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Abstract The IEEE standardized Property Specification Language, PSL for short, extends
the well-known linear-time temporal logic LTL with so-called semi-extended regular expres-
sions. PSL and the closely related SystemVerilog Assertions, SVA for short, are increasingly
used in many phases of the hardware design cycle, from specification to verification. In this
article, we extend the common core of these specification languages with past operators.
We name this extension PPSL. Although all ω-regular properties are expressible in PSL,
SVA, and PPSL, past operators often allow one to specify properties more naturally and
concisely. In fact, we show that PPSL is exponentially more succinct than the cores of PSL
and SVA. On the star-free properties, PPSL is double exponentially more succinct than LTL.
Furthermore, we present a translation of PPSL into language-equivalent nondeterministic
Büchi automata, which is based on novel constructions for 2-way alternating automata. The
upper bound on the size of the resulting nondeterministic Büchi automata obtained by our
translation is almost the same as the upper bound for the nondeterministic Büchi automata
obtained from existing translations for PSL and SVA. Consequently, the satisfiability prob-
lem and the model-checking problem for PPSL fall into the same complexity classes as the
corresponding problems for PSL and SVA.
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1 Introduction

The industry-standardized temporal logics PSL [1] and SVA (the assertion language of Sys-
temVerilog [2]) are increasingly used in the hardware industry to formally express, validate,
and verify the requirements of circuit designs. The linear-time core of PSL extends the well-
known linear-time temporal logic LTL with semi-extended regular expressions (SEREs),
which are essentially regular expressions with an additional operator for expressing the
intersection of languages. The core of SVA can be seen as a subset of PSL.1 The prominence
of PSL and SVA in industry over other specification languages like LTL [26], μLTL [4],
and ETL [34] is that PSL and SVA balance well the competing needs of a specification lan-
guage like expressiveness, usability, and implementability [3]: all ω-regular languages are
expressible in PSL/SVA, specifications in PSL/SVA are fairly easy to read and write, and
relevant verification problems (for example, model checking) for PSL/SVA are automatically
solvable in practice.

Although temporal operators that refer to the past have been found natural and useful
when expressing temporal properties [9,10,19,23,24,29], the PSL and SVA standards sup-
port temporal past operators only in a restrictive way. This design choice has already been
made for the predecessor ForSpec [3] of PSL/SVA and has been justified by the argument
that handling “arbitrary mixing of past and future operators results in nonnegligible imple-
mentation cost” [3]. One reason for this belief is that in the automata-theoretic approach to
model checking [33], one uses 2-way automata to deal with past and future operators rather
than 1-way automata when only future operators are present. The nowadays used automata
constructions for 2-way automata are more involved than the corresponding ones for 1-way
automata. For instance, with the state-of-the-art construction in [19], we can translate a 2-way
alternating Büchi automaton with n states into a language-equivalent nondeterministic Büchi
automaton (NBA) with 2O(n2) states. For a given 1-way alternating Büchi automaton, we
obtain with the Miyano-Hayashi construction [25] an NBA with only 2O(n) states. Neverthe-
less, in this article, we give arguments in favor of extending PSL and SVA with past operators
and we argue against this assumed additional implementation cost. In particular, one of our
results shows that a restricted class of 2-way automata suffices and the additional cost for
this class is small.

In more detail, the content of the article is as follows. We first propose an extension of PSL
with past operators, which we name PPSL. PPSL extends PSL by the standard past operators
from linear-time temporal logic and by the corresponding past operators of the PSL/SVA-spe-
cific operators for SEREs. For example, the PSL/SVA-specific operatorα♦→ϕ describes that
a system trace fulfills from the current time point the pattern given by the SERE α and at the
end the post-condition ϕ holds, where ϕ is a PSL/SVA formula. PPSL additionally contains
the corresponding counterpart α ♦−→ ϕ. This new operator describes that the pre-condition
ϕ holds at some time point in the past and at that time point the system trace fulfills up to the
current time point the pattern α. Note that the temporal operator α ♦→ϕ is closely related to
the modality 〈α〉ϕ in dynamic logic [16]. See [17], for a linear-time variant of propositional
dynamic logic. However, PSL/SVA uses SEREs over state predicates and in dynamic logic,
the expressions are over program statements.

PSL, SVA, and PPSL have the same expressive power: they all describe the class of
ω-regular languages. However, PPSL allows one to describe ω-regular languages more con-

1 For the ease of exposition, we identify, similar to [5,7,9,27], PSL and SVA with their respective cores.
In particular, the cores are “unclocked,” they do not contain local variables (which are not part of the PSL
standard), and their semantics is only defined over infinite words.
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On regular temporal logics with past 253

cisely than PSL and SVA. To show this, we establish a lower bound on the succinctness of
PPSL and PSL. We define a family of ω-regular languages and prove that these languages
can be described in PPSL exponentially more succinctly than in PSL. For the LTL-express-
ible properties, that is, the ω-regular languages that are star-free (see, for example, [14]), we
obtain as a byproduct that PPSL is double exponentially more succinct than LTL.

Furthermore, we investigate the additional computational cost for solving the satisfiability
problem and the model-checking problem for PPSL. As for PSL and SVA, these problems
are EXPSPACE-complete for PPSL. In practice, the satisfiability problem and the model-
checking problem for PSL and SVA are solved by using an automata-theoretic approach [5,
7,9], translating a given formula into an NBA. With the standard automata constructions for
PSL and SVA, one obtains for a PSL/SVA formula of size n an NBA of size O(322n

) [5,7]. We
present a construction for PPSL that translates a PPSL formula of size n and m propositional
variables into an NBA of size O(2m ·322n

). Since m ≤ n and hence 2m ·322n ≤ 30.631n+22n
, the

difference between these upper bounds of the sizes of the resulting automata for PSL/SVA and
PPSL is surprisingly small. Our translation is based on alternation-elimination constructions
for restricted classes of 2-way alternating automata that were recently presented in [12] and
which we further improve in this article for the alternating automata that we obtain from our
translation of PPSL formulas into alternating automata. We use this construction to translate
a given PPSL formula into an initially equivalent SVA formula. The size of the resulting
formula is quadruple exponentially larger, not quite matching the lower bound mentioned
above. One of these four exponentials is due to the fact that the resulting SVA formula only
contains semi-extended regular expressions without intersection operators.

We point out that our translation for PPSL into NBAs significantly improves over transla-
tions that we obtain when utilizing automata constructions that do not take the given special
class of alternating automata into account. For instance, when using the state-of-the-art con-
struction [19] for translating 2-way alternating automata into NBAs, one obtains an NBA
of size O(24·24n+22n

), where n is again the size of the given PPSL formula. Overall, the
presented translation indicates that extensions of temporal logics with past operators can
be handled with only a minor overhead in the automata-theoretic model-checking approach
when adequate constructions for 2-way alternating automata are used.

The remainder of the article is organized as follows. In Sect. 2, we give preliminaries. In
Sect. 3, we define PPSL and its fragments LTL, PSL, and SVA. In Sect. 4, we present the
translation of PPSL formulas into language-equivalent NBAs and in Sect. 5, we draw some
consequences from this translation. In Sect. 6, we show the succinctness gap between PPSL
and PSL. Finally, in Sect. 7, we draw conclusions. The appendix contains additional proof
details.

2 Preliminaries

We assume that the reader is familiar with automata theory over finite and infinite words. In
the following, we recapitulate the needed background in this area and fix the notation and
terminology that we use in the remainder of the text.

Words and trees We denote the set of finite words over the alphabetΣ byΣ∗ and the set of
infinite words over Σ by Σω. The length of a word w ∈ Σ∗ is written as |w| and ε denotes
the empty word. For a finite or infinite wordw,wi denotes the symbol ofw at position i ∈ N,
where we assume that i < |w| ifw is finite. We write v � w if v is a prefix of the wordw. For
i, j < |w|, we write wi.. for the suffix wiwi+1 . . . and wi.. j for the subword wiwi+1 . . . w j .
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254 C. Dax et al.

The concatenation of the languages L ⊆ Σ∗ and L ′ ⊆ Σ∗ is L ; L ′ := {uv | u ∈ L and v ∈
L ′} and the fusion is L : L ′ := {ubv | ub ∈ L and bv ∈ L ′ with b ∈ Σ}. Moreover, we
define L∗ :=⋃n∈N

Ln(β), where L0 := {ε} and Li+1 := L ; Li , for all i ∈ N.
A (Σ-labeled) tree is a function t : T → Σ , where T ⊆ N

∗ satisfies the conditions: (i) T
is prefix-closed (this means, if v ∈ T and u � v then u ∈ T ) and (ii) if vi ∈ T and i > 0
then v(i −1) ∈ T . The elements in T are called the nodes of t and the empty word ε is called
the root of t . A node vi ∈ T with i ∈ N is called a child of the node v ∈ T . An (infinite) path
in t is a word π ∈ N

ω such that v ∈ T , for every prefix v of π . We write t (π) for the word
t (ε)t (π0)t (π0π1) . . . ∈ Σω.

Propositional logic We denote the set of Boolean formulas over the set P of propositions
by B(P), this means, B(P) consists of the formulas that are inductively built from the propo-
sitions in P and the connectives ∨,∧, and ¬. For M ⊆ P and b ∈ B(P), we write M | b iff
b evaluates to true when assigning true to the propositions in M and false to the propositions
in P\M . We write B+(P) for the set of positive Boolean formulas over P , this means, the
set of Boolean formulas in which the connective ¬ does not occur.

Regular expressions The syntax of semi-extended regular expressions (SEREs) over the
proposition set P is defined by the grammar α ::= ε | b | α 	 α | α∗, where b ∈ B(P) and
	 ∈ {∪,∩, ;, :}. The language of an SERE α over the proposition set P is inductively defined:

L(α) :=

⎧
⎪⎪⎨

⎪⎪⎩

{ε} if α = ε,

{w ∈ (2P )∗ | |w| = 1 and w0 | α} if α ∈ B(P),
L(β) 	 L(γ ) if α = β 	 γ, where 	 ∈ {∪,∩, ;, :}, and
(L(β))∗ if α = β∗.

The size of an SERE is defined as ||ε|| := 1, ||b|| := 1, for b ∈ B(P), ||β	γ || := 1+||β||+||γ ||,
for 	 ∈ {∪,∩, ;, :}, and ||β∗|| := 1+||β||. Moreover, Is(α) is the number of intersection oper-
ators that occur in the SERE α. A regular expression (RE) α is an SERE with Is(α) = 0.

Automata In the following, we define 2-way alternating Büchi automata, which scan input
words letter by letter with their read-only head. The meaning of “2-way” and “alternating”
is best illustrated by the example transition δ(p, a) = (q,−1) ∨ ((r, 0) ∧ (s, 1)) of such
an automaton, where p, q, r, s are states, a is a letter of the input alphabet, and δ is the
automaton’s transition function. The second coordinate of the tuples (q,−1), (r, 0), (s, 1)
specifies in which direction the read-only head moves: −1 for left, 0 for not moving, and 1
for right. The transition above can be read as follows. When reading the letter a in state p,
the automaton has two choices: (i) It goes to state q and moves the read-only head to the
left. In this case, the automaton proceeds scanning the input word from the updated state and
position. (ii) Alternatively, it can branch its computation by going to state r and to state s,
where the read-only head is duplicated: the first copy proceeds scanning the input word from
the state r , where the position of the read-only head is not altered; the second copy proceeds
scanning the input word from the state s, where the read-only head is moved to the right.
Note that the choices (i) and (ii) are given by the models of the example transition δ(p, a),
which is a positive Boolean formula with propositions that are pairs of states and movements
of the read-only head.

Let D := {−1, 0, 1} be the set of directions in which the read-only head can move. For-
mally, a 2-way alternating Büchi automaton (2ABA) A is a tuple (Q,Σ, δ, qI , F), where
Q is a finite set of states, Σ is a finite nonempty alphabet, δ : Q ×Σ → B+(Q × D) is the
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On regular temporal logics with past 255

transition function, qI ∈ Q is the initial state, and F ⊆ Q is the set of accepting states. The
size ||A|| of the automaton A is |Q|.

A configuration of A is a pair (q, i) ∈ Q×N. Intuitively, q is the current state and the read-
only head is at position i of the input word. A run of A on w ∈ Σω is a tree r : T → Q × N

such that r(ε) = (qI , 0) and for each node x ∈ T with r(x) = (q, j), it holds that
{
(q ′, j ′ − j) ∈ Q × D | r(y) = (q ′, j ′), where y is a child of x in r

} | δ(q, w j ).

For an infinite sequence of configurations π := (q0, i0)(q1, i1) . . . ∈ (Q × N)ω, we define
Inf (π) := {q | q occurs infinitely often in q0q1 . . . ∈ Qω}. A path π in a run r is accepting
if Inf (r(π)) ∩ F �= ∅. The run r is accepting if every path in r is accepting. The language
of A is the set L(A) := {w ∈ Σω | there is an accepting run of A on w}.

The automaton A is 1-way if δ(q, a) ∈ B+(Q × {1}), for all q ∈ Q and a ∈ Σ . That
means, A can only move the read-only head to the right. If A is 1-way, we assume that
δ is of the form δ : Q × Σ → B+(Q). We call a 1-way automaton a nondeterministic
Büchi automaton (NBA) if its transition function returns a disjunction of states for all inputs.
Similarly, we call a 1-way automaton a universal Büchi automaton (UBA) if its transition
function returns a conjunction of states for all inputs. We view the transition function δ of
an NBA or a UBA as a function of the form δ : Q ×Σ → 2Q . This means that clauses and
monomials are written as sets. A 1-way automaton is deterministic if its transition function δ
is nondeterministic and universal, that means, δ(q, a) ∈ Q, for all states q and input letters
a.

Note that a run r : T → Q × N of an NBA A on w ∈ Σω can be reduced to a single path
π in r that is consistent with the transition function. Using standard terminology, we also
call r(π) ∈ (Q × N)ω a run of A on w.

A nondeterministic finite automaton (NFA) B is a quintuple that has the same components
as an NBA. The size of an NFA is defined as for NBAs. A run of the NFA B = (Q,Σ, δ, qI , F)
on a finite word w ∈ Σ∗ is a sequence of |w| + 1 states q0q1 . . . q|w| such that q0 = qI and
δ(qi , wi ) � qi+1, for all i < |w|. The run is accepting if q|w| ∈ F . The language of B is the
set L(B) := {w ∈ Σ∗ | there is an accepting run of B on w}.

3 Temporal logics with expressions and past operators

In this section, we extend LTL with SEREs and past operators. We call the extension PPSL.
The cores of the two industrial-standard property specification languages PSL [1] and SVA [2]
are fragments of PPSL. The syntax of PPSL over the set P of propositions is given by the
grammar

ϕ ::= p | cl(α) | ¬ϕ | ϕ ∧ ϕ | Xϕ | ϕ U ϕ | α ♦→ ϕ | Yϕ | ϕ S ϕ | α ♦−→ ϕ ,

where p ∈ P and α is an SERE over P . A PPSL formula over P is interpreted at a position
i ∈ N of an infinite word w ∈ (2P )ω as follows:

w, i | p iff p ∈ wi

w, i | cl(α) iff ∃k ≥ i : wi..k ∈ L(α), or ∀k ≥ i : ∃v ∈ L(α) : wi..k � v

w, i | ϕ ∧ ψ iff w, i | ϕ and w, i | ψ

w, i | ¬ϕ iff w, i �| ϕ

w, i | Xϕ iff w, i + 1 | ϕ

w, i | ϕ U ψ iff ∃k ≥ i : w, k | ψ and ∀ j : if i ≤ j < k then w, j | ϕ

w, i | α ♦→ ϕ iff ∃k ≥ i : wi..k ∈ L(α) and w, k | ϕ
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w, i | Yϕ iff i > 0 and w, i − 1 | ϕ

w, i | ϕ S ψ iff ∃k ≤ i : w, k | ψ and ∀ j : if k < j ≤ i then w, j | ϕ

w, i | α ♦−→ ϕ iff ∃k ≤ i : wk..i ∈ L(α) and w, k | ϕ

A word w ∈ (2P )ω is a model of a PPSL formula ϕ if w, 0 | ϕ. The language of a
PPSL formula ϕ is L(ϕ) := {w ∈ (2P )ω | w, 0 | ϕ}. The PPSL formulas ϕ and ψ are
initially equivalent if L(ϕ) = L(ψ). They are logically equivalent, written as ϕ ≡ ψ , if
w, i | ϕ ⇔ w, i | ψ , for all i ∈ N and w ∈ (2P )ω. For instance, let tt and ff be the
usual abbreviations for the Boolean constants. Then Ytt and ff are initially equivalent since
the former cannot be satisfied in state 0 of a model. However, they are not logically equiv-
alent, since the former holds in any state i > 0 of any model whereas the latter holds in
none. Clearly, logical equivalence implies initial equivalence and not vice versa. However,
for formulas that do not use the past operators Y,S,♦−→ these two equivalences coincide.

As for SEREs, we define the size ||ϕ|| of a PPSL formula ϕ as its syntactic length. That is,
||p|| := 1, ||cl(α)|| := 1 + ||α||, ||¬ϕ|| := ||Xϕ|| := ||Yϕ|| := 1 + ||ϕ||, ||ϕ ∧ψ || := ||ϕ Uψ || :=
||ϕ S ψ || := 1 + ||ϕ|| + ||ψ ||, and ||α ♦→ ϕ|| := ||α ♦−→ ϕ|| := 1 + ||α|| + ||ϕ||.

We define the following fragments of PPSL. We call a PPSL formula a PSL formula if it
does not contain the operators Y,S, and ♦−→. An LTL formula is a PSL formula that does
not contain the operators cl and ♦→. An SVA formula is a PSL formula that does not contain
the operators cl,X, and U. The fragments PLTL and PSVA, which extend LTL and SVA,
respectively, with past operators, are defined as expected.

We use standard syntactic sugar, like the Boolean constants and connectives ff, tt,∨,→,
and we define ϕRψ := ¬(¬ϕU¬ψ), ϕTψ := ¬(¬ϕS¬ψ),Zϕ := Ytt → Yϕ. Moreover,
for a PPSL formula ϕ and an SERE α, we write α �→ ϕ for ¬(α ♦→ ¬ϕ) and α �−→ ϕ for
¬(α ♦−→ ¬ϕ). Note that the standard unary temporal operators can easily be defined in the
respective fragment. For instance, in PLTL, we define the future operators finally Fϕ := ttUϕ
and generally G := ¬F¬ϕ. Their past counterparts are once Oϕ := tt S ϕ and historically
Hϕ := ¬O¬ϕ, respectively. In PSVA, we define Gϕ := tt∗ �→ ϕ,Fϕ := tt∗ ♦→ ϕ,Hϕ :=
tt∗ �−→ ϕ, and Oϕ := tt∗ ♦−→ ϕ. Furthermore, in PSVA, we use Xϕ as syntactic sugar for
tt ; tt ♦→ ϕ and Yϕ for tt ; tt ♦−→ ϕ.

Remark 1 In the PSL standard [1], we also have atomic formulas of the form ended(α)
and prev(α), where α is an SERE. For instance, the word w satisfies ended(α) at position
i iff there is a subword u of w that ends at i and u ∈ L(α). The operators ended and
prev can be seen as restricted variants of the past operator ♦−→. For instance, in PPSL, if
ε �∈ L(α),ended(α) is syntactic sugar for α ♦−→ tt, and tt otherwise. Observe that ended
and prev can only be applied to SEREs, and, in contrast to ♦−→, it is not possible to define
the classical past operators Y,H, and O with them. We also remark that the literature, for
example, [5,7,9,20,27] usually considers the essential core of the PSL standard to which
the operators ended and prev do not belong. We follow this convention, this means, the
formulas in our fragment PSL of PPSL do not contain ended(α) and prev(α). Finally, we
remark that the automata constructions [5,7] for PSL and SVA cannot cope with the operators
ended and prev, which are handled by our construction in Sect. 4 for PPSL.

Example 2 A standard example for showing that the past operators of PLTL can lead to more
intuitive specifications is G(grant → Orequest), this means, every grant is preceded by a
request [23]. An initially equivalent LTL formula is request R (¬grant ∨ request). Let us
now illustrate the beneficial use of SEREs and past operators. Suppose that a request is not a
single event but a sequence of events, for example, a request consists of a start event that is
later followed by an end event and no cancel event happens between the start and the end
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event. Such sequences are naturally described by the SERE (start ; tt∗ ; end)∩ (¬cancel)∗.
Using this SERE and the new past operator ♦−→, we can easily express in PPSL the property
that every grant is preceded by a request:

G
(
grant → (

((start ; tt∗ ; end) ∩ (¬cancel)∗) ; tt∗ ♦−→ tt
))
. (1)

Note that according to the semantics of the operator ♦−→, the end event has to happen before
or at the same time as the grant event. Alternatively, we can express the property in PLTL
as

G
(
grant → O

(
end ∧ ¬cancel ∧ Y(¬cancel S (start ∧ ¬cancel))

))
. (2)

Although debatable, we consider that the PPSL formula (1) is easier to understand than the
PLTL formula (2). In SVA, we can express the property as norequest �→ ¬grant, where
the SERE norequest describes the complement of the language L

(
tt∗ ; ((start ; tt∗ ; end)∩

(¬cancel)∗) ; tt∗
)
, that is, norequest is the SERE

(
(¬start)∪(start ∧ cancel)∪(start ;(¬end)∗;cancel)

)∗;(ε ∪ (start ∧ end));(¬end)∗.

Note that in general, complementation of SEREs is difficult and can result in an exponential
blowup with respect to the size of the given SERE.

Example 3 Let us give another example to illustrate the usefulness of past operators, in
particular, the operator ♦−→. For N ≥ 1 and i ∈ {0, . . . , N − 1}, consider the PPSL for-
mulaΦN ,i := G (sendi → (swi tchi ∩ (ini t ; (¬ini t)∗) ♦−→ tt)), where swi tchi counts the
number of swi tch events modulo N , this means,

swi tchi :=
(

(¬swi tch)∗ ; swi tch ; . . . ; (¬swi tch)∗ ; swi tch
︸ ︷︷ ︸

N times

)∗
;

(¬swi tch)∗ ; swi tch ; . . . ; (¬swi tch)∗ ; swi tch
︸ ︷︷ ︸

i times

; (¬switch)∗.
(3)

Intuitively,ΦN ,i expresses the property that the process i is only allowed to send a data item
if it possesses the token. The process i possesses the token iff k swi tch events with k ≡ i
mod N occurred previously since the last ini t event. Note that this property is not expressible
in LTL since it is not star-free (see, for example, [14]).

The negation of the PSL formula

((¬ini t)∗ ♦→ sendi ) ∨ F
(

ini t ∧
(
(tt ; (¬ini t)∗) ∩ (⋃ j �=i switch j ) ♦→ sendi

))
(4)

is initially equivalent toΦN ,i . Note that the size of the formula (4) is quadratic in N , whereas
the size of the formula (3) is only linear in N . In Sect. 6, we prove that PPSL is exponentially
more succinct than PSL.

In general, for writing specifications, PPSL possesses the advantage of PLTL over LTL
and the advantage of PSL/SVA over LTL, namely, additional operators for referring to the
past and SEREs for describing sequences of events.

4 From PPSL to nondeterministic automata

In this section, we present a translation from PPSL formulas into language-equivalent NBAs.
Similar to the well-known translation for LTL formulas into NBAs, our translation comprises
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two steps: for a given PPSL formula, we first construct an alternating automaton, which we
then translate into an NBA. Throughout this section, we fix a finite set P of propositions.

4.1 From PPSL to eventually and locally 1-way 2ABAs

In this subsection, we assume that ϕ is a PPSL formula over P and ϕ is in negation normal
form, this means, the negation symbol ¬ only occurs directly in front of the atomic subformu-
las of ϕ. Note that every PPSL formula ψ can be rewritten into a logically equivalent PPSL
formula in negation normal form over an extended language, where we use the additional
Boolean connective ∨ and the additional operators R,T,Z,�→, and �−→ as primitives. The
size of the resulting formula is at most 2||ψ ||. For rewriting a formula into negation nor-
mal form, we use the logical equivalences ¬¬γ ≡ γ , ¬Xγ ≡ X¬γ , ¬Yγ ≡ Z¬γ , and
¬Zγ ≡ Y¬γ .

Before we present the construction of the 2ABA Aϕ for the PPSL formula ϕ, we briefly
highlight the similarities and the differences to the standard constructions for LTL, PLTL,
SVA, and PSL [5,7,15,32]. The construction in [7] additionally handles SEREs with local
variables. Our construction can easily be extended by this feature. However, for the ease of
exposition, we focus here on how to handle the temporal past and future operators of PPSL
efficiently. As the standard construction for PSL [5], the state space of the 2ABA Aϕ consists
of the subformulas of the given PPSL formula and the states of the automata for the SEREs.
We introduce an auxiliary symbol # to mark the beginning of the input word. With this sym-
bol, Aϕ checks in a run whether the read-only head is at the first position of the input word.
Some additional states are needed for such a check. The new operators �−→ and ♦−→ are then
easily handled since Aϕ is alternating and 2-way. In Sect. 4.2, we eliminate this additional
symbol # when constructing from Aϕ the NBA for the PPSL formula ϕ.

4.1.1 Construction details

For the construction, we need the following lemma about translating SEREs into automata.
For proof details, see [5] and standard textbooks on automata theory like [18].

Lemma 4 Let α be an SERE over the set P of propositions.

1. There is an NFA Aα with L(Aα) = L(α) and ||A|| ≤ 2||α||.
2. There is an NFA A′

α with L(A′
α) = {wn−1 . . . w0 | w0 . . . wn−1 ∈ L(α)} and ||A|| ≤ 2||α||.

3. There is an NBA Bα with L(Bα) = L(cl(α)) and ||Bα|| ≤ 2||α||.
4. There is a UBA B′

α with L(B′
α) = L(¬cl(α)) and ||B′

α|| ≤ 2||α||.

For the construction of the 2ABA Aϕ , let Aα,A′
α,Bα , and B′

α be the corresponding auto-
mata according to Lemma 4, where α is an SERE that occurs in ϕ. We assume that the state
sets of these automata are pairwise disjoint.

Now, the 2ABA Aϕ := (Q, Γ, δ, qI , F) for the PPSL formula ϕ is defined as follows,
where Γ is the alphabet {#} ∪ 2P . As Lemma 5 below shows, Aϕ accepts the language
{#w | w ∈ L(ϕ)}.

The state set Q is the disjoint union of the sets Q1, Q2, and Q3. The states in Q1 :=
{qI , qacc, qrej, q#} are the initial state qI , the accepting and rejecting sink states qacc and qrej,
and the state q# for handling the auxiliary letter # at the first position of an input word. The
purpose of the states in Q2 := Sub(ϕ) is similar to that in the standard constructions which
translate LTL formulas into alternating automata. Roughly speaking, they take care of the
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models of the subformulas of ϕ. The remaining state set Q3 is used to include the automata
for the SEREs that occur in ϕ. It is defined as

Q3 := {cl(s) | cl(α) ∈ Sub(ϕ) and s is a state of Bα} ∪
{¬cl(s) | ¬cl(α) ∈ Sub(ϕ) and s is a state of B′

α} ∪
{s 	→ ψ | 	→ ∈ {♦→,�→}, α 	→ ψ ∈ Sub(ϕ), and s is a state of Aα} ∪
{s 	→ ψ | 	→ ∈ {♦−→,�−→}, α 	→ ψ ∈ Sub(ϕ), and sis a state of }A′

α.

The set of accepting states F is the set of states that are neither in the sets G1,G2, nor G3,
which are as follows. The set G1 is the singleton {qrej}. Similar to the standard constructions
for translating LTL formulas to alternating 1-way automata, the set G2 := {ψUψ ′ | ψUψ ′ ∈
Sub(ϕ)} takes care of the least-fixpoint subformulas ψ U ψ ′ ∈ Sub(ϕ), that is, Aϕ avoids
infinite regeneration of these subformulas. The states in

G3 := {cl(s) | cl(α) ∈ Sub(ϕ) and s is a rejecting state of Bα} ∪
{¬cl(s) | ¬cl(α) ∈ Sub(ϕ) and s is a rejecting state of B′

α} ∪
{s ♦→ ψ | α ♦→ ψ ∈ Sub(ϕ) and s is a state of Aα}

are obtained from the NBAs and UBAs that accept the languages of the formulas
cl(α),¬cl(α) ∈ Sub(ϕ), respectively, and from the states of the NFAs that correspond to
the subformulas of the form α ♦→ ψ ∈ Sub(ϕ).

It remains to define the transition function δ. We start with the transitions of the states in
Q1. Let b ∈ Γ . For the states qrej and qacc, we define

δ(qrej, b) := (qrej, 1) and δ(qacc, b) :=
{
(qrej, 1) if b = #,
(qacc, 1) otherwise.

For the state q#, we define

δ(q#, b) :=
{
(qacc, 1) if b = #,
(qrej, 1) otherwise.

The transitions of the initial state qI are δ(qI , b) := (q#, 0) ∧ (ϕ, 1).
For a state q ∈ Q2 ∪ Q3,Aϕ rejects when reading the letter #, this means, we define

δ(q, #) := (qrej, 1). For the remainder of the construction, let a ∈ 2P .
The following definitions are similar to the standard constructions for translating LTL into

alternating automata.

– For a proposition p ∈ P , we define

δ(p, a) :=
{
(qacc, 1) if p ∈ a,
(qrej, 1) otherwise

and δ(¬p, a) :=
{
(qacc, 1) if p /∈ a,
(qrej, 1) otherwise.

– For the Boolean connectives ∧ and ∨, we define

δ(ψ ∧ ψ ′, a) := (ψ, 0) ∧ (ψ ′, 0) and δ(ψ ∨ ψ ′, a) := (ψ, 0) ∨ (ψ ′, 0).

– For the unary temporal operators X,Y, and Z, we define

δ(Xψ, a) := (ψ, 1) , δ(Yψ, a) := (ψ,−1) , and δ(Zψ, a) := (ψ,−1) ∨ (q#,−1).

Note that for the state Zψ , the automaton Aϕ guesses whether its read-only head is at the
first position by moving to state q#. In that case, it does not need to go to the state ψ but
it has to accept the word from q# and hence, the position of its read-only head must be at
the beginning of the word.
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– For the binary temporal operators U,R,S, and T, we define

δ(ψ U ψ ′, a) := (ψ ′, 0) ∨ ((ψ, 0) ∧ (ψ U ψ ′, 1)
)
,

δ(ψ R ψ ′, a) := (ψ ′, 0) ∧ ((ψ, 0) ∨ (ψ R ψ ′, 1)
)
,

δ(ψ S ψ ′, a) := (ψ ′, 0) ∨ ((ψ, 0) ∧ (ψ S ψ ′,−1)
)
,

and

δ(ψ T ψ ′, a) := (ψ ′, 0) ∧ ((ψ, 0) ∨ (ψ T ψ ′,−1) ∨ (q#,−1)
)
.

Let us now turn to the transitions for the subformulas with an SERE. We follow the
construction given in [5] for PSL.

– For a state cl(α) ∈ Sub(ϕ), the automaton Aϕ moves to the initial state of the NBA
Bα = (S, 2P , η, sI , E)without moving its read-only head. Then, it simulates a run of Bα
on the input word. Formally, for s ∈ S, we define

δ(cl(α), a) := (cl(sI ), 0) and δ(cl(s), a) :=
∨

t∈η(s,a)
(cl(t), 1).

Similarly, for a state ¬cl(α) ∈ Sub(ϕ),Aϕ simulates the UBA B′
α:

δ(¬cl(α), a) := (¬cl(sI ), 0) and δ(¬cl(s), a) :=
∧

t∈η(q,a)
(¬cl(t), 1) ,

where B′
α = (S, 2P , η, sI , E) and s ∈ S.

– The stateα♦→ψ ∈ Sub(ϕ) is used to start a simulation of the NFA Aα = (S, 2P , η, sI , E)
on the input word. If the simulation reaches a final state of the NFA, Aϕ may terminate
the simulation and proceed with the state ψ . Formally, we define δ(α ♦→ ψ, a) :=
(sI ♦→ ψ, 0) and for s ∈ S,

δ(s ♦→ ψ, a) :=
{∨

t∈η(s,a)(t ♦→ ψ, 1) ∨ (ψ, 0) if η(s, a) ∩ E �= ∅,
∨

t∈η(s,a)(t ♦→ ψ, 1) otherwise.

The transitions for a subformula α ♦−→ ψ ∈ Sub(ϕ) are defined similarly. Instead of
simulating the NFA Aα,Aϕ simulates the NFA A′

α , where it moves the read-only head
to the left instead of to the right.

– If the state is α �→ ψ ∈ Sub(ϕ), the automaton Aϕ simulates a run of the NFA Aα =
(S, 2P , η, sI , E) seen as a universal automaton. If the simulation reaches a final state, Aϕ

has to proceed with the state ψ . Formally, we define δ(α�→ψ, a) := (sI �→ψ, 0) and
for s ∈ S,

δ(s �→ ψ, a) :=
{∧

t∈η(s,a)(t �→ ψ, 1) ∧ (ψ, 0) if η(s, a) ∩ E �= ∅,
∧

t∈η(s,a)(t �→ ψ, 1) otherwise.

The transitions for a subformula α�−→ψ ∈ Sub(ϕ) are defined similarly. However, if the
read-only head is at the beginning of the input word, Aϕ can stop the simulation. Formally,
for the NFA A′

α = (S, 2P , η, sI , E) and s ∈ S, we define δ(α�−→ψ, a) := (sI �−→ψ, 0)
and

δ(s �−→ ψ, a) :=
{
(q#,−1) ∨∧t∈η(s,a)(t �−→ ψ,−1) ∧ (ψ, 0) if η(s, a) ∩ E �= ∅,
(q#,−1) ∨∧t∈η(s,a)(t �−→ ψ,−1) otherwise.
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We remark that the ε-transitions in our construction (this means, the transitions of Aϕ in
which the read-only head does not move) can easily be eliminated by replacing a proposition
(s, 0) that occurs in δ(q, b)with δ(s, b), where q, s ∈ Q and b ∈ Γ . Such a replacement does
not alter Aϕ’s language, since the states in the configurations that Aϕ visits by ε-transitions
in a path of a run are not essential whether the run is accepting or not.

The following lemma about the accepted language of the constructed automaton Aϕ is
not difficult to prove. The proof details are given in Appendix A.

Lemma 5 The 2ABA Aϕ accepts the language {#w | w ∈ L(ϕ)}.
From the definition of the state set Q and Lemma 4, we directly obtain Lemma 6.

Lemma 6 The 2ABA Aϕ has size at most 4 + 2||ϕ||.

4.1.2 Additional properties of the construction

The 2ABA Aϕ has some additional properties, which we exploit in Sect. 4.2 for constructing
the NBA. Namely, Aϕ is eventually 1-way and locally 1-way.

Eventually 1-way automata Intuitively speaking, eventually 1-way means that on every
branch of a computation, the alternating automaton will eventually move its read-only head
only forward. For the formal definition, we need the definition of a minimal run. The set
M ⊆ P is a minimal model of the positive Boolean formula b ∈ B+(P) over the proposition
set P if M | b and there is no p ∈ M such that M\{p} | b. Let B = (S,Σ, η, sI , E) be
a 2ABA. A run r : T → Q × N of B on the word w ∈ Σω is minimal if for every node
x ∈ T with r(x) = (s, j), the set {(s, j ′ − j) | r(y) = (s′, j ′), where y is a child of x in r}
is a minimal model of η(s, w j ). The 2ABA B is eventually 1-way if for every minimal run
r : T → Q × N of B and every path (q0, h0)(q1, h1) . . . ∈ (Q × N)ω in r , there is an integer
n ∈ N such that for every i ≥ n, we have hi < hi+1. That is, after position n, the read-only
head only moves forward.

Lemma 7 The 2ABA Aϕ is eventually 1-way.

Proof We start by defining the following function that assigns weights to states:

weight(q) :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

2|Sub(ϕ)| + 1 if q = qI ,

2|Sub(q)| if q ∈ Q2,

2|Sub(ψ)| + 1 if q ∈ Q3 and q is of the form s 	→ ψ

with 	→ ∈ {♦→,♦−→,�→,�−→},
0 otherwise.

Note that weight(α 	→ ψ) > weight(s 	→ ψ) > weight(ψ), since by definition weight
(α 	→ ψ) = 2|Sub(α 	→ ψ)| = 2|Sub(ψ)| + 2,weight(s 	→ ψ) = 2|Sub(ψ)| + 1, and
weight(ψ) = 2|Sub(ψ)|. Let r : T → Q × N be a minimal run of Aϕ on a word w ∈ Γ ω
and (q0, h0)(q1, h1) . . . ∈ (Q × N)ω a path in r . By using the weight function, we now show
that there is an integer n ∈ N such that for all i ≥ n, we have hi < hi+1.

Observe that by the definition of the transition function, we have weight(q ′) ≤ weight(q),
for all q, q ′ ∈ Q whenever the proposition (q ′, d) occurs in δ(q, a), where a ∈ Γ and d ∈ D.
Hence, for all positions i, j ∈ N with i < j , we have weight(qi ) ≥ weight(q j ). That is,
the weights of the states of the configurations monotonically decrease along the path. Let
n ∈ N be a position such that the weight becomes constant, that is, for all i ≥ n, we have
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weight(qi ) = weight(qn). We show that hi < hi+1, for all i ≥ n by considering the following
cases.

Case qi ∈ Q1. Since from the initial state qI we can only reach states whose weights
are strictly smaller, qi cannot be qI . Assume that qi ∈ {q#, qacc, qrej}. By the definition of
Aϕ’s transition function, qi+1 ∈ {qacc, qrej} and the position of the read-only head position
increases by 1. Therefore, hi < hi+1.

Case qi ∈ Q2. Assume that qi is a state of the formψUψ ′ orψRψ ′, forψ,ψ ′ ∈ Sub(ϕ).
Since weight(qi+1) = weight(qi ), only the transition that stays in the same state and moves
the read-only head forward is possible. Hence, hi < hi+1.

Assume that qi is a state of the form ψ S ψ ′ or ψ T ψ ′, for ψ,ψ ′ ∈ Sub(ϕ). Since
weight(q j ) = weight(qi ), from every configuration (q j , h j ) with j ≥ i , only the transition
that stays in the same state and moves the read-only head backward is possible. That means,
the second component decreases and eventually becomes negative, which is impossible.

Case qi ∈ Q3. The state qi+1 must be in Q3, since otherwise the weight would decrease.
Note that in the states Q3,Aϕ simulates a run of a 1-way automaton. If Aϕ simulates a run
of a 1-way automaton that always moves forward then clearly hi < hi+1. If Aϕ simulates a
run of a 1-way automaton in the reverse direction, that is, Aϕ always moves backward then
the position of the read-only head eventually becomes negative, which is impossible. ��

Locally 1-way automata A 2ABA B = (S,Σ, η, sI , E) is locally 1-way ifη(s, b) ∈ B+(S×
{0, 1}) ∪ B+(S × {−1, 0}), for every s ∈ S and b ∈ Σ . That is, the directions are limited
in which B can move its read-only head while scanning the input word. Namely, from a
configuration, the read-only head cannot move forward and backward when reading a letter.
Let us first make the following general statement that any 2ABA can be transformed into a
language-equivalent 2ABA that is locally 1-way by doubling the state space.

Lemma 8 For every 2ABA B, there is a language-equivalent 2ABA B′ that is locally 1-way
and that has size at most 2||B||.
Proof Assume that B = (Q,Σ, δ, qI , F). We define B′ = (Q ∪ Q′, δ′, qI , F), where
Q′ := {q ′ | q ∈ Q} and the transition function δ′ : (Q ∪ Q′) × Σ → B((Q ∪ Q′) × D)

is defined as follows. Let q ∈ Q and b ∈ Σ . We define δ′(q ′, b) := (q,−1) and δ′(q, b)
as the Boolean formula δ(q, b), where we replace the propositions (p,−1) by (p′, 0), for
each state p ∈ Q. The 2ABA B′ works as follows. Whenever B moves its read-only head to
the left and goes to state p,B′ mimics this by first going to the state p′ without moving the
read-only head and in the next step B′ goes from state p′ to state p, where it also moves the
read-only head to the left. Obviously, B′ is locally 1-way and accepts the language L(B). ��

We remark that the above given transformation in Lemma 8 is not needed in our setting
since PPSL does not have a temporal operator that simultaneously refers to the past and to
the future, and hence, the constructed 2ABA Aϕ is already locally 1-way.

Lemma 9 The 2ABA Aϕ is locally 1-way.

Proof The claim directly follows from inspecting Aϕ’s transition function. ��
4.2 From eventually and locally 1-way 2ABAs to NBAs

In the following, we show how the alternating automaton from the previous subsection for
a PPSL formula in negation normal form can be translated into an NBA. Our construction
is based on an alternation-elimination construction for so-called loop-free 2-way alternating

123



On regular temporal logics with past 263

Büchi automata from [12]. Intuitively, loop freeness [12,15] means that on every branch of a
computation of an 2-way alternating automaton, no configuration occurs twice. An automaton
that is eventually 1-way is also loop-free. However, the converse does not hold in general.

The alternation-elimination construction presented in this subsection exploits the fact that
the given alternating automaton is eventually 1-way and locally 1-way. Overall, for a PPSL
formulaψ with m proposition, the resulting language-equivalent NBA has size O(2m ·322||ψ ||

),

which is included in O(30.631m+22||ψ ||
). With the construction in [12], we would obtain an

NBA of size O(32·22||ψ ||
). Note that m ≤ ||ψ ||. Another advantage of the new construction

is that it avoids the explicit representation of an extended alphabet, which is used in one of
the intermediate construction steps in [12] and which is of exponential size. The presented
construction also allows for a symbolic implementation [11], which can be used in tools like
NuSMV [8] for satisfiability and finite-state model checking. See [6], for such implemen-
tations and an evaluation of constructions for the special case of 1-way alternating Büchi
automata.

Theorem 10 For an eventually 1-way and locally 1-way 2ABA A, there is a language-
equivalent NBA B of size O(|Σ | · 3||A||), where Σ is the alphabet of A.

Before we present the details of the automata construction to prove this theorem, we give
some intuition for the construction. For an input word w, the NBA B guesses a run r of
A = (Q,Σ, δ, qI , F) on w and checks whether this run is accepting. For this, as in [12,31],
B represents r as a sequence of state sets R0 R1 . . . ∈ (2Q)ω, where each Ri contains the state
q iff there is a path in r that visits (q, i). In the case where A is 1-way, each Ri consists of the
states that occur in the i th level of the run r . Note that in the general case where A is 2-way,
Ri might contain states that occur in different levels of r . For instance, Ri contains the states
q and q ′ from different levels if r contains a path of the form (qI , 0) . . . (q, i) . . . (q ′, i) . . ..
We can locally check whether such a sequence R0 R1 . . . represents a run of A on w. Since
A is locally 1-way, B can do this as follows. It stores the set Ri+1 and the letter wi+2 after
reading the i th letter of w. For a state q ∈ Ri with δ(q, wi ) ∈ B+(Q × {0, 1}), the set
(Ri ×{0})∪ (Ri+1 ×{1})must be a model of δ(q, wi ). B checks this when reading the letter
wi . For δ(q, wi ) ∈ B+(Q × {−1, 0}) and i > 0, (Ri−1 × {−1}) ∪ (Ri × {0}) must be a
model of δ(q, wi ). B already checks this when it reads the (i − 1)th input letter by using the
guessed letter wi .

Additionally, B must check that every path in r visits infinitely often configurations
with an accepting state. Similar to the alternation-elimination construction by Miyano and
Hayashi [25] for 1-way alternating Büchi automata, B checks this property with an additional
component in the state space and its set of accepting states. Since A is eventually 1-way, B
must only track transitions that move the position of A’s read-only head forward.

Remark 11 We remark that for the sketched construction, a weaker but less intuitive condi-
tion for the given 2ABA A = (Q,Σ, δ, qI , F) than the condition of locally 1-way suffices.
Namely, for every q ∈ Q, b ∈ Σ , and M ⊆ Q × {−1, 0, 1}, it suffices to require that if
M ∪ (Q × {1}) | δ(q, b) and M ∪ (Q × {−1}) | δ(q, b) then M | δ(q, b). It is easy to
see that this property holds for locally 1-way 2ABAs. Note that we can check this weaker
property by transforming the Boolean formulas of the automaton’s transition function into
CNF and checking whether each clause is in B+(Q × {0, 1}) or B+(Q × {−1, 0}). Further-
more, we note that this weaker property is of practical interest. We can exploit it to reduce the
size of the 2ABA Aϕ that we obtain from our construction for a PPSL formula ϕ in negation
normal form.
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Proof (Theorem 10) We now give the details of the construction with this weaker condition
from Remark 11 and then prove the correctness of the construction. For the eventually 1-way
and locally 1-way 2ABA A = (Q,Σ, δ, qI , F), we define the NBA B := (Q′,Σ, η, pI , E)
with Q′ := {pI } ∪ {(a, R, S) ∈ Σ × 2Q × 2Q\F | S ⊆ R} and E := Σ × 2Q × {∅}. Note
that |Q′| ∈ O(|Σ | · 3|Q|) since we require that S is a subset of R for the states of the form
(a, R, S). For b ∈ Σ , the transition function η is defined as follows. For the initial state
pI , η(pI , b) contains the state (c, R′, S′) iff S′ = R′\F and there is some R ⊆ Q such that
qI ∈ R,

(
R × {0}) ∪ (R′ × {1}) |

∧

q∈R

δ(q, b)

and
(
R × {−1}) ∪ (R′ × {0}) ∪ (Q × {1}) |

∧

q∈R′
δ(q, c).

For a state (a, R, S), the transition function η is defined as follows. If a �= b then
η ((a, R, S), b) := ∅. If a = b then η ((a, R, S), b) contains the state (c, R′, S′) iff the
following conditions for c, R′, and S′ are satisfied: First,

(
Q × {−1}) ∪ (R × {0}) ∪ (R′ × {1}) |

∧

q∈R

δ(q, b)

and
(
R × {−1}) ∪ (R′ × {0}) ∪ (Q × {1}) |

∧

q∈R′
δ(q, c).

Second, S′ = R′\F if S = ∅, and if S �= ∅ then S′ ⊆ R′\F and
(
S′ ∪ (F ∩ R′)

)× {1} |
∧

q∈S

δ(q, b).

In the remainder of the proof, we show that L(A) = L(B).

(⊆) Assume that r is an accepting run of A on w ∈ Σω. We define a run � of B on w
as follows. Note that � has to be a sequence of the form pI (a1, R1, S1)(a2, R2, S2) . . . with
ai ∈ Σ, Ri ⊆ Q, and Si ⊆ Ri\F , for all i > 0. We define the components ai , Ri , and Si

separately.

For i > 0, we define ai := wi and for i ≥ 0, we define

Ri := {q ∈ Q | there is a node v of r such that r(v) = (q, i)}.
The sets Si are inductively defined: S0 := ∅ and for i > 0, we define

Si :=
⎧
⎨

⎩

Ri\F if Si−1 = ∅,
{s′ ∈ Q\F | r has a node u with a child v such that

r(u) = (s, i − 1), s ∈ Si−1, and r(v) = (s′, i)} otherwise.

Note that Si ⊆ Ri , for all i ∈ N.
We first prove that for every i ≥ 0, there is some j ≥ i such that S j = ∅. Let i ≥ 0.

Assume that there is no j ≥ i with S j = ∅. From the sets Si , Si−1, . . ., we obtain a directed
graph G with the vertexes (p, j) with p ∈ S j . The edges are according to the run r of
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the automaton A on the word w. Observe that G is finitely branching and every vertex is
reachable from some vertex of the form (p, i). Furthermore, G is infinite, since we assume
that S j �= ∅, for all j ≥ i . By König’s Lemma, it follows that there is an infinite path in G
starting from a vertex (p, i). This path never visits a vertex in which a state in F occurs. This
contradicts the assumption that every path in the run r infinitely often visits a configuration
in which a state in F occurs.

It remains to prove that (a1, R1, S1) ∈ δ(pI , w0) and that (ai+1, Ri+1, Si+1) ∈
δ((ai , Ri , Si ), wi ), for all i > 0.

– We start with the second case. Let i > 0. First, consider some arbitrary q ∈ Ri . By defini-
tion, there is a node u of r with r(u) = (q, i). Let v1, . . . , vn be the children of u in r . With-
out loss of generality, we assume that r(v j ) = (q j , h j )with h j ∈ {i −1, i, i +1}, for all j
with 1 ≤ j ≤ n. Since r is a run and ai = wi , we have {(q1, h1 − i), . . . , (qn, hn − i)} |
δ(q, ai ). For all j with 1 ≤ j ≤ n, we have q j ∈ Ri if h j = i , and q j ∈ Ri+1 if
h j = i + 1. Since δ(q, ai ) is a positive Boolean formula, we obtain

(
Q × {−1}) ∪ (Ri × {0}) ∪ (Ri+1 × {1}) | δ(q, ai ).

Second, consider some arbitrary q ∈ Ri+1. By definition, there is a node u of r with
r(u) = (q, i + 1). Let v1, . . . , vn be the children of u in r . Without loss of generality, we
assume that r(v j ) = (q j , h j )with h j ∈ {i, i +1, i +2}, for all j with 1 ≤ j ≤ n. Since r
is a run and ai+1 = wi+1, we have {(q1, h1 − i − 1), . . . , (qn, hn − i − 1)} | δ(q, ai+1).
For all j with 1 ≤ j ≤ n, we have q j ∈ Ri−1 if h j = i − 1, and q j ∈ Ri if h j = i . Since
δ(q, ai+1) is a positive Boolean formula, we obtain

(
Ri × {−1}) ∪ (Ri+1 × {0}) ∪ (Q × {1}) | δ(q, ai+1).

If Si = ∅ then Si+1 = Ri+1\F by definition. For the case Si �= ∅, the reasoning is similar
as for the second components Ri and Ri+1 of the states.

– The reasoning for the first case is similar to the second case by setting i to 0. We have
qI ∈ R0, since the root of r is labeled by the configuration (qI , 0). Furthermore, by
definition, we have S1 = R1\F .

(⊇) Assume that � is an accepting run on w ∈ Σω. Without loss of generality, assume that
� has the form pI (a1, R1, S1)(a2, R2, S2) . . . with ai ∈ Σ, Ri ⊆ Q, and Si ⊆ Ri\F , for all
i > 0. Furthermore, let R0 ⊆ Q be a set for which we require its existence in the definition
of the transition function from state pI .

We construct a run r of A on w inductively over the length of a node. An invariant of the
construction is that if a node is labeled by (q, i) then q ∈ Ri , for all q ∈ Q and i ∈ N. We
label the root of r by (qI , 0). The construction invariant is obviously satisfied since in the
definition of the transitions from state pI , we require that qI ∈ R0. Let u be a node of r with
r(u) = (q, i), for some q ∈ Q and i ∈ N. We have q ∈ Ri . There are two cases.

– Assume that i = 0. By definition of the transition function, we have

(
R0 × {0}) ∪ (R1 × {1}) |

∧

q∈R0

δ(q, w0).

Let M ⊆ (R0 × {0})∪(R1 × {1}) be a minimal model of δ(q, w0). We define the children
of u as follows: for each proposition (p, d) ∈ M, u has a child v that is labeled by (p, d).
This definition obviously satisfies the construction invariant.
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– Assume that i > 0. By the definition of the transition function, we have
(
Q × {−1}) ∪ (Ri × {0}) ∪ (Ri+1 × {1}) |

∧

q∈Ri

δ(q, wi )

and for j := i − 1,
(
R j × {−1}) ∪ (R j+1 × {0}) ∪ (Q × {1}) |

∧

q∈R j+1

δ(q, w j+1).

By the assumption that A is locally 1-way (or has the more general property from
Remark 11), we infer

(
Ri−1 × {−1}) ∪ (Ri × {0}) ∪ (Ri+1 × {1}) |

∧

q∈Ri

δ(q, wi ).

Let M ⊆ (Ri−1 × {−1}) ∪ (Ri × {0}) ∪ (Ri+1 × {1}) be a minimal model of δ(q, ai ).
We define the children of u as follows: for each proposition (p, d) ∈ M, u has a child v
that is labeled by (p, i +d). This definition obviously satisfies the construction invariant.

It is straightforward to see that r is a minimal run of A on w. Note that from the definition
of B’s transition function, we have wi = ai , for all i > 0.

It remains to show that r is accepting. For the sake of contradiction, assume that there
is a rejecting path π in r with r(π) = (p0, h0)(p1, h1) . . .. Since r is a minimal run of an
eventually 1-way automaton, there is a position n ∈ N such that for all i ≥ n, we have
hi < hi+1 and pi /∈ F . By the construction invariant, we have pi ∈ Ri , for all i ∈ N.
Consider a position m ≥ n with Sm = ∅. This position exists because � is accepting. The
state pm+1 is a member of Sm+1 since � is a run of B and Sm+1 = Rm+1\F . By induction,
we infer that for all positions i ≥ m +1 we have pi ∈ Si since � obeys the transition function
of B. This contradicts the assumption that � is an accepting run of B. ��

We obtain the following result by putting the two constructions from Sect. 4.1 and Theo-
rem 10 together.

Theorem 12 For any PPSL formula ψ with m propositions, there is a language-equivalent
NBA C of size O(2m · 322||ψ ||

).

Proof First, we transformψ into a logically equivalent formulaψ ′ that is in negation normal
form of size 2||ψ ||. Let Aψ ′ be the 2ABA that we obtain from ψ ′ by the construction in
Sect. 4.1. By the Lemmas 6, 7, and 9, Aψ ′ is eventually 1-way, locally 1-way, and its size
is bounded by 4 + 22||ψ ||. By Lemma 5, Aψ ′ accepts the language {#w | w ∈ L(ψ)}. By
Theorem 10, we translate Aψ ′ into a language-equivalent NBA B = (Q, {#} ∪ 2P , δ, qI , F)

with O(2|P| · 322||ψ ||
) states. Note that we assume without loss of generality that P con-

tains only the propositions that occur in ψ . We define the NBA C = (Q, 2P , δ′, qI , F),
where δ′(q, a) := δ(q, a), for q ∈ Q\{qI } and a ∈ 2P , and δ′(qI , a) := {q ′ | q ′ ∈
δ(q, a), for some q ∈ δ(qI , #)}. We have L(C) = L(ψ) and ||C|| ∈ O(2|P| · 322||ψ ||

). ��
We make the following remark on the size of the resulting NBA of the presented con-

struction for PPSL.

Remark 13 The size of the constructed 2ABA Aϕ in Sect. 4.1 depends on the number of sub-
formulas of the given PPSL formula ϕ in negation normal form and the sizes of the automata
for the SEREs in ϕ. First, we remark that the construction shares subformulas and the SEREs
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occurring in them, and that |Sub(ϕ)| ≤ ||ϕ||. Second, for a bounded number of intersection
operators in the SEREs of the formula, we obtain a polynomial upper bound on the sizes of
automata for the SEREs. In particular, for an SERE α with n intersection operators, there is a
language-equivalent NFA of size ||α||1+n . It follows that the size of the 2ABA Aϕ is bounded
by

4 + |Sub(ϕ)| +
∑

α	→ψ∈Sub(ϕ)

||α||1+Is(α) +
∑

cl(α)∈Sub(ϕ)

||α||1+Is(α) +
∑

¬cl(α)∈Sub(ϕ)

||α||1+Is(α)

when ϕ is in negation normal form. Here, 	→ ranges over the elements in the set
{♦→,�→,♦−→,�−→}. With this new upper bound, we conclude that for a PPSL formula ψ
with m propositions, there is a language-equivalent NBA of size

O
(

2m · 3
2·|Sub(ψ)|+2· ∑

α	→ψ∈Sub(ϕ)
||α||1+Is(α)+2· ∑

cl(α)∈Sub(ϕ)
||α||1+Is(α)

)

,

which refines the upper bound in Theorem 12. In particular, the size of the resulting NBA is
only exponential in the size of ψ and not double exponential anymore when the number of
intersection operators in the SEREs are bounded. Note that in the worst case the transforma-
tion of ψ into a PPSL formula in negation normal form doubles |Sub(ψ)| and the number of
SEREs in the subformulas.

5 Consequences of the translation

In this section, we prove some facts that follow from Theorem 12.
Since SVA can already express all ω-regular languages, we have that PPSL describes

exactly the ω-regular languages. Moreover, SVA, PSL, and PPSL share the same com-
putational complexity. In particular, the satisfiability and the model-checking problem for
PPSL are EXPSPACE-complete in general and PSPACE-complete for PPSL formulas with
a bounded number of intersection operators.

Theorem 14 The satisfiability problem and the model-checking problem for PPSL are EXP-
SPACE-complete in general and PSPACE-complete for PPSL formulas with a bounded num-
ber of intersection operators.

Proof We first show the EXPSPACE membership of the satisfiability problem for PPSL.
Satisfiability of an instance ϕ can be checked by determining whether the language of the
NBA Bϕ according to Theorem 12 is nonempty. The emptiness check can be done by two
simple reachability checks in the state graph of Bϕ : an accepting state needs to be found so
that (1) it is reachable from the initial state and (2) it must be reachable from itself by a non-
empty loop. Reachability can be decided in nondeterministic logarithmic space in the size of
Bϕ , and therefore in nondeterministic exponential space in the size of ϕ. The crucial insight
here is that the automaton can be constructed on-the-fly (see, e.g., [32]) whilst being checked
for emptiness. Since NEXPSPACE equals EXPSPACE according to Savitch’s Theorem [30],
we conclude that the satisfiability problem for PPSL is in EXPSPACE.

If the number of intersection operators in the SEREs that occur in the instances ϕ is
bounded by some constant, then the size of the NBA Bϕ is bounded by O(2p(||ϕ||)), for some
polynomial p (see Remark 13). In this case, we can check emptiness of Bϕ in NPSPACE
(measured in the size of ϕ), which equals PSPACE using Savitch’s Theorem again.
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Not surprisingly, these upper bounds transfer to the model-checking problem, that is, the
question whether all paths in a given Kripke structure K from a state s of K satisfy a given
PPSL formula ϕ. Since PPSL is closed under negation, we can build an NBA B¬ϕ and check
whether the intersection of the automaton’s language with the language of the Kripke struc-
ture is empty. As above, the construction of B¬ϕ is done on-the-fly while carrying out the
emptiness check of the intersection of B¬ϕ and the Kripke structure K.

The hardness results for the statisfiability and the model-checking problem for PPSL
follow directly from the hardness results for PSL and SVA, which are shown in [7,20]. ��

Another similarity between the logics is that they all have the small model property of
doubly exponential size. In particular, there is a constant c > 0 such that a satisfiable PPSL
formula ϕ has a model of the form uvω with |uv| ≤ c · 2||ϕ|| · 322||ϕ||

.

Corollary 15 Every satisfiable PPSL formula ϕ has a model of the form uvω with |uv| ∈
O(2||ϕ|| · 322||ϕ||

).

Proof It is well known that every NBA with n states that accepts a non-empty language
accepts a word of the form uvω such that |u| + |v| ≤ n. With this, the statement follows
immediately from Theorem 12. ��

Since PSL/SVA and PPSL describe the same class of properties, the question arises of
their relative succinctness. The next theorem states an upper bound on the translation from
PPSL to SVA. Roughly speaking, for the proof, we translate a PPSL formula into an NBA,
which is in turn translated into a deterministic Muller automaton. From the Muller automa-
ton we obtain an ω-regular expression, which we finally translate into an SVA formula. We
remark that a similar translation using regular expressions and the connectives ♦→ and �→
appears in [3] to show that the logic ForSpec is capable of describing allω-regular languages.
However, no upper bounds of the translation in [3] are given.

Recall that Muller automata are defined similar to Büchi automata except that their accep-
tance condition is given as a set of set of states. In particular, a run of a deterministic Muller
automaton with the acceptance condition F is accepting if the set of states visited infinitely
often is in F . For the sake of readability, we define 2x

0 := x and 2x
k := 22x

k−1 , for k > 0.

Theorem 16 For any PPSL formula ϕ, there is an initially equivalent SVA formula of size
2O(||ϕ||)

4 and in which the intersection operator does not occur.

Proof According to Theorem 12, we construct for the PPSL formula ϕ, an NBA Bϕ with

L(Bϕ) = L(ϕ) and ||Bϕ || ∈ O(2||ϕ|| · 322||ϕ||
). From the NBA Bϕ , we obtain a language-

equivalent deterministic Muller automaton A = (Q,Σ, δ, qI ,F) by using Safra’s construc-
tion [28]. The size of A is 2O(||Bϕ ||·log ||Bϕ ||) ⊆ 2O(||ϕ||)

3 .
We describe the language of L(A) as follows in terms of finite word languages. For S ⊆ Q

and s, t ∈ S,AS
s,t denotes the NFA (S,Σ, δ′, s, {t}) with δ′(p, a) := δ(p, a) ∩ S, for all

p ∈ S and a ∈ Σ . That means, we restrict A’s state space to S and view it as an automaton
over finite words with the initial state s and the singleton acceptance set {t}. Furthermore,
Lω denotes the language of infinite words that we obtain by an infinite concatenation of
nonempty words from the language L of finite words. We have

L(A) =
⋃

F∈F with
F={ f1,..., fn}

L(AQ
qI , f1

) ;
(

L(AF
f1, f2

) ; . . . ; L(AF
fn−1, fn

) ; L(AF
fn , f1

)
)ω
. (5)
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In the remainder of the proof, we will use REs and the operators ♦→ and �→ to express
the right-hand side of (5) as an SVA formula. Recall that for S ⊆ Q and r, s ∈ S, the finite
word language L(AS

s,t ) can be expressed as an RE αS
s,t of size O(2|S|), see [18]. Furthermore,

observe that for an SERE α with L(α) �= ∅ and a PPSL formula ψ , we have

L(α) ; L(ψ) = L(α ♦→ Xψ) ∪
{

L(ψ) if ε ∈ L(α),
∅ otherwise.

(6)

For an SERE α with L(α) �= ∅ and L(α) �= {ε}, we have

(L(α))ω = L (α ♦→ tt) ∩ L
(
α∗ �→ X(α ♦→ tt)

)
(7)

whenever L(α) satisfies for all nonempty finite words u, v the condition: if uv ∈ L(α) and
u ∈ L(α) then v ∈ L(α). Note that not every regular expression satisfies the equality (7).
However, in our case, the equality holds, since the regular expression (see definition below)
represents the words in a deterministic automaton that describe a loop from a given state.

For F ∈ F with F = { f1, . . . , fn}, we define the RE

βF
f1,..., fn

:= αF
f1, f2

; . . . ; αF
fn−1, fn

; αF
fn , f1

.

Obviously, we have L(βF
f1,..., fn

) = L(AF
f1, f2

) ; . . . ; L(AF
fn−1, fn

) ; L(AF
fn , f1

). Moreover,

L(βF
f1,..., fn

) satisfies the condition that a nonempty word v is in L(βF
f1,..., fn

) whenever a

nonempty word u and the word uv are both in L(βF
f1,..., fn

).
To simplify matters, we assume in the following, without loss of generality, that every

F ∈ F is reachable from the initial state, this means, L(AQ
qI , f ) �= ∅, for each f ∈ F . We

also assume for each F ∈ F that qI �∈ F and that L(AF
f, f ′) �= ∅ and L(AF

f, f ′) �= {ε}, for all
f, f ′ ∈ F .

With the equalities (5), (6), and (7) at hand, it is straightforward to see that the following
SVA formula ϕ′ is initially equivalent to ϕ:

ϕ′ :=
∨

F∈F with
F={ f1,..., fn}

α
Q
qI , f1

♦→ Xψ F
f1,..., fn

,

where ψ F
f1,..., fn

:= (βF
f1,..., fn

♦→ tt) ∧ ((βF
f1,..., fn

)∗ �→ X(βF
f1,..., fn

♦→ tt)). Obviously, no
intersection operator occurs in the SEREs of ϕ′. An upper bound on the length of ϕ′ is

||ϕ′|| ∈ O
(
∑

F∈F
(2|Q| + 3 · |F | · 2|F |)

)

⊆ O(2|Q| · 23·|Q|) ⊆ 2O(||ϕ||)
4 .

��

It is fair to ask whether the upper bound in Theorem 16 is optimal, this means, whether
there is a family of PPSL formulas such that every initially equivalent family of PSL formulas
must be triply exponentially larger. The result on the small model property shows that such
a lower bound cannot be proved by comparing the model sizes (see, for example, the Gap
Lemma in [21]). We are only able to establish an exponential lower bound. This result is
presented in the next section.
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Fig. 1 Succinctness gaps

6 Succinctness gaps

In this section, we prove an exponential succinctness gap between PPSL and PSL/SVA, this
means, there is a family (Φn)n>0 of PPSL formulas such that for every family (�n)n>0 of
PSL (and therefore also SVA) formulas, if�n is initially equivalent toΦn for all n > 0, then
||�n || is exponential in ||Φn ||. In fact, our result is stronger since the formulas Φn that we
define are just PSVA formulas. The proof of this succinctness result can easily be adapted to
show that PSVA and, hence, PPSL, is double exponentially more succinct than LTL on the
star-free languages. Figure 1 summarizes the results of this section.

Our proof for the succinctness gap between PSVA and PSL has a similar flavor as the
proof in [24], which shows that PLTL is exponentially more succinct than LTL. However,
our proof is more involved since we must take SEREs into account. In fact, the formulas in
the family of PLTL formulas that is used in [24] are initially equivalent to SVA formulas of
linear size. From this observation, we conclude that SVA is exponentially more succinct than
LTL on the star-free languages.

Lemma 17 For every n > 0, there is an SVA formula Υn such that for any LTL formula�n,
if L(�n) = L(Υn) then ||�n || ∈ �(2||Υn ||).

Proof Let P be the set {p0, p1, . . . , pn} of propositions. We define Υn as the SVA formula
αn �→ ff, where αn is the SERE

(
(p0 ; tt∗ ; ¬p0) ∪ (¬p0 ; tt∗ ; p0)

) ∩
⋂

1≤i≤n

(
(pi ; tt∗ ; pi ) ∪ (¬pi ; tt∗ ; ¬pi )

)
.

It is easy to see that Υn is initially equivalent to the PLTL formula

G

⎛

⎝
∧

1≤i≤n

(pi ↔ OHpi ) → (p0 ↔ OHp0)

⎞

⎠ .

Literally, the SVA formula Υn and the above PLTL formula state that for any position, p0’s
truth value is equal the corresponding truth value at the initial position whenever the truth
values of the propositions p1, . . . , pn at that position are equal to the corresponding truth
values at the initial position.

From [24], it follows that any LTL formula �n that is initially equivalent to Υn is expo-
nentially larger than �n . ��

Let us now turn to the succinctness gap between PSVA and PSL. For this, we first intro-
duce so-called n-counting words, which can be defined in SVA by formulas of size O(n).
In the following, let n > 0, Pn be the set {c0, . . . , cn−1, p, q} of propositions, and Σn the
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alphabet 2Pn . The n-value of the letter b ∈ Σn is

valn(b) :=
∑

0≤i<n

2c′
i with c′

i :=
{

1 if ci ∈ b,
0 otherwise.

In other words, the n-value of b is obtained by reading c0, . . . , cn−1 as bits of a positive integer
in binary representation. A word w ∈ Σω

n is n-counting if valn(w0) = 0 and valn(wi+1) ≡
valn(wi )+ 1 mod 2n , for all i ∈ N.

Lemma 18 For every n > 0, there is an SVA formula countn of size O(n) such that
L(countn) ⊆ Σω

n is the language of n-counting words.

Proof Recall that the temporal operators G and X can easily be defined in SVA by using the
operator ♦→.

We define countn as the SVA formula
⎛

⎝
∧

0≤i<n

¬ci

⎞

⎠ ∧ G (¬Xc0 ↔ c0) ∧
∧

1≤i<n

G (Xci ↔ (ci ↔ (ci−1 → Xci−1))) .

It is easily checked that w ∈ Σω
n is a model of countn iff w is n-counting. ��

An n-segment of a word w ∈ Σω
n is a subword v = wi . . . wi+2n−1 such that i ≡ 0

mod 2n , for some i ∈ N. The n-segment v is initial if i = 0. For a proposition r ∈ {p, q},
the words u, v ∈ Σ∗

n are r-equal if |u| = |v| and r ∈ ui ⇔ r ∈ vi , for all i ∈ N with i < |v|.
In other words, the projection of two r -equal words onto r yields the same word. Let Ln and
L ′

n be the following languages:

– Ln consists of the n-counting words w ∈ Σω
n such that if an n-segment of w is p-equal

to the initial n-segment of w then they are also q-equal.
– L ′

n consists of the n-counting words w ∈ Σω
n such that if the n-segments u and v of w

are p-equal then they are also q-equal.

The languages Ln and L ′
n have the following properties.

Lemma 19 For every n > 0, there is a PSVA formulaΦn of size O(n) such that L(Φn) = Ln.

Proof First, we define the SERE sameposn such that for every subword v ∈ Σ∗
n of an

n-counting word w ∈ Σω
n , it holds that v ∈ L(sameposn) iff v = wi.. j , for some i, j ∈ N

with i < j and i ≡ j mod 2n . Note that since v is a finite subword of an n-counting word,
one only has to assert that the n-values of the first and the last letter of v are equal. We define

sameposn :=
⋂

0≤i<n

(
(ci ; tt∗ ; ci ) ∪ (¬ci ; tt∗ ; ¬ci )

)
.

With the SERE sameposn at hand, we easily define a PPSL formula that checks whether a
position is in the initial n-segment of an n-counting word:

ini tialn := ¬(sameposn ♦−→ tt).

For an n-counting word w ∈ Σω
n and i ∈ N, we have w, i | ini tialn iff i < 2n . Moreover,

for a PPSL formula ψ , we define

backψn := sameposn ♦−→ (ini tialn ∧ ψ).
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For an n-counting word w ∈ Σω
n and i ∈ N, it holds that w, i | backψn iff w, i mod 2n |

ψ . Intuitively, backψn goes back in the word w until it reaches the position in the initial
n-segment with same counter values as the current position, and there it checks whether ψ
holds. Next, we define the SERE wi thinn := (¬cn−1)

∗ ; (cn−1)
∗. We use it for checking

if a larger position than the current position is still in the same n-segment of an n-counting
word. Note that the highest bit cn−1 of the counter is only allowed to change its value from
0 to 1 once. The formula startn :=∧0≤i<n ¬ci checks whether a position is the first one of
an n-segment in an n-counting word.

Finally, consider the PPSL formula Φn := countn ∧ ϕn , where

ϕn := G
(
startn ∧ (wi thinn �→ (p ↔ back p

n )
)→ (

wi thinn �→ (q ↔ backq
n )
))
.

The formula ϕn states that for any n-segment of an n-counting word, if the Boolean value
of p at every position of that n-segment coincides with the Boolean value of p at the corre-
sponding position of the initial n-segment, then the same holds for the Boolean values of q .
Hence, we have L(Φn) = Ln . Furthermore, it is easy to see that ||Φn || ∈ O(n). ��
Lemma 20 For every n > 0, if B is an NBA with L(B) = L ′

n then ||B|| ≥ 2n
3 .

Proof Throughout the proof, let N := 2n
2. Note that there are N different n-segments

with respect to the proposition p. Recall that an n-segment has length 2n . Let the
words v0, . . . , vN−1 ∈ {∅, {p}}∗ be an enumeration of all these n-segments with vi =
vi,0 . . . vi,2n−1. For S ⊆ {0, . . . , N − 1}× {0, . . . , 2n − 1} and i ∈ {0, . . . , N − 1}, we define
vS

i := vS
i,0 . . . v

S
i,2n−1, where

vS
i, j :=

{
vi, j ∪ w j ∪ {q} if (i, j) ∈ S,
vi, j ∪ w j otherwise,

for j ∈ {0, . . . , 2n − 1} and an n-counting word w ∈ (2{c0,...,cn−1})ω. Note that in the above
definition we add the counter values to the n-segment vi and the set S prescribes at which
positions the proposition q should be added to the n-segments v0, . . . , vN−1. Finally, we
define the word vS := vS

0 . . . v
S
N−1. Observe that there are M := 2N ·2n

different such sets S.
Note that M ≥ 2n

3. Also, for every such S we have (vS)ω ∈ L(B).
Suppose that ||B|| < M . Then, by the pigeon hole principle, there are sets S, S′ ⊆

{0, . . . , N − 1} × {0, . . . , 2n − 1} with S �= S′ such that an accepting run π of B on (vS)ω

and an accepting run π ′ of B on (vS′
)ω visits the same state s after N · 2n many steps, this

means, after reading the prefixes vS and vS′
, respectively. The suffixes of these runs could

be interchanged which would create accepting runs on (vS)(vS′
)ω for example, even though

(vS)(vS′
)ω �∈ L ′

n . ��
With the above lemmas we obtain our succinctness result for PSVA and PSL.

Theorem 21 For every n > 0, there is a PSVA formula Φn such that L(Φn) = Ln and for
every PSL formula Ψn, if L(Ψn) = Ln then ||Ψn || ∈ �(2||Φn ||).

Proof For a given n > 0, take the PSVA formula Φn from Lemma 19. Suppose that Ψn is a
PSL formula that is initially equivalent toΦn . Let Ψ ′

n := countn ∧ G(¬c0 ∧ · · · ∧ ¬cn−1 →
Ψn). Note that Ψ ′

n expresses that a model is n-counting and each two p-equal n-segments
in a model are also q-equal, this means, L(Ψ ′

n) = L ′
n . By Theorem 12, there is an NBA

B of size 2
O(||Ψ ′

n ||)
2 and L(B) = L(Ψ ′

n). By Lemma 20, we have ||B|| ≥ 2n
3. It follows that

||Ψ ′
n || ∈ �(2||Φn ||). Since Ψ ′

n is linear in the size of Ψn , we conclude that ||Ψn || ∈ �(2||Φn ||).
��
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Note that Ln is a star-free language, this means, there is an LTL formula ϕn such that
L(ϕn) = Ln . We now adapt the proof of Theorem 21 to obtain a double exponential suc-
cinctness gap between PSVA and LTL.

Theorem 22 For every n > 0, there is a PSVA formula Φn such that L(Φn) = Ln and for
any LTL formula �n, if L(�n) = Ln then ||�n || ∈ �(2||Φn ||

2 ).

Proof For a given n > 0, take the PSVA formula Φn from Lemma 19. Suppose that �n is a
LTL formula that is initially equivalent toΦn . Let�′

n := countn ∧ G(¬c0 ∧ · · · ∧¬cn−1 →
�n). Observe that we can adapt Lemma 18 so that countn is an LTL formula. We remark
that �′

n expresses that a model is n-counting and each two p-equal n-segments in a model
are also q-equal, this means, L(�′

n) = L ′
n . By Theorem 12 and Remark 13, there is an NBA

B of size 2O(||�′
n ||) and L(B) = L(�′

n). By Lemma 20, we have ||B|| ≥ 2n
3. It follows that

||�′
n || ∈ �(2||Φn ||

2 ). Since�′
n is linear in the size of�n , we conclude that ||�n || ∈ �(2||Φn ||

2 ). ��

Remark 23 We conclude this section by stating some open problems related to the presented
succinctness gaps. First, it remains open whether the exponential succinctness gap still holds
between PPSL and extensions of PSL/SVA with restricted variants of the past operators like
the ones discussed in Remark 1. We did not succeeded in proving such a gap, neither did we
succeed in expressing the languages Ln concisely in such an extension. Second, it remains
open whether the succinctness gaps carry over to a fixed and finite proposition set. Note
that the proposition sets Pn over which the PSVA formulas Φn are defined grow linearly in
n. As shown in [13], we can encode any number of propositions by a single proposition.
However, the sizes of the adapted formulas for Φn are no longer linear in n. In particular,
the sizes of the adapted SEREs sameposn in Lemma 19 are quadratic in n. It is not obvious
how to adapt these SEREs so that their sizes remain linear in n. Therefore, for a fixed and
finite proposition set, we only obtain a superpolynomial succinctness gap between PSVA
and SVA. Note that for similar reasons, the adapted proof of the succinctness gap between
PLTL and LTL in [22,24] for a fixed and finite proposition set also only shows that PLTL is
superpolynomially more succinct than LTL.

7 Conclusion

In this article, we have proposed the temporal logic PPSL, which extends PSL and SVA
with past operators. We have analyzed its complexity and our results show that PPSL and
PSL/SVA are similarly related as PLTL and LTL with respect to expressiveness, succinctness,
and the computational complexities of the satisfiability and the model-checking problem. It
remains to be seen whether the advantages of PPSL over PSL and SVA pay off in practice.
The presented translation for PPSL into NBAs shows that the additional cost for handling past
operators is small and should not be a burden in implementing PPSL in system verification.
Our preliminary experience with a prototype implementation for the model checker NuSMV
are promising.2
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thank the reviewers for their valuable comments.

2 Our tool is publicly available at www.infsec.ethz.ch/research/Software/#PSL2BA.
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A Additional Proof Details

In this appendix, we prove Lemma 5 about the accepted language of the 2ABA Aϕ constructed
in Sect. 4.1.

It suffices to prove that for every word w ∈ (2P )ω, ψ ∈ Sub(ϕ), and i ∈ N, it holds that

w, i | ψ iff Aϕ accepts #w from the configuration (ψ, i + 1).

From this equivalence it immediately follows that L(Aϕ) = {#w | w ∈ L(ϕ)}. Observe that
Aϕ ensures from its initial state qI that exactly the letter at position 0 of an input word is
# and that Aϕ makes a transition from qI so that it starts scanning the input word from the
configuration (ϕ, 1). We prove the above equivalence by induction over the formula structure
of ψ . Let w ∈ (2P )ω.

Base Case ψ = p, for some p ∈ P . Let i ∈ N. By definition, w, i | p is equivalent to
p ∈ wi . By construction, we have p ∈ wi iff Aϕ accepts #w from the configuration (p, i +1)
by reading the letterwi and moving to the state qacc. The base case forψ = ¬p is analogous.

Base Case ψ = cl(α), for some SERE α. Let i ∈ N. By construction of the NBA Bα , we
have w, i | cl(α) iff Bα accepts wi... By construction of Aϕ , this is equivalent to the fact
that Aϕ accepts #w from the configuration (cl(α), i + 1). The base case for ψ = ¬cl(α) is
analogous.

Step Case ψ = ψ1 ∧ ψ2. Let i ∈ N. Assume that w, i | ψ , this means, w, i | ψ1

and w, i | ψ2. By induction hypothesis, this is equivalent to the fact that Aϕ accepts #w
from the configuration (ψk, i + 1), for every k ∈ {1, 2}. From the construction of Aϕ , we
conclude that w, i | ψ iff Aϕ accepts #w from (ψ, i + 1). The step case for ψ = ψ1 ∨ ψ2

is analogous.
Step Case ψ = Xγ . Let i ∈ N. Assume that w, i | Xγ , this means, w, i + 1 | γ . By

induction hypothesis, we obtain the equivalent fact that Aϕ accepts #w from the configura-
tion (γ, i + 2), which is equivalent to the fact that Aϕ accepts #w from the configuration
(Xγ, i + 1) by the construction of Aϕ . The step case for ψ = Yγ is analogous.

Step Case ψ = Zγ . Let i ∈ N. Assume that w, i | Zγ , this means, i = 0 or i > 0
and w, i − 1 | γ . By construction of Aϕ , the first disjunct is equivalent to the fact that Aϕ

accepts #w from the configuration (q#, 0). By induction hypothesis, the second disjunct is
equivalent to the fact that Aϕ accepts #w from the configuration (γ, i −1), if i > 0. From the
construction of Aϕ , we conclude that w, i | Zγ iff Aϕ accepts #w from the configuration
(Zγ, i + 1).

Step Case ψ = ψ1 U ψ2. Let i ∈ N. Assume that w, i | ψ1 U ψ2, this means, there
is a k ≥ i such that w, k | ψ2 and w, j | ψ1, for all j with i ≤ j < k. By induction
hypothesis, this is equivalent to the fact that there is a k ≥ i such that Aϕ accepts #w from
the configuration (ψ2, k + 1) and Aϕ accepts #w from the configuration (ψ1, j + 1), for all
j with i ≤ j < k. We claim that this is equivalent to the fact that Aϕ accepts #w from the
configuration (ψ1 U ψ2, i + 1).

We first show the direction from left to right. Assume that the left-hand side holds. Then,
Aϕ accepts #w from the configuration (ψ1 U ψ2, k − 1) since it accepts from the configu-
ration (ψ2, k). It follows that Aϕ accepts #w from the configuration (ψ1 U ψ2, k − 2) since
it accepts from the configuration (ψ1 U ψ2, k − 1) and from the configuration (ψ1, k − 1)
by assumption. Similarly, Aϕ accepts #w from the configuration (ψ1 U ψ2, j + 1), for all
i ≤ j < k. Thus, the right-hand side holds.

For the other direction, assume that the right-hand side holds. Let r be an accepting
run of Aϕ on #w from the configuration (ψ1 U ψ2, i + 1). For the sake of contradic-
tion, we additionally assume that the left-hand side does not hold, this means, we have the
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property (∗): there is no k ≥ i such that Aϕ accepts #w from the configuration (ψ2, k + 1)
and Aϕ accepts from the configuration (ψ1, j + 1), for all j with i ≤ j < k. From (∗),
it follows that Aϕ does not accept #w from the configuration (ψ2, i + 1). By assumption,
Aϕ accepts from the configuration (ψ1 U ψ2, i + 1). Hence, by the construction of Aϕ , it
must accept from the configurations (ψ1, i + 1) and (ψ1 U ψ2, i + 2). Again, since (∗)
holds and Aϕ does not accepts from the configuration (ψ2, i + 1), it cannot accept from
the configuration (ψ2, i + 2). So, it must accept from the configurations (ψ1, i + 2) and
(ψ1 U ψ2, i + 3). If we repeat this argumentation, we obtain the following infinite rejecting
path (ψ1 U ψ2, i + 1)(ψ1 U ψ2, i + 2)(ψ1 U ψ2, i + 3) . . . in the run r of Aϕ on #w from
the configuration (ψ1 Uψ2, i + 1). The existence of such a path is a contradiction to the fact
that Aϕ accepts #w from the configuration (ψ1 U ψ2, i + 1) by the run r .

The step case for ψ = ψ1 S ψ2 is analogous.
Step Case ψ = ψ1 R ψ2. Let i ∈ N. Assume that w, i | ψ1 R ψ2, this means, for all

k ≥ i , it holds that w, k | ψ2 or there is a j with i ≤ j < k such that w, j | ψ1. By
induction hypothesis, this is equivalent to the fact that for all k ≥ i , it holds that Aϕ accepts
#w from the configuration (ψ2, k + 1) or there is a j with i ≤ j < k such that Aϕ accepts
#w from the configuration (ψ1, j + 1). We claim that this is equivalent to the fact that Aϕ

accepts #w from the configuration (ψ1 R ψ2, i + 1).
We first show the direction from left to right. It is easy to see that the left-hand side

is equivalent to the following statement: either, (i)Aϕ accepts #w from the configuration
(ψ2, k + 1), for all k ≥ i , or (i i) there is a k ≥ i such that Aϕ accepts from (ψ1, k + 1) and
for all j with i ≤ j ≤ k, we have Aϕ accepts from (ψ2, j). Assume that the first case holds.
We consider the run of Aϕ from the configuration (ψ1 R ψ2, k + 1), where Aϕ behaves as
follows. Whenever Aϕ arrives in a configuration (ψ1 Rψ2, l), for l ≥ k + 1, it moves to the
configuration (ψ2, l) and (ψ1 Rψ2, l + 1) respecting the transition function. By assumption,
Aϕ accepts from every configuration (ψ2, l), for l ≥ k +1. Thus, the run of Aϕ from the con-
figuration (ψ1 Rψ2, k+1) is accepting if the infinite path (ψ1 Rψ2, k+1)(ψ1 Rψ2, k+2) . . .
is accepting, as well. This path is accepting since ψ1 R ψ2 is an accepting state of Aϕ . So,
Aϕ accepts #w from (ψ1 R ψ2, i + 1). Assume that the second case holds. Let k ≥ i be
a position such that Aϕ accepts #w from the configuration (ψ1, k + 1) and for all j with
i ≤ j ≤ k,Aϕ accepts #w from the configuration (ψ2, j + 1). Since Aϕ accepts from
(ψ2, k + 1) and from (ψ1, k), it follows that by definition of the transition function, Aϕ

accepts from (ψ1 R ψ2, k). Again, by assumption and the previous step, Aϕ accepts from
(ψ2, k − 1) and from (ψ1 Rψ2, k). Thus, by definition of the transition function, Aϕ accepts
from (ψ1 R ψ2, k − 1). By iterating this argumentation, we conclude that for all j with
i ≤ j ≤ k, it holds that Aϕ accepts from (ψ1 R ψ2, j + 1). Thus, Aϕ accepts #w from the
configuration (ψ1 R ψ2, i + 1).

Now, we show the other direction. Assume that the right-hand side holds, this means, Aϕ

accepts from the configuration (ψ1 Rψ2, i +1). For the sake of contradiction, we additionally
assume that the left-hand side does not hold, this means, there is an integer k ≥ i such that
Aϕ does not accept from (ψ2, k+1) and for all j with i ≤ j < k, we have Aϕ does not accept
(ψ1, j + 1). We refer to these assumptions by the first and second assumption, respectively.
Let k ≥ i be the least number such that the second assumption holds. In particular, we have
Aϕ does not accept from (ψ2, k). For the sake of contradiction, we show that Aϕ accepts
from (ψ1 R ψ2, k). By the first assumption we have that Aϕ accepts from (ψ1 R ψ2, i + 1).
Hence, by the definition of the transition function and acceptance definition of a run, Aϕ also
accepts from (ψ2, i + 1) and either from (ψ1, i + 1) or (ψ1 R ψ2, i + 2). From the second
assumption, it follows that Aϕ does not accept from (ψ1, i + 1). Therefore, Aϕ accepts from
(ψ2, i + 1) and from (ψ1 R ψ2, i + 2). Repeating this argumentation, we can show that for
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all j with i ≤ j < k, we obtain that Aϕ accepts from (ψ2, j) and from (ψ1 R ψ2, j + 1).
Thus, Aϕ accepts from (ψ1 R ψ2, k) contradicting the choice of k.

The step case for ψ = ψ1 T ψ2 is analogous.
Step Case ψ = α ♦→γ . Let i ∈ N. Assume thatw, i | ψ , this means, there is a position

k ≥ i such that wi..k ∈ L(α) and w, k | γ . By induction hypothesis, this is equivalent to
the fact that there is k ≥ i such that wi..k ∈ L(α) and Aϕ accepts #w from the configuration
(γ, k +1). That is, Aϕ accepts from the configuration (α♦→γ, i +1) iff there is a position k
such that Aα has an accepting run on #wi+1..k+1 and Aϕ accepts from (γ, k +1). It is easy to
see that by definition of the transition function, this is equivalent to the fact that Aϕ accepts
#w from the configuration (α ♦→ γ, i + 1).

The step case for ψ = α ♦−→ γ is analogous.
Step Case ψ = α �→ γ . Let i ∈ N. Assume that w, i | ψ , this means, for all posi-

tions k ≥ i such that wi..k ∈ L(α), it holds that w, k | γ . By induction hypothesis, this
is equivalent to the fact that for all positions k ≥ i such that wi..k ∈ L(α), it holds that
Aϕ accepts #w from the configuration (γ, k + 1). This is equivalent to the fact that there
exists a run of Aϕ on #w from the configuration (α �→ γ, i + 1) such that for every path
in the run labeled by (q0, i + 1)(q1, i + 2) . . . the following holds: for all j ∈ N such that
(q0, i +1) . . . (q j , i +1+ j) is an accepting run of Aα onwi.. j , the automaton Aϕ accepts #w
from (q j , i +1+ j). That is equivalent to the fact that Aϕ accepts #w from the configuration
(α �→ γ, i + 1).

The step case ψ = α �−→ γ is analogous.
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