be readily
applied to our case, since our computations feature demonic nondetermin-
ism. The challenge is therefore to extend Aharonov et al.’s approach to cope
with demonic nondeterminism.

7 Conclusions

In this paper we have provided a starting point for a high-level description
and analysis of faulty quantum programs, based on the quantum program-
ming language qGCL. In particular, we have described a simple model for
faulty initialisation and quantum measurements, based on the operation “ex-
ecute the correct behaviour with probability at least p”. We have applied it
to an example of Bell inequalities and to the Deutsch-Jozsa quantum algo-
rithm. In the former we have derived a hardware efficiency bound in order
for the experiment to be successful. In the latter we have calculated lower
bounds on the probability of success of the faulty algorithm. In conclusion,
it seems possible to provide an abstract treatment for faulty quantum pro-
grams. An important aspect of our approach is that both the correct and
faulty program can be reasoned about in the same environment, thus bene-
fiting from well-established programming laws and “classical” concepts such
as refinement and abstraction.

8 Acknowledgements

This work has been carried out while the author was at the Oxford University
Computing Laboratory, supported by a Marie Curie Outgoing International
Fellowship of the European Commission’s 6th Framework Programme. The
author wishes to thank Jeff Sanders for many stimulating discussions and
for commenting a draft of this paper. The author also thanks an anonymous
referee for suggesting many improvements to the paper.

27

References

[1] D. Aharonov, A. Kitaev, and N. Nisan. Quantum circuits with mixed
states. In STOC ’98: Proceedings of the 30th Annual ACM Symposium
on Theory of Computing, pages 20–30, 1998.

[2] T. Altenkirch and J. Grattage. A functional quantum programming
language. In LICS ’05: Proceedings of the 20th Annual IEEE Sympo-
sium on Logic in Computer Science, pages 249–258, 2005.

[3] A. Aspect, P. Graingier, and G. Roger. Experimental realization of EPR
Gedankenexperiment: A new violation of Bell’s inequalities. Physical
Review Letters, 49:91–94, 1982.

[4] J. S. Bell. On the Einstein-Podolsky-Rosen paradox. Physics, 1:195–
200, 1964.

[5] C. H. Bennett and S. J. Wiesner. Communication via one- and two-
particle operators on Einstein-Podolsky-Rosen states. Physical Review
Letters, 69(20):2881–2884, 1992.

[6] J. F. Clauser, M. A. Horne, A. Shimony, and R.A. Holt. Proposed ex-
periment to test local hidden-variable theories. Physical Review Letters,
23:880–884, 1969.

[7] D. Deutsch and R. Jozsa. Rapid solution of problems by quantum
computation. Proceedings of the Royal Society of London, A439:553–
558, 1992.

[8] A. K. Ekert. Quantum cryptography based on Bell’s theorem. Physical
Review Letters, 67(6):661–663, 1991.

[9] A. Fedrizzi et al. High-fidelity transmission of entanglement over a
high-loss freespace channel. Nature Physics, 5:389–392, 2009.

[10] S. J. Gay. Quantum programming languages: survey and bibliography.
Mathematical Structures in Computer Science, 16(4):581–600, 2006.

[11] J. He, A. McIver, and K. Seidel. Probabilistic models for the guarded
command language. Science of Computer Programming, 28:171–192,
1997.

[12] C. J. Isham. Lectures on quantum theory. Imperial College Press, 1997.

28

[13] A. McIver and C. C. Morgan. Abstraction, Refinement and Proof for
Probabilistic Systems. Springer, 2005.

[14] C. C. Morgan, A. McIver, and K. Seidel. Probabilistic predicate trans-
formers. ACM Transactions on Programming Languages and Systems,
18(3):325–353, May 1996.

[15] M. A. Nielsen and I. L. Chuang. Quantum computation and quantum
information. Cambridge University Press, 2000.

[16] M. Reed and B. Simon. Methods of Mathematical Physics. I:Functional
Analysis. Acamedic Press, 1972.

[17] J. W. Sanders and P. Zuliani. Quantum programming. In MPC ’00:
Mathematics of Program Construction, Springer LNCS, volume 1837,
pages 80–99, 2000.

[18] P. Selinger. Towards a quantum programming language. Mathematical
Structures in Computer Science, 14(4):527–586, 2004.

[19] R. Ursin et al. Entanglement-based quantum communication over 144
km. Nature Physics, 3:481–486, 2007.

[20] J. von Neumann. Mathematical Foundations of Quantum Mechanics.
Princeton University Press, 1955.

A Proofs of measurement laws

We prove the following laws for faulty measurements that were given in
Section 3:

Law F-1 Fin # Fin = Fin

Law F-2 Fin⊓ # Fin⊓ = Fin⊓

Law F-3 Fin # Fin⊓ = Fin⊓

Law F-4 Fin⊓ # Fin = Fin⊓

Law F-5 Finc # Finc = Finc2

Law F-2a Fin⊓(A) # Fin⊓(B) = Fin⊓(B)

Law F-3a Fin(A) # Fin⊓(B) = Fin⊓(B) .

Theorem A.1. [Law F-1] For any (possibly degenerate) observable:

Fin # Fin = Fin .

29

Proof. Let O denote our observable. We reason from the left-hand side:

Fin # Fin

= definition of Fin
[(

r, χ := i, Piχ
‖Piχ‖

)
@ 〈χ, Piχ〉 | i ∈ ΛO

]
Fin

= law S-1
[(

r, χ := i, Piχ
‖Piχ‖ # Fin

)
@ 〈χ, Piχ〉 | i ∈ ΛO

]

= definition of Fin
[(

r, χ := i, Piχ
‖Piχ‖ #[(

r, χ := j,
Pjχ

‖Pjχ‖

)
@ 〈χ, Pjχ〉 | j ∈ ΛO

]
)

@ 〈χ, Piχ〉 | i ∈ ΛO

]

= law A-1
[[(

r, χ := j,
PjPiχ

‖PjPiχ‖

)
@ 〈Piχ, PjPiχ〉 | j ∈ ΛO

]
@ 〈χ, Piχ〉 | i ∈ ΛO

]

= PiPj = 0 if i 6= j, Pi idempotent
[(

r, χ := i, Piχ
‖Piχ‖

)
@ 〈χ, Piχ〉 | i ∈ ΛO

]

= definition of Fin

Fin

Lemma A.2. For any nondegenerate observable A:

r, χ := E,F # Fin⊓(A, r, χ) = Fin⊓(A, r, χ)

where E is an expression ranging over A’s return values, and F is an ex-
pression of type qureg.

Proof. Let ai denote the orthonormal eigenvector basis of A:

r, χ := E,F # Fin⊓(A, r, χ)

= definition of Fin⊓

r, χ := E,F # ⊓[r, χ := i, µi | i ∈ ΛA]

= law A-2

⊓[(r, χ := E,F # r, χ := i, µi) | i ∈ ΛA]

= law A-3 (i and µi are constants)

30

⊓[r, χ := i, µi | i ∈ ΛA]

= definition of Fin⊓

Fin⊓

The law Fin⊓ # Fin⊓ = Fin⊓ can be generalised to two observables.

Theorem A.3. [Law F-2a] For nondegenerate observables A,B:

Fin⊓(A, r, χ) # Fin⊓(B, r, χ) = Fin⊓(B, r, χ)

Proof. Let ai, bj denote respectively the orthonormal eigenvector basis of
A,B. We reason from the left-hand side:

Fin⊓(A, r, χ) # Fin⊓(B, r, χ)

= definition of Fin⊓

⊓[r, χ := i, ai | i ∈ ΛA] # Fin⊓(B, r, χ)

= law S-2

⊓[r, χ := i, ai # Fin⊓(B, r, χ) | i ∈ ΛA]

= Lemma A.2

⊓[Fin⊓(B, r, χ) | i ∈ ΛA]

= law S-2 and skip identity

Fin⊓(B, r, χ)

When A = B we get of course law F-2.

Theorem A.4. [Law F-3a] For any observable A and nondegenerate ob-
servable B:

Fin(A, r, χ) # Fin⊓(B, r, χ) = Fin⊓(B, r, χ)

Proof. We reason:

Fin(A, r, χ) # Fin⊓(B, r, χ)

= definition of Fin
[(

r, χ := i, Piχ
‖Piχ‖

)
@ 〈χ, Piχ〉 | i ∈ ΛA

]
Fin⊓(B, r, χ)

31

= law S-1
[(

r, χ := i, Piχ
‖Piχ‖ # Fin⊓(B, r, χ)

)
@ 〈χ, Piχ〉 | i ∈ ΛA

]

= Lemma A.2

[Fin⊓(B, r, χ) @ 〈χ, Piχ〉 | i ∈ ΛA]

= law S-1 and skip identity

Fin⊓(B, r, χ)

Again, law F-3 is deduced when A = B.

Theorem A.5. [Law F-4] For any nondegenerate observable:

Fin⊓ # Fin = Fin⊓

Proof. Let ai denote the orthonormal eigenvector basis of some nondegen-
erate observable A. We reason:

Fin⊓(A, r, χ) # Fin(A, r, χ)

= definition of Fin⊓ and law S-2

⊓ [r, χ := i, ai # Fin(A, r, χ) | i ∈ ΛA]

= definition of Fin

⊓
[
r, χ := i, ai #

[(
r, χ := j,

Pjχ

‖Pjχ‖

)
@ 〈χ, Pjχ〉 | j ∈ ΛA

]
| i ∈ ΛA

]

= law A-1

⊓
[[(

r, χ := i, ai # r, χ := j,
Pjχ

‖Pjχ‖

)
@ 〈ai, Pjai〉 | j ∈ ΛA

]
| i ∈ ΛA

]

= Pj ⊥ ai if i 6= j

⊓
[(

r, χ := i, ai # r, χ := i, Piχ
‖Piχ‖

)
| i ∈ ΛA

]

= law A-3

⊓
[(

r, χ := i, Piai

‖Piai‖

)
| i ∈ ΛA

]

= Piai = ai and definition of Fin⊓

Fin⊓(A, r, χ)

32

Lemma A.6. For any c ∈ [0, 1] and nondegenerate observable:

Fin⊓ # Finc = Fin⊓

Proof. We prove equality by showing refinement and abstraction. We begin
with refinement:

Fin⊓ # Finc

⊑ Finc ⊑ Fin (Corollary 3.2)

Fin⊓ # Fin

= Theorem A.5

Fin⊓ .

Abstraction is

Fin⊓

= Theorem A.3

Fin⊓ # Fin⊓

= law P-1

Fin⊓ # (Fin⊓ c⊕ Fin⊓)

⊑ Fin ⊑ Fin⊓ (Lemma 3.1)

Fin⊓ # (Fin c⊕ Fin⊓)

= definition of Finc

Fin⊓ # Finc

We can prove our last law.

Theorem A.7. [Law F-5] For any c ∈ [0, 1] and nondegenerate observable:

Finc # Finc = Finc2

Proof. We reason:

Finc # Finc

= definition of Finc

(Fin c⊕ Fin⊓) # Finc

33

= law S-1

(Fin # Finc) c⊕ (Fin⊓ # Finc)

= Lemma A.6

(Fin # Finc) c⊕ Fin⊓

= definition of Finc

(Fin # Fin c⊕ Fin⊓) c⊕ Fin⊓

= law F-3

(Fin # Fin c⊕ Fin # Fin⊓) c⊕ Fin⊓

= Theorems A.1 and A.4

(Fin c⊕ Fin⊓) c⊕ Fin⊓

= law P-4

Fin c2⊕ Fin⊓

= definition of Finc

Finc2

B Semantics and programming laws

Semantics for pGCL (and in turn for qGCL) can be given either relationally
[11] or in terms of expectation transformers [14]. The former relates each
initial state to a set of final distributions. The latter extends pre- and post-
conditions to pre- and post-expectations: real-valued random variables. The
two models are related by a Galois connection embedding the relational in
the transformer [14].

We briefly present the main definitions and concepts of the transformer
model. An expectation is a R+-valued function on a state space X. The
set Q of all expectations is Q =̂ X → R+. Expectations can be ordered
using the standard pointwise functional ordering for which we shall use the
symbol ⇛. Standard predicates are easily embedded in Q by identifying
true with expectation 1 and false with 0. For standard predicate p we shall
write [p] for its embedding.

An expectation transformer represent a computation by mapping post-
expectations to their greatest pre-expectations. The expectation-transformer
semantics for the pGCL commands used in the paper is (we retain the wp

34

prefix for convenience):

wp.(x := E).q =̂ q[x\E]
wp.(prg1 ⊓ prg2).q =̂ (wp.prg1.q) ⊓ (wp.prg2.q)
wp.(prg1 p⊕ prg2).q =̂ p · (wp.prg1.q) + p̄ · (wp.prg2.q)

where q ∈ Q, x ∈ X, p ∈ [0, 1]; q[x\E] denotes the expectation obtained
after replacing all free occurrences of x in q by expression E; ⊓ denotes the
greatest lower bound.

pGCL enjoys a refinement calculus, which derives from the semantics
above; when we say that program Q refines program P , written P ⊑ Q, we
mean:

P ⊑ Q =̂ ∀q:Q • wp.P.q ⇛ wp.Q.q .

Intuitively, P ⊑ Q means that Q is at least at deterministic as P . The
converse of refinement is abstraction and it is denoted by ⊒. When P ⊒ Q

and P ⊑ Q then P and Q are equal programs and we write P = Q.
We list a few algebraic laws which hold for pGCL programs; for more

laws see Appendix B of [13].

Law (skip identity). prg # skip = skip # prg = prg

Law (N-1). prg ⊓ prg = prg

Law (N-2). prg1 ⊓ prg2 = prg2 ⊓ prg1

Law (P-1). prg r⊕ prg = prg

Law (P-2). prg1 r⊕ prg2 = prg2 r̄⊕ prg1

Law (P-3). (prg1 ⊓ prg2) r⊕ prg3 = (prg1 r⊕ prg3) ⊓ (prg2 r⊕ prg3)

Law (P-4). (prg1 p⊕ prg2) q⊕ (prg3 r⊕ prg4) = prg1 @ pq

prg2 @ p̄q

prg3 @ q̄r

prg4 @ q̄r̄

Law (S-1). (prg1 r⊕ prg2) # prg3 = (prg1 # prg3) r⊕ (prg2 # prg3)

Law (S-2). (prg1 ⊓ prg2) # prg3 = (prg1 # prg3) ⊓ (prg2 # prg3)

Law (S-3). (prg1 >r⊕ prg2) # prg3 = (prg1 # prg3) >r⊕ (prg2 # prg3)

Law (S-4). (prg1 r⊕ prg2) >s⊕ (prg3 r⊕ prg2) = (prg1 >s⊕ prg3) r⊕ prg2

35

Law (A-1). x := e # (prg1 r⊕ prg2) = (x := e # prg1) r[x\e]⊕ (x := e # prg2)

Law (A-2). x := e # (prg1 ⊓ prg2) = (x := e # prg1) ⊓ (x := e # prg2)

Law (A-3). (x := e # x := f) = x := f [x\e]

Law (A-4). x := e # (prg1 >r⊕ prg2) = (x := e #prg1) >r[x\e]⊕ (x := e #prg2)

Expression r[x\e] is obtained replacing all free occurrences of x in r by e.

Proof of Lemma 6.1. We reason from the LHS:

(prg1 >q⊕ prg2) >p⊕ (prg3 >q⊕ prg4)

= definition of >⊕
(prg1 >q⊕ prg2) p⊕ ((prg1 >q⊕ prg2) ⊓ (prg3 >q⊕ prg4))

= definition of >⊕
(prg1 q⊕ (prg1 ⊓ prg2)) p⊕ ((prg1 >q⊕ prg2) ⊓ (prg3 >q⊕ prg4))

= rearrange with r = p−pq

1−pq

prg1 pq⊕ ((prg1 ⊓ prg2) r⊕ ((prg1 >q⊕ prg2) ⊓ (prg3 >q⊕ prg4)))

⊒ >⊕ refines ⊓
prg1 pq⊕ (prg1 ⊓ prg2 ⊓ prg1 ⊓ prg2 ⊓ prg3 ⊓ prg4)

= ⊓ idempotent and commutative (laws N-1, N-2)

prg1 pq⊕ (prg1 ⊓ prg2 ⊓ prg3 ⊓ prg4)

= definition of >⊕
prg1 >pq⊕ (prg2 ⊓ prg3 ⊓ prg4)

C Quantum mechanics

Quantum computing theory relies on von Neumann’s approach to quantum
mechanics [20], that is the theory of linear operators over Hilbert spaces.
A good self-contained exposition of this theory can be found in [12], for
example.

36

C.1 Basic concepts

A Hilbert space H is a vector space equipped with a scalar product making it
a complete inner product space. Here we consider only complex vector spaces
Cn, for n:N . The scalar product is therefore the application 〈·, ·〉:Cn×Cn →
C defined by:

〈ψ, φ〉 =̂
∑

06i<n

ψ∗
i φi

where ψi is the i-th component of ψ:Cn, and z∗ is the complex conjugate of
z:C . The length of a vector ψ is defined ‖ψ‖ =̂ 〈ψ,ψ〉 1

2 ; ψ is normalised if
‖ψ‖2 = 1.

A linear function A:H → H is also called an operator. The adjoint (or
hermitian conjugate) of an operator A is the operator A† defined by:

∀ψ, φ:H • 〈ψ,A†φ〉 = 〈Aψ, φ〉.

A linear operator A is self-adjoint (or hermitian) if A = A†. In the case
of infinite-dimensional Hilbert spaces there is a difference between self-
adjointness and hermitianity, but since here we deal only with finite spaces
we consider them equivalent. Also, we should check that A† defined above
is actually an operator (which it is, as a matter of fact). All these mathe-
matical details can be found in Reed and Simon’s book [16], for example.

In von Neumann’s approach to quantum mechanics the state of a physical
system is modelled by a vector of some n-dimensional complex Hilbert space
and state evolution is modelled by linear operators. As a consequence any
quantum operator on H can always be written as a n× n complex matrix.

Let A be a n×n matrix representing a quantum operator A. Then, with
respect to an orthonormal basis, the elements of the matrix representing A†

satisfy:
∀i, j:{1, . . . , n} • (A†)ij = A∗

ji.

We note that if A is self-adjoint then Aij = A∗
ji.

Quantum transformations satisfy also another property: they are uni-
tary. Such an operator guarantees the existence of the inverse operator and
preserves scalar products, that is for an operator U unitary we have:

∀ψ, φ:H • 〈Uψ,Uφ〉 = 〈ψ, φ〉

In terms of matrices it means that the matrix U modelling the evolution of
the system must satisfy:

U · U † = U † · U = 1

37

where 1 is the identity matrix of appropriate size. The set of complex
unitary matrices forms a group with the usual matrix multiplication.

A (non-zero) vector ψ:H is an eigenvector of an operator A with eigen-
value a:C if:

Aψ = aψ.

In quantum mechanics an observable is represented by a self-adjoint oper-
ator and the measurable values are exactly the eigenvalues of that operator.
It is easy to show that the eigenvalues of a self-adjoint operator are real
numbers.

For ψ:H we write Pψ for the projector onto the one-dimensional subspace
spanned by vector ψ:

∀φ:H • Pψ(φ) =̂
ψ

‖ψ‖2
· 〈ψ, φ〉.

For an observable O we denote by ΛO the set of its eigenvalues. For
λ ∈ ΛO we denote by EO,λ its eigenspace and by P λO the projector over
that space. The fundamental spectral theorem for self-adjoint operators on
finite-dimensional Hilbert spaces states that the operator’s eigenspaces are
pairwise orthogonal and complete in the Hilbert space [12]. In other words,
we have that

O =
∑

λ∈ΛO

λ · P λO .

The rules of quantum theory state that if the state of a system is de-
scribed by some normalised vector ψ:H then, if a measurement of observable
O is made, the probability that the result will be the particular eigenvalue
λ is:

Prob(O = λ | ψ) = 〈ψ, P λOψ〉. (9)

Note that the probability does not change if the state vector ψ is multiplied
by an arbitrary complex number of modulus 1.

By the spectral theorem we deduce that the family of eigenspaces of an
observable O is a partition for H and we have seen that to each eigenspace
there is an associated projector P λO. A projector is a self-adjoint operator
with just two eigenvalues, 0 and 1; therefore a measurement of an observable
O tells us in which subspace the state vector ψ has “fallen”, as a consequence
of the measurement process.

The probability rule written above is a special case of the following rule,
which holds even for observables with continuous eigenvalue spectrum. The

38

expected result 〈O〉ψ of measuring O on a system described by (normalised)
state ψ:H is

〈O〉ψ =̂ 〈ψ,Oψ〉 .
Alternatively, one can define an observable from a family of pairwise

orthogonal subspaces which together span the whole space H and then con-
sider the projector of each subspace.

Finally, functions of operators can be defined, and we are in particular
interested in functions of self-adjoint operators, i.e. functions of observables.
For self-adjoint operator O (whose eigenvalues are always real numbers) and
function f :R → R we define

f(O) =̂
∑

λ∈ΛO

f(λ) · P λO .

Note that f(O) is self-adjoint, since f(λ) is real for all λ.

C.2 Tensor products

The state of a composite quantum system is described by the tensor product
of Hilbert spaces. Consider two complex Hilbert spaces H1,H2 of dimensions
n1, n2 respectively. For any pair of vectors ψ:H1, φ:H2, the tensor vector
ψ ⊗ φ is given by the map (· ⊗ ·):H1 ×H2 → Cn1·n2 :

(ψ ⊗ φ)i =̂ ψi div n2
φi mod n2

0 6 i < n1·n2 .

Tensor products are linear in each argument, that is:

∀α, β:C , ψ, φ:H1, χ:H2 • (αψ + βφ) ⊗ χ = (αψ) ⊗ χ+ (βφ) ⊗ χ,

∀α, β:C , ψ, φ:H1, χ:H2 • ψ ⊗ (αφ+ βχ) = ψ ⊗ (αφ) + ψ ⊗ (βχ).

Multiplication by a complex number distributes across the tensor product:

∀α:C , ψ:H1, φ:H2 • α(ψ ⊗ φ) = (αψ) ⊗ φ = ψ ⊗ (αφ).

Consider now the vector space Cn1·n2 : defining the scalar product 〈ψ1 ⊗
ψ2, φ1 ⊗ φ2〉 =̂ 〈ψ1, φ1〉H1

〈ψ2, φ2〉H2
enable us to define a new Hilbert space

H1 ⊗H2, called the tensor product of H1 and H2. Vectors in H1 ⊗H2 which
cannot be written as a single product ψ⊗φ for any ψ:H1 or φ:H2, are called
entangled. For example, in C4 the vector

1√
2
(e0 ⊗ e1 − e1 ⊗ e0)

39

is entangled (e0 and e1 are the standard basis for C2). However, every vector
in H1 ⊗H2 can be written as a sum of such product vectors.

The tensor product can be extended to linear operators over Hilbert
spaces. Let A1:H1 → H1 and A2:H2 → H2 be two linear operators over
Hilbert spaces H1 and H2 respectively. The operator A1 ⊗ A2:H1 ⊗H2 →
H1 ⊗H2 is defined as:

(A1 ⊗A2)ψ1 ⊗ ψ2 =̂ (A1ψ1) ⊗ (A2ψ2)

where ψ1:H1 and ψ2:H2. By linearity it is extended to any vector in H1⊗H2.
Since linear operators can be represented by matrices, the tensor product

is readily available for them, too. Let A = (ai,j) and B be two matrices of
dimensions m × n and p × q respectively: the tensor product A ⊗ B is the
mp× nq matrix:

a0,0B a0,1B · · · a0,n−1B

a1,0B
...

...
am−1,0B · · · am−1,n−1B

The tensor product of matrices preserves unitarity and distributes over
standard matrix multiplication, that is for operators M,N,L, P we have:

(M ·N) ⊗ (L · P) = (M ⊗ L) · (N ⊗ P).

40

