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Abstract. Multi-dimensional mean-payoff and energy games provigertfathematical foundation for the quan-
titative study of reactive systems, and play a central mléhe emerging quantitative theory of verification and
synthesis. In this work, we study the strategy synthesiblpro for games with such multi-dimensional objectives
along with a parity condition, a canonical way to expresgegular conditions. While in general, the winning strate-
gies in such games may require infinite memory, for synthiesisnost relevant problem is the construction of a
finite-memory winning strategy (if one exists). Our main tnutions are as follows. First, we show a tight ex-
ponential bound (matching upper and lower bounds) on theanenequired for finite-memory winning strategies
in both multi-dimensional mean-payoff and energy gamesgieith parity objectives. This significantly improves
the triple exponential upper bound for multi energy gameish@t parity) that could be derived from results in
literature for games on VASS (vector addition systems witttes). Second, we present an optimal symbolic and
incremental algorithm to compute a finite-memory winninguggy (if one exists) in such games. Finally, we give
a complete characterization of when finite memory of stiategan be traded off for randomness. In particular, we
show that for one-dimension mean-payoff parity games,aanized memoryless strategies are as powerful as their
pure finite-memory counterparts.

1 Introduction

Two-player games on graphs provide the mathematical faiowd#o study many important problems in computer
science. Game-theoretic formulations have especiallyqutaseful for synthesi®p,42,40], verification [3], refine-
ment [36], and compatibility checkingZ6] of reactive systems, as well as in analysis of emptinessiiaata #15].

Games played on graphs are repeated games that proceedifdinda number of rounds. Thstatespace of
the graph is partitioned into player 1 states and player 2stglayer 2 is adversary to player 1). The game starts
at an initial state, and if the current state is a player 1p(retayer 2) state, then player 1 (resp. player 2) chooses
an outgoingedge This choice is made according tosategyof the player: given the sequence of visited states, a
pure (resp.randomizedl strategy chooses an outgoing edge (resp. probabilityilalision over outgoing edges). This
process of choosing edges is repeated forever, and gieeora outcome of the game, calleglay, that consists of
the infinite sequence of states that are visited. When raimbohstrategies are used, there is in general not a unique
outcome, but a set of possible outcomes, as the choice o§éslgichastic rather than deterministic.

Traditionally, games on graphs have been studied with Booddjectives such as reachability, livenesgegular
conditions formalized as the canonical parity objectistsmng fairness objectives, et85,31,32,4845,34]. While
games withquantitativeobjectives have been studied in the game theory litera@0d9,38], their application in
synthesis and other problems in verification is quite recéhé two classical quantitative objectives that are most
relevant in verification and synthesis are thean-payofandenergyobjectives. In games on graphs with quantitative
objectives, the game graph is equipped with a weight fundtiat assigns integer-valued weights to every edge. For
mean-payoff objectives, the goal of player 1 is to ensurettielong-run average of the weights is above a threshold.
For energy objectives, the goal of player 1 is to ensure Hestim of the weights stays above 0 at all times. In applica-
tions of verification and synthesis, the quantitative ofdjes that typically arise are (i) multi-dimensional qugattve
objectives (i.e., conjunction of several quantitativeemtiyes), e.g., to express properties like the averagenssp
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time between a grant and a request is below a given threshplthd the average number of unnecessary grants is
below thresholds,; and (ii) conjunction of quantitative objectives with a Bean objective, such as a mean-payoff
parity objective that can express properties like the @erasponse time is below a threshold along with satisfying a
liveness property. In summary, the quantitative objesttan express properties related to resource requirenpents,
formance, and robustness; multiple objectives can exphegdifferent, potentially dependent or conflicting objess;

and the Boolean objective specifies functional propertiet |s liveness or fairness. The game theoretic framework
of multi-dimensional quantitative games and games withwmtion of quantitative and Boolean objectives has re-
cently been shown to have many applications in verificatiwhgynthesis, such as synthesizing systems with quality
guaranteef], synthesizing robust systemg|[ performance aware synthesis of concurrent data strei¢tdi, ana-
lyzing permissivity in games and syntheslq], simulation between quantitative automat8][ generalizing Boolean
simulation to quantitative simulation distand], etc. Moreover, multi-dimensional energy games are exjeit to

a decidable class of games on VASS (vector addition systeithsstates). This model is equivalent to games over
multi-counter systems and Petri netg].

In literature, there are many recent works on the theoletitalysis of multi-dimensional quantitative games, such
as, mean-payoff parity game®711], energy-parity gamesl[/], multi-dimensional energy game&(], and multi-
dimensional mean-payoff gamea0[47]. Most of these works focus on establishing the computaticomplexity
of the problem of deciding if player hasa winning strategy. From the perspective of synthesis and otheredtlat
problems in verification, the most important problem is tdaii a witnesdinite-memorywinning strategy (if one
exists). The winning strategy in the game corresponds toéseed controller for (or implementation of) the system
in synthesis, and for implementability a finite-memory &gy is essential. In this work we consider the problem of
finite-memory strategy synthesis in multi-dimensionalmitative games in conjunction with parity objectives, and
the problem of existence of memory-efficient randomizedtstyies for such games. These are some of the core and
foundational problems in the emerging theory of quantitatierification and synthesis.

Our contributions. In this work, we give an extended presentation of the reafl{3], the first study of multi-
dimensional energy and mean-payoff objectives in conjanatith parity objectives. Conjunction of parity objectiy
with multi-dimensional quantitative objectives had nelseen considered befor2d]. Our presentation is based on
the journal publication24]. Since we consider the synthesis of finite-memory strategt follows from the results

of [20] that both the problems (multi-dimensional energy withityaand multi-dimensional mean-payoff with par-
ity) are equivalent. Our main results for finite-memory &gy synthesis for multi-dimensional energy parity games
are as follows(i) Optimal memory bounds. We first show that memory of exponential size is sufficientialti-
dimensional energy parity games. Our result is a signifizaptovement over the result that can be obtained naively
from the results known in literature that yields a triple erpntial bound, even in the case of multi-dimensional en-
ergy games without parity. Second, we show a matching lowan8 by presenting a family of game graphs where
exponential memory is necessary in multi-dimensional gngames (without parity), even when all the transition
weights belong td —1,0,+1}. Thus we establisbptimal memory bound®r the finite-memory strategy synthesis
problem.(ii) Symbolic and incremental algorithm.We present aymbolicalgorithm (in the sense o2f], i.e., using

a compact antichain representation of sets by their mingieahents) to compute a finite-memory winning strategy, if
one exists, for multi-dimensional energy parity games. &gorithm is parameterized by the range of energy levels to
consider during its execution. So, we can use it itln@remental approacHirst, we search for finite-memory winning
strategies with a small range, and increment the range dmnhwecessary. We also establish a bound on the maximal
range to consider which ensures completeness of the inatah@oproach. In the worst case the algorithm requires
exponential time. Since exponential size memory is requiaad also the decision problem is coNP-compl2@)[

the worst case exponential bound can be considereptasal Moreover, as our algorithm is symbolic and incremen-
tal, in most relevant problems in practice, it is expecteddefficient(iii) Randomized strategiesWe also consider
when the (pure) finite-memory strategies can be traded offdaceptually much simpler randomized strategies. We
show that for energy objectives randomization is not hélfds energy objectives are similar in spirit with safety
objectives), even with only one player, neither it is for player multi-dimensional mean-payoff objectives. How-
ever, randomized memoryless strategies suffice for ongeplaulti-dimensional mean-payoff parity games. For the
important special case of mean-payoff parity objectivesfienction of a single mean-payoff and parity objectives),
we show that in games, finite-memory strategies can be traffléal randomized memoryless strategies.



Related works. This paper extends the results presented in its precedinfgremce version23 and gives a full
presentation of the technical details publisheddf]. Games with a single mean-payoff objective have been studi
in [30,49], and games with a single energy objectivelflf their equivalence was established 19]. One-dimensional
mean-payoff parity games problem has been studie@2Zh fn exponential algorithm was given to decide if there
exists a winning strategy (which in general was shown toirequfinite memory); and an improved algorithm was
presented in]1]. One-dimensional energy parity games problem has bedrestin [L7]: it was shown that deciding
the existence of a winning strategy is in NRRoNP, and an exponential algorithm was given. It was alsweho [17]
that, for one-dimensional energy parity objectives, fimtemory strategies with exponential memory are sufficient,
and the decision problem for mean-payoff parity objectiae be reduced to energy parity objective. Alternative
objectives based on the mean-payoff but with improved atzitity in the one-dimensional setting were considered
in [21]. Extension of the worst-case threshold problem - the @abkdecision problem on mean-payoff games - with
guarantees on the expected performance faced to a stachdetirsary was studied it ).

Games on VASS with several different winning objectivesehagen studied i, and from the results ofl?] it
follows that in multi-dimensional energy games, winningugtgies with finite memory are sufficient (and a triple ex-
ponential bound on memory can be derived from the resultg).cbmplexity of multi-dimensional energy and mean-
payoff games was studied i2(Q,47]. It was shown in 2(Q] that in general, winning strategies in multi-dimensional
mean-payoff games require infinite memory, whereas forirdutiensional energy games, finite-memory strategies
are sufficient. Moreover, for finite-memory strategies, ithéti-dimensional mean-payoff and energy games coincide,
and optimal computational complexity for deciding the teti€e of a winning strategy was established as coNP-
complete 0,47]. Multi-dimensional mean-payoff games with infinite-mematrategies were studied id{], and
optimal computational complexity results were establisharious decision problems over multi-dimensional egyerg
games were studied i3]

2 Preliminaries

We consider two-player game structures and denote thely@rsby P; andP;.

Multi-weighted two-player game structures. A multi-weighted two-player game structuie a tuple G =
(S1, S, Sinit, E, K, w) where (i)S; andS; resp. denote the finite setssthtesbelonging toP; andP,, with § NS, = 0;
(i) snit € S= S US is the initial state; (iii))E C Sx Sis the set ofedgessuch that for alk € S, there exists € S
such thats,s) € E; (iv) k € N is thedimensiorof the weight vectors; and (w: E — ZX is the multi-weight labeling
function. The game structus® is one-playerf S, = 0. A playin G is an infinite sequence of statgs= %51 ..
such thatsy = spit and for alli > 0, we have(s,s+1) € E. Theprefixup to then-th state of playm=%s;...%...
is the finite sequence(n) = 51 ... Sv. Let First(71(n)) andLast(71(n)) resp. denotgy ands,, the first and last states
of ri(n). A prefix m(n) belongs toP;, i € {1,2}, if Last(r1(n)) € S. The set of plays o6 is denoted byPlays(G)
and the corresponding set of prefixes is denotedkyfs(G). The set of prefixes that belong 1@ is denoted by
Prefsi(G). Theenergy level vectoof a sequence of statgs= 5s; . . . s, such that for all > 0, we haves,s1) € E,
isEL(p) = 3125 *w(s,s1) and themean-payoff vectoof a play = ss; ... is MP(11) = liminf, . 2EL(71(n)).

Parity. A game structur& is extended with a priority functiop: S— N to the structur&, = (S1,S, sinit, E, K, w, p).
Given a playm = $91%,. .., we definelnf(m) = {s€ S| Ym> 0,3n > msuch thas, = s}, the set of states that ap-
pear infinitely often alongr. The parity of a playmis defined a$ar(m) = min{p(s) | s€ Inf(m)}. In the following
definitions, we denote any game By with no loss of generality.

Strategies.Given a finite sefA, a probability distributionon A is a functionp: A — [0,1] such thaty ,ca p(a) = 1.

We denote the set of probability distributions Arby D(A). A pure strategyfor P;, i € {1,2}, in Gy is a function

Aj: Prefsi(Gp) — Ssuch that for alp € Prefs;(Gp), we have(Last(p),Ai(p)) € E. A (behavioral) randomized strategy

is a function); : Prefsi(Gp) — D(S) such that for alp € Prefs;(Gp), we have{(Last(p),s) | s€ S Ai(p)(s) > 0} CE.

A pure strategy; for P; hasfinite memonyif it can be encoded by a deterministic Moore mach(iht my, ay, an)
whereM is a finite set of states (the memory of the strategy)< M is the initial memory stateg,: M x S— M

is an update function, and,: M x § — Sis the next-action function. If the game is & § andm e M is the
current memory value, then the strategy choaSesan,(m,s) as the next state of the game. When the game leaves a
states € S, the memory is updated ,(m,s). Formally,(M,mg, ay, o) defines the strategy, such thati(p - s) =



an(ay(mo,p),s) for all p € S* ands € S, whered, extendsa, to sequences of states as expected. A pure strategy is
memoryles# |M| =1, i.e., it does not depend on history but only on the currextte ©f the game. Similar definitions
hold for finite-memory randomized strategies, such thantiad-action functioro, is randomized, while the update
functiona, remains deterministic. We resp. denote/by\"™, APM ARM the sets of general (i.e., possibly randomized
and infinite-memory), pure finite-memory, pure memorylessi@ndomized memoryless strategies for plager
Given a prefixp € Prefsi(Gp) belonging to playe®;, and a strategy; € A; of this player, we define thgupport

of the probability distribution defined by asSupp,, (p) = {s€ S| Ai(p)(s) > 0}, with Ai(p)(s) = 1 if A is pure and
Ai(p) =s. A play mis said to beconsistenwith a strategyA; of P; if for all n > 0 such thatLast(r(n)) € S, we
havelast(ri(n+ 1)) € Suppy, (11(n)). Given two strategies\; for P; andA; for P,, we defineOutcomeg, (A1,A2) =
{ne Plays(Gp) | 1tis consistent with1 and/\z}, the set of possibleutcomesf the game. Note that if both strategies
A1 andA; are pure, we obtain a unique play= s51S ... such that for allj > 0,i € {1,2}, if s; € §, then we have
Sj+1=Ai(sj)-

! Given the initial statey,;; and strategies for both playeks € Ay, A2 € Ao, we obtain a Markov chain. Thus, every
eventA C Plays(Gp), a measurable set of plays, has a uniquely defined prolyalsit} (Carathéodory’s extension

theorem induces a unique probability measure on the Bo@bebra ovePlays(Gp)). We denote b)IP”S\ﬁ;t’\Z(A) the
probability that a play belongs tal when the game starts is,; and is played consistently with; and A,. Let

f : Plays(Gp) — R be a measurable function, we den ;{\Z(f) the expected value of functiohover a play when
the game starts ignir and is played consistently withy andA,. We use the same notions for prefixes by naturally

extending them to their infinite counterparts.
Objectives.An objectivefor Py in Gy is a set of playsp C Plays(Gp). We consider several kinds of objectives:

— Multi Energy objectivesGiven an initial natural energy vectap € N¥, the objectivePosEnergyg, (Vo) =
{me Plays(Gp) | VYn>0:vo+EL(1(n)) € N} requires that the energy level in all dimensions stays pesit
at all times.

— Multi Mean-payoff objectivesGiven a rational threshold vectare QX, the objectiveMeanPayofFGp(v) =
{me Plays(Gp) | MP(m) > v} requires that for all dimensiof, the mean-payoff on this dimension is at least
v(j)-

— Parity objectivesObjectiveParityg, = {me Plays(Gp) | Par(m) mod 2= 0} requires that the minimum priority
visited infinitely often be even. When the set of prioritisséstricted td 0,1}, we have &Buichi objective Note
that every multi-weighted game structu@avithout parity can trivially be extended ®, with p: S— {0}.

— Combined objective$arity objectives can naturally be combined with multi mgayoff and multi energy ob-
jectives, resp. yielding/leanPayoffg (V) N Parity, andPosEnergyg (Vo) N Parityg, .

Sure, satisfaction and expectation semantic# strategyA, for Py is surely winningor an objectivep in Gy if for alll
playsm € Plays(Gp) that are consistent with;, we haverr € @. When at least one of the players plays a randomized
strategy, the notion of sure winning in general is too regu¢ and inadequate, as the set of consistent plays that do
not belong top may have zero probability measure. Therefore, it is usefulsesatisfactionor expectatiorcriteria.
Let A1 € A1 be the strategy oP;.

— Given a thresholdr € [0,1] and a measurable objectigeC Plays(Gp), a-satisfactionasks that for all, € Ay,
we havdP’S\ﬁ;t’\z((p) > a. If A; satisfiesp with probabilitya = 1, we say thaf; is almost-surely winnindor ¢ in
Gp.

— Given a thresholg3 € QK, a functionf : Plays(Gp) — Q, B-expectationasks that for all\, € A,, we have
Eqhi?(f) 2 B.

Note that energy objectives are naturally more encline@tde/satisfaction semantics, as they model safety pregerti

Strategy synthesis problemFor multi energy parity games, the problem is to synthesfimte initial creditvy € N
and a purefinite-memorystrategy)\lpf € APF that is surely winning foP; in G, for the objectivePosEnergyg (Vo) N
Parityg,, if one existsSo, the initial credit is not fixed, but is part of the stratég synthesize. For multi mean-payoff

games, given a thresholde QK, the problem is to synthesize a pli'miaite—memorystrategy)\lpf € /\f': that is surely
winning for Py in G, for the objectivel\/leanPayofFGp(v) N Parityg,, if one existsNote that multi energy and multi
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mean-payoff games are equivalent for finite-memory stiasegvhile in general, infinite memory may be necessary
for the latter Q.

Trading finite memory for randomness.We study when finite memory can be traded for randomizatiba.question

is: given a strategy”" € APF which ensures surely winning of some objectiveloes there exist a strategj” € ARM
which ensures almost-surely winning for the same objeapivd-or mean-payoff objectives, one can also ask for a
weaker equivalence, that is: can randomized memorylesegtes achieve the same expectation as pure finite-memory
ones?

3 Optimal memory bounds

In this section, we establish optimal memory bounds for fimite-memory winning strategies on multi-dimensional
energy parity games (MEPGS). Also, as a corollary, we obisults for pure finite-memory winning strategies on
multi-dimensional mean-payoff parity games (MMPPGs). Wavs that single exponential memory is both sufficient
and necessary for winning strategies. Additionally, wewshow the parity condition in a MEPG can be removed by
adding additional energy dimensions.

Multi energy parity games. A sample game is depicted on Fig.The key pointin the upper bound proof on memory
is to understand that fdP; to win a multi energy parity game, he must be able to forcees/lhose energy level is
positive in all dimensions and whose minimal parity is evenstated in the next lemma, finite-memory strategies are
sufficient for multi energy parity games for both players.

[ =00
A s L) ‘ | =02 |
{00 //

Fig. 1. Two-dimensional energy parity game and even-parity seledng tree representing an arbitrary finite-memory wigni
strategy. Circle states belong®a, square states t8,.

Lemma 1 (Extension of RO, Lemma 2 and 3]).If P, has a winning strategy in a multi energy parity game, then
he has a pure finite-memory one. %% has a winning strategy in a multi energy parity game, then &g & pure
memoryless one.

Proof. The first part of the result follows using the standard weisj ordering argument (straightforward extension
of [20, Lemma 2]). The second part follows by the classical edgadtidn argument: Lemma 3 020] and Lemma

3 of [17] show the result using edge induction for multi energy anergy parity games, respectively. Repeating the
arguments of Lemma 3 ol [], and replacing the part on single energy objectives by theraent of Lemma 3 ofJ(]

for multi energy objectives, we obtain the desired result. O

By Lemmal, we know that w.l.0.g. both players can be restricted to lase finite-memory strategies. The
property on the cycles can then be formalized as follows.



Lemma 2. Let Gy = (S1, S, sinit, E, k, W, p) be a multi energy parity game. Ldtff € /\f': be a winning strategy
of PPy for initial credit vo € NK. Then, for allA)™ € APM, the outcome is a regular plag = p - ()%, with p €
Prefs(G), N € ST, such thatEL(n.) > 0 and Par(11) = min{p(s) | S€ N} is even.

Proof. Recall that both players play with pure finite memory straeegTherefore, a finite number of decisions are
made and the outcome is a regular play: p - (N»)®. Note thatEL (p) does not have to be positive, B may have

Vo > EL(p). Similarly, priorities of states visited ip have no impact on winning as they are only visited a finite
number of times. First, suppo&t(n.) < 0 on some dimension4 j < k. Then, aftem > 0 cycles, for soma > 0,

the energy level will b&EL(m(n)) = EL(p - (Nw)™) = EL(p) + M- EL(N). Sincevy is finite andm — oo, there exist
somem, n > 0, such thaty+ EL(77(n)) < 0 on dimensiorj andA; is not winning. Second, suppose iio(s) | S€ Nw }

is odd. Since the set of states visited infinitely often isolyahe set of states in., this implies thaPar(7) is odd,
and thusi; is not winning. O

A self-covering pathn a game, straightforwardly extending the notion intraetliby Rackoff #1] for Vector
Addition System§VAS), is a sequence of statggs;s;...Sn such that there exist two positionsand j that verify
0<i<j<ms=sjandEL(s...5) <EL(s...s...sj). In other words, such a path describes a finite prefix followed
by a cycle which has a non-negative effect on the energy.l&mduring such cycles is crucial to win the energy
objective. With the notion of regular play of Lemm2awe generalize the notion of self-covering path to include t
parity condition. We show here that, if such a path exisentie lengths of its cycle and the prefix needed to reach it
can be bounded. Bounds on the strategy follow4j,[Rackoff showed how to bound the length of self-coverintnpa
in VAS. This work was extended to Vector Addition Systemswitates (VASS) by Rosier and Ye#3. Recently,
Brazdil et al. introduced reachability games on VASS and the notiosealf-covering tree$12]. Their Zero-safety
problem withw initial marking is equivalent to multi energy games with gletis in{—1,0, 1}, and without the parity
condition. They showed that if winning strategies exist/ar then some of them can be representesedscovering
treesof bounded depth. Trees have to be considered instead of, @atlin a game setting all the possible choices of
the adversary®,) must be considered. Here, we extend the notion of selffanyérees tceven-parity self-covering
trees in order to handle parity objectives.

Even-parity self-covering tree. An even-parity self-covering trfepSCT) fors € Sis a finite treel = (Q,R), where
Qis the set of node®: Q — Sx ZXis a labeling function an& c Q x Qis the set of edges, such that

e The root ofT is labeled(s, (0,...,0)).
e If ¢ € Qisnotaleaf, then le®(¢) = (t,u),t € S, uc ZX, such that
- if t € §;, theng has a unique child such tha®(3) = (t’,u'), (t,t') € E andu’ = u+ w(t,t’);
- if t € &, then there is a bijection between childrencoind edges of the game leavitigsuch that for each
successar’ € Soft in the game, there is one chiftl of ¢ such tha® () = (t',u), U = u+w(t,t’).
o If ¢ is a leaf, then le®(¢) = (t,u) such that there is some ancesfoof ¢ in T such that®(J) = (t,u'), with
U’ < u, and the downward path fro# to ¢, denoted byd ~ ¢, has minimal priority even. We say thétis an
even-descendance energy ancesfog.

Intuitively, each path from root to leaf is a self-coveringtlp of even parity in the game graph so that plays
unfolding according to such a tree correspond to winningp Lemma2. Thus, the epSCT fixes ho®; should
react to actions dP, in order to win the MEPG (Fidl). Note that as the tree is finite, one can take the largestimega
number that appears on a node in each dimension to computétiahdredit for which there is a winning strategy
(i.e., the one described by the tree). In particulatelenote the maximal absolute weight appearing on an edge in
Gp. Then, for an epSCT of depthl, it is straightforward to see that the maximal initial ctaeéiquired is at modt-W
as the maximal decrease at each level of the tree is boundéd bye suppos&V > 0 as otherwise, any strategy of
1 is winning for the energy objective, for any initial credéastorvg € N,

Let us explicitely state how; can deploy a strategy{ € APF based on an epSCT = (Q,R). We refer to such
a strategy as appSCT strategyit consists in following a path in the trée, moving a pebble from node to node
and playing in the game depending on edges taken by this @eBhth time a node such that®(¢) = (t,u) is
encountered, we do the following.



e If ¢is aleaf, the pebble directly goes up to its oldest evenatetance energy ancestdr By oldest we mean the
first encountered when going down in the tree from the rooteRNtat this choice is arbitrary, in an effort to ease
following proof formulations, as any one would suit.

e Otherwise, if¢ is not a leaf,
- if t € S andP;, plays state’ € S, the pebble is moved along the edge going to the only dhitd ¢ such that
O(9) = {t',u), U =u+w(t,t);
- if t € §, the pebble moves t8, ©(3) = {t’,u’), the only child ofg, andP; strategy is to choose the state
in the game.

If such an epSCTT of depthl exists for a gam&p, thenP; can play the strategy, € APF to win the game with
initial credit bounded by -W.

Bounding the depth of epSCTs.Consider a multi energy gaméthoutparity. Then, the priority condition on down-
ward paths from ancestor to leaf is not needed and self-caygees (i.e., epSCTs without the condition on priorities
suffice to describe winning strategies. One can bound tleecdiSCTs using results on the size of solutions for linear
diophantine equations (i.e., with integer variableé}) [n particular, recent work on reachability games over FAS
with weights{—1,0,1}, Lemma 7 of L2, states that if?; has a winning strategy on a VASS, then he can exhibit one
that can be described as an SCT whdepthis at most = 20-11S.. (| + 1)¢¥*, wherec is a constant independent
of the considered VASS arttlits branching degree (i.e., the highest number of outgailygs on any state). Naive use
of this bound for multi energy games with arbitrary integeights would induce #iple exponential bound for mem-
ory. Indeed, recall thaty denotes the maximal absolute weight that appears in a gyme (S, S, snit, E, kW, p).

A straightforward translation of a game with arbitrary wdiginto an equivalent game that uses only weights in
{—1,0,1} induces a blow-up bW in the size of the state space, and thus an exponential boyW in the depth

of the tree, which becomes doubly exponential as we have

| = 2@ DWIS (W g+ 1)K = 2@-D2"IS (. |g +1)°K

whereV denotes the number of bits used by the encodingvoMoreover, the width of the tree increasesdis
i.e., it increases exponentially with the depth. So straggiplication of previous results provides an overall trée o
triple exponential size. In this paper we improve this boand prove a single exponential upper bound, even for
multi energyparity games. We proceed in two steps, first studying the depth ddpls€T, and then showing how to
compress the tree intodirected acyclic grapiiDAG) of singleexponential size.

Lemma 3. Let Gy = (S1, S, snit, E, k, W, p) be a multi energy parity game such that W is the maximal abseleight
appearing on an edge and d the branching degree pf Suppose there exists a finite-memory winning strategy for

P1. Then there is an even-parity self-covering tree fqr of depth at most+ 24118 (w. |5 + 1)°'k2, where cis a
constant independent ofG

Lemma3 eliminates the exponential blow-up in depth induced by aenaioding of arbitrary weights into
{-1,0,1} weights, and implies an overall doubly exponential uppesrtzb Our proof is a generalization ofZ,
Lemma 7], using a more refined analysis to handle Ipattity andarbitrary integer weightsThe idea is the follow-
ing. First, consider the one-player case. The epSCT is esthiaca path. By Lemm3, it is composed of a finite prefix,
followed by an infinitely repeated sequence of positive gnégvel and even minimal priority. The point is to bound
the length of such a sequence by eliminating cycles that ar@eeded for energy or parity. Second, to extend the
result to two-player games, we use an induction on the nuwifoices available foP, in a given state. Intuitively,
we show that ifP; can win with an epSCTa whenP, plays edges from a sétin a states, and if he can also win
with an epSCTIg whenP; plays edges from a sBt then he can win wheR, chooses edges from bo#tandB, with
an epSCT whose depth is bounded by the sum of deptiis afid Tg.

Proof. The proof is made in two steps. First, we consider the ongeplaase, wher& = 0. Second, we use an
induction scheme over the choice degre@®gto extend our results to the two-player case.



We start withS, = 0, the one-player game. By Lemr3aa winning play is of the formmt= p - (n.)® such that
EL(N«) > 0 andPar(mm) = min{p(s) | S€ N} is even. Notice that such a play corresponds to the epSCTedefin
above, as it reduces to an even-parity self-covering fgth (0,...,0)) ~ (s,u) ~ (s,u’) with U’ > u. Therefore its
existence is guaranteed and it remains to bound its lengt'enGuch a path, the idea is to eliminate unnecessary
cycles, in order to reduce its length while maintaining tleeded properties (i.e., positive energy and even minimal
priority). First, notice that cycles in the sub-paf, (0,...,0)) ~ (s,u) can be trivially erased as they are only
visited a finite number of times and thus (a) the initial ct@din compensate for the loss of their potential positive
energy effect, and (b) they do not contribute in the pariggitonsider the sub-patls, u) ~ (s,u’). Since itinduces a
winning play, its minimal priority is even. Lgty, be this priority. We may suppose w.l.0.g. thEs) = pm, otherwise
it suffices to shift this sub-path ts,v) ~ (s,V) for some states’ such thatp(s) = pm andV' > v, and add the
sub-path(s,u) ~ (s, V) to the finite prefix. Now we may eliminate each cycle(sfu) ~~ (s,u’) safely in regards to
the parity objective as they only contain states with greateequal priority. Thus, we only need to take care of the
energy, and fall under the scope @2] Lemma 15] for the special case of weightgin1,0,1}, where an upper bound

h(|S],k) = (]S + 1)°'k2 on the length of such a path is shown.
We claim that for a one-player gam®, with weights in {-W,-W+1,.... W—1 W}, an upper bound

h(W,|S,k) = (W-|]] +1)°k2 is obtained. Indeed, one can transl@g= (S;, S, snit, E,k,w, p) into an equivalent
gameG, = (S|,S,snit,E',k,w, p') such that each edge & is split into at mosW edges inG’p,, with at most
(W —1) dummy states in between, so that each edgé’pobnly uses weights if—1,0,1}. Let §; denote the set of
these added dummy states. We define this transl@tios, — G, with Tr(S) = SUSy, Tr(S) = S, Tr(Sinit) = Snit,
Tr(E) = Uspee Tr((s,t)), Tr(k) =k, Tr(w) =w': E' — {-1,0, 1}%, Tr(p) = p': S — N such that for alls t) € E
such tham= max{w(s,t)(j) | 1 < j <k} — 1, we have thalr((s,t)) = {(s,s}), (S}, S3), ... (S *.sT), (s]t) } such
that

(vizosesiapE=pe)n T W@ =wst).

(@neTr((st)

To be formally correct, we have to add that for §jle Sy, we havedegree;,(Sq) = degreey(Sy) = 1, and for all
s¢ S, we havep/'(s) = p(s). This translation does not hinder the outcome of the gameels edge irG, has a
unigue corresponding path (B(ry that preserves the weights and the visited priorities, hatidffers no added choice

to P1. SinceGp possesselE| < |S? edges, and for each edge®f, we add at mostW — 1) dummy states irG’p,,
we haveS| < |S+ |92 (W —1) < |S]2-W. Therefore, by applyingl2, Lemma 15] orG.,, we obtain the following

upper bound:
K2
h(W,|S,k) = h(]S|.k) < (|S2-W+1)° < W[5 +1)°*

for some constartt that is independent @&y,

Now, considefs, £ 0. (I) We extend ]2, Lemma 16] for parity. This will help us to establish an indao scheme
over the choice degree &%. Suppose € S, has more than one outgoing edge. ket (s;t) € E be one of them and
R C E denote the nonempty set of other outgoing edgesG{,e(resp.G'S) be the game induced when removiRg
(resp.1) from G,. Suppose that (ais winning forPy in G'S for initial creditvg € N, and (b) there exists some state
s € Ssuch that' is winning forPy in G{, for initial creditv; € NX. We claim thas' is winning inGp, for initial credit
Vo = V7 + Vr. Indeed, letA] and/\f resp. denote winning strategies fBx in Gg and Gﬁ. Let P, use the following
strategy. PlayeP; playsA{ as long asP, does not play any edge & If such an edge is played, théh switches to
strategyAf and plays it until edge is played again byP,, in which caseP; switches back td ], and so on. In this
way, the outcome of the game is guaranteed to be amplays ...s...s...s... resulting from a merge between a play
consistent with\ [ overGJ (whose energy level is bounded by at all times), and a play consistent w?cfi‘ overGﬁ
(whose energy level is bounded by at all times). Therefore, the combined overall energy ledelny prefixp of
this play is bounded by—v; — vg) as positive cycles i@, andG'S do remain positive ifGp. Furthermore, the parity
condition is preserved iG,. Indeed, suppose it is not. Thus, there exists a state digifiitely often in the outcome
such that its priority is minimal and odd. However, as thecote results from merging plays resp. consistent wjth
and)\lR, this implies that one of those strategies yields an oddmahpriority, which contradicts the fact that they are
winning. This proves the claim.



(1) We apply the induction scheme df2, Lemma 18] orr = |[{(s;t) € E|s€ $}| - |S| < (d—1)-|S], the choice
degree ofP,. Notice that our translatiofir: Gp — G/p, maintains this choice degree unchanged. The claim is that fo
a winning states’, there is an epSCT of depth bounded byt&W, |, k). We have proved that for the base case0,
similar toS; = 0, this claim is true. So assume it holds foit remains to prove that it is preserved for 1. Letse S
be such thaP; has at least two outgoing edges. As before, we dethand Gﬁ. Clearly, the choice degree &%
is at mostr in both games. Le$' be a winning state iGGp. As P, has less choices in bota}, anng, clearlys is
still winning in those games. If an epSCT in either of themi@htare guaranteed to exist and have depth bounded by
2" -h(W, |9, k) by hypothesis) do not contain the stat¢hen the claim is verified. Now suppose we have two epSCTs
for gamesGj andGﬁ such that they both contain stateNotice thats is winning in those two games and as such, is
the root of two respective epSCTs of depth less tHam@V, |S, k). Applying (1) on states ands, we get an epSCT
for s'in Gy of depth 2 2" - h(W, |S],k), which concludes the proof. O

From multi energy parity games to multi energy games.Let G, be a MEPG and assume ti#at has a winning
strategy in that game. By Lemn3athere exists an epSCT whose depth is boundeld Bg a direct consequence of
that bounded depth, we have tifat, by playing the strategy prescribed by the epSCT, enforctager objective
than the parity objective. Namely, this strategy ensuréseuwer visit more thar states of odd priorities before seeing
a smaller even priority” (which is a safety objective). Thére parity condition can be transformed into additional
energy dimensions.

While our transformation shares ideas with the classiealsformation of parity objectives into safety objectives,
first proposed in9] (see also 29, Lemma 6.4]), it is technically different because energpele cannot be reset (as
it would be required by those classical constructions). fBukiction is as follows. For each odd priority, we add one
dimension. The energy level in this dimension is decreagdddach time this odd priority is visited, and it is increased
by | each time a smaller even priority is visited 3 is able to maintain the energy level positive for all dimensi
(for a given initial energy level), then he is clearly wingithe original parity objective; on the other hand, an epSCT
strategy that wins the original objective also wins the namg.

Lemma 4. Let Gy = (S1, S, snit, E, k, W, p) be a multi energy parity game with priorities {®,1,...,2-m}, such that

W is the maximal absolute weight appearing on an edge. Tharaweonstruct a multi energy game G with the same
set of states(k+ m) dimensions and a maximal absolute weight bounded by |, asedkfiy Lemma&, such thatP;

has a winning strategy in G iff he has one iR.G

Proof. Let Gp = (S1, S, Snit, E, k,w, p) be a MEPG with priorities if0,1,...,2-m}. LetG = (S, S, E, (k-+m),w)
be the multi energy game (MEG) obtained by applying the feilhy transformation¥ (s;t) e E, V1< j <Kk,
wW((s1))(j) =w((st))(j), and (a) ifp(t) is evenV k < j < k+ @, wW((s,t))(j) =0 and¥ k+ @ < Jj<k+m,
W((s1))(J) =1, o (B) if p(t) is odd,¥ k< | < k+m, |  k-+ [ BL] w((s))(j) = 0 andw/((s,t)) (k+ [ 242 |) = —1.
We have to prove both ways of the equivalence.

First, suppos@; € /\f': is a winning strategy foP; in the MEPGG,. By Lemmas3, there is an epSCT of depth
at mostl for spit. Thus, we know that in every repeated sequenck siites, the minimal visited priority will be
even. Therefore, for all additional dimensions, rangirgrfk 4 1 to k+ m, the effect of a sequence b$tates will be
bounded from below by-1- (I — 1) +1, which is positive. Thus strategy is also winning inG (with initial credit
bounded by on additional dimensions).

Second, supposk € /\f': is a winning strategy foP; in the MEGG, as defined above. Sindg is winning, it
yields an SCT (epSCT without the parity condition) of bouthdepth such thaP; is able to enforce positive energy
cycles. By definition of weights ovés, this cannot be the case if the minimal priority infinitelyteaf visited is odd.
Thus this strategy is winning for parity dB,, and stays winning for energy over dimensions ks weights are
unchanged. O

Bounding the width. Thanks to Lemma, we continue with multi energy games without parity. In arttebound
the overall size of memory for winning strategies, we coassttle width of self-covering trees. The following lemma
states that SCTs, whose width is at most doubly exponengi@pplication of LemméB, can be compressed into
directed acyclic graph§DAGS) of single exponential width. Thus we eliminate thems®l exponential blow-up and
give an overall single exponential bound for memory of wingnstrategies.



Lemma 5. Let G= (S1,S, snit, E, k, w) be a multi energy game such thatW is the maximal absolutdwajgearing

on an edge and d the branching degree of G. Suppose thers aXistte-memory winning strategy f&%. Then, there
2

existsAP e APF a winning strategy fo®; described by a DAG D of depth at most2(4-D1S . (W |5 +1)°* and

width at most L= |S|- (2-1-W + 1)K, where c is a constant independent of G. Thus the overall menezded to win
this game is bounded by the single exponential |

The sketch of this proof is the following. By Lemn3awe know that there exists a trde and thus a DAG, that
satisfies the bound on depth. We construct a finite sequeri2@®$, whose first element iB, so that (1) each DAG
describes a winning strategy for the same initial cred}teg@h DAG has the same depth, and (3) the last DAG of the
sequence has its width bounded|By: (2-1-W + 1)K, This sequencBy = T,D1, Dy, ..., Dy, is built by merging nodes
on the same level of the initial tree depending on their delel by level. The key idea of this procedure is that what
actually matters fofP; is only the current energy level, which is encoded in nodelam the self-covering tre€.
Therefore, we merge nodes with identical states and enevgyst sincéP; can essentially play the same strategy in
both nodes, we only keep one of their subtrees.

It is possible to further reduce the practical size of the pmased resulting DAG by merging nodes according to
a “greater or equal” relation over energy levels rather thianply equality (Fig.2). This improvement is part of the
algorithm that follows, and it has a significant impact onphactical width of DAGs as it can then be bounded by the
number ofincomparabldabeling vectors instead oihequivalenbnes.

Fig. 2. Merge between comparable nodes. Fig. 3. Cycles have positive energy levels.

The remainder of this subsection is dedicated to the prob&afma5. We need to introduce some notations and
two intermediate lemmas. If he so wishes, the reader magttirproceed to the next subsection and Lentfar
results on lower memory bounds.

We first introduce some notations. LBt= (Q,R) be a self-covering tree (i.e., epSCT without the parity ¢Gond
tion). We define the partial ordet on Q such that for allg, ¢ € Q such that®(¢1) = (t1,u1) andO(g) = (tz, up),
we have¢g < ¢ iff t; =t andu; < up. We denote the equivalence hy such thatg ~ ¢ iff ¢ < ¢ and
G = . For all ¢ € Q, let Anc and EnAnc resp. denote the set @hncestorsand energy ancestorsf ¢ in T:
Anc(¢) = {9 € Q\ {¢} | 9 F 3O¢}, where we use the classidal L notation to denote that there exists a path from
9 to¢in T, andEnAnc(¢) = {8 € Anc(¢) | & < ¢}.

We build a sequence of DAG®j )o<i<n = Do = T,D1,Dy,...,Dn such that for all 0< i < n, D; is obtained from
D;_1 by mergingtwo equivalent nodes of the same minimal level (i.e., clogethe root) ofD;_;. The sequence stops
when we obtain a DA®, = (Qn, R,) such that for all levej of Dy, there does not exist two distinct equivalent nodes
on level j. This construction induces merges by increasing depthjrgjavith level one. Moreover, if a DA®; of
the sequence is the result on merges up to I¢viHen it has the tree property (i.e., every node has a unafherf)
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for levels greater thap As the depth and the branching degred& dre finite, the defined sequence of DAGs is finite
(and actually bounded).

Let us give a formal definition of theergeoperation. Consider such a DAG = (Q;,R)). Let j the minimal level
of Dj that contains two equivalent nodes. Iggt¢ € Qi(j) (i.e., nodes of levej) be two nodes such thagt # ¢ and
G1 ~ G. We suppose w.l.0.g. an arbitrary order on nodes of the saweédo that;, ¢; are the two leftmost nodes that
satisfy this condition. We defir®; ;1 = (Qj+1,Ri+1) = merge(D;) as the result of the following transformation:

- Qi1=Q\({¢Q}U{ce € Qi|¢ € Anc()}),
- Ri1=(RN(Qi11xQy1)U{(9,q)|(3,¢) eR}.

Thus, we eliminate the subtree startingzrand replace all edges that pointgoby edges pointing tq;. This follows
the idea that the same strategy can be played &s in¢; since the present state and the energy level are the same.
LetD; = (Qj, R) be a DAG of the sequend®; )o<i<n. Giveng € Q;, 9 € Anc(¢), we denote by ~~ ¢ an arbitrary

downward path frond to ¢ in D;. Given a leafg € Q;, we denote its oldest energy ancestoroky(¢). Recall that a
strategy is described by such a DAG according to moves of BleeBiven a leat € Q; and one of its energy ancestors
9 € EnAnc(g), we represent the pebble going up frgrto 9 by ¢ © 3. Givena, 8 € (Q)*, a © 8 naturally extends
this notation such that we hatest(a) O First(3). We consider energy levels of paths in the tree by referirtbeda
counterparts in the game. Note that giverg € Q;, ©(F) = (t,u), ©(¢) = (t',u), we haveEL(3 ~~ ¢) = U —u. We
start with two useful lemmas.

Lemma 6. Let D = (Q;,Ri) be a DAG of(Dj)o<i<n. For all nodes¢, ¢ € Qi such thatg; ~ ¢, we have that/d ¢
Anc((l) ﬂAnC(Cz), EL(19 ~s (,'1) = EL(19 ~ (,'2).

Proof. The proof is straightforward. O

Lemma 7. Let D = (Q;,R) be a DAG of(Dj)o<i<n. Let¢,3,v, & € Qi be four nodes such thgtandé are leafs,v is
the deepest common ancestog@ndé, andd is an ancestor of. Let the oldest energy ancestorobe an ancestor
of ¢, i.e.,0ea(&) € Anc(¢). We have thaEL(d ~~ ¢) < EL(F ~» V ~ & O oea(&) ~ ¢).

This lemma states that we can extract pebble cycles, whigh hasitive energy levels, from a given path, in order
to obtain some canonical path whose energy level is lowegqoalgFig.3).

Proof. Let x = oea(§) andp =3 ~» v ~ & O x ~ ¢. Sincex € Anc(¢) NAnc(&), we havey € Anc(v)U{v}.
Therefore, and applying Lemn@a four cases are possiblg:e Anc(3), x =3, x € Anc(v) \ (Anc(3)U{8}), and
X = v. Consider the first casg, € Anc(3). Thenp =93 ~» v~ & O X ~ 3 ~ vV ~ (. We haveEL(p) = EL(& ~
V) +EL(V ~ &)+ EL(X ~ 3)+EL(S ~» V) +EL(V ~ ¢) =EL(X ~ 3 ~» Vv ~» &)+ EL(& ~ ¢). By definition of
X = oea(&), the first term is positive. ThugL(p) > EL(8 ~ ¢). Arguments are similar for the other cases. O

We proceed with the proof of Lemnta

Proof (Lemméb). Let (Dj)o<i<n be the sequence of DAGs defined above. We claim (ihatach DAG describes a
winning strategy for the same initial credit) each DAG has the same deptland(iii) the last DAG of the sequence
has its width bounded bjg| - (2-1-W + 1),

(i) First, recall thatP; can play a strategy, € APF based on edges taken by a pebbleTomNotice that moving
the pebble as we previously defined is possible because hettgsging toP; have only one child, and nodes B%
have childs covering all his choices once, and only oncetuRately, themerge operation maintains this property.
Therefore, it is straightforward to see th#at can also play a stratngyiDi € /\f F for a DAG D;j resulting of some
merges oI . However, while this would be a valid strategy fBg, we have to prove that it is still a winning one, for
the same initial credify asA{ . Precisely, we claim thati > 0, we have tha,tfi is winning forvo.

We show it by induction o;. The base case is trivial & = T: the strategy\; is winning forvg by definition.
Our induction hypothesis is that our claim is valid for 1, and we now prove it fob;, by contradiction. Let, ¢ €
Qi—1(j) be the merged nodes, for some leyelf D;_1. Suppose’\iDi is not winning forvg. Thus there exists a finite
path of the pebble irD;, which corresponds to a strate@?i € /\EF of P,, such that it achieves a negative value on
at least one dimensian, 1 < m < k. We have thatvp+ EL({)) (m) < 0. We aim to find a similar path in D;_; such

thatEL(n) < EL({), thus yielding contradiction, as it would witness th?ﬁ*l is not winning forvg.
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We denote by, the father of¢; in Di_;. The only edge added by theerge operation iS(Gy, G1). Obviously, if
¢ does not involve this edge, then we can tgke ¢ and immediately obtain contradiction. Thus, we can deca@apo
the witness path

(=0(1)maB(1) Oa(2)maB(2) ... ©a(q)méé,

for someq > 1 such that for all X p < g, we have thatr(p), B(p),& € (QU{O})" are valid paths of the pebble
(andD; _1); they do notinvolve edgén, 1), i-..{Gnc1} Z a(p), B(p). &; andB(p) N (Ancp, (Gn) \ Ancp, 4 (¢1)) =0,
Last(B(p)) is a leaf andea(Last(B(p))) € Ancp, (Gm)-

Intuitively, { is split into several parts in regard ¢p the number of times it takes the added edgg ¢1). Each
time, this transition is preceded by some patht is then followed by some pat where all visited ancestors gf,
were already ancestors ¢f in Dj_; (thus,8 paths can be kept in). Finally, after theg-th transitiong,, ¢; is taken,
the path{ ends with a finite sub-path.

We define the witness pathin Di_1 asn = k(1)B(1) O k(2)B(2) © ... © k(q)&, with the following transfor-
mation of sub-pathe (p) Gn Gi:

( ): ~Di1 CL,
- VZS P <q,k(p) = oea(Last(B(p—1))) ~bi_; G,

where~p, , denotes a valid path iD;j_;. Note that given preceding definitions, this indeed coutst# a valid path in
Dj_1. We have to prove thdil () < EL({). We have

EL(n)= % EL(kk(P)+ > ELB(P)+EL(),

and
ELQ) = Y EL@(pena)+ Y  EL(B(p)+EL(E).

Thus, it remains to show that

ELK(D) < T EL(a(P)GnGy):
1<p<q 1<p<q

In particular, we claim that for all £ p < g, we haveEL(k(p)) < EL(a(p)GnG1)- Indeed, notice that (p) and
a(p) share their starting and ending nodes and tHat) contains a finite number of pebble cycles. Betlenote the
common starting node of both(p) anda(p). Applying Lemma? on a(p), we can eliminate cycles one at a time,
without ever increasing the energy level, and obtain a fathp, ¢n ¢ such thaEL(9 ~p, GnG1) < EL(O(P) GnG1)-
Since¢ ~ ¢, we have by Lemm& thatEL(9 ~+p, ¢nG1) = EL(9 ~~p, ; GnG) = EL(8 ~~p, , G1), implying the
claim.

Consequently, we obtaifl(n) < EL({), which witnesses thd;_; was not winning. This contradicts our induc-
tion hypothesis and concludes our proof that for afl 0< n, )\fi is winning forvy.

(i) Second, thenerge operation only prunes some parts of the tfgewithout ever adding any new state, and
added edges are on existing successive levels. TherefmteDehas noticeably the same depth

(iii) Third, the last DAG of the sequendBy, is such that for all levej, for all ¢, € Qn(j), we have(g #

Q) = (G # ¢). Therefore the width of this DAG is bounded by the number afgilde non-equivalent nodes. Recall
that two nodes are equivalent if they have the same labels they represent the same state of the game and are
marked with exactly the same energy level vector. Since thginmal change in energy level on an edg&sand

the depth of the DAG is bounded ty= 2@-918 . (W |S + 1)°* thanks to Lemma, we have possible vectors in
{—=1-W, =l -W+1,...,1 -W—1,1 -W}K for each state. Consequently, the widttDpfis bounded by

k
S (2 1-W+1)k=15- (2(“3-(w-|5|+1)°k2-w+1) ,

which is still single exponential. O

12



Fig. 4. Family of games requiring exponential memory.

Lower bound. In the nextlemma, we show that the upper bound is tight in¢ines that there exist families of games
which require exponential memory (in the number of dimensjpeven for the simpler case of multi energy objectives
without parity and weights if—1,0,1} (Fig. 4). Note that for one-dimension energy parity, it was showfLif that
exponential memory (in the encoding of weights) may be resrgs

Lemma 8. There exists a family of multi energy gan{€K))x>1 = (S1, S, Snit,E, k=2-K,w:E — {-1,0, 1}")
such that for any initial creditP; needs exponential memory to win.

The idea is the following: in the example of Fig.if P1 does not remember the exact choice®gp{which requires
an exponential size Moore machine), there will exist songgisece of choices @9, such thatP; cannot counteract a
decrease in energy. Thus, by playing this sequence longgén®y can forceP; to lose, whatever his initial credit is.

Proof. We define a family of gamg$(K))k>1 which is an assembly &= 2- K gadgets, the fird{ belonging taPs,
and the remainini belonging taP; (Fig. 4). Precisely, we havis | = |$| =3-K, |§ = |E| =6-K = 3-k (linearin
k), k=2-K, andw defined as:

V1<i<K,w((o,5))=w((o,t))=(0,...,0),

lifj=2-i—1
V1<j<kw((s,su)(j)=< —1if j=2-i ,
0 otherwise

whereo denotes any valid predecessor state.

There exists a winning stratedy " for Py, for initial creditvy® = (1,...,1). Indeed, for any strategy @%,, for
any statd; belonging toP;y, it suffices to play th@ppositechoice asP, made on its last visit of to maintain at all
times an energy vector which is positive on all dimensiorgs Btrategy thus requires to remember the last choice of
P, in all gadgets, which meari®; need bits to encode these decisions. Thus, this winning stratedgscribed by
a Moore machine containing‘2= 25 states, which is exponential in the number of dimenslons

We claim that, for any initial credit, there exists no winning stratedy that can be described with less thah 2
states and prove it by contradiction. SuppPs@lays according to such a stratekjy Then there exists somedx < K
such that1(sy...SSkL---tx) = A1(S1...5Sp - - - x), i-€.,P1 chooses the same actiontymgainst both choices of the
adversary. Suppose th8f chooses to platx in both cases, that & (sy...SSL---tx) = A1(S1-. . SSD - - - tx) =tk L.

By playingsy , P> can force a decrease of the energy vector by 2 on dimensioe&ry visit in gadgex. Similarly,

if the strategy ofP; is to playtyr, P> wins by choosing to plagr as dimension 2x— 1 decreases by 2 every visit.
Therefore, whatever the finite initial vector B, P, can enforce a negative dimension by playing long enougts Thi
contradicts the fact that; is winning and concludes our proof that exponential memsnyecessary for this simple
family of gamegG(K))k>1. O
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We summarize our results in Theordm

Theorem 1 (Optimal memory bounds).The following assertions hold: (1) In multi energy paritynges, if there
exists a winning strategy, then there exists a finite-memamnying strategy. (2) In multi energy parity and multi
mean-payoff games, if there exists a finite-memory winrtiategy, then there exists a winning strategy with at most
exponential memory. (3) There exists a family of multi epgegmes (without parity) with weights {r-1,0,1} where

all winning strategies require at least exponential memory

Proof. Thanks to RO, Theorem 3], we have equivalence between finite-memoryiwinfor multi energy and multi
mean-payoff games. The rest follows from straigthforwapgli@ation of Lemmal, Lemma4, Lemmab, and
Lemmas. O

4 Symbolic synthesis algorithm

We now present aymboli¢ incrementaland optimal algorithm to synthesize a finite-memory winning strateggin
MEG * This algorithm outputs a (set of) winning initial credité)d a derived finite-memory winning strategy (if one
exists) which is exponential in the worst-case. Its runnimg is at most exponential. So our symbolic algorithm can
be considered (worst-case) optimal in the light of the rtssaflprevious section.

This algorithm computes the greatest fixed point of a moretmperator that defines the sets of winning initial
(vectors of) credits for each state of the game. As thoseasetspward-closed, they are symbolically represented by
their minimal elements. To ensure convergence, the algordonsiders only credits that are below satmeshold
notedC. This is without giving up completeness because, as we sletowbfor a games = (S;, S, snit, E, k,w), it
is sufficient to take the value-2-W for C, wherel is the bound on the depth of epSCTs obtained in LerBrmadwW
is the largest absolute value of weights used in the game.l8eshow how to extract a finite state Moore machine
representing a corresponding winning strategy (statdseoftoore machine encode the memory of the strategy) from
this set of minimal winning initial credits and how to obtainincrementalalgorithm by increasing values for the
thresholdC starting from small values.

A controllable predecessor operator.Let G = (S, S, Snit, E, k,w) be a MEG,C € N be a constant, and(C) be the
set(S;US) x {0,1,...,C}¥ Letu(C) = 2Y(O), j.e., the powerset dff (C), and the operatoEpre.: U(C) — U(C)
be defined as follows:

EV)={(s1,e1) eU(C) |s1 € Sy AT(s1,5) € E, (s,
AV) ={(s,8) eU(C) |2 € SAVY(s,s) €E,J(s,

Cprec(V) = E(V) U A(V). @)

Intuitively, Cprec (V) returns the set of energy levels from whiBh can force an energy level M in one step. The
operatorCprec is C-monotone over the complete lattie&C), and so there exists greatest fixed pointor Cprec

in the latticel/(C), denoted byCpreg:. As usual, the greatest fixed point of the operdiprec can be computed by
successive approximations as the last element of the fiip¥inite C-descending chain. We define the algorithm
CpreFP that computes this greatest fixed point:

YeV:iey<e +w(s,9)},

&
e)) eV:e<e+ws,s)},

UO =Uu ((C)a Ul = Cpre(C (Uo)a [ERE Un = Cpre(C (Un—l) = Un—l- (2)

The sel; contains all the energy levels that are sufficient to mairitae energy positive in all dimensions fasteps.
Note that the length of this chain can be bounde{lbyC)| and the time needed to compute each element of the chain
can be bounded by a polynomialjid (C)|. As a consequence, we obtain the following lemma.

Lemma 9. Let G= (S, S, Snit, E, k, w) be a multi energy game aritie N be a constant. The@preg can be computed
in time bounded by a polynomial {bJ (C)|, i.e., an exponential in the size of G.

4 Note that the symbolic algorithm can be applied to MEPGs aiMPRGs after removal of the parity condition by applying the
construction of Lemmd.
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Symbolic representation. To define a symbolic representation of the sets manipulagetiéoCpre- operator, we
exploit the following partial order: lefs, e), (s, €) € U(C), we define

(s,e) < (8,€)iff s=5 ande< €. (3)

AsetV € U(C) is closedif for all (s,e),(s,€) e U(C),if (s,e) €V and(s,e) < (s,€), then(s,€) € V. By definition
of Cprec, we get the following property.

Lemma 10. All sets | in Eq.(2) are closed for<.

Therefore, all sets); in the descending chain of EQ)(can be symbolically represented by their minimal elements
Min< (U;) which is an antichain of elements fet. Even if the largest antichain can be exponentiabirthis repre-
sentation is, in practice, often much more efficient, eversfoall values of the parameters. For example, With 4
andk = 4, we have that the cardinality of a set can be as larggias< 625 whereas the size of the largest antichain
is bounded byMin< (U;)| < 35. Antichains have proved to be very efficient: see for edarf#27,28]. Therefore, our
algorithm is expected to have good performance in practice.

Correctness and completenessThe following two lemmas relate the greatest fixed p@iptei: and the existence of
winning strategies foP; in G. We start with the correctness of the symbolic algorithm.

Lemma 11 (Correctness)Let G= (S, S, snit, E,k,w) be a multi energy game, |€t € N be a constant. If there
exists(cy, ..., ) € NK such that(snit, (C1,..-,c)) € Cpref, thenP; has a winning strategy in G for initial credit
(c1,...,C) and the memory needed B can be bounded byMin<(Cpreg)| (the size of the antichain of minimal
elements in the fixed point).

Given the set of winning initial credits output leipreFP, it is straightforward to derive a corresponding winning
strategy of at most exponential size. Indeed, for winnirtiaghcreditt € NK, we build a Moore machine which (i)
states are the minimal elements of the fixed point (antichimost exponential i), (i) initial state is any element
(t,u) among them such that= spir andu < T, (iii) next-action function prescribes an action that eesuremaining in
the fixed point, and (iv) update function maintains an adeueaergy level in the memory.

Proof. We denote by thek-dimension credit vectdicy, . . ., k). W.l.0.g. we assume that states®alternate between
positions ofP; and positions o, (otherwise, we split needed edges by introducing dummegstaromCpreg, we
construct a Moore machingt = (M, mg, a,, a,) which respects the following definitions:

— M = Min<{(t,u) € §; x {0...C}¥| (t,u) € (Cpre)}. The set of states of the machine is the antichair<ef
minimal elements that belong #; in the fixed point. Note that the length of this antichain isibded by an
exponential in the size of the game.

— mg is any elementt,u) in M such that = st andu < T. Note that such an element is guaranteed to exist as
(Sinit,T) € Cpref.

— For all (t,u) € M, we definea, ((t,u)) by choosing any elemeit,t’) € E such that there exis{$’,u’) € Cpreg
with U = u+w(t,t’). Such an element is guaranteed to exist by definitiotpeé and the fact thaft, u) € Cpre.

—a,: Mx (S xS NE) — M is any partial function that respects the following conistraf a,((t,u)) = (t,t)
thena,((t,u),(t',t")) is defined for anyt’,t”) € E and can be chosen to be equal to érfyu”) such thau” <
u-+w(t,t’) +w(t’,t”), and such an” is guaranteed to exist by definition 6prec and becaus€pre( is a fixed
point.

Now, let us prove that for any initial prefigs; ..., of even length inG, which is compatible withM, we have
thatc+ EL(sS1. .. Son—1) > 0 and that+ EL(sps; ... Son) > 0. To establish this property, we first prove the following
property by induction om: T+ EL(pS1 ... Sn) > u whereu is the energy level of the label of the state reached after
reading the prefigs; . . . Sn With the Moore maching 1. Base casa = 0 is trivial. Induction: assume that the property
is true forn— 1, and let us establish it for. By induction hypothesis, we have that-EL(s0S1 . - . Syn-1)) > U where

uis the energy level of the label of statethat is reached after readisgs; . . . S;(n_1) with the Moore machine. Now,
assume thatr,(m) = (t,t'). So,S;,_1) =t and the choice of; is to play (t,t'). So,Syp_1)11 = t’. Now for all
possible choice@’,t”) of P,, we know by definition ofM that the energy level” that labels the state, (m, (t',t"))

isu” < u-+w(t,t’) +w(t',t”), which establishes our property. Therefore, the stratégy;dased onM is such that
the energy always stays positive for initial creglitvhich concludes the proof. O
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Completeness of the symbolic algorithm is guaranteed wiseiffiziently large threshol@ is used as established
in the following lemma.

Lemma 12 (Completeness)Let G= (S, S, Snit, E, K, w) be a multi energy game in which all absolute values of
weights are bounded by W . has a winning strategy in G and & (Q,R) is a self-covering tree for G of depth |,
then(siit, (C,...,C)) € Cpreg. for C=2-1-W.

Remark 1.This algorithm is complete in the sense that if a winningtstyg exists fofPy, it outputs at least a winning
initial credit (and the derived strategy) f@r=2-1-W. However, this is different from thiéxed initial credit problem
which consists in deciding if a particular given credit \@cis winning and is known to be EXPSPACE-hard by
equivalence with deciding the existence of an infinite rua iRetri net given an initial markind.,33). In general,
there may exist winning credits incomparable to those eapthy algorithmCpreFP. More precisely, given a constant
C € N, the algorithm fully captures all the winning initial créslismaller thanC,...,C). Indeed, the fixed point
computation considers the whole range of initial creditstaiphe given constant exhaustively, and only removes
credits if they do not suffice to win. By Lemniz, it is moreover guaranteed that if an arbitrary winningiaicredit
exists, then there exists one in the range defined by theariist= 2- 1 - W. Nevertheless, since our algorithm works
in exponential time while the problem of findirad the winning initial credits is EXPSPACE-hard, there may bme
incomparable credits outside that range that are not caghtoy the algorithm (comparable credits are captured since
we work with upper closed sets). Indeed, if our algorithm @bk to compute exhaustively all winning credits in
exponential time, this would induce that EXPTIME is equaEiPSPACE. Notice that defining a class of games for
which the algorithnCpreFP proves to be incomplete (in the sense that incomparableimgronedits exist outside the
region captured by consta@it=2-1-W) is an interesting open problem.

Proof. To establish this property, we first prove that from the seabgls of T, we can construct a sétwhich is
increasing for the operat@iprec, i.e.,Cprec(f) D f, and such thatsni, (C,...,C)) € f. We definef fromT = (Q,R)

as follows. LeC € N be the smallest non-negative integer such that faral, with ©(q) = (t, u), for all dimensions

i, 1<i <k, we have thati(i)+C > 0. IntegelC is bounded from above HyW because on every path from the root to a
leaf inT, every dimension is at most decreaséiches by an amount bounded W, and at the root all the dimensions
are equal to 0. For any< Q, we denote by (q) + C the label ofg where the energy level has been increase@ by

all the dimensions, i.e., ®(q) = (t,u) then®(q) +C = (t,u+(C,...,C)). Note that for all nodes i@, the label is at
mostl - W and thus the shifted label remains unf@et 2-1-W. Now, we define the sdt as follows:

f={(t,u)eU(C)|39€Q,O(q)+C = (t,u)}. (4)

So, f is defined as thel-closure of the set of labels ik shifted byC in all the dimensions.

First, note thatsyit, (C,...,C)) € f as the label of the root i is (sni,(0,...,0)). Second, let us show that
Cprec(f) D f. Take any(t,u) € f and let us show that,u) € Cprec(f). We decompose the proof in two cases.
(A) t € S;. By definition of f, there existg) € Q such that®(q) + C =< (t,u). W.l.o.g. we can assume thais not a
leaf as otherwise there exists an ancestasf g such that®(q') < ©(q) (recall the set is described by its minimal
elements). By definition of , there existst,t’) € E andq’ € Q such thatq,q') € RandO(q) = ©(q) +w(t,t’). Let
(t',v) = ©(d) +C. By definition of f, we have(t’,v) € f. By Eq. @), it follows that(t,u) € Cprec(f). (B)t € $. By
definition of f, there existg) € Q such that®(q) + C < (t,u). Again, w.l.o.g. we can assume ttets not a leaf as
otherwise there exists an ancesipof g such tha®(q') < ©(q). By definition of T, for all (t,t") € E, there isg’ € Q
such that(g,q') € Rand®(d) = ©(q) + w(t,t’). Let (t',v) = ©(q') 4+ C. By definition of f, we have(t’,v) € f. By
Eq. (), it follows that(t,u) € Cprec(f).

Now, let us show that C Cpre(.. This is a direct consequence of the monotonicityCpfec: it is well known
that for any monotone function on a complete lattice, itsatgst fixed point is equal to the least upper bound of all
post-fixed points (points such thae C Cprec(e)), i.e.,Cpreg. = J{e| eC Cprec(e)} D f. As (snit,(C,...,C)) € f,
that concludes the proof. O

Remark 2.Note that the exponential bound on memory, obtained in Lefintan also be derived from the Moore
machine construction of Lemnidl as this method is complete according to Lemh2aStill, the DAG construction
of Lemmab is interesting in its own right, and introduces the concdptarde merging, which is underlying to the
symbolic algorithm correctness, while transparent in és.u
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Incrementality. While the threshold 2| - W is sufficient, it may be the case thR{ can win the game even if its
energy level is bounded above by some smaller value. Soautipe, we can use Lemni4, to justify an incremental
algorithm that first starts with small values for the parané&t and stops as soon as a winning strategy is found or
when the value of® reaches the threshold - W and no winning strategy has been found.

Application of the symbolic algorithm to MEPGs and MMPGs. Using the reduction of Lemméthat allows us

to remove the parity condition, and the equivalence betweelti energy games and multi mean-payoff games for
finite-memory strategies (given bg2(, Theorem 3]), along with Lemm@&(complexity), Lemmadl1 (correctness) and
Lemmal2 (completeness), we obtain the following result.

Theorem 2 (Symbolic and incremental synthesis algorithm)Let G, be a multi energy (resp. multi mean-payoff)
parity game. AlgorithnCpreFP is a symbolic and incremental algorithm that synthesizesraing strategy in G

of at most exponential size memory, if a winning (resp. fiménory winning) strategy exists. In the worst-case, the
algorithm CpreFP takes exponential time.

Proof. The correctness and completeness for algorifipreFP on multi energy games are resp. given by Leniiia
and Lemmal2. Extension to mean-payoff games (under finite memory) ismgiy 20, Theorem 3], whereas the
parity condition can be encoded as energy thanks to LeshriExponential worst-case complexity of the algorithm
CpreFP is induced by Lemma. O

Integration in synthesis tools. Following the conference version of this pap28]| our results on strategy synthesis
have been used in thieacia+ synthesis tool. This tool originally handled the synthesisontrollers for specifications
expressed ihTL (Linear Temporal Logic, a classical formalism for formaéspications B9]) using antichain-based
algorithms and has recently been extended to the synthesid T L specifications with mean-payoff objectived}.[
The addition of multi mean-payoff objectives k@ L specifications provides a convenient way to enforce that syn
thesized controllers also satisfy some reasonable behfoim a quantitative standpoint, such as minimizing the
number of unsollicited grants in a client-server architeetwith prioritized clients. Numerous practical applioas
may benefit from this multi-dimension framework.

The authors present an approach in which the corresponginfesis problem ultimately reduces to strategy
synthesis on a multi energy gant [Theorem 26]. Their implementation uses fixed point comiparia similar to
Eq. (2) and has proved efficient (considering the complexity ofgtablem) in practice. It uses antichains to provide a
compact representation of upper-closed sets and implerttenincremental approach proposed before (regarding the
constantC). In practical benchmarks, winning strategies can gehebal found for rather small values @f. Hence,
the incremental approach overcomes the need to computetlup éxponential theoretical boufi= 2-1-W in many
cases. Sample benchmarks and experiments can be fousjdamd the tool can be used onling.[

5 Trading finite memory for randomness

In this section, we answer the fundamental question regautiie trade-off of memory for randomness in strategies:
we study on which kind of gamé®; can replace a pure finite-memory winning strategy by an égpalverful, yet
conceptually simpler, randomized memoryless one and sistow memory is encoded into probability distributions.
Note that we do not consider wider strategy classes (erdpraized finite-memory), nor do we allow randomization
for P, (which on most cases is dispensable anyway). Indeed, we taarbatter understanding of the underlying
mechanics of memory and randomization, in order to provitgrative strategy representations of practical use; not
exploration of more complex games with wider strategy @dagkemma1 shows a glimpse of it).

| || Multi energy and energy parityMulti MP (parity) | MP parity|

one-player X Vi Vv
two-player X X N4

Table 1. When pure finite memory fgP; can be traded for randomized memorylessness.
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2.0 i : (0,0) (0,0) : : ‘ 0.2)

Fig. 5. Randomization can replace memory, but not the opposite.

We present an overview of our results in Taland summarize them in Theore8nNote that we do not consider
the opposite implication, i.e., does there always exist g @faencoding a randomized memoryless strategy into an
equivalent finite-memory one. In general, this is not thee@een for classes of games where we can trade memory
for randomness, and it can easily be witnessed on the oyerptaulti mean-payoff game depicted on Figlndeed,
expectatior(1, 1) is achievable with a simple uniform distribution while itrist achievable with a pure, arbitrary high
memory strategy (even infinite).

We break down these results into three subsections: enarggg multi mean-payoff (parity) games, and single
mean-payoff parity games. We start with energy games.

5.1 Randomization and energy games

Randomization is not helpful for energy objectives, eveone-player games. The proof argument is obtained from
the intuition that energy objectives are similar in spiisgfety objectives.

Lemma 13. Randomization is not helpful for almost-sure winning in-@h&yer and two-player energy, multi energy,
energy parity and multi energy parity games: if there exésfmite-memory randomized winning strategy, then there
exists a pure winning strategy with the same memory reqeinésn

Proof. Let Gy be a game fitted with an energy objective. Consider an alsurstwinning strategd;. If there exists a
single pathrir consistent withA; that violates the energy objective, then there exists afjmigfix withesp to violate
the energy objective. Moreover, as the finite prefix has pesirobability (otherwise the play is not consistent), and
the strategy; is almost-sure winning, it follows that no such path exist@ther wordsA; is a sure winning strategy.
Since randomization does not help for sure winning straietpllows that randomization is not helpful for one-playe
and two-player energy, multi energy, energy parity and neualergy parity games. O

5.2 Randomization and multi mean-payoff (parity) games

Randomized memoryless strategies can replace pure fimiteemy ones in the one-player multi mean-payoff parity
case, but notin the two-player one, even without parity. \"é ffiote a useful link between satisfaction and expectation
semantics for the mean-payoff objective.

Lemma 14. Let G= (S, S, Snit, E, K, w) be a game structure with mean-payoff objective: MeanPayoffs(v) for
some threshold vectore Q. LetA; € A1 be a strategy ofP;. If A1 is almost-sure winning fop (i.e., winning for
1-satisfaction), thed1 is also winning for v-expectation for the mean-payoff fioxcMP. The opposite does not hold.

Proof. We first discuss the claimed implication. Suppose 1-satigfa is verified. Then, for all strategdp € A, of
P2, the set of consistent plays of valaev has measure 1, while the one of valaer has measure 0, by definition.

Therefore, the expectati@éﬁ;fz(l\/lP) is at least andv-expectation is verified.

To show that the opposite does not hold, consider the simp@Eeptayer game depicted on Fig Let A1 be a simple
coin flipping onsy, i.e.,A1(s1)(S2) = 1/2, A1(s1)(s3) = 1/2, A1(s2)(s2) = 1 andA1(s3)(s3) = 1. The expectation of
this strategy i = (1,1). Nevertheless, the probability of achieving mean-payb#tdeastv is 0 < 1, which shows

that it does not verify 1-satisfaction fdteanPayoffg (V). O

The fundamental difference between energy and mean-pisyibifht energy requires a property to be satiséied
all times(in that sense, it is similar to safety), while mean-paysfalimit property. As a consequence, what matters
here is the long-run frequencies of weights, not their oodl@ppearance, as opposed to the energy case.
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Lemma 15. Pure finite-memory winning strategies can be traded for dgumwerful randomized memoryless ones
for one-player multi mean-payoff parity games, for botlissattion and expectation semantics. For two-player games
randomized memoryless strategies are not as powerful,lexwi#ad to expectation semantics, no parity condition, and
only 2 dimensions.

For the one-player case, we extract the frequencies offeisgdges of the graph from the regular outcome that
arises from the finite-memory strategy®f. We build a randomized strategy with probability distribas on edges
that yield the exact same frequencies in the long-run. Taezeif the original pure finite-memory dP; is surely
winning, the randomized one is almost-surely winning. Har two-player case, this approach cannot be used as
frequencies are not well defined, since the strategi.of unknown. Consider a game which needs perfect balance
between frequencies of appearance of two sets of edges myapbe winning (Fig6). To almost-surely achieve
mean-payoff vecto(0,0), P; must ensure that the long-term balance between e(dges) and(s,Ss) is the same
as the one between edges, s3) and(s;,s;). This is achievable with memory as it suffices to react immtedy to
compensate the choice . However, given a randomized memoryless strategi9fP, always has a strategy to
enforce that the long-term frequency is unbalanced, anslttireigame cannot be won almost-surelymywith such
a strategy. Achieving expected mean-pay06fD) is also excluded.

Fig. 6. Memory is needed to enforce perfect long-term balance.

Proof. We begin with the one-player case. &} be a multi mean-payoff parity game. kaf € ALF be the pure
finite-memory strategy of the player. Since it is pure anddinits outcome is a regular woml= p; - ()%, with
p1€S, pe St Letp= l\/IeanPayofFGp(V) N Parityg, be the multi mean-payoff parity objective for some threghol
vectorv € QX. Suppose this strategy verifiessatisfaction forp and3-expectation for théP function, for somen,

B. We claim that there exists a randomized memoryless stratgt) Af"" that is alsoa-satisfying forg and that
satisfiegB-expectation for thé&1P function; and we show how to build it.

We denote concatenation by theymbol. Given a finite worgb € S*, two statess,s € S, we resp. denote by
oce(s,p) andoce((s, ), p) the number of occurences of the stand the transitioits, s') in the wordp. We add the
subscripte when we count the first state of the word as the successor d¢dishene (i.e., the word is a cycle in the
game graph). That iscc, (x,p) = occ(x, p - First(p)).

Let us consider the mean-payoff of the outcome of stratb@& Recall that for a playr € Plays(G), m=
st &, $..., we haveMP(m) = liminfn_ e £ 51,w(s,s*1). Since the play induced byP" is regular, the limit
is well defined and we may express the mean-payoff in termeqgtiencies, that is

MP(m) = Z w(s,s) - freqe((s,9)),
(s,9)eE

wherefreq,, denotes the long-term frequency of a transition defined as

V(s,8) €E, frequ((ss)) = %75")@2)_
2
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We define the randomized memoryless strategy™ as follows: Vss € S (ss) € E; X =
{(Sat) |t €S (S’t) € (pl'FirSt(pZ))}v

% if s€p1 Asgpa,
A(9)(8) = { oces((S5).p2)
occ(s, p2)

0 otherwise

if s€ po,

Intuitively, we fix a uniform distribution over transitioraf the finite prefixp; as we only need to ensure reaching
the bottom strongly connected component (BSCC) definedbyith probability 1, and the relative frequencies in
p1 do not matter (because these weights and priorities arégitdglin the long run). On the contrary, we use the
exact frequencies for transitions pf as they prevail long-term wise. Note thgt" is a correctly defined randomized
memoryless strategy.

Obviously,A;™ yields a Markov chain over states (@ U po) such that states ¢p: \ p2) are transient and states of
p2 constitute a BSCC that is reached with probability one. Tthesmean-payoffinduced by™ is totally dependent
on this BSCC mean-payoff value. As a consequence, proviaigtthnsition frequencies in the BSCC are exactly
the same as frequenciéeq,, defined by/\lpf will imply the claim on mean-payoff. Moreover, parity wilemain
satisfied as the sets of infinitely often visited states véltie same for both the pure and the randomized strategy. Let
T ={t1,t2,...,tm} be the set of states that appeapin This BSCC is an ergodic Markov chaivle = (T, P) with the
following matrix of transition probabilities:

OCCO((tlatl)aPZ)
occ(ty, P2)

ocCo((tm, tm), P2)

t
" occ(tm. p2)

Classical analysis of ergodic Markov chains grants thetemce of a unique probability vectorsuch thatvP = v,
ie.,
. occo ((tj,ti),
\V’1S|§m’vi: M'V]
152m  ocC (tj, p2)
This vectorv represents the occurence frequency of each state in arténfim over the Markov chain. It is easy to
see that the unique probability vectothat satisfieyP = v is

. (occm,Pz) OCC(tm,Pz))
lp2| 7 T el

Moreover, given a transition of the Markov chain, its fregegis simply the product of the frequency of its starting
state by the probability of the transition when the chaimighis state: for alt,t’ € T, we havefreqX'e((t,t')) =
v(t) - P(t,t"). By definition ofv andP, that is

!/
freqie((t,t')) = occo((L,t), P2) = freq,((t,t')),
P2l
thus proving that the randomized stratédy' almost-surelyields the same mean-payoff and parity as the pure finite-
memory ondff. The expected value threshold is also verified by Lemvha
Now it remains to show that this does not carry over to tworptagames. Indeed, we show that randomized
memoryless strategies cannot replace pure finite-memay fam the expectation semantics, even without parity. By
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Lemmal4, this implies that it cannot be verified for 1-satisfacti@mantics either. Consider the game depicted on
Fig. 6. PlayerP; has a pure finite-memory strategff that ensure$/P (1) > (0,0), against all strategy, of P».
This strategy is simply to take the opposite ChOiC@@ff/\ff(*SQ&;) =S and)\lpf(*sgs4) = 5. Now supposé; uses

a randomized memoryless stratedfji’ such thatA{™(s4)(ss) = p andA;™(s4)(ss) = 1 — p, for somep € [0,1]. We

claim that whatever the value @f there exists a counter-strateggyfor P, such thaﬁEé\l{m”\z(M P) # (0,0). Suppose
p>1/2 and letAy(s1) = 5. Then, we have

A2 py = (=D + [P (17—1i+ (1-p)-(=11)] _ S(p.~P) # (0,0).

Now suppose < 1/2 and letA;(s;) = s3. Then, we have

AIM A -1LD)+[p-(L,-D)+(1-p)-(-1,1 1
ez p) = CLAEP @D RAZPECLI_ 2 10 )2 (00)
This shows that memory is needed to achieve€)8)-expectation objective and concludes our proof. O

5.3 Randomization and single mean-payoff parity games

Randomized memoryless strategies can replace pure figitaany ones for single mean-payoff parity games. The
proof outline is as follows. We do it in two steps. First, westthat it is the case for the simpler caseM® Biichi
games(Lemmal8). SupposeP; has a pure finite-memory winning strategy for such a game. ¥éethe existence

of particular pure memoryless strategies on winning statesclassical attractor for Buchi states, and a strategl t
ensures that cycles of the outcome have positive energysgvhristence follows fromi[7]). We build an almost-
surely randomized memoryless winning strategy ®arby mixing those strategies in the probability distributon
with sufficient probability over the strategy that is good émergy. We illustrate this construction on the simple game
G depicted on Fig7. Let/\lpf € ALF be a strategy oP; such thafP; plays(s, 1) for 8 times, then playés;, s;) once,
and so on. This strategy ensures surely winning for the &itaep = MeanPayoffg (3/5) NBuchic, ({s;}). Obviously,

P, has a pure memoryless strategy that ensures winning foriibkiBbjective: playings;,s;). On the other hand,
he also has a pure memoryless strategy that ensures cygesitive energy: playings,s;). LetA;™ € Af"" be the
strategy defined as follows: pldg:,sy) with probability y and(s1,s;) with the remaining probability. This strategy
is almost-surely winning fop for sufficiently small values of (e.g.,y = 1/9). Second, we extend this resultNtP
parity gameausing an induction on the number of priorities and the sizgaphes (Lemma0). We considesubgames
that reduce to the MP Biichi and MP coBiichi cases. For MRuichBjames, pure memoryless strategies are known
to suffice p2].

Fig. 7. Mixing strategies that are resgood for Biichiandgood for energy

Biichi case. A patrticular, simpler case of the parity objective is thecBiliobjective. It corresponds to parity with
priorities{0,1}. We denote a Buchi game I6y= (S, S, snit, E, W, F ), with F the set of Biichi states such that a play
is winning if it visits infinitely often states of the sét. We first state results on these Biichi objectives, as they ar
conceptually simpler to understand. Proof arguments fdtypare more involved and make use of results on Bichi
objectives. We sometimes denote the Bichi objective ferstitF by COGF (whered stands foglobally and<> for
finally), using the classicadlTL formulation 39).
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We first introduce the useful notion efoptimality. Given a gam&, with a one-dimensiohmean-payoff objec-
tive, we define its value as

val = sup inf {v|Outcomeg,(A1,A2) C MeanPayoffg (v)}.
)\16/\1A2€/\2 P

A strategy is said optimal for the mean-payoff objectivetibchieves this value. Such a strategy may not need to
exist in general, even in one-player gam2g811,18] (Fig. 8, P1 has to delay its visits o§; for longer and longer
intervals in order to tend towards value 1). However, it i®Wn that for alle > 0, e-optimal strategies (i.e., that
achieve valuéval — €)) always exist in one-dimension mean-payoff games, as aecoesice of Martin’s theorem on
Borel determinacy37].

< ®

Fig. 8. Mean-payoff Biichi requires infinite memory for optimality

Here, we show finite-memory strategies can be traded offfioedomized memoryless ones for mean-payoff Biichi
games. Precisely, we prove thabptimality for mean-payoff Biichi games can as well be eebd by randomized
memoryless strategies. We first need to state two useful Egranting the existence of pure memoryless strategies
that are respgood-for-energyr good-for-Bichi, in all states that are winning for the mean-payoff Biictjective.
These strategies will help us build the needeaptimal strategies.

Lemma 16 (Extension of L7, Lemma 4]).Let G= (S1,S, Snit, E, W, F), with F the set of Bchi states. LeWin C S
be the set of winning states for the mean-paydaffls objective with threshol@. For all s € Win, P, has a uniform

(i.e., independent of the starting state) memoryless dosdnergy strategy\fer whose outcome never leaves the set
Win, such that any cycle c of this outcome has endtbfc) > 0.

Lemma 17 (Classical attractor).Let G= (S, S, snit, E, W, F), with F the set of Bchi states. LetVin C S be the
set of winning states for the mean-payoffcBi objective with threshol@. For all s € Win, Py has a uniform (i.e.,
independent of the starting state) memoryless good-ﬁuuthtrategy’\l<> F an attractor strategy for F, whose outcome
never leaves the sé¥in, such that it ensures reaching F in at m@Ststeps.

The randomized memoryless strategy7af will thus consist in mixing these two strategies, with a véaw
probability on the good-for-Biichi strategy. Indeed, thigcBi objective will be satisfied whatever this probabiigy
provided it is strictly positive. On the other hand, by giyimore weight to the good-for-energy strateBy,can obtain
a mean-payoff that is arbitrary close to the optimum.

Lemma 18. In mean-payoff Bchi gamesg-optimality can be achieved surely by pure finite-memomgtsties and
almost-surely by randomized memoryless strategies.

Proof. Let G = (S1, S, snit, E,W,F), with F the set of Bichi states. We consider the mean-payoff dbgeetith
threshold 0 (w.l.o.g.). LetVin C Sbe the set of winning states for the mean-payoff Biichi dbjecBy Lemmal6
and Lemmal7, for all s€ Win, P1 has two uniform memoryless strateg?q‘ge andA’F, whose outcomes never leave

the seWin, such that?\ffe ensures that any cycteof its outcome has enerdgL (c) > 0, and)\lo':, an attractor strategy
for F, ensures reachirfg in at most|S steps.
We first builde-optimalpure finite-memorgtrategies based on these two pure memoryless strategtes>10. As

usualW denotes the largest absolute weight on any edge. Let us dtiraich that () it playa 3" for [%W -9
steps, then (b) it pIay/lsl<>F for |§ steps, then again (a). This ensures thig visited infinitely often as;\l<>F is played

5 The multi-dimensional setting gives rise to incomparahli&eomes and the need to consiareto-optimality
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infinitely many times follS steps in a row. Furthermore, the total cost of phases (a) s ijunded by-2-W - |3,
and thus the mean-payoff of the outcome is at leagtagainst any strategy of the adversary.

Second, we show that based on the same pure memorylesgjissaieis possible to obtain almost-surely
optimalrandomized memorylesgrategies, i.e.,

Ve>0, IAMe ARM VA, € Ay,

AIM Ay A Ay

Pst, (mEOOF) =1 A PgL,"“(MP(m) > —¢) = 1.

Note that pure memoryless strategies sufficepas he essentially has to win against the Bigtthe mean-payoff
criterion [L1]. Therefore, givere > 0, we need to build some strategj/" € /\f'\’I such that

rm y Pm rm 3 bm
A AS A AS

VAP e APM PSL " (mEOOF) =1 A PgL, ™ (MP(m) > —¢) = 1.
We build such a strategy as follows:

gfe . T _
Vse S AM(s) = A1<>F(s) W|.th probab|.ll.ty 1-vy,
Ay (s) with probabilityy,
for somewell-chosery € ]0,1].

It is straightforward to see that the Biichi objective is adtasurely satisfied for all values pf> 0 as at all times,
the probability of playing according tbe for |S| steps in a row, and thus ensuring a visiFofis y'S, which is strictly
positive.

It remains to study if it is always possible to choose suchrestamty such that objectiVMeanPayofFGp(—e) is

almost-surely satisfied. Consider such a straffy € ARM and some fixed strategyy" € AJM of P,: the game
reduces to the finite Markov chaitt = (S,d,w), whered: E — [0,1] is the transition probability function resulting
from fixing those strategies. Suppd@%‘“ is winning forp;. Thus,]P’g‘ﬁtc (MP(m) < —€) > 0. The mean-payoff depends
on limit behavior: the probability measure of plays that dbenter in a bottom strongly connected component (BSCC)
is zero @], whereas in a BSCC, the expected mean-payoff is the sanfkesita@s and it is obtained almost-surely (as
follows from definition of BSCCs and prefix-independencetaf tnean-payoff). This implies that there exists some
BSCCC in M. such that?'c ((C) > 0 andE® (MP) < —e.

We claim that it is possible to choogesuch that all BSCCs, in all Markov chains induced by pure nmgtass
strategies ofP,, have expectation greater than or equad tthus proving that strategy{™ is almost-surely-optimal
with regard to the mean-payoff value function. Intuitivelye smaller this constaptis chosen, the nearer will the
expected mean-payoff induced By be to the one induced ffe, that is at least zero. Since the number of pure
memoryless strategies % is finite, and so is the number of BSCCs induced\i}} (regardless of the exact value of
y € ]0,1], we obtain the same BSCCs in terms of states and edges), ocemgute a suitablgfor each of them, and
take the mininum to ensure that the property will be satidfieall possible cases.

Therefore, let us fix some strategfm of P,, and some BSCC of the induced Markov chain when played against
strategyA[™ of ;. It remains to show that{aim) there existy € |0, 1] such thaE(Y) (MP) > —¢ to conclude this
proof. Observe that we writ@(y) as transition probabilities insidedepend ory. By contradiction, suppose the claim
is false. Precisely, we assume thearftradiction hypothesjdor all y € |0, 1], we have thaE¢(Y)(MP) < —¢.

Besides, observe that fgr= 0, strategyA!™ is exactly equal ta\ . As we know tha\ 3" ensures a worst-case
mean-payoff at least equal to zero, we trivially deduce Bfa® > 0. This implies that sup , ;) E€Y) > E€() > 0.
Notice that in this case, intervfl, 1] is closed. '

By results in the literature, it is known that this supremwsrcontinuous. See for example Sola[on the
continuity of the optimal expected value function in the gexh context of competitive Markov decision processes
(equivalent to 3-player games). Therefore, we have that,syp EY) = sup,cq ) EYY) > E€© > 0. On the other
hand, by ¢ontradiction hypothesjswe also have that SYBo.1) EC) < —g. Sincee is strictly positive, there is a clear
contradiction, which concludes our proof. O
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Parity Case. Given those results for mean-payoff Biichi games, we novsiden the more general case of mean-
payoff parity games. We start by introducing the usefulgrotfsubgames

Subgamelet Gy = (S, S, snit, E, k,w, p) be a game ané C Sbe a subset of states @y. If E is such that for all
se A there exists € Awith (s,8) € E, then we define theubgame G| Aas(SSNASNAEN(AxA),W,p)
wherew/, p’ are the functionsy, p restricted to the subdoma# Note that for subgames, we do not consider an initial
state.

Let Gp = (S1, S, snit, E. kW, p) andU C S We defineAttr1(U) as the set that is obtained as the limit of the
following increasing sequenclly = U, andU; = U;_1U{se S |35 € Uj_1,(s,5) e E} U{se | Vs, (s9) €
E,s € Ui_1}, fori > 1. As this sequence of sets is increasing, there ekist$S such thatJ; = U; for all j > i.
Attr1(U) contains all the states i@ from which P; can force a visit tdJ, and it is well known thaf; has a pure
memoryless strategy to force such a visit from those statss, it is clear thatP; does not have a strategy to leave the
states inS\ Attr1(U). Attractors can be defined symmetrically 85 and are notedttr(-). As direct consequence,
we have the following proposition.

Proposition 1. Let Gy = (S, S, Sinit, E, Kk, W, p) be a game, let U= S andAttr1(U) be such that B= S\ Attr1(U) is
non-empty, then g B is a subgame.

The following lemma states that optimal pure memorylesataties exist fofP; in games with mean-payoff
coBiichi objectives (i.e., parity with prioritiegl, 2}). For mean-payoff Buchi objectives, we showed in LemiBa
that, for alle > 0, e-optimal randomized memoryless strategies exist.

Lemma 19 ([22, Theorem 5]).Let Gy = (S1, S, Snit, E, K, W, p) be a game with prioritieg 1,2}, andWlNg0 be the
set of nodes in G from whichP; wins the mean-payoff cd@hi objective for threshol@ (w.l.0.g.). Then from all
states inW|Ngo, P1 has a pure memoryless winning strategy for theiod mean-payoff objective for threshdid

We now establish that-optimal randomized memoryless strategies also exist fanmpayoffparity games, and
thus, can replace pure finite-memory ones.

Lemma 20. Let Gy = (S1, S, Snit, E, k,w, p) and WINE0 be the set of nodes ing&rom whichP; wins the mean-
payoff parity objective for thresholdl Then for alle > 0, there exist\{™ € ARM such that for all £ WIN Qo and for
all A, € Ay, we have that:

P2 (MP() > —&) = 1 A PAT 2 (Par(m) mod2 = 0) = 1.
Proof. The proof is by induction on the lexicographic ordgron games, defined as follow@%, =< G% if G% has
less priorities tharﬁf3 or G}, has the same priorities than G% but less states. Clearly, this lexicographic order is
well-founded.

The base cases are twofold: one for the number of statesp@rfdigpriorities. First, if the game is such that= 1,
then obviously, ifP; can win, he can do so with a pure memoryless strategy, whagrergs the claim. Second, for two
priorities. W.l.0.g., we can assume that all priorities @itber in{0,1} or in {1,2}. Those cases resp. correspond to
mean-payoff Buchi and mean-payoff coBiuchi games. Thatrés mean-payoff Biichi games has been established in
Lemmalsg, while the result for mean-payoff coBiichi games is a dicecisequence of Lemni®, as pure memoryless
strategies are a special case of randomized memoryletsgsts

Let us now consider the inductive case. Suppose we have a-pagafif parity games, with m priorities and|S|
states. W.I.0.g., we can make the assumption that the Iqsiesity in Gy, is either O or 1, otherwise we subtract an even
number to all priorities so that we are in that case. Wet {s€ WINE | p(s) = 0} andU; = {s€ WINP | p(s) = 1}.

We consider the two possible following situations corregpog toUg empty or not.

1. Up empty.In that caséJ; is not empty. Let us considéy, = Attrp(U;) the attractor ofP, for U;. It must be the
case that V\NQO\AZ is non-empty, otherwise this would contradict the fact fAats winning the parity objective
from states in V\NQO. Indeed, if it was not the case, thé&h would be able to force an infinite number of visits
to U; from all states in W\JEO, and the parity would be odd &k is empty, a contradiction with the definition of
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WlNQO. () LetB= WlNQO\Az. First note that, aB is non-empty, by Propositioh, Gp, | B is a subgame. Also,
note that from all states iB, it must be the case th#&y has a winning strategy that does not require visits of the
states outsidB, i.e., states iy, for otherwise this would lead to a contradiction with thetfdnatP; is winning

the parity objective in \ANQO. So all states in the subgar@g |. B are winning forP;. The games, | B does not
contain states with priority 0, and so we can apply our inidmdtypothesis to conclude th&f has a memoryless
randomized strategy from all statesBnas(Gp, | B) < Gp since it has one less prioritfii) Now, let us concentrate
on states irAz. Let A = Attr1(B). From states i\;, P1 has a pure memoryless strategy to reach statBsand

so from thereP; can play as irGp | B, and we are done. L& = Ay \ A;. If Cis empty, we are done. Otherwise,
by Propositionl, Gp, | C is a subgameR, can force to stay withil€). We conclude that all states in this game
must be winning forP;. This game has the same minimal priority than in the origgaahe (i.e., priority 1) but

it has at least one state less, and so we can apply our indugtimthesis to conclude th®; has a memoryless
randomized strategy from all state<GnTherefore, by(i) and(ii), 71 has a memoryless randomized strategy from
all states in WN®, which proves the claim in that case.

2. Up is not emptyLet us consideA; = Attri(Up). (iii) First, consider the case whehg = WlNgo. In this case, it
means thaP; can force a visit to states ldy from any states in \MEO. So, we conclude th&®; wins in G, the
mean-payoff Buchi game with threshold 0, and by Lenir@ave conclude theP; has a memoryless randomized
strategy from all states iG, for almost surely winning the parity game with mean-paybieshold 0 so we are
done.(iv) Second, consider the case whé&re- WINEO\Al is non-empty. Then by Propositidh G, | B is a
subgame. S@, can force to stay withiB in the original game and so we conclude that all states in #meeg
Gp | B are winning forP;1. As Gp | B does not contain states of priority 0, and thus has at leastess priority,
we can apply the induction hypothesis to conclude thahas a memoryless randomized strategy from all states
in B. Therefore, by(iii) and(iv), P1 has a memoryless randomized strategy from all state5|m>p\6VWhich also
proves the case. -

As we have proved the claim in both possible cases, this adeslthe proof. O

5.4 Summary for randomization
We sum up results for these different classes of games inr€hed(cf. Tablel).

Theorem 3 (Trading finite memory for randomness).The following assertions hold: (1) Randomized strategies a
exactly as powerful as pure strategies for energy objestiRandomized memoryless strategies are not as powerful
as pure finite-memory strategies for almost-sure winningrie-player and two-player energy, multi energy, energy
parity and multi energy parity games. (2) Randomized melass\strategies are not as powerful as pure finite-memory
strategies for almost-sure winning in two-player multi mgeayoff games. (3) In one-player multi mean-payoff parity
games, and two-player single mean-payoff parity gamehbgiktexists a pure finite-memory sure winning strategy,
then there exists a randomized memoryless almost-suréngistrategy.

Proof. (1) For energy games, results follow from Lemra (2) For two-player multi mean-payoff games, they
follow from Lemmalbs. (3) For one-player multi mean-payoff games, they folloanirLemmal5. For two-player
single mean-payoff parity, they are direct consequenceaima20. O

We close this section by observing that there are even mavenal classes of strategies. Their study, as well as
their practical interest, remains open.

Lemma 21. Randomized finite-memory strategies are strictly more pvihan both randomized memoryless and
pure finite-memory strategies for multi-mean payoff gam#saexpectation semantics, even in the one-player case.

The intuition is essentially that memory permits to achiameexact payoff by sticking to a given side, while
randomization permits to combine payoffs of pure stratetpeachieve any linear combination in between.

Proof. Consider the gam@ depicted on Fig9. Whatever the pure finite-memory strategyRf the only achievable
mean-payoff values ard, —1) (if (so,s1) is never taken) an@—1,1) (if (so,s1) is taken). This is also true for ran-
domized memoryless strategies: either the probabilitg®f; ) is null and the mean-payoff has val(e —1), or this
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(1,-1) (-1,1)

(0,0

Fig. 9. Randomized finite memory is strictly more powerful than @mized memorylessness and pure finite memory.

probability is strictly positive, and the mean-payoff hasue(—1,1) as the probability mass will eventually reash
On the contrary, valu€,0) is achievable by a randomized finite-memory strategy. lddeensider the strategy that
tosses a coin in its first visit af to decide if it will always play(sp, ) or if it will play (s0,s1) and then always
(s1,51). This strategy only needs one bit of memory and one bit to @aguobabilities, and still, it is strictly more
powerful than any amount of pure memory or any arbitrary lgiggeision for probabilities without memory. O

6 Conclusion

In this work, we considered the finite-memory strategy sgsighproblem for games with multiple quantitative (energy
and mean-payoff) objectives along with a parity objectide. established tight (matching upper and lower) exponen-
tial bounds on the memory requirements for such strateg@iesdremL), significantly improving the previous triple
exponential bound for multi energy games (without paribgttcould be derived from results in literature for games
on VASS. We presented an optimal symbolic and incrementtesty synthesis algorithm (Theorén As discussed

in Sectiord, the presented algorithm has been used as part of the sigtib@is\cacia+ for specifications combining
LTL properties and multi-dimensional quantitative objedif8 and has proved efficient in practice. Finally, we also
presented a precise characterization of the trade-off ofiong for randomness in strategies (Theor&m
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