
Accepting splicing systems with permitting and
forbidding words

Fernando Arroyo • Juan Castellanos • Jurgen Dassow
Victor Mitrana • Jose-Ramon Sanchez-Couso

Abstract In this paper we propose a generalization of the accepting splicing systems intro­
duced in Mitrana et al. (Theor Comput Sci 411:2414-2422, 2010). More precisely, the input
word is accepted as soon as a permitting word is obtained provided that no forbidding word
has been obtained so far, otherwise it is rejected. Note that in the new variant of accepting
splicing system the input word is rejected if either no permitting word is ever generated (like
in Mitrana et al. in Theor Comput Sci 411:2414-2422, 2010) or a forbidding word has been
generated and no permitting word had been generated before. We investigate the compu­
tational power of the new variants of accepting splicing systems and the interrelationships

F. Arroyo • J.-R. Sanchez-Couso
Department of Languages, Projects and Computer Information Systems,
University School of Informatics, Polytechnic University of Madrid,
Crta. de Valencia km. 7, 28031 Madrid, Spain
e-mail: farroyo@eui.upm.es

J.-R. Sanchez-Couso
e-mail: jcouso@eui.upm.es

J. Castellanos
Department of Artificial Intelligence, Faculty of Informatics,
Polytechnic University of Madrid, 28660 Boadilla del Monte,
Madrid, Spain
e-mail: jcastellanos@fi.upm.es

J. Dassow
Faculty of Computer Science, Otto-von-Guericke-University
of Magdeburg, P.O.Box 4120, 39016 Magdeburg, Germany
e-mail: dassow@iws.cs.uni-magdeburg.de

V. Mitrana (IHD
Department of Organization and Structure of Information,
University School of Informatics, Polytechnic University of Madrid,
Crta. de Valencia km. 7, 28031 Madrid, Spain
e-mail: victor.mitrana@upm.es

mailto:farroyo@eui.upm.es
mailto:jcouso@eui.upm.es
mailto:jcastellanos@fi.upm.es
mailto:dassow@iws.cs.uni-magdeburg.de
mailto:victor.mitrana@upm.es

among them. We show that the new condition strictly increases the computational power of
accepting splicing systems. Although there are regular languages that cannot be accepted by
any of the splicing systems considered here, the new variants can accept non-regular and even
non-context-free languages, a situation that is not very common in the case of (extended)
finite splicing systems without additional restrictions. We also show that the smallest class of
languages out of the four classes defined by accepting splicing systems is strictly included in
the class of context-free languages. Solutions to a few decidability problems are immediately
derived from the proof of this result.

1 Introduction

One of the basic mechanisms by which genetic material is merged is the recombination of
DNA sequences under the effect of enzymatic activities. This process has been formalized
as a word rewriting operation as follows: the restriction enzymes have been approximated
by a finite set of rules defining the restriction sites and the DNA sequences, on which the
enzymes act, have been approximated by a finite set of words usually called axioms. This is
actually the main idea of the splicing operation viewed as a language theoretical approach
of the recombinant behavior of DNA under the influence of restriction enzymes and lig-
ases considered by T. Head in [8]. Roughly speaking, the splicing operation is applied to
two DNA sequences (represented by words) which are cut at specific sites (represented by
splicing rules), and the first subword of one sequence is pasted to the second segment of the
other and vice versa. A new formal device to generate languages based on the iteration of
splicing operation has been considered. Known as splicing system, this computation model
has been vividly investigated in the last two decades. In spite of the vast literature devoted
the topic, the real computational power of finite splicing systems is still partially unknown
as the characterization of languages generated by these systems is an open problem. The
problem is completely solved for extended splicing systems (a terminal alphabet is used for
squeezing out the result), i.e. extended splicing systems are computationally equivalent to
finite automata. Another large part of the research in this area has been focused on defining
different types of splicing systems and investigating their computational power from a lan­
guage generating point of view. Many variants of splicing systems have been defined and
investigated; we mention here just a few of them: distributed splicing systems [4], splicing
systems with multisets [6], splicing systems with permitting and forbidding contexts [7], pro­
grammed and evolving splicing systems [17]. Under certain circumstances, splicing systems
are computationally complete and universal (see [18] for an overview). This result suggests
the possibility to consider splicing systems as theoretical models of programmable universal
DNA computers based on the splicing operation.

Several other works like [2], and the references therein, address two fundamental questions
concerning splicing systems: recognition, which asks for an algorithm able to decide whether
or not a given regular language is a splicing language, and synthesis, which asks for an
effective procedure to construct a splicing system able to generate a given splicing language.

In [10] a novel look on splicing systems is proposed, namely splicing systems are viewed as
language accepting devices and not generating ones. More precisely, a usual splicing system
is used for accepting/rejecting an input word in accordance with some predefined accepting
conditions. A more general version was proposed in [11] where it was called accepting
splicing system. It is rather strange that though the theory of splicing systems is mature and
well developed, an accepting model based on the splicing operation has not considered so
far with two exceptions:

- The aforementioned work [10], where two well-known NP-complete problems were
solved with a variant of accepting splicing systems with regular sets of splicing rules.
This variant with finite sets of splicing rules was further investigated in [9].

- Work [3], where a splicing recognizer that computes by observing and contains a part
exhibiting some similarity to the accepting splicing system defined in [11].

Two ways of iterating the splicing operation and two variants of accepting splicing system
are investigated in [11]. Altogether, one obtains four models which are compared with each
other as well as with the generating splicing systems from the computational power point of
view.

This work is a continuation of [11]. While the accepting splicing systems considered in
[11] reject the input word only if no word (considered as a permitting word) from a given
finite set is obtained during the splicing process, in this paper we propose a similar condition
for rejecting the input word. This condition is also defined by a finite set of words considered
as forbidding words. More precisely, the input word is accepted as soon as a permitting
word is obtained provided that no forbidding word has been obtained so far, otherwise it is
rejected. Note that in the new variant of accepting splicing system the input word is rejected
if either no permitting word is ever generated (like in [11]) or a forbidding word has been
generated and no permitting word had been generated before. The main goal of this paper
is to investigate the computational power of the new variants of splicing systems and to
shed a new light on the variants introduced in [11]. Clearly, the new variants are at least as
powerful as the variants considered in [11]. We actually show that the new condition strictly
increases the computational power of accepting splicing systems. Although there are regular
languages that cannot be accepted by any of the splicing systems considered here, the new
variants can accept non-regular and even non-context-free languages, a situation that is not
very common in the case of (extended) finite splicing systems without additional restrictions.
Several ways of controlling the splicing process in a generating splicing systems have been
considered in the literature (see, e.g., [18]) most of them leading to a maximal increase of the
computational power (that of a Turing machine). This has mainly been due to the fact that
the control regulates each splicing step. In another and different manner, here we deal with a
condition which is checked only in the end of the computation. We also show that the smallest
class of languages out of the four classes of languages defined by accepting splicing systems
considered in this paper is strictly included in the class of context-free languages. Solutions
to a few decidability problems are immediately derived from the proof of this result. The
paper ends with a brief discussion on further directions of research in this area.

2 Basic definitions and notation

We start by summarizing the notions used throughout the paper. For all undefined notions
the reader may consult [20]. An alphabet is a finite and nonempty set of symbols. Any finite
sequence of symbols from an alphabet V is called word over V. The set of all words over V is
denotedby V *, the empty word is denoted by e, and the length of the word x is denoted by |x|.
If w = xyz with x,y,z being non-empty words, then x is a prefix of w, z is a suffix of w, and
y is a subword for w. Moreover, we write dl

x (w) = yz and 3£ (w) = xy. By convention, if x is
not a prefix (suffix) of y, then dl

x (y) = y {dr
x (y) = y). Note that there is no risk of confusion

with the derivative with respect to the empty word as this situation is excluded throughout
this paper. For two sets of words A and B, we write dl

A(B) = {dl
x(y) \ x e A, y e B] and

dr
B(A) = [dy(x) \ x e A, y e BJ.Forawordx wedenoteby Pref^(x), Suff^(x) andlnf^(x),

the prefix, suffix and the set of sub words of x, respectively.

Note that we ignore the empty word when we define a language and the empty set when
we define a class of languages.

A splicing rule over V is (following [15]) a4-tuple[(«i, u2); («3, H4)], with wi, u2, H3, «4
6 V*. For a splicing rule r = [(«i, U2)', («3, H4)] and a pair of words x, y e V*, we write

ar(x, y) = {yiuo,u2x2 \ x = x\u\u2x2, y = y\uo,u^y2}

U {x\U\Uny2 I x = x\U\u2x2, y = yiu^U4y2)

for some x\, x2, yi, y2 e V*. This definition is extended to a set of splicing rules R and a
language L by

Ofl(£) = (J (J 0>Ol,W2)-

Without risk of confusion, we also denote for two languages L\, L2

aR(Li,L2)= (J (J aR(xi,x2), where <7«(xi,x2) = (J o>(xi,x2).

A generating splicing system (GenS for short) is a construct

/ / = (V,A,R),

where V is an alphabet, A C y* is the initial language, and R is a set of splicing rules over
V. For a splicing system / / = (V, A, R) we set

4 (A) = A,

4 + 1 (A) = a'R(A) U <r*(4(A)), i > 0, (*)

4(A) = U 4(A).
i>0

When the set of splicing rules is clear, we omit the subscript. Then, the language generated by
H is defined as L (H) = 4 (A) • Adding a terminal alphabet T we get an extended generating
splicing system H = (V, T, A, R), T C V, which generates the language L(H) = T* n
4 (A) • As all systems considered in this paper are extended systems, we shall omit the word
"extended". Given a generating splicing system H as above, we say that a word w e L(H)
is a proper word of L(H), if it is generated in at least one splicing step. Clearly each word
in L(H) \ A is proper. The class of languages generated by GenS is denoted by C(GenS).

An important result in splicing theory is the so-called Regularity Preserving Lemma proved
first in [5], as a consequence of a more general result, and then in [19] by a direct argument.
It states that GenS with a finite set of rules and a finite initial language, i.e. A and R are
both finite sets, generate exactly the class of regular languages [16]. When one allows the set
of splicing rules (written as words like in [14]) to be described by regular expressions, we
obtain computationally complete systems [14].

For a GenSH = (V, T, A, R) we also introduce the following non-uniform variant of
iterated splicing, where the splicing is only done with axioms. More precisely, in the non­
uniform case splicing at any step occurs between a generated word in the previous stepand

an axiom, differently from the general case where splicing at any step occurs between any
two words generated in the previous steps. We set

4(A) = A,
r'R

+1(A) = aR(r'R(A),A),i>0, (o)

rR(A) = \Jrt
R(A).

i>0

The language generated by H in the non-uniform way is defined as Ln(H) = r^(A) n T*.
The class of languages generated by Gen S in the non-uniform way is denoted by Cn (Gen S).

Theorem 1 [11,16] Both C(GenS) and Cn (Gen S) equal the class of regular languages.

We now introduce the definitions and terminology for accepting splicing systems.
An accepting splicing system (AccS for short) is a 6-tuple

r = (V,T,A,R,P,F),

where V is an alphabet, Hp = (V, T, A, R) is a splicing system, while P and F are finite
sets of words over V. The elements of P are called permitting words while those of F are
called forbidding words.

Let r = (V, T, A, R, P, F) be an AccS and a word w e V*; we define the following
iterated splicing that is slightly different from (*):

aR(A, w) = {w}.

aR
+1(A, w) = aR(A, w) U aR(aR(A, w) U A), i > 0,

aR(A,w) = \JaR(A,w).
>>o

Although this operation and that defined by (*) are denoted in the same way, there is no risk
of confusion as that defined by (*) is an one-argument function while that defined here has
two arguments. We say that the word w e T* is accepted by r if there exists k > 0 such that

(0 ak
R(A, w)C\P T ^ 0 :

(ii) ak
R(A, w) fl F = 0.

The following short discussion is in order. The reason for this definition of aR (A, w) is two
fold: on the one hand, we maintain a certain uniformity in the definitions of the two ways of
acceptance by AccS (see below) and on the other hand, we forbid axioms to be considered
as permitting or forbidding words unless they are obtained as proper words. This restriction
avoids a "funny" situation in which an AccS accepts either every word whenever an axiom
is a permitting word, or no word whenever an axiom is a forbidding word.

Remark 1 The following sequence of inclusions is immediate:

(aR(A U M) \ A) c aR(A, w) c aR(A U {u,}).

On the other hand, the next equality will be useful in the sequel.

aR(A, w) = a*R(A U {w}) \ [x e A \ x ^ w,

x is not a proper word of oR(A U {w})}.

The language accepted by an AccS f is denoted by L(f).

Fig. 1 Relationships between £n(AccS) •" C(AccS)
the classes of languages defined
by accepting splicing systems

Cl{AccS) >• C9(AccS)

Remark 2 Note that every AccS T = (V,T', A, R, P, F) with F = 0 is actually an
(extended) AccS considered in [11]. This remark suggests to consider for an AccS T =
(V, T, A, R, P, F), the language L 0 (F) = L(r'), where r' = (V, T, A, R, P, 0).

The class of languages accepted by AccS and AccS without forbidding words is denoted
by £(AccS) and £0(AccS), respectively.

For an accepting splicing system r = (V, T, A, R, P, F) we also introduce the following
non-uniform way of accepting words similar to the non-uniform way of generating a language
by a GenS. The computation of such a system is nondeterministic; moreover the working
mode of such a system involves words originating from the input word and a finite amount
of information given by the set of axioms.

For an AccS r = (V, T, A, R, P, F) and a word w e V* we define the following non­
uniform variant of iterated splicing, where the splicing is only done with axioms, similarly
to (o):

r°R(A,w) = {w},

4 + 1 (A , w) = xi
R{A,w)\JaR{xi

R{A,w),A),i > 0,

r'R(A,w)= [j 4 (A , u ;) .
i>0

The language accepted by r in the non-uniform way is defined by:

Ln(r) = {w e T* | 3k > 0(rk
R(A, w) n P £ 0) & (rk

R(A, w) n PF = 0)}.

The class of languages accepted by AccS and AccS without forbidding words in the non­
uniform way is denoted by £n (AccS) and £® (AccS), respectively.

3 Computational power

The inclusions £9
n(AccS) C £n(AccS) and £0(AccS) C £(AccS) are immediate from

definitions. Furthermore, by Theorem 2 in [11] we have £® (AccS) C £0(AccS). The proof
of this theorem can be easily completed to a proof for the inclusion £n(AccS) C £(AccS).
Based on these observations we now state:

Theorem 2 The relationships indicated in Fig. 1 hold. An arrow indicates a strict inclusion
while the dotted line indicates an incomparability relationship.

Proof It suffices to provide the incomparability relationship between the families £„ (AccS)
and £0 (AccS). We first provide a language in £n (AccS) \£0(AccS). This language, say L,
is defined by the regular expression a+b+. It is clear that a word over [a, b} is in L if and
only if the following conditions are satisfied:

(i) it does not contain the subword ba;
(ii) it contains the subword ab.

We now construct an AccS that accepts L in the non-uniform way. Let

r = ({a, b, #, $}, [a, b], {##, $$}, R, [ab], {#ba#}),

where R = {[{ba, e); (#, #)], [(e, ba#); (#, #)], [(ab, e); (S, $)], [(e, ab$); ($, $)]}.
By this construction, it is easy to note that if the input word contains the subword ba, then

the forbidding word #ba# is obtained in the second splicing step. As no permitting word
can be produced in the first splicing step, no matter the input word is, we infer that all input
words as above are rejected by r. Consequently, a necessary (but not sufficient) condition
for an input word to be accepted by r is to not contain the subword ba. On the other hand,
a similar reasoning lead to the conclusion that the permitting word ab is also obtained in
the second splicing step provided that the input word does contain the subword ab. By these
considerations, after the second step, r either accepts its input, provided it contains ab, but
not ba, and rejects otherwise. Note that the computation of r on every input word containing
a or b only is blocked from the first step, therefore no such word is accepted by r.

On the other hand, following [11], for every AccS r = (V, T, A, R, P, 0), there exists
an integer k > 0 such that if w e L(F), with |w| > k, then wyw e L(F) for any y e T*.
In conclusion, {anbm \ n, m > 1} ^ £0(AccS) which concludes the proof.

We now consider the regular language V defined by the regular expression:

L' = (a+(a + b)*b+) + (b+(a + b)*a+).

This language lies in £0(AccS). Indeed, the following AccS

r = ({a, b, #, $}, [a, b), {##, $$}, R, [a##b, b$$a}, 0),

where

R = {[(a, b); (#, #)], [(b, a); ($, $)], [(a, a#); (#, #)], [(b, b$); (S, $)]} U

{[(#b, by, (#, #)], [($a, a); ($, $)], [(a#, e); (e, #b)], [(b$, e); (e, $a)]}.

Assume that V e Cn (AccS) being accepted by an AccS F ; we distinguish two cases:
Case 1 There is no input word rejected by r because a forbidden word is obtained.
In this case as soon as a word x in (a+ (a + b)*b+) is accepted, at least one of bx and xa

is accepted as well, a contradiction.
Case 2 There are input words rejected by r because a forbidden word is obtained.
We take a word w e [a, b}+ rejected in this way; furthermore, wis rejected by a forbidding

word as fast as possible, say after p splicing steps. That is, any input word that is rejected by
r because the computation leads to a forbidden word is rejected after at least p splicing steps.
Without loss of generality, we may assume that w e a+ (a + b)*a+, the reasoning for the
other case being analogous. Again we face two situations: the part of the input word leading
in the fastest way to a forbidden word is a prefix or a suffix. We analyze just the situation
when a suffix of w leads to a forbidden word in the fastest possible way. Let w = uv and
an be the word satisfying the following two conditions: (i) it is obtained from w by the first
splicing step and (ii) it leads to a forbidden word in p splicing steps. Note that bw must be
accepted by r in less than p splicing steps.

If a suffix of bw leads to a permitting word in less than p steps, then abw is accepted by
r which is a contradiction. If a prefix ofbw leads to a permitting word in less then p steps,
then a prefix of bwb does the same. As there is no possibility to reach a forbidding word in
less than p steps, it follows that bwb is accepted by r, a contradiction.

In conclusion, V g Cn(AccS), and we are done.

It is worth mentioning here the very simple and efficient way to reject undesired words
by the first accepting splicing system from the previous proof (after two splicing steps only).
This idea may be employed to show that the class Cn(AccS) contains "almost" all regular
languages. More precisely,

Proposition 1 For every regular language L C V+ and $ £ V, the language $L G
Cn(AccS).

Proof Let A = (Q, VS, qo, Qf) be a deterministic finite automaton accepting the language
L. We construct the following AccS:

r = (V U Q U {%, S, #}, V U {$}, Q{#} U {##, $$}, R, Qf, {#$#}),

where

R = {[(X$, e); (#, #)] | X e V U {$}} U {[(«, $#); (#, #)], [ft, e); ($, $)]} U

{[($, a); (qQ, #)] | a e V} U {[(?a, e); (% , a), #)] | a e V}.

As in the proof of the previous result, after the first two consecutive steps, the forbidding
word #$# is obtained provided that the input word isof the fornix:):)? with |x| > 0.Therefore,
all input words of this form are rejected by r.

Let us now analyze the computation of r on an input word of the form %y, y e V*.
In the first two splicing steps, one obtains consecutively $y and then qoy. Note that the
other by-product words are %% and $# that cannot be further spliced. From now on, a word
qz, q G Q, Z G V*, is computed at some step if and only if y = xz and S(qo, x) = q. In
conclusion, an input word %y is accepted by r if and only if y e L(A).

The proof is complete as soon as we note that every input word y e V* is "inert" with
respect to r, in the sense that no splicing can be done.

We now consider an important subclass of regular languages that can be accepted by
accepting splicing For a given k > 0 and an alphabet V, let S^ = (A, B, C) be a triple where
A, B and C are sets of words over V of length k. A language L over V is called k-locally
testable in the strict sense (fc-LTSS for short) if there exists a triple S^ = (A, B, C) over V
as above such that for any w e V* with |w| > k, w e L iff [Pref,t(u;) G A, Suff^w) G B,
Infjt(w) C C] ([12]). When L is specified by Sk = (A, B, C), we write L = L(Sk). A
language L is called locally testable in the strict sense (LTSS) iff L is fc-LTSS for some
k > 0. Clearly, every fc-LTSS language is regular. A fc-LTSS language L over V is prefix-
disjoint if there exists a triple S^ = (A, B, C) suchthatL = L(Sic) and3y (L)fl(CUB) = 0.
A suffix-disjoint fc-LTSS language is defined analogously.

Proposition 2 Every prefix-disjoint or suffix-disjoint k-LTSS language belongs to Cn (AccS)
for any k > 1.

Proof We assume that L = L(A, B, C) is a prefix-disjoint fc-LTSS language over the alpha­
bet V and Sk = (A, B, C) satisfies the prefix-disjoint condition. We construct the AccS
r = (U, V, I, R, P, F), where

• U = V U {(x> | x G A U B U C} U (4, $},
• R = {[(x, e); «x) , 4)] | x G A} U {[(e, ax$); (4, 4)] | a e V, x e A} U

{[({x)a, e); ({y), $)] | a e V, y e C U B, xa = by for some b e V],
• A = {(x)4 | x G A} U {(x)S | x G C U B},
• P = {(x) | x G B] and F = (4ax4 \ a e V, x e A}.

The working mode of T can be easily understood as soon as one makes an analogy with the
construction in the proof of Proposition 1, where the words in A play the role of the marker
$, and the symbols (x) play the role of the states.

We now prove a result which shows that the conditions considered here for an input word
to be accepted increases the computational power of accepting splicing systems.

Proposition 3

1. The class Cn (AccS) is incomparable with the class of regular languages.
2. The class C(AccS) is incomparable with the class of context-free languages.

Proof As it can be easily proved that the regular language {a2n \ n > 1} does not belong to
C(AccS), it suffices to indicate a non-regular language in Cn (AccS) and a non-context-free
language in C(AccS).

1. We first consider the AccS

r = ({a, b, $}, {a, b], {$$}, R, {$b}, {a$}):

where

R = {[(a, b); ($, $)], [(a, a$); ($, $)], [($, $); (%b, b)]}.

We claim that

Ln(T) n a+b+ = {ambn \ m > n > 1}.

Obviously, every word w = ambn with m > n > 1, is accepted by r. Indeed, after

the first splicing step both am% and %bn are obtained which tend to generate a% and %b,
respectively. As m > n, %b is firstly generated which means that w is accepted. Therefore,
[ambn | m > n > 1} C Ln(F). Moreover, by the aforementioned observations, we
conclude that for every word ambn accepted by r, m > n must hold.
As the language [ambn | m > n > 1} is not regular, it follows that Ln(F) is not regular
either.

2. We now consider the AccS T' = (V, [a, b}, A, R, P, F) defined as follows:

V = {a,fc,#,$,4, $,¥} ,

A = {#$, $#, ##, $¥, 44, $$},

P = {a##b}, and F = [aft, $4c, $£$},

and R contains the following sets of rules:

(0 {[(a, ft); ($,#)], [(ft, c); (#,$)]},

(ii) {[(a, a#); (#, #)], [(#c, c); (#, #)], [($&, b); (S, ¥)]},

{Hi) {[(a#,e); (e,#c)]},

(iv) {[(a, #); (4, 4)], [(#, c); (4, 4)], KM, e); ft, »] , [(e, 4c); ft, »]} .

We claim that L(r') n [anbmcP | n, m, p > 2} = [anbmcn | n > 2, m > n). Let us
prove first that [anbmcn \ n > 2, m > n] C L(r'). A word w = anbmcn with m > n is
accepted by F ' as follows:

- In the first splicing step, by using the rules (i), one obtains the words: an#, #c", %bmcn,
wdanbm%.

- By the rules (ii), the number of occurrences of a and c in the words of the form a+#
and #c+, respectively, is decreased simultaneously. Note that both words a# and #c are
obtained for the first time in the same splicing step.

- By the rules (iii), r comes to taking a decision. As both words a# and #c have been
generated, the permitting word a##c is finally obtained. So far, none of the words a<\% or
$4e has been generated. Since m > n, %b% has not been generated either. In conclusion,
w is accepted.

Let now x = anbmcp, n,m, p > 2, be a word accepted by r'. Note that there is only
one accepting word, namely a##c which can be obtained by applying the splicing rule
[(a#, e); (e, #c)] to the pair (a#, #c). It is plain that a# and #c is generated for the first time
after n and p splicing steps, respectively, provided that the forbidden word b has not been
obtained yet.

If n > p, then §c is obtained in the (p + l)-th step and the accepting word a##c cannot
be generated earlier than the forbidden word %<\c, a contradiction. The case p > n leads to a
similar contradiction.

It remains that n = p and the pair (a#, #c) is obtained for the first time after n splicing
steps but %b% has not been obtained after n splicing steps. This is possible if and only if
m > n, which concludes the proof of the claim.

The language L(r') is not context-free as the language {anbmcn \ n > 2, m > «} is not
context-free. To this aim, one can use the Ogden's Lemma [13], where all position occupied
by a and c are marked.

It is worth mentioning that despite the results presented above, the position of none of
the classes £(AccS), £0(AccS), £n(AccS) and £®(AccS) in the Chomsky hierarchy is
completely known.

The smallest class among them is £®(AccS). We make a first (small) step towards a
solution to the previous problem by showing that this class is strictly included in the class of
context-free languages.

To this aim, we need to recall a result by B.S.Baker [1]. Let G = (N, T, S, P) be a
phrase-structure grammar. G is said to be terminal bounded if each rule in P is of the form

x 0AixiA 2x 2 . . .x„_iA„x„ -> yoBiyib2y2 • • • ym-iBmym,

where each x;, yi e T*, each A;, fl; e N, and either n = 0 or there exists 0 < j < m
such that \yj \ > \xk\ for all 1 < k < n — 1. In other words, in each non-context-free rule
of a terminal-bounded grammar, there must be some terminal word in the right side which
is strictly longer than all terminal words which appear between nonterminals in the left side.
In [1], it is shown that every terminal-bounded grammar generates a context-free language.

Theorem 3 £®(AccS) is strictly included in the class of context-free languages.

Proof Let r = (V,T, A, R, P, 0) be an AccS. We define the new AccS r' =
(V, T, A,R', P, 0), where

R' = {[(«, v); (r'r,ss')] | [(u, v); (r, s)] e R and r'rss' e A}.

Clearly, Ln(r) = Ln(r') holds; furthermore we may assume that whenever a rule
[(a, v); (r, s)] is applied in a splicing step in r', the axiom used in this splicing step is rs.

We now construct the grammar G = (N', T', S, Q), where

N' = {S} U(V\T)U{Za\ae T),

T = ft, S, d] U T,

and the set Q of rules of G is defined as follows:

Q = [Y -> YZa | a G T} U [X -> ZaX \ a e T} U [Za -> a \ a e T} U

{ 7 - • 4, X - • $} U (J Wi{rv) -^ dYh(uv),h(us)%^ h(uv)Xd}U
[(u,v);(r,s)]eR

{S -> # (x) $ | x G P],

where h is a morphism that is the identity on V \ T and replaces each a e V \ T by Za. •

Claim 1 TjTy € r*,(A, w) a«rf 5" = ^ * dn$h(y)$dm for some n,m > 0, f/ze« 5" = ^ *

dl<\h(w)%d], for some i, j > 0.

Proof of the Claim 1 The argument is an induction on the number k of splicing steps nec­
essary to produce y. If k = 0, then y = w and the statement is trivially true. Let
y G xk

Rtl(A, w) = r*,(A, w) U O > (T * , (A , w), A). If y G T*, (A, W), then the statement is

valid by the induction hypothesis. We analyze the case when
y e OR>(rk

RI(A, w), A). This
means that y e OR'{Z, X) with z G tR,(A, w) and x e A; more precisely the following
conditions are satisfied:

(i) z = Ziuvzi for somezi, Z2 £ V*, andx = rs,
(ii) either y = z\us or y = rvzi,

(iii) [(«, v);(r,s)] G /?'.

We consider the case y = z\us only, the other case can be treated similarly. The derivation
S = ^ * dn<\h(z\)h(us)%dm can be continued as follows:

S = > * dn$h{zi)h{us)%dm = > dn$h(zi)h(uv)Xdm+1 = > *

dn4h(zi)h(uv)(z2)$dm+1 = dn4h(z)$dm+1.

By the induction hypothesis, we infer that S = ^ * dli[h(w)%d], for some i, j > 0, which
concludes the proof of Claiml.

Claim 2 IfrR,(A, w) n P £ 0, then S = ^ * d'$h(w)Uj, for some i, j > 0.

Proof of the Claim 2 The argument is based on the previous claim as soon as we note that
if y G tRi(A, w) fl P, then S =>• $h(y)$ immediately holds. Consequently, by Claim 1,
S = ^ * d'$h(w)$dJ, for some i, j > 0 holds. This ends the proof of Claim 2.

As a consequence of the previous claim we may state that Ln(r') C g(L(G)), where g
is a morphism that erases d, 4, $ and leaves unchanged the letters in T.

We now define the following derivation in G:

P iff

a = S and p = $h(x)$, for some x e P,

a = dni[h(x)%dm for some n, m > 0, p = d'$h(y)$d-> for some i, j > 0
and a ^^-* p uses exactly one non-context-free rule from (2-

Naturally, ^>* denotes the reflexive and transitive closure of he relation ^ .

Claim 3 If S ^* dn$h(w)$dm for some n, m > 0, then r*,(A, w) fl P ^ 0.

Proof of the Claim 3 Wemakeuseof an induction on k, the number of steps in the derivation
S ^* dn<\h(w)$dm .If k = 0,the 5" ^ # (w) S and w G P, hence r*,(A, w) fl P ^ 0 holds.

Assume that

S ^k dnih(y)$dm ^ d^h(w)$dJ. (1)

By the induction hypothesis, we have rR, (A, y) n P 7̂ 0. Assume that the following condi­
tions are fulfilled with respect to the derivation (1):

(a) y = rvy2, yi e V*,
(b) w = y\uvy2, for some y\ e V*,
(c) the non-context-free rule §h(rv) -> dYh(uv) together with several rules of the form

Y -> YZa and 7 ^ 4 n a v e been used in the derivation (1).

This means that y can be obtained in r' by splicing between w and the axiom rs, hence
t | , (A , m) n P ^ 0. Now the proof of Claim 3 is complete.

The last claim leads to the relation Ln(r') 3 g(L(G)). As the grammar G is terminal-
bounded, it follows that L(G) and by the closure properties of the class of context-free
languages, we conclude that Ln (F') is context-free as well. •

A closer look to the previous proof suggests the following investigation. Let r =
(V, T, A, R, P, F) be an AccS; for a word w e T* and X e [P, F} we define

_ \min{k \ rk
R(A, w) n X ^ 0], if r'R (A, w) n X ^ 0 :

00, otherwise.

It is obvious that w e Ln(r) iff Pr(w) < Fp(w) holds.
Now, returning to the proof of Theorem3 weinferthatif Pr(x) = k,t\\&ndl i[x%d] e L(G)

for some i + j = k. On the other hand, if dl<\x%d] e L(G), for some i, j > 0, then
Prix) < i + j - It is plain that given an AccS r = (V, T, A, R, P, F) then:

- Given x e T* both Prix) and Fpix) are algorithmically computable.
- Given the nonnegative integer k and X e [P, F], the problem Is [x e T* \ Xr ix) < k}

empty/flnite/inflnite? is decidable.
- The minimal k such that Xpix) = k for some x e T*, X e {P, F], is algorithmically

computable.

From the proof of Theorem 3, the language Ln(r,X,k) = [x e T* | Xpix) = k},
X e {P, F], is context-free, for every k > 0. However, this language is always regular.

Theorem 4 Given an AccS r = (V, T, A, R, P, F), X e {P, F}, andk > 0, the language
Ln (r, X, k) is regular.

Proof We give the proof for X = P only. To this end, we consider the Algorithm 1, where
$ and # are new symbols that do not belong to V: It is easy to note that

(i) #z# G Ei if and only if xk
R(A, z) n P ^ 0};

(ii) #z# G E2 if and only if r}
R(A, z) n P ^ 0}, for some j < k.

Therefore, it follows that Algorithm 1 correctly computes Ln(r, P, k).
We now take notice of the fact that the for loop can be accomplished by a finite transducer.

A detailed construction of this transducer is left to the reader. Therefore, the while loop can
be accomplished by a finite transducer. By the closure properties of the class of regular
languages, we are done.

Algorithm 1 Procedure for computing Ln(r, P, k). Input: r = (V, T, A, R, P, F)

1: i := 0;
2: L{ := {#x# \ x e P}:
3: while i < k do
4: L i + 1 := 0;
5: for all z £ L, do
6: if z e {<R*{#}r+{#} then
7: L i + 1 :=L; + 1 U{4z};

8: L« + 1 :=L« + 1 UU
9: else
10: Li+1 := L«+1 U U[(a,„);(r,s)]e*(9L#(z)MV*{#} U {#}V*{«}Oi„(z)));
11: end if
12: end for
13: J : = J + 1:
14: end while
15: Ei :=Lkn{#}T*{#};
16: Ex '•= r^f (Ljt); l^M Is tn e translation defined by a finite transducer M that deletes the whole prefix

formed by 4 of every input word if and only if that word is in {c}+{#}r+{#}}
17: Ln(r, P,k) = h{E\ \ Ei)\ {h is a morphism that deletes the symbol #}

4 Final remarks

The results presented so far are intended to improve the picture concerning the computational
power of the accepting models based on the splicing operation as a counterpart of the well
investigated generating splicing systems. However, there is still room for improving the
overall picture. For instance, the precise relationship between the class of regular languages
and each of the classes £®(AccS) and £0(AccS) remains to be settled. The same for the
relationships between Cn (AccS) and the class of context-free languages.

Another area of interest concerns the decidability properties of accepting splicing systems.

Theorem 5 The membership problem is decidable for C(AccS).

Proof Algorithm 1 solves the membership problem for an arbitrary AccS r = (V, T, A,
R, P, F): Note that the condition in line 1 is algorithmically testable as the membership
problem for £0(AccS) is decidable (see [11]). Moreover, if the condition from line 1 is
satisfied, then the algorithm eventually halts within the cycle for. •

Algorithm 2 Membership algorithm. Input: w s T*, \w\ = n, w <£. P

1: if w £ L 0 (r) then
2: return false; halt;
3: else
4: for all k > 1 do
5: Q:=ak

R(A,w):
6: if {Q fl F ^ 0) then
7: return false; halt;
8: else
9: if (Q fl P ^ 0) then
10: return true; halt;
11: end if
12: end if
13: end for
14: end if

By [11], the emptiness and finiteness problems are decidable for £^(AccS). The status

of these problems as well as of other decision problems for the accepting splicing systems

considered here is still open.

Another investigation of interest in our view is to consider the accepting splicing systems

introduced here as problem solvers like in [10]. To this aim, the property of an accepting

splicing systems to make a decision after a finite number of splicing steps appears to be

important. In other words, the rejection of the input word is always a consequence of reaching

a forbidding word. Can each accepting splicing system be equivalently transformed into an

accepting splicing system having this property?

References

1. Baker, B.S.: Non-context-free grammars generating context-free languages. Inf. Control 24, 231-246
(1974)

2. Bonizzoni, P., Mauri, G.: Regular splicing languages and subclasses. Theor. Comput. Sci. 340, 349-363
(2005)

3. Cavaliere, M., Jonoska, N., Leupold, P.: DNA splicing: computing by observing. Nat. Comput. 8,157-170
(2009)

4. Csuhaj-Varju, E., Kari, L., Paun, Gh: Test tube distributed systems based on splicing. Comput. AI 15,
211-232(1996)

5. Culik II, K., Harju, T.: Splicing semigroups of dominoes and DNA. Discrete Appl. Math. 31, 261-277
(1991)

6. Denninghoff, K.L., Gatterdam, R.W.: On the undecidability of splicing systems. Intern. I. Comput. Math.
27, 133-145 (1989)

7. Freund, R., Kari, L., Paun, Gh: DNA computing based on splicing. The existence of universal computers.
Theory Comput. Syst. 32, 69-112 (1999)

8. Head, T: Formal language theory and DNA: an analysis of the generative capacity of specific recombinant
behaviours. Bull. Math. Biol. 49, 737-759 (1987)

9. Loos, R., Malcher, A., Wotschke, D.: Descriptional complexity of splicing systems. Intern. I. Found.
Comp. Sci. 19, 813-826 (2008)

10. Loos, R., Martin-Vide, C, Mitrana, V.: Solving SAT and HPP with accepting splicing systems.
In: Proceedings 9th Parallel Problem Solving from Nature (PPSNIX), LNCS 4193, pp. 771-777. Springer,
Berlin (2006)

11. Mitrana, V., Petre, I., Rogojin, V.: Accepting splicing systems. Theor. Comput. Sci. 411, 2414-2422
(2010)

12. McNaughton, R., Papert, S.: Counter-Free Automata. MIT Press, Cambridge, MA (1971)
13. Ogden, W.: A helpful result for proving inherent ambiguity. Math. Syst. Theory 2, 191-194 (1968)
14. Paun, Gh: Regular extended H systems are computationally universal. I Autom. Lang. Comb. 1, 27-36

(1996)
15. Paun, Gh: On the splicing operation. Discrete Appl. Math. 70, 57-79 (1996)
16. Paun, Gh, Rozenberg, G., Salomaa, A.: Computing by splicing. Theoret. Comput. Sci. 168, 321-336

(1996)
17. Paun, Gh, Rozenberg, G., Salomaa, A.: Computing by splicing. Programmed and evolving splicing

systems. In: IEEE International Conference on Evolutionary Computing, Indianapolis, pp. 273-277
(1997)

18. Paun, Gh, Rozenberg, G., Salomaa, A.: Dna Computing—New Computing Paradigms. Springer, Berlin
(1998)

19. Pixton, D.: Regularity of splicing languages. Discrete Appl. Math. 69, 101-124 (1996)
20. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vol. I—III. Springer, Berlin (1997)

