
Noname manuscript No.
(will be inserted by the editor)

Revisiting Causality, Coalgebraically

Roberto Bruni · Ugo Montanari · Matteo

Sammartino

the date of receipt and acceptance should be inserted later

Abstract In this paper we recast the classical Darondeau-Degano’s causal seman-
tics of concurrency in a coalgebraic setting, where we derive a compact model.
Our construction is inspired by the one of Montanari and Pistore yielding causal

automata, but we show that it is instance of an existing categorical framework
for modeling the semantics of nominal calculi, whose relevance is further demon-
strated. The key idea is to represent events as names, and the occurrence of a
new event as name generation. We model causal semantics as a coalgebra over a
presheaf, along the lines of the Fiore-Turi approach to the semantics of nominal
calculi. More specifically, we take a suitable category of finite posets, representing
causal relations over events, and we equip it with an endofunctor that allocates new
events and relates them to their causes. Presheaves over this category express the
relationship between processes and causal relations among the processes’ events.
We use the allocation operator to define a category of well-behaved coalgebras:
it models the occurrence of a new event along each transition. Then we turn the
causal transition relation into a coalgebra in this category, where labels only ex-
hibit maximal events with respect to the source states’ poset, and we show that its
bisimilarity is essentially Darondeau-Degano’s strong causal bisimilarity. This coal-
gebra is still infinite-state, but we exploit the equivalence between coalgebras over
a class of presheves and History Dependent automata to derive a compact represen-
tation, where states only retain the poset of the most recent events for each atomic
subprocess, and are isomorphic up to order-preserving permutations. Remarkably,
this reduction of states is automatically performed along the equivalence.

Dipartimento di Informatica, Università di Pisa, Largo Bruno Pontecorvo 3, 56127 Pisa, Italy ·
Roberto Bruni
E-mail: bruni@di.unipi.it

Ugo Montanari
E-mail: ugo@di.unipi.it

Matteo Sammartino (Corresponding author)
E-mail: sammarti@di.unipi.it
Tel.:+39 0502213117

2 Roberto Bruni et al.

1 Introduction

Causal trees [9] are a variant of Milner’s synchronization trees with enriched action
labels, specifying the set of causes for each edge. They can be used to provide
process calculi with a semantics that makes dependencies among actions explicit.
In [9] the authors introduce a technique for deriving a causal semantics from a
labelled one. The basic idea is to explicitly decorate each atomic subprocess with
a set of causes. When one subprocess performs an action, or two subprocesses
synchronize, a new event is generated and the causes of the involved processes are
shown in the label, together with the original action. These causes, updated with
the new event, are then assigned to the continuations of the subprocess(es).

The key issue is that causal semantics is usually infinite state, because states
keep track of the whole history of events, which is enlarged at each transition.
Moreover, observations keep growing in size, while minimization would require a
more succinct form of observation. In this paper we aim at providing a technique
for obtaining equivalent, but more compact models for the causal semantics of
concurrency. Our approach has the following two steps:

(i) Reduction of labels. Each causal process is equipped with a partial order
over its events, representing causal relations determined by past transitions.
Then events that are not maximal according to the ordering, i.e. all but the
most recent ones, are removed from labels.

(ii) Reduction of states. Only immediate causes of atomic subprocesses are kept,
i.e. events that are maximal in the ordering w.r.t. at least one of the subpro-
cesses. Intuitively, we keep causes for the most recent transitions. Then states
are identified up to a suitable order-preserving notion of isomorphism, and
transitions are enriched with maps that keep track of the original identity of
events.

Our main source of inspiration is Montanari and Pistore [14], where the issue
of providing a minimization procedure for Petri Nets with a causal semantics is
tackled by introducing causal automata. However, an ordinary LTS is eventually
recovered by computing “active names” and minimization is performed with re-
spect to ordinary LTS bisimulation. This is an ad-hoc technique for special classes
of Petri nets: in general, the computation of active names is not decidable.

Following Montanari and Pistore, we first give a set-theoretical construction
that performs (i) and (ii) on causal transition systems. It is quite involved, due
to its very concrete nature. Then we recast it in a categorical setting, where it
becomes much more natural and simple. We will use: (a) coalgebras [16,1] over
a presheaf category to represent causal transition systems; (b) History dependent

automata (HD-automata) [15,8] to achieve, in lots of practical cases, a concrete
model with a finite number of states, suitable for verification. The choice of (a)
and (b) is due to their intimate relationship: when they are defined over particular
categories, the latter can be automatically derived from the former through a
general categorical construction which has had, and possibly will have, several
other similar instances. We now introduce our categorical framework.

Revisiting Causality, Coalgebraically 3

1.1 A coalgebra for causality

Colgebras are convenient models of dynamic systems. Their theory is rich and
well-developed, and many kinds of systems have been characterized in this set-
ting. Coalgebras are also of practical interest: minimization procedures such as
partition refinement [13], which are essential for finite-state verification, have been
formulated in coalgebraic terms (see e.g. [2]). This further motivates the coalge-
braic framework: algorithms implemented at this level of abstraction can be easily
instantiated to many classes of systems.

Our coalgebraic model of causality is based on the idea of representing events
as names, that are atomic entities characterized only by their identity, and the
occurrence of a new event as name generation. This allows us to construct a coal-
gebra where states are equipped with nominal structures, namely causal relations
between events, and event generation is explicit, along the lines of [11]. The key
idea is to define coalgebras over presheaves, that are functors from a certain index

category C to Set, the category of sets and functions. Presheaves formalize the as-
sociation between collections of names, seen as objects of C, and sets of processes
within Set. Fresh name generation can be formalized as an endofunctor on C, that
is lifted to presheaves and used in the definition of coalgebras.

We take as index category for presheaves a suitable category of partially ordered

finite sets, representing causal relations between events. This category provides us
with the needed structure to model operations over causal relations. In fact, we use
colimits to implement a well-behaved functorial model of event generation, which
augments a given poset with fresh events and causal relations to their causes. Our
definition ensures that its lifting to preheaves, when used to define coalgebras,
yields a category of coalgebras with a final object and a final semantics in agree-
ment with coalgebraic bisimilarity. This is essential for a correct notion of minimal
model. Then, we define a presheaf of processes, yielding, for each poset, the set
of causal processes whose causes are “compatible” with that poset. We construct
a causal coalgebra by translating the LTS produced by the reduction step (i). The
important result is that coalgebraic bisimulations on this coalgebra are equivalent
to a class of (strong Darondeau-Degano) causal bisimulations. In particular, the
equivalence holds for ordinary and coalgebraic bisimilarity.

1.2 An efficient operational model: HD-automata

The state space explosion issue still exists in the causal coalgebra, because the
poset of a causal process keeps growing along transitions. However, if the presheaf
of states is “well-behaved”, according to [7], it is always possible to recover the
support of a causal process, that is the minimal poset including all and only events
that appear in the process. This is the key condition for the equivalence between
presheaf-based coalgebras and History Dependent (HD) automata.

HD-automata are coalgebras with states in named-sets [8], that are sets whose
elements are equipped with a symmetry group over finite collections of names.
They have two main features:

– a single state can represent the whole orbit of its symmetry;
– the names of each state are local, related to those of other states via suitable

mappings.

4 Roberto Bruni et al.

Both are important for applying finite state methods, such as minimization and
model-checking, to nominal calculi. In particular, the latter point captures deallo-

cation: maps between states can discard unused names and “compact” remaining
ones, much like garbage collectors do for memory locations. A minimization pro-
cedure for HD-automata for the (finite-control) π-calculus have been shown and
implemented in [10].

Interestingly, we are able to define the presheaf of processes in a way that
the computation of the support discards all but the immediate causes. Therefore,
the aforementioned equivalence implements the reduction step (ii) and gives an
HD-automaton over a named set of minimal causal processes, equipped with sym-
metry groups over their posets. This is similar to Montanari and Pistore’s causal
automata, but our category-theoretic version allows for the further identification of
states up to symmetries, as a state can be bisimilar to itself via an order-preserving
permutation of its poset. Symmetries are not present in causal automata.

1.3 Illustrative example

We give an example of how the reduction steps (i) and (ii) can be achieved. Con-
sider two atomic processes p1 and p2 that have the following transitions

p1
a−→ p1 p2

b−→ p2 .

We assign cause 1 to p1 and 2 to p2, written {1} ⇒ p1 and {2} ⇒ p2. According
to the Darondeau-Degano LTS, these two causal processes separately have the
following transitions

{1}⇒ p1
a,{1}
−−−−→ {1, 2}⇒ p1 {2}⇒ p2

b,{2}
−−−→ p2⇒{1, 3}

where, in the target process, cause 1 denotes the last event and previous cases
have been incremented by one. Their state-space is infinite, and so is that of their
parallel composition

{1, 2, 3}⇒ p1 ‖ {4}⇒ p2

{1, 2}⇒ p1 ‖ {3}⇒ p2

a,{1,2}
44

b,{3}
// {2, 3}⇒ p1 ‖ {1, 4}⇒ p2

{1}⇒ p1 ‖ {2}⇒ p2

a,{1}
44

b,{2}

**

{2}⇒ p1 ‖ {1, 3}⇒ p2
a,{2}
//

b,{1,3}

**

{1, 3}⇒ p1 ‖ {2, 4}⇒ p2

{3}⇒ p1 ‖ {1, 2, 4}⇒ p2

We get a more efficient representation by explicitly associating to each process
the causal relations determined by its transitions, in the form of a poset over

Revisiting Causality, Coalgebraically 5

causes, and then letting labels contain only causes that are maximal elements of
this poset. For instance we can associate the discrete poset {1, 2} to the leftmost
process, written

{1, 2}� {1}⇒ p1 ‖ {2}⇒ p2 (1)

Since 1 and 2 are both maximal elements, the labels for the leftmost transitions
are kept, and their continuations become

O1 � {1, 2}⇒ p1 ‖ {3}⇒ p2 O2 � {2}⇒ p1 ‖ {1, 3}⇒ p2 (2)

where O1 and O2 are posets over {1, 2, 3} such that 2 ≺O1
1 and 3 ≺O2

1. Now,
since 1 is maximal in both cases, outgoing labels from these processes can be
reduced as follows:

a, {1, 2} 7−→ a, {1}
b, {1, 3} 7−→ b, {1}

We got more compact labels, but the state space is still infinite. To solve this
problem, we also reduce processes by only keeping immediate causes, that are
causes that are maximal with respect to at least one of the atomic subprocesses.
Under this reduction, (2) become

{1, 3}� {1}⇒ p1 ‖ {3}⇒ p2 {1, 2}� {2}⇒ p1 ‖ {1}⇒ p2 (3)

This transformation is not enough, as the LTS is still infinite-state. The key ob-
servation here is that processes (3) are isomorphic, and so are their causal trees.
Indeed, all the processes in the figure above become isomorphic after the reduc-
tion. Therefore we can replace all of them with a canonical representative for their
isomorphism class. For instance, under the isomorphisms φ1, φ2 defined as follows

φ1(1) = 1 φ1(3) = 2 φ2(1) = 2 φ2(2) = 1

processes (3) become the process (1), and this also affects their transitions. We
can apply a similar transformation to all the processes in the figure above, getting

{1, 2}� {1}⇒ p1 ‖ {2}⇒ p2

a,{1}

h1 ��

b,{2}

h2

WW

The information about the original transitions is encoded in the history maps h1 =
φ−1
1 and h2 = φ−2

2 : they translate events of the unique continuation to those of
the original continuations.

We gave a set-theoretic example for simplicity. Even if the result is already
minimal in this case, and in fact essentially equivalent to Montanari and Pistore
construction, the category-theoretic treatment will yield more compact models in
some cases, thanks to the presence of symmetry groups for each state.

6 Roberto Bruni et al.

2 Background

2.1 Functor categories

Definition 1 (Functor category) Let C and D be two categories. The functor

category DC has functors C→ D as objects and natural transformations between
them as morphisms.

Functors from any category C to Set are called (covariant) presheaves. A
presheaf P can be intuitively seen as a family of sets indexed over the objects
of C plus, for each σ : c→ c′, an action of σ on Pc, which we write

p[σ]P := Pσ(p) (p ∈ Pc) ,

omitting the subscript P in [σ]P when clear from the context. This notation in-
tentionally resembles the application of a renaming σ to a process p, namely pσ:
it will, in fact, have this meaning in later chapters. The set

∫
P of elements of a

presheaf P is ∫
P :=

∑
c∈|C|

Pc

and we denote by c � p a pair belonging to
∫
P . Presheaf categories have the

following nice property.

Property 1 For any C, SetC has all limits and colimits, both computed pointwise.

2.2 Coalgebras

The behavior of systems can be modeled in a categorical setting through coalgebras

[16,1]. Given a behavioral endofunctor B : C→ C, describing the “shape” of a class
of systems, we have a corresponding category of coalgebras.

Definition 2 (B-Coalg) The category B-Coalg is defined as follows: objects are
B-coalgebras, i.e. pairs (X,h) of an object X ∈ |C|, called carrier, and a morphism
h : X → BX, called structure map; B-coalgebra homomorphisms f : (X,h) → (Y, g)
are morphisms f : X → Y in C making the following diagram commute

X
h //

f

��

BX

Bf

��

Y
g
// BY

For instance, consider the functor

Bclts := Pf (L×−)

where Pf : Set → Set is the countable powerset functor, defined on a set A and on
a function f : A→ A′ as follows

PfA := {B ⊆ A | B countable} Pff(B) := {f(b) | b ∈ B}

Revisiting Causality, Coalgebraically 7

Bclts-coalgebras are finitely-branching labelled transition systems, with labels in L,
and their homomorphisms are functions that preserve and reflect transitions.

In this category many notions of behavioral equivalence can be defined [18].
We adopt the following one.

Definition 3 (B-bisimulation) Given a B-coalgebra (X,h), a B-bisimulation on
it is an object R of C such that R ↪→ X ×X and there is r : R → BR making the
following diagram commute

X

h
��

R
π1oo

π2 //

r

��

X

h
��

BX BR
Bπ1

oo
Bπ2

// BX

A Bclts-bisimulation R on a Bclts-coalgebra is an ordinary bisimulation on the
corresponding transition system: the diagram means that x, x′ ∈ X such that
(x, x′) ∈ R must be able to perform transitions with the same label l, and these

transitions are represented as a single one (x, x′)
l−→ (y, y′) in (R, r); by definition

of Bclts, y and y′ must again be related by R.
An important property of categories of coalgebras is the existence of the ter-

minal object; the unique morphism from each coalgebra to it assigns to each state
its abstract semantics. If B preserves weak pullbacks, i.e. pullbacks such that the
mediating morphism need not be unique, then B-bisimilarity and the terminal
coalgebra agree.

The requirement for the existence of the final coalgebra is that B is an accessible

functor on a locally presentable category (see [3,19,1] for details). We just recall the
main results. Given a regular cardinal λ, a category C is λ-filtered if each diagram of
cardinality less than λ is the base of a cocone in C. λ-filtered categories generalize
the notion of directed preorders, that are sets such that every finite subset has
an upper bound. For any category D, a λ-filtered colimit in D is the colimit of a
diagram of shape C, i.e. a functor C→ D, such that C is a λ-filtered category.

Definition 4 (Locally λ-presentable category) An object c of a category C is
λ-presentable if the functor HomC(c,−) : C→ Set preserves λ-filtered colimits. A
category C is locally λ-presentable if it has all colimits and there is a set of λ-
presentable objects X ⊆ |C| such that every object is a λ-filtered colimit of objects
from X. We say that a category is locally presentable if it is locally λ-presentable
for some λ.

For instance, locally λ-presentable objects in Set are precisely the finite sets with
cardinality less than λ. Set is locally ω-presentable: every set is the ω-filtered
colimit of its finite subsets and the whole Set is generated by the set containing
one finite set of cardinality n for all n ∈ N.

For functor categories we have the following.

Proposition 1 For each locally λ-presentable category C and small category D, the

functor category CD is λ-presentable.

In particular, since Set is ω-presentable, we have that the presheaf category SetD

is ω-presentable as well.

8 Roberto Bruni et al.

Definition 5 (Accessible functor) Let C and D be locally λ-presentable cate-
gories. A functor F : C → D is λ-accessible if it preserves λ-filtered colimits. We
just say F is accessible if it is λ-accessible for some λ.

Products, coproducts and composition of accessible functors are accessible as well.

2.3 Coalgebras over presheaves

Coalgebras for functors B : SetC → SetC have some additional structure: they are
pairs (P, ρ) of a presheaf P : C → Set and a natural transformation ρ : P → BP .
The naturality of ρ imposes a constraint on behavior

c

f

��

p ∈ Pc_

[f]P

��

� ρc // beh(p)
_

[f]BP

��

c′ p[f]P ∈ P (c′) �
ρc′
// beh(p)[σ]BP

Intuitively, this diagram means that, if we take a state, apply a function to it and
then compute its behavior, we should get the same thing as first computing the
behavior and then applying the function to it. In other words, behavior must be
preserved and reflected by the index category morphisms.

Also bisimulations have more structure. A B-bisimulation R is a presheaf in
SetC and all the legs of the bisimulation diagram in Definition 3 are natural
transformations. In particular, the naturality of projections implies that, given
(p, q) ∈ Rc and f : c → c′ in C, (p[f], q[f]) ∈ R(c′), i.e. B-bisimulations are closed

under the index category morphisms.

3 Causal processes

We recall the Darondeau-Degano causal semantics of concurrency. We denote
atomic processes by p, q, . . . and their parallel composition by t, t′, Let Act

be a set of actions such that, for each a ∈ Act, there is also a ∈ Act. We assume a
set of basic transitions for atomic processes

∆ = {p a−→ t | a ∈ Act}

such that the subset ∆p = {p a−→ t ∈ ∆} is finite, for all p.
Causal processes are process terms whose constants are decorated with sets of

positive natural numbers representing their causes, for instance

K1⇒ p1 ‖ · · · ‖ Kn⇒ pn

where K1, . . . ,Kn ⊆ N+. We will use k, k′, . . . to denote these processes. We assume
that atomic processes have an initial cause, i.e. for all p there is a unique e such
that {e} ⇒ p. We write K⇒ t for the causal process obtained by giving causes K
to every atomic subprocess in t and K (k) for the set of all causes appearing in k.
For example, given k = {1, 3} ⇒ p1 ‖ {1, 2} ⇒ p2, we have K (k) = {1, 2, 3}. The
following operators are needed for the LTS:

Revisiting Causality, Coalgebraically 9

p
a−→ t ∈ ∆

K⇒ p
a,K−−−→DD {1} ∪ δ(K)⇒ t

t1
l−→ t′1

t1 ‖ t2
l−→DD t

′
1 ‖ δ(t2)

t1
a,K1−−−→DD t

′
1 t2

a,K2−−−→DD t
′
2

t1 ‖ t2
τ,K1∪K2−−−−−−−→DD η(δ(K2), t′1) ‖ η(δ(K1), t′2)

t2
l−→ t′2

t1 ‖ t2
l−→DD δ(t1) ‖ t′2

Fig. 1 Inference rules for the Darondeau-Degano LTS.

– δ(K) shifts all the causes in K by one, in order to “make room” for the new
event 1; we let δ(K⇒ p) = δ(K)⇒ p

– η(K1,K2) joins K1 and K2 only if 1 ∈ K2, otherwise returns K2; we let
η(K1,K2⇒ p) = η(K1,K2)⇒ p.

These operators are assumed to distribute over parallel composition, i.e. δ(k1 ‖
k2) = δ(k1) ‖ δ(k2) and η(K, k1 ‖ k2) = η(K, k1) ‖ η(K, k2).

Definition 6 (Darondeau-Degano LTS) The Darondeau-Degano LTS (LTSDD) is
the smallest one generated by the rules in Figure 1.

Definition 7 (Causal bisimulation) Causal bisimulations are ordinary bisimula-
tions on LTSDD. The greatest one, namely causal bisimilarity, is denoted by ∼DD.

4 Two partial order LTSs

In this section we present two refinements of LTSDD. The goal is obtaining a com-
pact LTS, where labels are more succint and states only keep track of the most
recent events. The crucial idea is equipping causal processes with a poset that
keeps track of causal relations determined by transitions. Given a poset O, in the
following we write |O| for the underlying set of O, and ≺O to denote the relation
of O in infix notation.

Definition 8 (Poset-indexed causal processes) A poset-indexed causal process,
P-process in short, is a pair

O � k

of a causal process k and a poset O such that K (k) ⊆ O and, for all K⇒ p in k,

∀e, e′ ∈ |O| : e ∈ K ∧ e′ ≺O e =⇒ e′ ∈ K . (4)

Condition (4) requires the set of causes of each atomic supbrocess to contain the
whole “history” of each event, as described by O. Nevertheless, O may contain
events that are unrelated to or caused by those of K (k), but are not among them.

The poset of a P-process can be enlarged by adding causes for existing events,
but this requires “closing” the process under the new causes in order to satisfy
(4). Given P-process O�k and O′ ⊇ O, we define a closure operator k↓O′ as follows

(K⇒ p)↓O′ =
⋃
e∈K
{ e′ ∈ |O′| | e′ ≺O′ e}⇒ p

distributing over parallel composition. Then it can be easily checked that O′�k↓O′
is a proper P-process.

10 Roberto Bruni et al.

4.1 Poset-indexed LTS

We introduce the first LTS, namely the poset-indexed LTS, whose states are P-
processes, suitably decorated by posets, but transitions only show maximal events,
according to the poset of the source process.

Definition 9 (Poset-indexed LTS) The poset-indexed LTS (LTSPO) is generated
from the LTSDD by the following rule

k
a,K−−−→DD k

′ M = maxO(K)

O � k
a,M−−−→PO δM (O) � k′

where

– maxO(K) is the subset of K containing only maximal causes according to O;
– δK(O), for any set of causes K, is the transitive and reflexive closure of

{(n+ 1,m+ 1) | (n,m) ∈ |O|} ∪K × {1} .

The key operation here is δM (O): it acts similarly to {1}∪δ(O) defined in section 3,
but, besides adding a new event, it also establishes connections with its causes.
One can easily see that δM (O)�k′ is a proper P-process: all the causes of the only
new event in k′ are already in k′, by construction (see Figure 1).

The behavioral equivalence for LTSPO is the following.

Definition 10 (Poset-indexed causal bisimulation) Poset-indexed causal bisim-
ulations are families of binary relations {RO}, where O is a poset on a finite subset

of N, such that, for each (O� k,O� k′) ∈ RO, if O� k
a,K−−−→PO O

′� k′′ then there is

O � k′
a,K−−−→PO O

′ � k′′′ with (O′ � k′′, O′ � k′′′) ∈ RO′ . The greatest poset-indexed
causal bisimulation is denoted by ∼PO.

Proposition 2 Given O � k and O � k′, O � k ∼PO O � k′ if and only if k ∼DD k
′.

We list some closure properties, which will be important in the following. We say
that a monotone function σ : O → O′ is poset-reflecting whenever

∀x, y ∈ |O| : σ(x) ≺O′ σ(y) =⇒ x ≺O y . (5)

That is, it does not introduce spurious causal relations between (images of) existing
events. We introduce the following notation: given a process k and a set of events
K, kσ and Kσ denotes the application of σ to each event in k and K, respectively.

Proposition 3 Transitions of LTSPO are preserved and reflected by injective poset-

reflecting functions σ : O → O′, that is:

(i) If O�k
a,K−−−→PO δK(O)�k′ then O′�(kσ)↓O′

a,Kσ−−−−→PO δKσ(O′)�(k′σ+)↓δKσ(O′)
(preservation);

(ii) If O′�(kσ)↓O′
a,K′−−−→PO δK′(O

′)�k′ then there are K and k′′ such that Kσ = K′,

(k′′σ+)↓δK′ (O′) = k′ and O � k
a,K−−−→PO δK(O) � k′′ (reflection);

Revisiting Causality, Coalgebraically 11

where σ+ is an injective poset-reflecting function δK(O)→ δKσ(O′) given by

σ+(n) =

{
1 n = 1

σ(n− 1) + 1 otherwise

The definition of preservation and reflection are quite involved, due to the presence
of event allocation and the necessity of applying the closure operator to compute
proper continuations. In particular, we need to introduce σ+, a version of σ that
takes into account the shift of events along transitions. We will see that the cate-
gorical counterparts of these properties will be remarkably simpler.

Example 1 We motivate the requirement of poset-reflection by showing that tran-
sitions of LTSPO are not reflected by functions without such property. Take the
process {1, 2}� {1}⇒ p1 ‖ {2}⇒ p2 and suppose it has the following transition

{1, 2}� {1}⇒ p1 ‖ {2}⇒ p2
τ,{1,2}
−−−−−→PO O

′ � {1, 2, 3}⇒ p1 ‖ {1, 2, 3}⇒ p2

where O′ is a poset over {1, 2, 3} with 1 greater than 2 and 3. Consider the function
σ : {1, 2} → O, where O has two elements such that 2 ≺O 1. Clearly σ is not poset-
reflecting. If we apply σ and then closure ↓O to the source process, we get

O � {1, 2}⇒ p1 ‖ {2}⇒ p2

but its τ transition is

O � {1, 2}⇒ p1 ‖ {2}⇒ p2
τ,{2}
−−−−→PO O

′′ � {1, 2, 3}⇒ p1 ‖ {1, 2, 3}⇒ p2

because only 2 is maximal for p1, according to O. However, this transition cannot
be obtained from the one of {1, 2}� {1}⇒ p1 ‖ {2}⇒ p2 via an application of σ.

The following theorem is a consequence of Proposition 3.

Theorem 1 ∼PO is closed under injective poset-reflecting functions. Explicitly: given

O�k ∼PO O�k′ and σ : O → O′ injective and poset-reflecting, we have O′�(kσ)↓O′ ∼PO

O′ � (k′σ)↓O′ .

4.2 Immediate causes LTS

We now introduce a further refinement of the LTSPO, called immediate causes LTS

(LTSIC): we keep only immediate causes, i.e. causes that are maximal w.r.t at least
one of the atomic subprocesses, and we identify isomorphic states. Given a causal
process k, its immediate causes w.r.t. a poset O are given by

icO(K⇒ p) = maxO(K)

icO(k1 ‖ k2) = icO(k1) ∪ icO(k2)

The notion of isomorphism we adopt is the following one

O � k ∼= O′ � k′ ⇐⇒ σ : O ∼= O′ ∧ kσ = k′

where kσ applies σ to all the events occurring in k. We denote by [O � k]∼= a
canonical representative of the ∼=-class of O � k and by [O]∼= its poset.

12 Roberto Bruni et al.

Definition 11 (Minimal P-process) A minimal P -process O � k is a P-process
such that:

– O contains all and only the events in K (k);
– for each K⇒ p in k, K ⊆ icO(k);
– it is the canonical representative of a ∼=-equivalence class.

Given O�k, let Oi be O restricted to icO(k); the corresponding minimal P-process
is

JO � kK = [Oi � normOi(k)]∼=

where normO(K ⇒ p) = K ∩ |O| ⇒ p and distributes over parallel. We denote by
µO�k the map [Oi]∼= → O obtained by composing the isomorphism [Oi]→ Oi and
the embedding Oi ↪→ O.

Definition 12 (Immediate causes LTS) The immediate causes LTS (LTSIC) is
the smallest LTS on minimal P-processes generated by the following rule

O � k
a,K−−−→PO O

′ � k′

O � k
a,K−−−−→
µO′�k

IC JO′ � kK

This rule replaces the continuation with its minimal version and, in order to keep
track of the original identity of events, equips the transition with a “history map”,
mapping canonical events to the original ones. In particular, the one with image 1
is the fresh event generated by the original transition. Notice that the continuation
poset may contain non-maximal events, for instance

O � {1, 2}⇒ p1 ‖ {2}⇒ p2

with 2 ≺O 1 cannot be further reduced.
The notion of bisimilarity for LTSIC is more involved: while, given two P-

processes, we may find a common poset for them (if any), which enables them to
be compared w.r.t. ∼PO, this is not possible in LTSIC, because its states must have
minimal posets. In other words: posets have a meaning local to states. Therefore,
we have to introduce an explicit correspondence between posets.

Definition 13 (Immediate causes bisimilarity) An immediate causes bisimula-

tion R is a set of triples (O � k, σ,O′ � k′) such that σ is a partial monotone
bijection from O and O′ and:

(i) if O� k
a,K−−−→
h

IC O
′′� k′′ then σ is defined on K, and there are O′� k′

a,Kσ−−−−→
h′

IC

O′′′� k′′′ and σ′ such that (O′′� k′′, σ′, O′′′� k′′′) ∈ R and σ′(n) = m implies
h(n) = h′(m) = 1 or σ(h(n)− 1) = h′(m)− 1;

(ii) if O′�k′
a,K−−−→
h′

IC O
′′′�k′′′ then σ is defined on K, and there are O�k

a,Kσ−1

−−−−−→
h

IC

O′′ � k′′ and σ′ as in the previous item.

The greatest such bisimulation is denoted ∼IC. We write O�k ∼σIC O′�k′ to mean
(O � k, σ,O′ � k′) ∈∼IC.

Revisiting Causality, Coalgebraically 13

Notice that states should be able to simulate each other only up to σ. The continu-
ations are again related by a partial bijection σ′ between O′′ and O′′′, which should
act consistently on names by “commuting” with history maps h,h′ and σ. In the
case h(n) 6= 1 6= h′(m), since h and h′ have codomain δK(O′) and δσ(K)(O

′′) re-
spectively, where names in O and O′ have been shifted by one, we should subtract
one in order to recover the counterparts of h(n) and h(m) in O and O′.

We have the following correspondence between ∼IC and ∼PO.

Theorem 2 ∼IC is fully abstract w.r.t. ∼PO in the following sense:

(i) If O � k ∼PO O � k′ then JO � kK ∼IC JO � k′K;

(ii) If O � k ∼σIC O′ � k′ then for all Ô � k̂ and Ô � k̂′ such that:

(a) JÔ � k̂K = O � k and JÔ � k̂′K = O′ � k′;
(b) µ

Ô�k̂|dom(σ) = µ
Ô�k̂′ ◦ σ;

we have Ô � k̂ ∼PO Ô � k̂′.

Remark 1 The transition system LTSIC is derived in a similar way as Montanari
and Pistore causal automata. However, their derivation removes causal relations
from states, keeping only the underlying set of events. This also affects the notion of
bisimulation, where partial bijections are between sets of names. We have chosen to
keep causal relations, and to give a compatible notion of bisimulation. This seems
a natural choice, and it reflects what will produced, in a completely automatic and
standard way, by our categorical construction.

5 Coalgebraic semantics

In this section we construct a coalgebra for causal semantics, equivalent to LTSPO.
Since we work in a more abstract setting, we do not need to concretely represent
events as natural numbers to implement event generation. The notions introduced
in the previous section are instances of our categorical machinery.

Definition 14 (Categories FinPos,P and Pm) Let FinPos be the category of
finite posets and monotone functions, and let P its skeletal category. The category
Pm is the subcategory of P with only monic and poset-reflecting morphisms.

This is the category that we will take as index for presheaves. We now describe it
structure.

Proposition 4 The category Pm is small and has pullbacks.

It lacks colimits, but the one we are interested in can be computed in P and then
embedded into Pm. We omit to specify this when using the expression “colimits
in Pm”.

We introduce some notation for particular objects and morphisms of Pm: we
denote by [k] the discrete poset with k elements and by [k]> the same poset plus
a top element; bk : [k]→ [k]> is the embedding of [k] into [k]>; and >k : [1]→ [k]>

picks the top element in [k]>.

14 Roberto Bruni et al.

In Pm we can model the operator δK of Definition 9 as a pushout. Given
O ∈ |P|, let K : [k] ↪→ O be the subobject picking K within O. Then we have

[k]
K //

bk
��

O

oldKO
��

[k]>
newKO

// δK(O)

(6)

Intuitively, the pushout merges the poset O with [k]>, identifying the causes in
O, as given by K, and the k minimal elements of [k]>, so that the causes will be
smaller than the same fresh event in δK(O).

Now we want to turn δK into an endofunctor on Pm. However, δK does not
define a proper functor, because K depends on the specific poset fed to δK . There-
fore, we make δ independent from K by adding a new event for each possible set
of independent causes, i.e. each discrete subposet of O.

This idea is formalized as follows. Let Kk
1 , . . . ,K

k
nk : [k] ↪→ O be all subposets

of O with k elements. Notice that, by (5), the image of each Kk
i must be a discrete

poset, in other words: Kk
i only picks events that are not already related. Suppose O

has cardinality o. Then all the spans [k]> [k]
bkoo

Kk
i //O , namely those involved

in (6), can be combined in the following colimit

[1]

b1

~~

K1
1

��

. . . [o]

Ko
no

��

bo

[1]>

new
K1

1
O ((

O

oldO

��

[o]>

new
Kono
Ovv

O?

We can define the following allocation endofunctor δ : Pm → Pm

δ(O) = O? δ(σ : O → O′) = σ∗

where σ∗ is induced by the universal property of colimits.

Remark 2 Our allocation operator δ may seem inefficient: it generates a new event
for each possible set of causes, but only one of them will appear in the continuation
after a transition. However, having a functor on Pm allows us to lift it to presheaves
in a way that ensures the existence of both left and right adjoint (giving Kan
extensions along δ) for the lifted functor, and then preservation of both limits and
colimits, which is essential for coalgebras employing such functor. Generation of
unused events is not really an issue: as we will see later, it is always possible to
recover the support of a process, i.e. the poset formed by events actually appearing
in it.

Now we look at the category SetPm of presheaves on posets. As mentioned, it
is locally presentable and has all limits and colimits, in particular products and
coproducts. The following constructs are relevant for us.

Revisiting Causality, Coalgebraically 15

Presheaf of event names. E : Pm → Set gives the set of event names occurring in
O ∈ |Pm|; formally:

E = HomP([1],−)

Explicitly, E sends O ∈ |Pm| to Pm[[1], O], which is isomorphic to the underlying
set of O, and σ : O → O′ in Pm to the function λe ∈ Pm[[1], O].σ◦e, which renames
the event e according to σ.

Finite powerset. Pf : SetPm → SetPm , defined as Pf ◦ (−), where Pf is the fi-
nite powerset on Set; we also consider the non-empty bounded powerset P+

≤k, that
produces only non-emtpy subsets of cardinality at most k.

Event allocation operator. ∆ : SetPm → SetPm , given by (−) ◦ δ. Explicitly, for
P : Pm → Set and O ∈ |Pm|, ∆P (O) = P (δ(O)). Intuitively, it generates processes
with additional fresh events.

Presheaf of labels. L : Pm → Set given by

L(O) = (Act ∪ {τ})×P+
≤2E(O)

For each O ∈ |Pm|, this functor gives pairs (a,K) of an action a and a set of causes
K, selected among events in O. Notice that it is sufficient to consider cause sets
with cardinality at most two, because in LTSPO non-τ actions have one maximal
cause, while synchronizations have at most two maximal causes. However our
construction can be immediately extended to process models, like e.g. Petri n-safe
nets, where more than two processes can synchronize at a time.

We use these operators to define our behavioral endofunctor.

Definition 15 (Behavioral functor) The behavioral functor B : SetPm → SetPm

is
BP = Pf (L ×∆P) .

To understand this definition, consider a B-coalgebra (P, ρ). Given O ∈ |Pm| and
p ∈ P (O), ρO(p) is a finite set of triples (a,K, p′), telling that p′ is the continua-
tion of p after observing a,K. The continuation always belongs to ∆P (O), i.e. to
P (δ(O)), because every transition allocates a new event.

The category B-Coalg is well-behaved: it has a final B-coalgebra and B-
bisimulation matches with the equivalence induced by the final morphism. This is
thanks to the following properties.

Theorem 3 B is accessible and preserves weak pullbacks.

B-coalgebras can be regarded as particular LTSs whose states are elements of
presheaves, i.e. pairs O � p.

Definition 16 (Pm-ILTS) A a Pm-indexed labelled transition system (Pm-ILTS)
is a pair (P,=⇒) of a presheaf P : Pm → Set and a finite-branching transition
relation =⇒⊆

∫
P ×

∫
L ×

∫
P of the form:

O � p
a,K
==⇒ δ(O) � p′ (a,K) ∈ L(O)

such that, for each morphism σ : O → O′ in Pm:

16 Roberto Bruni et al.

(i) if O�p
l

=⇒ δ(O)�p′ then O′� t[σ]
l[σ]
==⇒ δ(O′)�p′[δσ] (transitions are preserved

by σ);

(ii) if O′ � t[σ]
l

=⇒ δ(O′) � p′ then there are l′ and δ(O) � p′′ such that l′[σ] = l,

p′′[δσ] = p′ and O � p
l′
=⇒ δ(O) � p′′ (transitions are reflected by σ);

Proposition 5 Pm-ILTSs are in bijection with B-coalgebras.

The natural notion of bisimulation for these transition systems is Pm-indexed

bisimulation.

Definition 17 (Pm-indexed bisimulation) A Pm-indexed bisimulation on a Pm-
ILTS (P,=⇒) is an indexed family of relations {RO ⊆ P (O) × P (O)}O∈|Pm| such
that, for all (p, q) ∈ RO

(i) if O � p
a,K
==⇒ O′ � p′ then there is O′ � q′ such that O � q

a,K
==⇒ O′ � q′ and

(p′, q′) ∈ RO′ ;
(ii) for all σ : O → O′, (p[σ], q[σ]) ∈ RO′ .

This definition closely resembles that of poset-indexed causal bisimulation (Defini-
tion 10). We have an additional condition (ii), requiring closure under morphisms
of Pm. This is not satisfied by all poset-indexed causal bisimulation, but it holds
for the greatest one (Theorem 1).

We have the following correspondence.

Proposition 6 Let (P, ρ) be a B-coalgebra. Then every B-bisimulation is equivalent

to a Pm-indexed bisimulation on the induced Pm-ILTS.

Unfortunately, the converse is not true: there are bisimulations on some Pm-ILTS
s that cannot be turned into B-bisimulations. This has been pointed out in [17,
3.3.3, Anomaly] for the case of the π-calculus. The solution given there is to narrow
the class of presheaves under consideration to pullback-preserving presheaves.

Theorem 4 (cf. Theorem 4.2.5 of [17]) Let (P, ρ) a B-coalgebra. If P preserves

pullbacks then every Pm-indexed bisimulation on the induced Pm-ILTS is also a B-

bisimulation on (P, ρ).

We now show that LTSPO can be represented as a Pm-ILTS. We form a presheaf
from states of LTSPO as follows.

Definition 18 (Presheaf of P-processes) The presheaf of P-processes C : Pm →
Set is given by

C (O) = {k | O � k is a state of LTSPO}

C (σ : O → O′) = λO � k.O′ � kσ↓O′

The action of C on morphisms needs to apply the closure operator, after renam-
ing the process: this guarantees that the result is a proper P-process. Notice that
elements of C are defined over events with an abstract identity, which may not be
natural numbers. More precisely, we implicitly assume the following translation
form states of LTSPO. For each finite poset O over natural numbers, take the iso-
morphism ϕO : O → [O] within FinPos, where [O] is the object of Pm canonically
representing the isomorphism class of O. Then [O] � kϕ gives the proper element
of C corresponding to O � k.

We have the following property.

Revisiting Causality, Coalgebraically 17

Lemma 1 C preserves pullbacks.

We are ready to translate LTSPO to a Pm-ILTS.

Definition 19 (Poset Pm-ILTSPO) The Poset Pm-ILTS (Pm-ILTSPO) is the small-
est one generated by the rule

O � k
a,K−−−→PO O

′ � k′

O � k
a,K
==⇒PO δ(O) � k′[newKO (>#K)/1, oldO]

The rule in this definition computes a casual process with poset δ(O) from O′�k′.
This is done by replacing 1, the concrete fresh event in k′, with the abstract
fresh event associated to K in δ(O), via the corresponding colimit map. All the
other events are renamed accordingly. This definition gives a proper Pm-ILTS:
transitions are clearly of the required form, and preservation and reflection of
transition follows from analogous properties of LTSPO (Proposition 3).

We call causal B-coalgebra the one equivalent to (C ,=⇒PO). We have the fol-
lowing theorem, which collects the results of this section, instantiated to the causal
B-coalgebra.

Theorem 5 Pm-indexed bisimulations on (C ,=⇒PO) are equivalent to:

– B-bisimulations on the causal B-coalgebra;

– poset-indexed causal bisimulations closed under injective and poset-reflecting re-

namings.

In particular, we have that the greatest Pm-indexed bisimulation, B-bisimilarity
on the causal B-coalgebra and ∼PO are all equivalent, thanks to Theorem 1.

Remark 3 The carrier of the final B-coalgebra can be intuitively described as fol-
lows. It is a presheaf whose elements are pairs O�T of a poset and a tree T . When
O � T is the image of a P-process O � k via the final morphism, then T is similar
to a (strong) causal tree for k, but its edges only exhibit the most recent events.
The “missing information”, i.e. the full history of events, is provided by O.

6 From coalgebras to HD-automata

In order to give a characterization of our coalgebra in terms of named sets, we
employ the results of [7]. Here authors define a symmetry group over a category C

to be a collection of morphisms in C[c, c], for any c ∈ |C|, which is a group w.r.t.
composition of morphisms. Then they take families of such groups as their notion
of generalized named sets. A first result establishes the equivalence between these
families and coproducts of symmetrized representables, that are functors of the form∑

i∈I
HomC(ci,)/Φi

where Φi is a symmetry group over C with domain ci, and the quotient identifies
morphisms that are obtained one from the other by precomposing elements of
Φi. These functors, in turn, are shown to be isomorphic to wide-pullback-preserving

presheaves on C, a wide pullback being the limit of a diagram with an arbitrary

18 Roberto Bruni et al.

number of morphisms pointing to the same object (pullbacks are a special case,
with two such morphisms). The following theorem summarizes the described re-
sults.

Theorem 6 Let C be a category that is small, has wide pullbacks, and such that all its

morphisms are monic and those in C[c, c] are isomorphisms, for every c ∈ |C|. Then

every wide-pullback-preserving P ∈ |SetC| is equivalent to a coproduct of symmetrised

representables.

Our category Pm satisfies the hypothesis of this theorem: it is small and has wide
pullbacks due to the existence of pullbacks. In fact, the diagram of a wide pullback
in Pm is formed by a finite number of morphisms, because a finite poset always
has a finite number of ingoing poset-reflecting monomorphisms, so its limit can be
computed via binary pullbacks. Moreover, Pm has only monos, by definition, and
Pm[O,O] clearly has only isomorphisms, for each O ∈ |Pm|. Finally, our presheaf
of processes C preserves (wide) pullbacks, so there exists an equivalent coproduct
of symmetrized representables.

Now that we have proved that our categorical setting is suitable for HD-
automata, we can translate the coalgebra of the previous section to a HD-automaton.
We work in a more concrete setting: we introduce a notion of named set closer
to a more traditional one, but indeed equivalent to the families mentioned above.
Given a set S of morphism and a morphism σ in Pm, we write S ◦ σ for the set
{τ ◦ σ | τ ∈ S} (analogously for σ ◦ S).

Definition 20 Let Sym(Pm) be the category defined as follows:

– objects are sets Φ ⊆ Pm[O,O] that are groups w.r.t. composition in Pm;
– morphisms Φ1 → Φ2 are sets of morphisms σ ◦ Φ1 such that σ : dom(Φ1) →
dom(Φ2) and Φ2 ◦ σ ⊆ σ ◦ Φ1.

Definition 21 The category Pm-Set is defined as follows:

– objects are Pm-named sets, that are pairs N = (QN , GN) of a set QN and
a function GN : Q → |Sym(Pm)|. The local poset of q ∈ QN , denoted ‖q‖, is
dom(σ), for any σ ∈ GN (q).

– morphisms f : N →M are Pm-named functions, that are pairs (h,Σ) of a func-
tion h : QN → QM and a function Σ mapping each q ∈ QN to a morphism
GM (h(q))→ GN (q) in Sym(Pm).

Since all the functors in Definition 15 can be restricted to wide-pullback-preserving
presheaves in SetPm , we can define an equivalent functor on Pm-Set.

Definition 22 The behavioral functor B̃ : Pm-Set→ Pm-Set is defined by lifting
all functors in the definition of B along the equivalence.

The following result is an immediate consequence.

Theorem 7 The category B-Coalg is equivalent to B̃-Coalg.

In particular, the equivalence relates the final B-coalgebra and the final B̃-coalgebra,
and their final morphisms. Moreover, since kernels are preserved by equivalence,
identifications made by the final morphisms are preserved, hence behavioral equiv-
alence is preserved too.

Revisiting Causality, Coalgebraically 19

In the rest of this section we give an explicit description of the Pm-named set
produced from C by the equivalence. Its elements will be minimal P-processes: we
will show that the translation from P-processes to minimal ones is achieved via
categorical constructions. We need the notions of support, seed and orbit.

Definition 23 (Support and seed) Given O � k, its support, denoted supp(k), is
the wide-pullback-object of the following morphisms

{σ : O′ ↪→ O | ∃O′ � k′ : k′[σ] = k}

Let Σk be the embedding supp(k) ↪→ O given by the pullback. Then the seed of k,
denoted seed(k), is the unique element of C (supp(k)) such that seed(k)[Σk] = k.

As shown in [7,12], an essential condition for existence and uniqueness of the seed
is preservation of pullbacks, which holds for C (Lemma 1). The seed operation
achieves the first two properties of minimal P-processes (see Definition 11): seed(k)
just contains immediate causes for each of its components and supp(O) contains
all and only those causes. This is illustrated by the following example.

Example 2 Consider the following P-process

O � {1, 2, 3}⇒ p1 ‖ {2}⇒ p2

where O is a poset over {1, 2, 3, 4} with

2 ≺O 1 3 ≺O 1 2 ≺O 4 3 ≺O 4 .

Then the set of morphisms of Definition 23 has two elements f1 : O1 → O and
f2 : O2 → O where O1 is a poset over {1, 2, 3} with 2 ≺O1

1 and 3 ≺O1
1, and O2 is

a poset over {1, 2} such that 2 ≺O2
1. These morphisms just map events preserving

their names. We have

O1 � {1, 2, 3}⇒ p1 ‖ {2}⇒ p2
� [f1]

// O � {1, 2, 3}⇒ p1 ‖ {2}⇒ p2

O2 � {1, 2}⇒ p1 ‖ {2}⇒ p2
� [f2]

// O � {1, 2, 3}⇒ p1 ‖ {2}⇒ p2

It is easy to check that the pullback object of f1 and f2 is O2, so the corresponding
seed is O2 � {1, 2} ⇒ p1 ‖ {2} ⇒ p2. Notice that the event 4 has been discarded,
because it does not syntactically appear in the process, but also 3, because it is
not an immediate cause for either p1 or p2.

Definition 24 (Orbit) The orbit of O � k is

orb(k) = { k[σ] | σ ∈ Pm[O,O]}

We denote by [k]o a canonical choice of an element of orb(k).

The orbit of k the set of elements obtained by applying to it all functions induced
by poset automorphisms. The representative [k]o plays the same role as [O � k]∼=
defined in the previous section. However, each ∼=-equivalence class may contain
P-processes with different, but isomorphic, posets. These posets all become the
same one in Pm, due to skeletality, so it is enough to consider automorphisms,
which are always iso in Pm.

20 Roberto Bruni et al.

Definition 25 The Pm-named set of minimal P-processes is (C, GC), where

C = {supp(k) � [seed(k)]o | O � k ∈
∫

C }

GC = λO � k.{Φ ∈ |Sym(Pm)| | dom(Φ) = O ∧ ∀σ ∈ Φ : k[σ] = k}

Let us explain this definition. The set C is produced from elements of C : for each of
these, we compute the seed, and then we only take the canonical representative for
the seed’s orbit. The former operation achieves the third requirement for minimal
P-processes. The symmetry group for a process is the set of poset automorphisms
fixing the process.

The HD-automaton on (C, GC) in B̃-Coalg, equivalent to the causal B-coalgebra,
is the category-theoretic counterpart of LTSIC: states are minimal P-processes, and
transitions have history maps. In B̃-Coalg, history maps come from the fact that
coalgebra structure maps are Pm-named functions, so they are equipped with
backward morphisms towards the poset of the source state. However, there is a
crucial difference: states of the HD-automaton have symmetries, which allow for
further identifications of states. For instance, the process

[2] � {1}⇒ p ‖ {2}⇒ p

can be associated the symmetry {id[2], (1 2), (1 2)−1}, because swapping 1 and 2
yields bisimilar processes.

7 Conclusions

In this paper we have given a construction for obtaining compact models of causal
semantics. In order to do this, we have equipped causal processes with nominal
structures, namely posets over event names, representing causal relations. We have
presented a first, set-theoretic version of our construction, along the lines of [14],
and then a category-theoretic one that employs standard constructs and results for
nominal calculi, namely presheaf-based coalgebras and their equivalence with HD-
automata. The categorical version is much more concise and natural. In particular,
reducing the state-space and showing that this operation preserves the semantics
require some technical effort in the set-theoretic version, whereas the categorical
version employs a general construction that automatically performs this reduction
in a semantics-preserving way.

This paper is mainly related to [14]. While the definition of causal automata
should be attributed to the ingenuity of their authors, the derivation of HD-
automata we show in this paper is due to a general categorical construction. The
main difference between the two notions of automata is in the information each
state keeps: causal automata keep events, but discard their causal relations; our
HD-automata retain causal relations, in the form of posets, and, in addition, there
are symmetry groups over them. This allows for a further reduction of states. A
representation of events in terms of names, with the aim of capturing Darondeau-
Degano causal semantics, can also be found in [5], even if in the different context
of tile systems. We can cite [6] for the introduction of transitions systems for
causality whose states are elements of presheaves, intended to model the causal
semantics of the π-calculus as defined in [4]. However, the index of a state is a set of

Revisiting Causality, Coalgebraically 21

names, without any information about events and causal relations. The advantage
of our index category is that it allows reducing the state-space in an automatic
way, exploiting a standard categorical construction. This cannot be done in the
framework of [6]. Finally, an HD-automaton for causality has been described in
[8], but it is derived as a direct translation of causal automata and its states do
not take into account causal relations.

As a future work, we plan to further investigate the correspondence with [14].
In particular, the relationship between the notions of bisimulations is not clear.

A Proofs

Proof (of Proposition 3) We show (i), the other point is analogous. We rely on the follow-
ing properties of LTSDD, which can be easily checked by induction on the inference via rules
Figure 1: for all O � k, σ : O → O′ injective and poset-reflecting, and O′′ ⊆ O, we have

k
a,K−−−→DD k

′ =⇒ kσ
a,Kσ−−−−→DD k

′σ+ (7)

k
a,K−−−→DD k

′ =⇒ k↓O′′
a,K↓O′′−−−−−−→DD k

′↓δK↓
O′′

(O′′) (8)

where ↓ is extended to sets of causes by performing their closure. Property (8) is the less
obvious: the idea is that, since labels of LTSDD shows the whole history of causes for an action,
the additional ones in O′′, preceding K, should be shown as well; the continuation is closed
accordingly.

Now, take O� k
a,K−−−→PO δK(O) � k′ and σ : O → O′ injective and poset-reflecting. By the

rule in Definition 9 there is a transition in LTSDD

k
a,K′−−−→DD k K = maxO(K′) ;

If we apply (7) and then (8) to this transition, we get

(kσ)↓O′
a,K′σ↓O′−−−−−−−→DD (k′σ+)↓δK′σ↓

O′
(O′) . (9)

Observe that
maxO′ (K

′σ↓O′) = maxO′ (K
′σ)

= maxO(K′)σ
= Kσ

(10)

The first equation holds because ↓O′ only adds to K′σ events that are smaller w.r.t. ≺O′ .
The second equation holds because σ is poset-reflecting: this prevents some maximal, thus
unrelated, events in K′ to become non-maximal in K′σ due to additional causal relations
involving them in O′.

From (10) it follows

δK′σ↓O′ (O
′) = δmaxO′ (K′σ↓O′)(O

′)

= δKσ(O′)
(11)

where the first equation come from transitivity: adding causal relations from 1 to K′σ and its
past causes in O′ is equivalent to adding relations to only maximal events in K′σ, because
transitivity will take care of adding the missing ones.

We conclude by applying (11) to the continuation of (9), which becomes of the required
form, and then the rule of Definition 9 to infer the required transition. The computation of
the maximal causes yields the desired result, thanks to (10). ut

Proof (of Proposition 2)

22 Roberto Bruni et al.

(=⇒) We prove that the following relation is a causal bisimulation

R = {(k, k′) | ∃O : O � k ∼PO O � k′}

Suppose O � k
a,K−−−→PO O′ � k′′ and the simulating transition is O � k′

a,K−−−→PO O′ � k′′′.
Then we can recover simulating transitions in LTSDD as follows

k
a,K↓O−−−−→DD k

′′ k′
a,K↓O−−−−→DD k

′′′

and, since O′ � k′′ ∼PO O′ � k′′′, we have (k′′, k′′′) ∈ R.
(⇐=) We prove that the following relation is a poset-indexed causal bisimulation

RO = {(O � k,O � k′) | k ∼DD k
′}

Suppose k
a,K−−−→DD k′′ and k′

a,K−−−→DD k′′′. Then the rule in Definition 9, from both transi-
tions, generates transitions in LTSPO with the same label, and the same source and target
posets. If the latter is δM (O), then from k′′ ∼DD k′′′ it follows (δM (O)�k′′, δM (O)�k′′′) ∈
RδM (O).
ut

We need the following lemmata, whose proofs are straightforward.

Lemma 2 For each O � k, µO�k is injective and poset-reflecting.

Lemma 3 Let JO � kK = O′ � k′, then (k′µO�k)↓O = k.

An immediate consequence is the following one.

Lemma 4 O � k
a,K−−−→
h

IC O
′ � k′ is generated by O � k

a,K−−−→PO δK(O) � (k′h)↓δK(O) via the

rule in Definition 12.

Proof
Point (i). We prove that the following relation is an immediate causes bisimulation

R = { (JO � kK, σ, JO � k′K) | O � k ∼PO O � k′,

σ(n) = m ⇐⇒ µO�k(n) = µO�k′ (m)}

We only show how the derivation of a simulating transition for one of JO� kK. The symmetric

case is analogous. Let JO � kK = Õ � k̃, and suppose it has the following transition

Õ � k̃
a,K−−−→
h

IC Õ
′ � k̃1 (12)

Then, by Lemma 4, we have

Õ � k̃
a,K−−−→PO δK(Õ) � k̃2 k̃2 = (k̃1h)↓δK(Õ) (13)

Now, let µ1 = µO�k: by Lemma 2, we can apply (i) of Proposition 3 to the last transition and
get

O � (k̃µ1)↓O = k
a,Kµ1−−−−→PO δKµ1

(O) � k̃3 k̃3 = (k̃2µ1
+)↓δKµ1 (O) (14)

where (k̃µ1)↓O = k is due to 3. Therefore we have JδKµ1
(O)�k̃3K = Õ′�k̃1, and the associated

map Õ′ → δKµ1 (O) is given by composing those applied to the continuations of (13) and (14),
namely

µδKµ1 (O)�k̃3
= µ1

+ ◦ h (15)

Suppose (14) can be simulated by O � k′ as follows

O � k′
a,Kµ1−−−−→PO δKµ1

(O) � k′′ . (16)

Revisiting Causality, Coalgebraically 23

Let JO�k′K = Õ′ � k̃′ and µ2 = µO�k′ . Then, by Lemma 2, we can apply (ii) of Proposition 3
to (16) and µ2, obtaining

Õ′ � k̃′
a,K̃−−−→PO δK̃(Õ′) � k̃′′ (17)

such that K̃µ2 = Kµ1 and (k̃′′µ2+)↓δKµ1 (O) = k′′. Let h′ = µδ
K̃

(Õ′)�k̃′′ . Applying the rule

of Definition 12 to (17) we get

Õ � k̃
a,K̃−−−→
h′

IC JδK̃(Õ′) � k̃′′K (18)

It is not difficult to check that JδK̃(Õ′) � k̃′′K = JδKµ1
(O) � k′′K: the intuition is that taking

immediate causes from O � k′, then adding a new event, and taking again immediate causes,
has the same result as adding the event straight away and then taking immediate causes.
Therefore µδKµ1 (O)�k′′ can be expressed as composition of the maps from the continuation

of (18) to that of (17), and from the latter to that of (16), namely

µδK(O)�k′′ = µ2
+ ◦ h′ (19)

Now we shall check that (12) and (18) are actually simulating transitions. From K̃µ2 =

Kµ1 and the definition of σ (recall that µ1 = µO�k and µ2 = µO�k′) it follows K̃ = Kσ. Let
σ′ be defined by

σ′(n) = m ⇐⇒ µ1
+(h(n)) = µ2

+(h′(m))

The right equation is equivalent to µδKµ1 (O)�k′′ (n) = µδKµ1 (O)�k̃3
(m), by (15) and (19), so

(JδKµ1
(O) � k′′K, σ′, JδKµ1

(O) � k̃3K) ∈ R. It remains to check that it is a proper bisimulation
triple. Take n,m such that σ′(n) = m. We have

h(n) = 1 ⇐⇒ µ1
+(h(n)) = 1

⇐⇒ µ2
+(h′(m)) = 1

⇐⇒ h′(m) = 1

where the first and last implication follow from the definition of µ1+ and µ2+. For h(n), h(m) >
1, expanding the definition of µ1+ and µ2+ we get µ1(h(n) − 1) = µ2(h′(m) − 1), hence
σ(h(n)− 1) = h′(m)− 1, by the definition of R.

Point (ii). We prove that the following family of relations is a poset-indexed causal
bisimulation

RÔ = {(Ô � k̂, Ô � k̂′) |O � k ∼σIC O′ � k′, (ii.a) and (ii.b) hold}

To ease notation, let µ1 = µÔ�k̂ and µ2 = µÔ�k̂′ . We only show that each transition of

Ô� k̂ can be simulated by one of Ô� k̂′. The proof for the symmetric statement is analogous.
Suppose Ô � k̂ has the following transition

Ô � k̂
a,K−−−→PO δK(Ô) � k̂′ (20)

Then, by (ii) of Proposition 3 and Lemma 2, we can rename it via µ1 and get

O � k
a,K̃−−−→PO δK̃(O) � k̃′ k̃′ = (k̂′µ1

+)↓δ
K̃

(O)

where K̃µ1 = K. Applying the rule in Definition 12, we get

O � k
a,K̃−−−→
h

IC JδK̃(O) � k̃′K

Now suppose that this transition can be simulated by O′ � k′ as follows

O′ � k′
a,K̃σ−−−−→
h′

IC O
′′ � k′′ ,

24 Roberto Bruni et al.

and (JδK̃(O) � k̃′K, σ′, O′′ � k′′). Applying Lemma 4 we get

O′ � k′
a,K̃σ−−−−→PO δK̃σ(O′) � k′′1 k′′1 = (k′′h′)↓δ

K̃σ
(O′)

and then, from (i) of Proposition 3 with renaming µ2, and applying Lemma 3 to the resulting
source process, we get

Ô � k̂′
a,(K̃σ)ρ−−−−−−→ δK(Ô) � k′′2 k′′2 = (k′′1µ2

+)↓δK(Ô) (21)

From hypothesis (ii.b) we have (K̃σ)µ2 = K̃µ1 = K, so (20) and (21) have the same label.
Finally, we have to check (ii.a) and (ii.b) on their continuations:

(ii.a) We have JδK̃(O)� k̃′K = JδK(Ô)� k̂′K and JδK(Ô)�(k̃′′ρ)↓δK(Ô)K = O′′�k′′, as already

explained in point (i) for analogous transitions;
(ii.b) Let µ̃1 = µδK(Ô)�k̂′ and µδK(Ô)�k̂. We have to check µ̃1|dom(σ′) = µ̃2 ◦ σ′. Take

n ∈ dom(σ′). Then, by the equivalence between continuations exhibited in the proof of
(ii.a), we have µ̃i = µi

+ ◦ h, i = 1, 2, so

µ̃1(n) = µ̃2(σ′(n)) ⇐⇒ µ1
+(h(n)) = µ2

+(h′(σ′(n)))

We have two cases, by the property relating σ′ with h, h′ and σ:
– h(n) = h′(σ(n)) = 1, then µ1+(h(n)) = 1 = µ2+(h′(σ′(n)));
– h(n), h′(σ(n)) > 1, then σ(h(n)− 1) = h′(σ′(n))− 1, and so

µ2(σ(h(n)− 1)) = µ2(h′(σ′(n))− 1) (applying µ2 on both sides)
⇐⇒ µ1(h(n)− 1) = µ2(h′(σ′(n))− 1) (by hypothesis µ1(n) = µ2(σ(n)))
⇐⇒ µ1+(h(n)) = µ2+(h′(σ′(n))) (by definition of µ1+ and µ2+,

adding 1 to both members)
ut

Proof (of Proposition 4) FinPos is not small, but we recover smallness by skeletality. Monomor-
phisms are stable under pullbacks, and it can be easily verified that poset-reflection is preserved
by pullbacks and by their mediating morphisms. ut

Proof (of Theorem 3) For accessibility: Pf is known to be accessible; L is accessible, because

it can be regarded as a constant endofunctor on SetPm ; ∆ is accessible, because it has a right
adjoint, namely the functor computing right Kan extensions along δ. The thesis follows from
accessibility being preserved by composition and products.

As for preservation of weak-pullbacks, all the functors and operators we use preserve them.
In particular ∆, having a left adjoint (computing left Kan extensions), preserves limits. ut

Proof (Proof of Proposition 5) The transition relation can be turned into a natural transfor-
mation in SetPm : (i) and (ii) guarantee that such relation obeys the naturality condition. The
other direction clearly holds. ut

Proof (Proof of Proposition 6) Given aB-bisimulation (R, ρ), we shall show that {R(O)}O∈|Pm|
is a Pm-indexed bisimulation. Take O ∈ |Pm| and a a pair (p, q) ∈ R(O). Since it is also a
B-coalgebra, by Proposition 5 there is a Pm-ILTS (R,=⇒PO) that has one transition of the
form

O � (p, q)
l

=⇒PO O
′ � (p′, q′) , (p′, q′) ∈ Rg′ ,

for each transition of p. This gives the simulating transition of q required by (i) of Definition 17.
Condition (ii) just amounts to say that R is a presheaf SetPm . ut

Revisiting Causality, Coalgebraically 25

References

1. Jîŕı Adámek. Introduction to coalgebra. Theory and Applications of Categories, 14(8):157–
199, 2005.

2. Jiŕı Adámek, Filippo Bonchi, Mathias Hülsbusch, Barbara König, Stefan Milius, and
Alexandra Silva. A coalgebraic perspective on minimization and determinization. In
FoSSaCS, pages 58–73, 2012.

3. Jîŕı Adámek and Jîŕı Rosický. Locally Presentable and Accessible Categories. Cambridge
University Press, 1994.

4. Michele Boreale and Davide Sangiorgi. A fully abstract semantics for causality in the
π-calculus. Acta Inf., 35(5):353–400, 1998.

5. Roberto Bruni and Ugo Montanari. Dynamic connectors for concurrency. Theor. Comput.
Sci., 281(1-2):131–176, 2002.

6. Gian Luca Cattani and Peter Sewell. Models for name-passing processes: interleaving and
causal. Inf. Comput., 190(2):136–178, 2004.

7. Vincenzo Ciancia, Alexander Kurz, and Ugo Montanari. Families of symmetries as efficient
models of resource binding. Electr. Notes Theor. Comput. Sci., 264(2):63–81, 2010.

8. Vincenzo Ciancia and Ugo Montanari. Symmetries, local names and dynamic (de)-
allocation of names. Inf. Comput., 208(12):1349 – 1367, 2010.

9. Philippe Darondeau and Pierpaolo Degano. Causal trees: Interleaving + causality. In
Semantics of Systems of Concurrent Processes, pages 239–255, 1990.

10. Gian Luigi Ferrari, Ugo Montanari, and Emilio Tuosto. Coalgebraic minimization of hd-
automata for the π-calculus using polymorphic types. Theor. Comput. Sci., 331(2-3):325–
365, 2005.

11. Marcelo P. Fiore and Daniele Turi. Semantics of name and value passing. In LICS, pages
93–104, 2001.

12. Fabio Gadducci, Marino Miculan, and Ugo Montanari. About permutation algebras,
(pre)sheaves and named sets. Higher-Order and Symbolic Computation, 19(2-3):283–304,
2006.

13. Paris C. Kanellakis and Scott A. Smolka. Ccs expressions, finite state processes, and three
problems of equivalence. Inf. Comput., 86(1):43–68, 1990.

14. Ugo Montanari and Marco Pistore. Minimal transition systems for history-preserving
bisimulation. In STACS, pages 413–425, 1997.

15. Ugo Montanari and Marco Pistore. Structured coalgebras and minimal hd-automata for
the π-calculus. Theor. Comput. Sci., 340(3):539–576, 2005.

16. Jan J. M. M. Rutten. Universal coalgebra: a theory of systems. Theor. Comput. Sci.,
249(1):3–80, 2000.

17. Sam Staton. Name-passing process calculi: operational models and structural operational
semantics. Technical Report 688, University of Cambridge, 2007.

18. Sam Staton. Relating coalgebraic notions of bisimulation. Logical Methods in Computer
Science, 7(1), 2011.

19. James Worrell. Terminal sequences for accessible endofunctors. Electr. Notes Theor.
Comput. Sci., 19:24–38, 1999.

