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Abstract We consider PML, the probabilistic version of Hennessy-Milner logic introduced
by Larsen and Skou to characterize bisimilarity over probabilistic processes without internal
nondeterminism. We provide two different interpretations for PML by considering nondeter-
ministic and probabilistic processes as models, and we exhibit two new bisimulation-based
equivalences that are in full agreement with those interpretations. Our new equivalences in-
clude as coarsest congruences the two bisimilarities for nondeterministic and probabilistic
processes proposed by Segala and Lynch. The latter equivalences are instead in agreement
with two versions of Hennessy-Milner logic extended with an additional probabilistic op-
erator interpreted over state distributions rather than over individual states. Thus, our new
interpretations of PML and the corresponding new bisimilarities offer a uniform framework
for reasoning on processes that are purely nondeterministic or reactive probabilistic or are
mixing nondeterminism and probability in an alternating/non-alternating way.

1 Introduction

Modal logics and behavioral equivalences play a key rôle in the specification and verifica-
tion of concurrent systems. The former are useful for model checking, in that they can be
employed for specifying the properties to be verified. The latter are ancillary to the former,
in the sense that they enable the transformation/minimization of models to be checked while
guaranteeing that specific classes of properties are preserved.

Because of this, whenever a new equivalence or a new logic is proposed, the quest starts
for the associated logic or equivalence, respectively, such that two systems are behaviorally
equivalent if and only if they satisfy the same modal logical formulae. The first result along
this line is due to Hennessy and Milner [17]. They showed that bisimilarity over fully non-
deterministic processes, each modeled as a labeled transition system (LTS) [20], is in full
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agreement with a very simple modal logic, now known as HML. This logic has only four
operators: true, ·∧ ·, ¬·, and 〈a〉·, the last one being called diamond and used to describe the
existence of a-labeled transitions. After this result, whenever any of the many quantitative
variants of process description languages and process models has been introduced, other be-
havioral equivalences and modal logics have been defined and analogous results have been
established for models handling additional features of systems such as probability and time.

Most of the works along the lines outlined above take as starting point a behavioral
equivalence and then look for the logic in agreement with it. Obviously, it is also interesting,
once one has fixed a model and a logic to reason about it, to look for the “right” behav-
ioral relation. A first work in this direction was [6]; it showed that bisimilarity and stutter-
ing bisimilarity are in full agreement with the logical equivalences induced by CTL* and
CTL* without the next-time operator, respectively, when interpreted over Kripke structures
(state-labeled transition systems) [8]. Subsequently, in [1] it was shown that the equivalence
induced by PCTL* interpreted over probabilistic Kripke structures coincides with the proba-
bilistic bisimilarity of [21]. Recently, another paper [30] introduced new probabilistic bisim-
ilarities that are in full agreement with the logical equivalences induced by PCTL/PCTL*
and their variants without the next-time operator when interpreted over nondeterministic and
probabilistic Kripke structures [5].

In this paper, we concentrate on the results obtained for extended LTS models that have
been developed to deal with probabilistic systems. We look for bisimilarities that are in
agreement with a probabilistic variant of HML known as PML that was proposed by Larsen
and Skou [21,22]. PML is obtained from HML by simply decorating its diamond operator
with a probability bound. Formula 〈a〉pφ is satisfied by state s if an a-labeled transition is
possible from s after which a set of states satisfying φ is reached with probability at least p.

Larsen and Skou [21,22] introduced probabilistic bisimilarity for reactive probabilistic
processes [32] and showed that it is in full agreement with PML. Subsequently, Desharnais
et al [13] discovered that PML without negation is sufficient to characterize probabilistic
bisimilarity for the same class of processes. Reactive probabilistic processes are LTS-based
models where (i) every action-labeled transition reaches a probability distribution over states
and (ii) the actions that label transitions departing from the same state are all different from
each other.

Segala and Lynch [27] defined, instead, a probabilistic bisimilarity for a more expressive
model that also admits internal nondeterminism, i.e., the possibility for a state to have sev-
eral outgoing transitions labeled with the same action. For this probabilistic bisimilarity over
nondeterministic and probabilistic processes, Segala and collaborators [23,18] exhibited a
logical characterization in terms of an extension of HML, in which formulae satisfaction is
defined over probability distributions on states rather than over single states. The logic is
obtained from HML by giving the diamond operator a universal interpretation (all states in
the support of a distribution must satisfy the formula) and by adding a unary operator [·]p.
Formula [φ ]p is true on a state distribution if the probability assigned by the distribution to
the set of states satisfying formula φ is at least p.

The above-mentioned variant of HML has been reconsidered in a number of subsequent
works. In [10], D’Argenio et al revised the logic in a continuous state space setting, by
distinguishing between state formulae including the diamond operator (interpreted, as in
HML, over states) and measure formulae including the new unary operator (interpreted, as
by Segala et al, over state distributions). More recently, Crafa and Ranzato [9] showed an
equivalent formulation of the logic that retrieves the existential interpretation of the HML
diamond operator by lifting the transition relation to state distributions. Following a similar
lifting, Hennessy [16] proposed an alternative logical characterization based on what he
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s1 s2
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Fig. 1 Two games ensuring the same sets of probabilities of winning/drawing/losing (∼PB,gbg,=)

called pHML, where a binary operator ·⊕p · is added to HML (instead of the unary operator
[·]p of Segala et al) such that φ1 ⊕p φ2 asserts decomposability of a state distribution to
satisfy the two subformulae.

Now, the difference between PML and the two probabilistic extensions of HML re-
spectively defined in [23,18] and [16] is quite striking. In our view, it is thus interesting to
understand whether such a difference is due to the different expressive power of the two
models in [21] and [27] – i.e., the absence or the presence of internal nondeterminism – or
to the way probabilistic bisimilarity was defined on those two models. Since in [23] it was
shown that PML characterizes probabilistic bisimilarity over processes alternating nonde-
terminism and probability like those in [15] (strictly alternating processes) and in [34,24]
(non-strictly alternating processes), we feel it is worth exploring alternative definitions of
probabilistic bisimilarity rather than alternative models.

The aim of this paper is to show that it is possible to define new probabilistic bisim-
ilarities for the general model of non-alternating nondeterministic and probabilistic pro-
cesses [26] that are characterized by PML. Our result is somehow similar to the one estab-
lished in [30], where new probabilistic bisimilarities over nondeterministic and probabilistic
Kripke structures were exhibited that are characterized by PCTL/PCTL* and their variants.
In both cases, the motivation for defining new probabilistic bisimilarities is the fact that the
definition of Segala and Lynch [27] might be considered overdiscriminating (see also [11])
and thus differentiate processes that, according to intuition, should be identified.

To compare systems where both nondeterminism and probabilistic choices coexist, the
notion of scheduler (or adversary) was used in [26,27] to resolve nondeterminism. A sched-
uler can be viewed as an external entity that selects the next action to perform according to
the current state and the past history. When a scheduler is applied to a system, a fully prob-
abilistic model called a resolution is obtained. The basic idea is deeming equivalent two
systems if for each resolution of one system (the challenger) there exists a resolution of the
other (the defender) such that the two resolutions are bisimilar in the sense of [21].

Let us consider two scenarios modeling the offer to Player1 and Player2 of three differ-
ently biased dice. The game is conceived in such a way that if the outcome of a throw gives 1
or 2 then Player1 wins, while if the outcome is 5 or 6 then Player2 wins. In case of 3 or 4, the
result is a draw. The two scenarios are reported in Fig. 1. For instance, with the biased die
associated with the leftmost branch of the first scenario, it happens that 3 or 4 (draw) will
appear with probability 0.4, while 1 or 2 (Player1 wins) will appear with probability 0.6.
Numbers 5 and 6 will never appear (no chance for Player2 to win).

The probabilistic bisimilarity proposed in [27] differentiates the models in Fig. 1. It
could be argued, however, that they should be identified because in both scenarios each
player has the same sets of probabilities of winning/drawing/losing, which are all equal
to {0.6,0.4,0}. To identify these systems, from a bisimulation perspective it is needed to
weaken the impact of schedulers. Indeed, while in [27] the challenger and the defender
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s1 s2
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offer
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Fig. 2 Two games guaranteeing the same extremal probabilities of winning/losing (∼PB,gbg,≤)

must stepwise behave the same along two fully matching resolutions, here, in the same vein
as [31], we admit bisimulation games with partially matching resolutions.

Other two systems differentiated (under deterministic schedulers) by the probabilistic
bisimilarity of [27] are those in Fig. 2. In the first scenario, the two players are offered a
choice among a fair coin and two biased ones. In the second scenario, the players can sim-
ply choose between the two biased coins of the former scenario. In both scenarios, Player1
wins with head while Player2 wins with tail. If one is interested just in extremal probabil-
ities, it might however be argued that the two scenarios should be considered equivalent
because both players have exactly the same minimal (0.3) and maximal (0.7) probability of
winning/losing.

The first probabilistic bisimilarity we will introduce – denoted by ∼PB,gbg,= – identifies
the two systems in Fig. 1, but distinguishes those in Fig. 2. Our second probabilistic bisimi-
larity – denoted by ∼PB,gbg,≤ – instead identifies both the two systems in Fig. 1 and the two
systems in Fig. 2. Notably, the same identifications are induced by one of the probabilistic
bisimilarities in [30]. Indeed, once the appropriate transformations (eliminating actions from
transitions and labeling each state with the set of possible next-actions) are applied to get
nondeterministic and probabilistic Kripke structures from the four systems in Figs. 1 and 2,
we have that no PCTL* formula distinguishes the two systems in Fig. 1 and the two systems
in Fig. 2. It is, however, worth pointing out that neither ∼PB,gbg,= nor ∼PB,gbg,≤ coincides
with the probabilistic bisimilarities in [30].

We will show that ∼PB,gbg,≤ is precisely characterized by the original PML as defined
by Larsen and Skou [21,22], with the original interpretation of the diamond operator stating
that state s satisfies 〈a〉pφ if s has an a-transition that reaches with probability at least p a
set of states satisfying φ . In contrast, ∼PB,gbg,= is characterized by a variant of PML having
an interval-based operator 〈a〉[p1,p2]· instead of 〈a〉p·. State s satisfies 〈a〉[p1,p2]φ if s has an
a-transition that reaches, with probability between p1 and p2, a set of states satisfying φ .
We will refer to the interpretation of these two diamond operators as existential, because it
simply requires that there exists a way of resolving internal nondeterminism that guarantees
satisfaction of formula φ within a certain probability range.

For both logics, we will also provide an alternative universal interpretation of the dia-
mond operator inspired by the interpretation of PCTL* in [5]. With this interpretation, state
s satisfies 〈a〉pφ (resp. 〈a〉[p1,p2]φ ) if it has an a-transition that enjoys the same property as
before and each a-transition departing from s enjoys that property, meaning that the formula
is satisfied by s no matter how internal nondeterminism is resolved. Although it could be
argued that in a nondeterministic and probabilistic setting such a universal interpretation
is more appropriate than the existential one, we will see that both universally interpreted
variants of the logic lead to the same equivalence as the one characterized by the original
interpretation of the original PML. Indeed, ∼PB,gbg,≤ has also many other characterizations,
and this leads us to the convincement that it is an interesting behavioral relation for nonde-
terministic and probabilistic processes.
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This paper, which is an extended and revised version of [4], is organized as follows.
In Sect. 2, we recall the necessary background about the non-alternating model of nonde-
terministic and probabilistic processes, together with the bisimilarities introduced in [17,
21,27] and their modal logic characterizations. The two interpretations of PML over the
non-alternating model are presented in Sect. 3, while the new probabilistic bisimilarities
that they characterize are exhibited in Sect. 4. In Sect. 5, we provide further motivations,
variants, and results for the new probabilistic bisimilarities. In Sect. 6, we discuss the spec-
trum of the various behavioral and logical equivalences, and show that the new probabilistic
bisimilarities contain as coarsest congruences the probabilistic bisimilarities defined in [27].
Finally, Sect. 7 draws some conclusions and hints at possible future work.

2 Background

In this section, we present a model for nondeterministic and probabilistic processes. Then,
we recast in this general model the bisimilarity of [17] and the probabilistic bimilarity
of [21], along with their HML and PML characterizations, respectively. Finally, we recall
the probabilistic bisimilarities of [27] and their modal logic characterizations for both the
non-alternating case and the alternating case.

2.1 The NPLTS Model

Processes combining nondeterminism and probability are typically described by means of
extensions of the LTS model, in which every action-labeled transition goes from a source
state to a probability distribution over target states rather than to a single target state. The
resulting processes are essentially Markov decision processes [12] and are representative of
a number of slightly different probabilistic computational models including internal non-
determinism such as, e.g., concurrent Markov chains [33], strictly alternating models [15],
probabilistic automata in the sense of [26], and the denotational probabilistic models in [19]
(see [29] for an overview). We formalize them as a variant of simple probabilistic au-
tomata [26] and give them the acronym NPLTS to stress the possible simultaneous presence
of nondeterminism (N) and probability (P) in the LTS-like model.

Definition 1 A nondeterministic and probabilistic labeled transition system, NPLTS for
short, is a triple (S,A,−→) where:

– S is an at most countable set of states.
– A is a countable set of transition-labeling actions.
– −→ ⊆ S×A×Distr(S) is a transition relation, where Distr(S) is the set of probability

distributions over S.

A transition (s,a,D) is written s a−→D . We say that s′ ∈ S is not reachable from s
via that a-transition if D(s′) = 0, otherwise we say that it is reachable with probability
p = D(s′). The reachable states form the support of D , i.e., supp(D) = {s′ ∈ S |D(s′) > 0}.
We write s a−→ to indicate that s has an a-transition. The nondeterministic choice among all
the transitions departing from s can be influenced by the external environment, while the
probabilistic choice of the target state for a specific transition takes place internally.

The notion of NPLTS yields a non-alternating model [26] and embeds the following
restricted models:
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– Fully nondeterministic processes: every transition is Dirac, i.e., it leads to a distribution
that concentrates all the probability mass into a single target state.

– Fully probabilistic processes: every state has at most one outgoing transition.
– Reactive probabilistic processes: no state has two or more outgoing transitions labeled

with the same action [32]. These processes include the probabilistic automata in the
sense of [25].

– Alternating processes: every state that enables a non-Dirac transition enables only that
transition. Similar to [34,24], these processes consist of a non-strict alternation of fully
nondeterministic states and fully probabilistic states, with the addition that transitions
departing from fully probabilistic states are labeled with actions.

An NPLTS can be depicted as a directed graph-like structure in which vertices repre-
sent states and action-labeled edges represent action-labeled transitions. Given a transition
s a−→D , the corresponding a-labeled edge goes from the vertex representing state s to a set
of vertices linked by a dashed line, each of which represents a state s′ ∈ supp(D) and is
labeled with D(s′); the label is omitted when D(s′) = 1. Four NPLTS models have been
shown in Figs. 1 and 2.

We say that an NPLTS (S,A,−→) is image finite iff for all s ∈ S and a ∈ A the set {D ∈
Distr(S) | s a−→D} is finite. Following [21], we say that it satisfies the minimal probability
assumption iff there exists ε ∈ R>0 such that, whenever s a−→D , then for all s′ ∈ S either
D(s′) = 0 or D(s′)≥ ε; this implies that supp(D) is finite because it can have at most d1/εe
elements. If D(s′) is a multiple of ε for all s′ ∈ S, then the minimal deviation assumption is
also satisfied.

Sometimes, instead of ordinary transitions, we will consider combined transitions [27],
each being a convex combination of equally labeled transitions. Given an NPLTS (S,A,−→),
s ∈ S, a ∈ A, and D ∈ Distr(S), in the following we write s a−→c D iff there exist n ∈ N>0,
(pi ∈R]0,1] | 1≤ i≤ n), and (s a−→Di | 1≤ i≤ n) such that ∑

n
i=1 pi = 1 and ∑

n
i=1 pi ·Di = D .

2.2 Bisimilarity for Fully Nondeterministic Processes

We recast in the NPLTS model the definition of bisimilarity for fully nondeterministic pro-
cesses of [17]. In this case, the target of each transition is a Dirac distribution δs for s ∈ S,
i.e., δs(s) = 1 while δs(s′) = 0 for all s′ ∈ S\{s}.

Definition 2 Let (S,A,−→) be an NPLTS in which the target of each transition is a Dirac
distribution. A relation B over S is a bisimulation iff, whenever (s1,s2) ∈B, then for all
actions a ∈ A:

– For each s1
a−→ δs′1

there exists s2
a−→ δs′2

such that (s′1,s
′
2) ∈B.

– For each s2
a−→ δs′2

there exists s1
a−→ δs′1

such that (s′1,s
′
2) ∈B.

We denote by ∼B the largest bisimulation.

Given an image-finite NPLTS (S,A,−→) in which the target of each transition is a
Dirac distribution, the relation ∼B is characterized by the so-called Hennessy-Milner logic
(HML) [17]. The set FHML of its formulae is generated by the following grammar (a ∈ A):

φ ::= true | ¬φ | φ ∧φ | 〈a〉φ
The semantics of HML can be defined through an interpretation function MHML that asso-
ciates with any formula in FHML the set of states satisfying the formula:
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MHML[[true]] = S
MHML[[¬φ ]] = S\MHML[[φ ]]

MHML[[φ1∧φ2]] = MHML[[φ1]]∩MHML[[φ2]]
MHML[[〈a〉φ ]] = {s ∈ S | ∃s′ ∈MHML[[φ ]].s a−→ δs′}

2.3 Bisimilarity for Reactive Probabilistic Processes

We recast in the NPLTS model also the definition of probabilistic bisimilarity for reactive
probabilistic processes of [21]. In the following, we let D(S′) = ∑s′∈S′D(s′) for
D ∈ Distr(S) and S′ ⊆ S.

Definition 3 Let (S,A,−→) be an NPLTS in which the transitions of each state have dif-
ferent labels. An equivalence relation B over S is a probabilistic bisimulation iff, whenever
(s1,s2) ∈ B, then for all actions a ∈ A and for all equivalence classes C ∈ S/B it holds
that the existence of s1

a−→D1 implies the existence of s2
a−→D2 and D1(C) = D2(C). We

denote by ∼PB the largest probabilistic bisimulation.

Given an NPLTS (S,A,−→) satisfying the minimal deviation assumption in which the
transitions of each state have different labels, the relation ∼PB is characterized by PML [21,
22]. The set FPML of its formulae is generated by the following grammar (a ∈ A, p ∈R[0,1]):

φ ::= true | ¬φ | φ ∧φ | 〈a〉pφ

The semantics of PML can be defined through an interpretation function MPML that differs
from MHML only for the last clause, which becomes as follows:

MPML[[〈a〉pφ ]] = {s ∈ S | ∃D ∈ Distr(S).s a−→D ∧D(MPML[[φ ]])≥ p}
Note that, in this reactive setting, if an a-labeled transition exists that goes from s to D , then
it is the only a-labeled transition departing from s, and hence D is unique.

In [13], it was subsequently shown that probabilistic bisimilarity for reactive proba-
bilistic processes can be characterized by PML without negation, and that the existence of
neither a minimal deviation nor a minimal probability needs to be assumed to achieve the
characterization result.

2.4 Bisimilarity for Non-Alternating and Alternating Processes

We now recall for non-alternating processes (i.e., NPLTS models in their full generality)
two probabilistic bisimulation equivalences defined in [27]. Both of them check whether the
probabilities of all classes of equivalent states – i.e., the class distributions – reached by the
two transitions considered in the bisimulation game are equal.

The first equivalence relies on deterministic schedulers for resolving nondeterminism.
This means that, when responding to an a-transition of the challenger, the defender can only
select a single a-transition (if any).

Definition 4 Let (S,A,−→) be an NPLTS. An equivalence relation B over S is a class-
distribution probabilistic bisimulation iff, whenever (s1,s2) ∈B, then for all actions a ∈ A
it holds that for each s1

a−→D1 there exists s2
a−→D2 such that, for all equivalence classes

C ∈ S/B, D1(C) = D2(C). We denote by ∼PB,dis the largest class-distribution probabilistic
bisimulation.
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While in Def. 3 the quantification over C ∈ S/B can be placed before or after the tran-
sition matching because s1 and s2 can have at most one outgoing a-transition each, in Def. 4
it is important for the quantification to be after the transition matching.

The second equivalence is coarser than the first one because it relies instead on ran-
domized schedulers. This means that, when responding to an a-transition of the challenger,
the defender can select a convex combination of a-transitions (if any). In the following, the
acronym ct stands for “based on combined transitions”.

Definition 5 Let (S,A,−→) be an NPLTS. An equivalence relation B over S is a class-
distribution ct-probabilistic bisimulation iff, whenever (s1,s2) ∈ B, then for all actions
a ∈ A it holds that for each s1

a−→D1 there exists s2
a−→c D2 such that, for all equiva-

lence classes C ∈ S/B, D1(C) = D2(C). We denote by ∼ct
PB,dis the largest class-distribution

ct-probabilistic bisimulation.

In order to obtain a modal logic characterization for ∼PB,dis and ∼ct
PB,dis, in [23,18]

an extension of HML much richer than PML was defined. The main differences are that
(i) formulae are interpreted over probability distribution on states rather than over single
states and (ii) the modal operator 〈a〉p· is split into the original modal operator 〈a〉· of HML
and an additional unary operator [·]p. State distribution D satisfies [φ ]p if D assigns to the
set of states satisfying φ a probability that is at least p.

In [16], the same equivalences (lifted to state distributions) were differently character-
ized by adding to HML a binary operator ·⊕p ·, where φ1⊕p φ2 asserts decomposability of
a state distribution to satisfy the two subformulae.

For alternating processes, i.e., NPLTS models in which every state that enables a non-
Dirac transition enables only that transition, the following holds:

– ∼PB,dis and ∼ct
PB,dis collapse into a single equivalence that coincides with those defined

in [15,24] for alternating processes, as shown in [28].
– ∼PB,dis is again characterized by the original PML, as shown in [23].

3 Interpreting PML over NPLTS Models

The modal logic PML was originally interpreted in [21,22] on reactive probabilistic pro-
cesses and then in [23] on alternating processes. The same interpretation can be applied to
general NPLTS models by establishing that state s satisfies formula 〈a〉pφ iff there exists a
resolution of the internal nondeterminism on action a such that s can perform an a-transition
after which it reaches with probability at least p a set of states that satisfy φ . This existential
interpretation only provides a weak guarantee of fulfilling properties, as it depends on how
internal nondeterminism is resolved.

A different interpretation can be adopted by following [5]: s satisfies 〈a〉pφ iff, for each
resolution of the internal nondeterminism on action a, s can perform an a-transition after
which it reaches with probability at least p a set of states that satisfy φ . The resulting uni-
versal interpretation provides a strong guarantee of fulfilling properties because, no matter
how internal nondeterminism is resolved, a certain behavior is ensured.

We denote by PML∃,≥ and PML∀,≥ the logics resulting from the two different interpre-
tations of the diamond operator, which we formalize as follows:

MPML∃,≥ [[〈a〉pφ ]] = {s ∈ S | ∃D .s a−→D ∧D(MPML∃,≥ [[φ ]])≥ p}
MPML∀,≥ [[〈a〉pφ ]] = {s ∈ S | s a−→ ∧∀D .s a−→D =⇒D(MPML∀,≥ [[φ ]])≥ p}
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We denote by PML∃,≤ and PML∀,≤ the two variants in which the probability value p deco-
rating the diamond operator is intended as an upper bound rather than a lower bound.

Finally, we denote by PML∃,I and PML∀,I two further variants generalizing the previous
four logics, in which the probability value p is replaced by a probability interval [p1, p2] –
where p1, p2 ∈ R[0,1] are such that p1 ≤ p2 – and the resulting diamond operator is inter-
preted as follows:

MPML∃,I [[〈a〉[p1,p2]φ ]] = {s ∈ S | ∃D .s a−→D ∧ p1 ≤D(MPML∃,I [[φ ]])≤ p2}
MPML∀,I [[〈a〉[p1,p2]φ ]] = {s ∈ S | s a−→ ∧∀D .s a−→D =⇒ p1 ≤D(MPML∀,I [[φ ]])≤ p2}

Note that 〈a〉pφ can be encoded as 〈a〉[p,1]φ when p is a lower bound and as 〈a〉[0,p]φ when
p is an upper bound.

In the following, if L is one of the above six variants of PML, then we denote by FL(s)
the set of formulae in FL satisfied by state s and we let s1 ∼L s2 iff FL(s1) = FL(s2).

Interestingly enough, in Sect. 6 we will see that the equivalences induced by the three
universally interpreted variants are the same, and coincide with the equivalences induced by
the two existentially interpreted variants with probabilistic bound; in contrast, the equiva-
lence induced by PML∃,I is finer then the one induced by the other five variants. We will
also see that the six equivalences are different by those induced by the logics of [23,18,16].

4 Group-by-Group Probabilistic Bisimilarities and PML

In this section, we introduce the probabilistic bisimilarities for NPLTS models that are char-
acterized by PML as interpreted in the previous section. Before presenting their definition
and the related results, we highlight the differences with respect to ∼PB,dis.

Firstly, instead of comparing the probability distributions over all classes of equivalent
states reached by the transitions considered in the bisimulation game, the new equivalences
focus on a single equivalence class at a time. Therefore, similar to the approach followed
in [31] in the setting of approximate probabilistic relations, given an action a the probability
distribution over all classes of equivalent states reached by an a-transition of the challenger
can now be matched by means of several (not just one) a-transitions of the defender, each
taking care of a different class.

Secondly, the new equivalences take into account the probability of reaching groups of
equivalence classes rather than only individual classes. This is similar to the approaches
followed in [14] and in [7,10] to ensure transitivity of probabilistic bisimilarity over prob-
abilistic processes without and with internal nondeterminism, respectively, when the state
space is continuous. Considering groups of equivalence classes would make no difference
in the case of∼PB,dis, while here it significantly changes the discriminating power as will be
illustrated in Sect. 5.1. Due to the previous and the current difference with respect to∼PB,dis,
we call these new equivalences group-by-group probabilistic bisimilarities.

Thirdly, the new equivalences come in several variants depending on whether, in the
bisimulation game, the probabilities of reaching a certain group of classes of equivalent
states are compared based on =, ≤, or ≥. Similar to the consideration of groups of classes
instead of individual classes, this would make no difference in the case of ∼PB,dis.

4.1 Defining Group-by-Group Probabilistic Bisimilarities

In the following, we let
⋃

G =
⋃

C∈G C when G ∈ 2S/B is a group of equivalence classes with
respect to an equivalence relation B over S, and we use ./ to denote one of the relational
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operators in {=,≤,≥}. The definition of ∼PB,gbg,./ below assumes the use of deterministic
schedulers, but it can be easily extended to the case of randomized schedulers by analogy
with ∼ct

PB,dis, thus yielding ∼ct
PB,gbg,./ that will be studied in Sect. 6.

Definition 6 Let (S,A,−→) be an NPLTS. An equivalence relation B over S is a ./-group-
by-group probabilistic bisimulation iff, whenever (s1,s2)∈B, then for all actions a∈ A and
for all groups of equivalence classes G ∈ 2S/B it holds that for each s1

a−→D1 there exists
s2

a−→D2 such that D1(
⋃

G ) ./ D2(
⋃

G ). We denote by ∼PB,gbg,./ the largest ./-group-by-
group probabilistic bisimulation.

Note that, while in Def. 4 the quantification over C ∈ S/B is after the transition match-
ing, in Def. 6 the quantification over G ∈ 2S/B is before the transition matching, thus al-
lowing a transition of the challenger to be matched by several transitions of the defender
depending on the target groups.

The relation∼PB,gbg,= identifies the two systems in Fig. 1, whilst the relations∼PB,gbg,≤
and∼PB,gbg,≥ identify both the two systems in Fig. 1 and the two systems in Fig. 2. In Sect. 6,
we will see that ∼PB,dis is finer than ∼PB,gbg,= and that the latter is finer than ∼PB,gbg,≤,
which in turn coincides with ∼PB,gbg,≥.

4.2 Backward Compatibility

Before moving to the modal logic characterization results, as a sanity check we show that
the three group-by-group probabilistic bisimilarities and their ct-variants are backward com-
patible with the bisimilarity∼B of [17] for fully nondeterministic processes (see Def. 2) and
the probabilistic bisimilarity ∼PB of [21] for reactive probabilistic processes (see Def. 3).
Moreover, they coincide with the probabilistic bisimilarities ∼PB,dis and ∼ct

PB,dis of [27]
(see Defs. 4 and 5) when restricting attention to alternating processes.

Proposition 1 Let (S,A,−→) be an NPLTS in which the target of each transition is a Dirac
distribution. Let s1,s2 ∈ S and ./∈ {=,≤,≥}. Then:

s1 ∼PB,gbg,./ s2 ⇐⇒ s1 ∼ct
PB,gbg,./ s2 ⇐⇒ s1 ∼B s2

Proof Since every transition of this specific NPLTS can reach with probability greater than 0
a single state and hence a single class of any equivalence relation – which are thus reached
with probability 1 – the reflexive, symmetric, and transitive closure of a bisimulation is
trivially a ./-group-by-group (ct-)probabilistic bisimulation.

Proposition 2 Let (S,A,−→) be an NPLTS in which the transitions of each state have dif-
ferent labels. Let s1,s2 ∈ S and ./∈ {=,≤,≥}. Then:

s1 ∼PB,gbg,./ s2 ⇐⇒ s1 ∼ct
PB,gbg,./ s2 ⇐⇒ s1 ∼PB s2

Proof Since every state of this specific NPLTS has at most one transition labeled with a
certain action, a probabilistic bisimulation is trivially a ./-group-by-group (ct-)probabilistic
bisimulation.

Proposition 3 Let (S,A,−→) be an NPLTS in which every state that enables a non-Dirac
transition enables only that transition. Let s1,s2 ∈ S and ./∈ {=,≤,≥}. Then:

s1 ∼PB,gbg,./ s2 ⇐⇒ s1 ∼PB,dis s2
s1 ∼ct

PB,gbg,./ s2 ⇐⇒ s1 ∼ct
PB,dis s2

Proof Since every state of this specific NPLTS has either zero or more Dirac transitions or
a single non-Dirac transition, a class-distribution (ct-)probabilistic bisimulation is trivially
a ./-group-by-group (ct-)probabilistic bisimulation.
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4.3 Logical Characterization

The relation ∼PB,gbg,= turns out to be characterized by PML∃,I under assumptions of image
finiteness and minimal probability. The proof of this result follows the same two-step pattern
as the proof for the analogous result in [17] connecting ∼B with HML.

The first step consists of providing an alternative characterization of ∼PB,gbg,= as the
limit of a sequence of coarser equivalence relations ∼i

PB,gbg,=, i ∈ N, which are inductively
defined as follows for an NPLTS (S,A,−→):

– ∼0
PB,gbg,= = S×S.

– ∼i+1
PB,gbg,= is the set of all pairs (s1,s2) ∈∼i

PB,gbg,= such that for all actions a ∈ A and

groups of equivalence classes G ∈ 2S/∼i
PB,gbg,= it holds that for each s1

a−→D1 there exists
s2

a−→D2 such that D1(
⋃

G ) = D2(
⋃

G ).

Each equivalence relation ∼i
PB,gbg,= identifies those states that cannot be distinguished

through the bisimulation game within i consecutive transitions. The following lemma guar-
antees that two states of an image-finite NPLTS are equivalent according to ∼PB,gbg,= iff
they are equivalent according to all the relations ∼i

PB,gbg,=. Its proof is an adaptation of the
proof developed in [2] for a similar result concerned with ∼PB,dis.

Lemma 1 Let (S,A,−→) be an image-finite NPLTS. Then:
∼PB,gbg,= =

⋂
i∈N
∼i

PB,gbg,=

Proof For the sake of convenience, we denote by ∼′ the relation
⋂

i∈N
∼i

PB,gbg,=.

Firstly, we observe what follows:

– ∼′ is an equivalence relation because so is ∼i
PB,gbg,= for all i ∈ N.

– Given C ∈ S/∼′ and i ∈ N, there exists a unique element Ci in S/∼i
PB,gbg,= such that

Ci ⊇C, and hence C =
⋂

i∈NCi with Ci1 ⊇Ci2 for i1 ≤ i2.
– As a consequence, given G ∈ 2S/∼′ and i ∈ N, there exists a unique element Gi in

2S/∼i
PB,gbg,= such that every class in Gi contains some class in G , and hence

⋃
G =⋂

i∈N(
⋃

Gi) with
⋃

Gi1 ⊇
⋃

Gi2 for i1 ≤ i2.
– Moreover, if s a−→D , then D(

⋃
G ) = infi∈N D(

⋃
Gi). In fact, observing that for all i∈N

it holds that D(
⋃

Gi) ≥ D(
⋃

G ) because
⋃

Gi ⊇
⋃

G , if we let p = infi∈N D(
⋃

Gi),
then p ≥ D(

⋃
G ) because D(

⋃
G ) is a lower bound of the sequence (D(

⋃
Gi))i∈N

and p is the greatest lower bound of that sequence. Suppose that p > D(
⋃

G ) and let
δ = p−D(

⋃
G ). Since δ > 0 and the summation D(S\

⋃
G ) satisfies ∑s∈S\

⋃
G D(s)≤ 1

and hence converges, there exists a finite subset X of S \
⋃

G such that the rest D((S \⋃
G ) \X) of the previously considered summation satisfies ∑s∈(S\

⋃
G )\X D(s) < δ . Let

Y = (S\
⋃

G )\X. For all i ∈ N, it holds that:⋃
Gi =

⋃
G ∪ (Y ∩

⋃
Gi)∪ (X ∩

⋃
Gi)

where the three sets on the right-hand side are pairwise disjoint and hence:
D(
⋃

Gi) = D(
⋃

G )+D(Y ∩
⋃

Gi)+D(X ∩
⋃

Gi)
≤ D(

⋃
G )+D(Y )+D(X ∩

⋃
Gi)

< D(
⋃

G )+δ +D(X ∩
⋃

Gi)
= p+D(X ∩

⋃
Gi)

From the inequality above and D(
⋃

Gi)≥ p, we derive that:
D(X ∩

⋃
Gi) > D(

⋃
Gi)− p ≥ 0
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and hence X ∩
⋃

Gi 6= /0 for all i ∈N. As a consequence, X ∩
⋃

G 6= /0 because X is finite
and

⋃
G0 ⊇

⋃
G1 ⊇ ... . This contradicts the fact that X is a subset of S\

⋃
G . Therefore,

it must be p = D(
⋃

G ).

Secondly, it holds that∼′⊇∼PB,gbg,= because∼i
PB,gbg,=⊇∼PB,gbg,= for all i ∈N as we now

show by proceeding by induction on i:

– If i = 0, then ∼i
PB,gbg,= = S×S⊇∼PB,gbg,=.

– Let i be an element of N for which the result holds and consider i+1. If s1,s2 ∈ S satisfy
s1 ∼PB,gbg,= s2, then:

– For all a ∈ A and G ∈ 2S/∼PB,gbg,= , it holds that for each s1
a−→D1 there exists

s2
a−→D2 such that D1(

⋃
G ) = D2(

⋃
G ).

– s1 ∼i
PB,gbg,= s2 because ∼i

PB,gbg,=⊇∼PB,gbg,= by the induction hypothesis.

Since every equivalence class of ∼i
PB,gbg,= is equal to the union of some equivalence

classes of ∼PB,gbg,= and hence the union of equivalence classes in every group G ′ of
∼i

PB,gbg,= is equal to the union of the equivalence classes in some group G of ∼PB,gbg,=,

we derive that for all a ∈ A and G ′ ∈ 2S/∼i
PB,gbg,= it holds that for each s1

a−→D1 there
exists s2

a−→D2 such that:
D1(

⋃
G ′) = D1(

⋃
G ) = D2(

⋃
G ) = D2(

⋃
G ′)

This means that s1 ∼i+1
PB,gbg,= s2.

Thirdly, we prove that ∼′⊆∼PB,gbg,= by showing that∼′ is a =-group-by-group probabilis-
tic bisimulation. Suppose that s1,s2 ∈ S satisfy s1 ∼′ s2 and, given a ∈ A and G ∈ 2S/∼′ ,
assume that s1

a−→D1. Then D1(
⋃

G ) = infi∈N D1(
⋃

Gi) where each Gi is the unique el-

ement in 2S/∼i
PB,gbg,= such that every class in Gi contains some class in G . Observing that

∼0
PB,gbg,= induces a single equivalence class equal to S and hence D1(

⋃
G0) = D1(S) = 1,

from s1 ∼′ s2 and s1
a−→D1 it follows that for all i ∈ N≥1 there exists s2

a−→D2,i such that
D1(

⋃
Gi−1) = D2,i(

⋃
Gi−1).

Since the NPLTS is image finite, the set {D2,i | i ∈ N≥1} is finite and we enumerate it as
{∆ 1

2 , . . . ,∆ k
2}. For each j ∈ {1, . . . ,k}, we also let I j be the set of indexes i ∈ N≥1 such that

D1(
⋃

Gi−1) = ∆
j

2(
⋃

Gi−1). At least one set in {I1, . . . , Ik} is infinite. Indeed, if every I j were
finite, then there would exist an integer i such that i /∈ I j for each j ∈ {1, . . . ,k}. Hence,
there would exists a group Gi−1 such that D1(

⋃
Gi−1) 6= ∆

j
2(
⋃

Gi−1) for each j ∈ {1, . . . ,k}.
However, this implies s1 6∼i

PB,gbg,= s2, which whould contradict the assumption s1 ∼′ s2.
Let j′ be such that I j′ is infinite. We have that:

D1(
⋃

G ) = infi∈N D1(
⋃

Gi) = infi∈I j′ D1(
⋃

Gi) =

= infi∈I j′ ∆
j′

2 (
⋃

Gi) = infi∈N ∆
j′

2 (
⋃

Gi) = ∆
j′

2 (
⋃

G )
where the second and the fourth equalities derive from the fact that (D1(

⋃
Gi))i∈I j′ and

(∆ j′
2 (
⋃

Gi))i∈I j′ are infinite subsequences of the non-increasing sequences (D1(
⋃

Gi))i∈N

and (∆ j′
2 (
⋃

Gi))i∈N, respectively, and therefore they have pairwise the same infimum. In

conclusion, transition s1
a−→D1 is matched by transition s2

a−→∆
j′

2 with respect to G .

The second step consists of showing that two states are equated by ∼i
PB,gbg,= iff they

satisfy the same formulae in Fi
PML∃,I

, which is the set of formulae in FPML∃,I whose maxi-

mum number of nested diamond operators is at most i. We denote by F i
PML∃,I

(s) the set of

formulae in Fi
PML∃,I

satisfied by state s.
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Lemma 2 Let (S,A,−→) be an image-finite NPLTS satisfying the minimal probability as-
sumption. Let s1,s2 ∈ S. Then for all i ∈ N:

s1 ∼i
PB,gbg,= s2 ⇐⇒ F i

PML∃,I
(s1) = F i

PML∃,I
(s2)

Proof Given an image-finite NPLTS (S,A,−→) satisfying the minimal probability assump-
tion, and given s1,s2 ∈ S, we proceed by induction on i ∈ N.
Let i = 0. Since ∼0

PB,gbg,= = S×S and F 0
PML∃,I

(s) = {φ ∈ F0
PML∃,I

| φ ≡ true} for all s ∈ S,
it trivially holds that:

s1 ∼0
PB,gbg,= s2 ⇐⇒ F 0

PML∃,I
(s1) = F 0

PML∃,I
(s2)

Let i ∈ N and suppose that for all j = 0, . . . , i:
s1 ∼ j

PB,gbg,= s2 ⇐⇒ F j
PML∃,I

(s1) = F j
PML∃,I

(s2)
We prove both implications for i + 1 by reasoning on their corresponding contrapositive
statements, i.e., we prove that:

F i+1
PML∃,I

(s1) 6= F i+1
PML∃,I

(s2) ⇐⇒ s1 6∼i+1
PB,gbg,= s2

(=⇒) If F i+1
PML∃,I

(s1) 6= F i+1
PML∃,I

(s2), then there are two cases:

– If F i
PML∃,I

(s1)6=F i
PML∃,I

(s2), then by the induction hypothesis it holds that s1 6∼i
PB,gbg,=s2

and hence s1 6∼i+1
PB,gbg,= s2.

– If F i
PML∃,I

(s1) = F i
PML∃,I

(s2), then from F i+1
PML∃,I

(s1) 6= F i+1
PML∃,I

(s2) it follows that there

exists φ ∈ Fi+1
PML∃,I

such that s1 ∈MPML∃,I [[φ ]] and s2 /∈MPML∃,I [[φ ]]. We now proceed
by induction on the syntactical structure of φ . Here we only consider the case φ =
〈a〉[p1,p2]φ

′ because the other cases are routine.
¿From s1 ∈MPML∃,I [[〈a〉[p1,p2]φ

′]] and s2 /∈MPML∃,I [[〈a〉[p1,p2]φ
′]], it follows that:

– p1 ≤D1(MPML∃,I [[φ
′]])≤ p2 for some D1 such that s1

a−→D1.

– D2(MPML∃,I [[φ
′]]) < p1 or D2(MPML∃,I [[φ

′]]) > p2 for all D2 such that s2
a−→D2.

Since φ ′ ∈ Fi
PML∃,I

, by the induction hypothesis there exists G ∈ 2S/∼i
PB,gbg,= such that⋃

C∈G C = MPML∃,I [[φ
′]]. Then:

– D1(
⋃

G ) = q ∈ R[p1,p2].
– D2(

⋃
G ) 6= q for all D2 such that s2

a−→D2.
Therefore s1 6∼i+1

PB,gbg,= s2.

(⇐=) If s1 6∼i+1
PB,gbg,= s2, then there are two cases:

– If s1 6∼i
PB,gbg,=s2, then by the induction hypothesis it holds that F i

PML∃,I
(s1) 6=F i

PML∃,I
(s2)

and hence F i+1
PML∃,I

(s1) 6= F i+1
PML∃,I

(s2).

– If s1 ∼i
PB,gbg,= s2, then from s1 6∼i+1

PB,gbg,= s2 it follows that there exist p ∈ R[0,1] and

G ∈ 2S/∼i
PB,gbg,= such that:

– D1(
⋃

G ) = p for some D1 such that s1
a−→D1.

– D2(
⋃

G ) 6= p for all D2 such that s2
a−→D2.

Let G1 = {C ∈ S/∼i
PB,gbg,= |D1(C) > 0} and G2 = {C ∈ S/∼i

PB,gbg,= | ∃D2.s2
a−→D2∧

D2(C) > 0}. Thanks to the assumptions of image finiteness and minimal probability,
both G1 and G2 are finite.
By the induction hypothesis, there exists a distinguishing formula φ<C1,C2> ∈ Fi

PML∃,I
for

all C1 and C2 in S/∼i
PB,gbg,= such that C1 6= C2, i.e.:
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C1 ⊆MPML∃,I [[φ<C1,C2>]]
C2 ⊆ S\MPML∃,I [[φ<C1,C2>]]

Then:

φG =
∨

C∈G

( ∧
C1∈G1\{C}

φ<C,C1>∧
∧

C2∈G2\{C}
φ<C,C2>

)
where

∨
i∈I φi =¬

∧
i∈I ¬φi for I finite and

∧
i∈I φi = true for I = /0, yields a distinguishing

formula for s1 and s2 because:
– s1 ∈MPML∃,I [[〈a〉[p,p]φG ]].
– s2 /∈MPML∃,I [[〈a〉[p,p]φG ]].

Since 〈a〉[p,p]φG ∈ Fi+1
PML∃,I

, we derive that F i+1
PML∃,I

(s1) 6= F i+1
PML∃,I

(s2).

Theorem 1 Let (S,A,−→) be an image-finite NPLTS satisfying the minimal probability
assumption. Let s1,s2 ∈ S. Then:

s1 ∼PB,gbg,= s2 ⇐⇒ s1 ∼PML∃,I s2

The result established by Thm. 1 would not hold if PML∃,≥ or PML∃,≤ were used. For
instance, the two states s1 and s2 in Fig. 2, which are not related by ∼PB,gbg,= as can be seen
by considering the PML∃,I formula 〈offer〉[0.5,0.5]〈head〉[1,1]true, cannot be distinguished by
any PML∃,≥ or PML∃,≤ formula.

Following the same proof pattern, we can show that the relations∼PB,gbg,≤ and∼PB,gbg,≥
are respectively characterized by PML∃,≥ and PML∃,≤.

Theorem 2 Let (S,A,−→) be an image-finite NPLTS satisfying the minimal probability as-
sumption. Let s1,s2 ∈ S. Then:

s1 ∼PB,gbg,≤ s2 ⇐⇒ s1 ∼PML∃,≥ s2

s1 ∼PB,gbg,≥ s2 ⇐⇒ s1 ∼PML∃,≤ s2

Proof The proof of the first result is similar to the proof of Thm. 1 – based on Lemmata 1
and 2 – up to the use of ≤ in place of = when comparing the probabilities of reaching a
group of equivalence classes and the use of∼i

PB,gbg,≤, F i
PML∃,≥

, MPML∃,≥ , and 〈a〉p in place

of ∼i
PB,gbg,=, F i

PML∃,I
, MPML∃,I , and 〈a〉[p1,p2] wherever necessary.

In particular, for the induction step of Lemma 2 we point out that:

– In the (=⇒) part, from s1 ∈MPML∃,≥ [[〈a〉pφ ′]] and s2 /∈MPML∃,≥ [[〈a〉pφ ′]], it follows
that:

– D1(MPML∃,≥ [[φ ′]])≥ p for some D1 such that s1
a−→D1.

– D2(MPML∃,≥ [[φ ′]]) < p for all D2 such that s2
a−→D2.

Since φ ′ ∈ Fi
PML∃,≥

, by the induction hypothesis there exists G ∈ 2S/∼i
PB,gbg,≤ such that⋃

C∈G C = MPML∃,≥ [[φ ′]]. Then:
– D1(

⋃
G )≥ p.

– D2(
⋃

G ) < p for all D2 such that s2
a−→D2.

– In the (⇐=) part, if s1 ∼i
PB,gbg,≤ s2, then there exist p ∈ R[0,1] and G ∈ 2S/∼i

PB,gbg,≤ such
that:

– D1(
⋃

G ) = p for some D1 such that s1
a−→D1.

– D2(
⋃

G ) < p for all D2 such that s2
a−→D2.

The distinguishing formula in Fi+1
PML∃,≥

for s1 and s2 is then 〈a〉pφG .
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0.5 0.20.3

c’ d c’’ d

s2

Fig. 3 Models related by ∼PB,cbc,= and distinguished by all PML variants

The proof of the second result is similar to the proof of the first one up to the use of ≥ in
place of ≤ and > in place of < wherever necessary.

It is easy to see that ∼ct
PB,gbg,=, ∼ct

PB,gbg,≤, and ∼ct
PB,gbg,≥ are respectively characterized

by the logics PMLct
∃,I, PMLct

∃,≥, and PMLct
∃,≤ in which the interpretation of the diamond

operator relies on combined transitions instead of ordinary ones.

5 Variants and Comparisons for Group-by-Group Probabilistic Bisimilarities

For the three group-by-group probabilistic bisimilarities, we have shown that they are char-
acterized by the three existentially interpreted variants of PML. In this section, we present
further motivations behind their definition (Sect. 5.1), three variants based on extremal
probabilities that are characterized by the three universally interpreted variants of PML
(Sect. 5.2), and a comparison with the probabilistic bisimilarities of [30] that are charac-
terized by PCTL/PCTL* (Sect. 5.3).

5.1 Class-by-Class Probabilistic Bisimilarities

Instead of using groups of equivalence classes as in Def. 6, the most natural way of present-
ing our approach would be to introduce class-by-class variants of∼PB,dis. These are obtained
by simply anticipating the quantification over equivalence classes of target states in Def. 4.
In the definition below, ./∈ {=,≤,≥} as usual.

Definition 7 Let (S,A,−→) be an NPLTS. An equivalence relation B over S is a ./-class-
by-class probabilistic bisimulation iff, whenever (s1,s2) ∈B, then for all actions a ∈ A and
for all equivalence classes C ∈ S/B it holds that for each s1

a−→D1 there exists s2
a−→D2

such that D1(C) ./ D2(C). We denote by∼PB,cbc,./ the largest ./-class-by-class probabilistic
bisimulation.

The problem is that the resulting relations ∼PB,cbc,./ are too coarse. For example, in
Fig. 3 it holds that s1 ∼PB,cbc,= s2, as witnessed by the equivalence relation that pairs states
with identically labeled transitions. However, after performing a, from s2 it is always possi-
ble to reach a state in which c′ or c′′ is enabled, whereas this is not the case from s1.

From a modal logic perspective, none of the relations ∼PB,cbc,./ is characterized by the
PML variants of Sect. 3. For instance, in Fig. 3 it holds that only s1 satisfies the following
existentially interpreted formulae:

PML∃,≥ : 〈a〉0.5(〈c′〉1true∨〈c′′〉1true)
PML∃,≤ : 〈a〉0(〈c′〉1true∨〈c′′〉1true)
PML∃,I : ¬〈a〉[0.2,0.3](〈c′〉[1,1]true∨〈c′′〉[1,1]true)
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while only s2 satisfies the following universally interpreted formulae:
PML∀,≥ : 〈a〉0.7(〈b〉1true∨〈d〉1true)
PML∀,≤ : 〈a〉0.8(〈b〉1true∨〈d〉1true)
PML∀,I : 〈a〉[0.7,0.8](〈b〉[1,1]true∨〈d〉[1,1]true)

where φ1∨φ2 stands for ¬(¬φ1∧¬φ2). The presence of the logical disjunction in the distin-
guishing formulae above clearly indicates that – having anticipated the quantification over
the target states – it is necessary to group equivalence classes together if one wants to obtain
the same identifications as the equivalences induced by the variants of PML.

5.2 Extremal Probabilities and Universal Interpretations of PML

The three group-by-group probabilistic bisimilarities of Def. 6 are respectively characterized
by the three existentially interpreted variants of PML. We consider below three variants
of the group-by-group approach in which only the supremum (t) and/or the infimum (u)
of the probabilities of reaching a certain group after the execution of a certain action are
considered. It turns out that the resulting relations are respectively characterized by the three
universally interpreted variants of PML.

Definition 8 Let (S,A,−→) be an NPLTS. An equivalence relation B over S is atu-group-
by-group probabilistic bisimulation iff, whenever (s1,s2)∈B, then for all actions a∈ A and
groups of equivalence classes G ∈ 2S/B it holds that s1

a−→ iff s2
a−→ and:⊔

s1
a−→D1

D1(
⋃

G ) =
⊔

s2
a−→D2

D2(
⋃

G )

d

s1
a−→D1

D1(
⋃

G ) =
d

s2
a−→D2

D2(
⋃

G )

We denote by ∼PB,gbg,tu the largest tu-group-by-group probabilistic bisimulation.

Theorem 3 Let (S,A,−→) be an image-finite NPLTS satisfying the minimal probability as-
sumption. Let s1,s2 ∈ S. Then:

s1 ∼PB,gbg,tu s2 ⇐⇒ s1 ∼PML∀,I s2

Proof Similar to the proof of Thm. 1 – based on Lemmata 1 and 2 – up to the use of
⊔

andd
in place of individual values when comparing the probabilities of reaching a group of

equivalence classes and the use of ∼i
PB,gbg,tu, F i

PML∀,I
, and MPML∀,I in place of ∼i

PB,gbg,=,

F i
PML∃,I

, and MPML∃,I wherever necessary.
In particular, for the induction step of Lemma 2 we point out that:

– In the (=⇒) part, from s1 ∈MPML∀,I [[〈a〉[p1,p2]φ
′]] and s2 /∈MPML∀,I [[〈a〉[p1,p2]φ

′]], it
follows that:

– s1
a−→ and p1 ≤D1(MPML∀,I [[φ

′]])≤ p2 for all D1 such that s1
a−→D1.

– s2 6
a−→ or D2(MPML∀,I [[φ

′]]) < p1 or D2(MPML∀,I [[φ
′]]) > p2 for some D2 such that

s2
a−→D2.

Since φ ′ ∈ Fi
PML∀,I

, by the induction hypothesis there exists G ∈ 2S/∼i
PB,gbg,tu such that⋃

C∈G C = MPML∀,I [[φ
′]]. Then:

– s1
a−→ and

⊔
s1

a−→D1

D1(
⋃

G ) = q′′,
d

s1
a−→D1

D1(
⋃

G ) = q′ with q′,q′′ ∈ R[p1,p2] such

that q′ ≤ q′′.
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– s2 6
a−→ or

⊔
s2

a−→D2

D2(
⋃

G ) > q′′ or
d

s2
a−→D2

D2(
⋃

G ) < q′.

– In the (⇐=) part, if s1∼i
PB,gbg,tu s2, then there exist p′1, p′′1 , p′2, p′′2 ∈R[0,1] – with p′1≤ p′′1

and p′2 ≤ p′′2 – and G ∈ 2S/∼i
PB,gbg,tu such that:

– s1
a−→ and

⊔
s1

a−→D1

D1(
⋃

G ) = p′′1 ,
d

s1
a−→D1

D1(
⋃

G ) = p′1.

– s2 6
a−→ or

⊔
s2

a−→D2

D2(
⋃

G ) = p′′2 6= p′′1 or
d

s2
a−→D2

D2(
⋃

G ) = p′2 6= p′1.

Let G1 = {C ∈ S/∼i
PB,gbg,tu | ∃D1.s1

a−→D1∧D1(C) > 0} and G2 = {C ∈ S/∼i
PB,gbg,tu

| ∃D2.s2
a−→D2 ∧D2(C) > 0}. The distinguishing formula in Fi+1

PML∀,I
for s1 and s2 is

then:
– 〈a〉[p′1,p′′1 ]φG if s2 6

a−→ or it is not the case that p′1 ≤ p′2 and p′′2 ≤ p′′1 .

– 〈a〉[p′2,p′′2 ]φG if s2
a−→ and it is the case that p′1 ≤ p′2 and p′′2 ≤ p′′1 .

Definition 9 Let (S,A,−→) be an NPLTS and # ∈ {t,u}. An equivalence relation B over
S is a #-group-by-group probabilistic bisimulation iff, whenever (s1,s2) ∈B, then for all
actions a∈ A and groups of equivalence classes G ∈ 2S/B it holds that s1

a−→ iff s2
a−→ and:

#
s1

a−→D1

D1(
⋃

G ) = #
s2

a−→D2

D2(
⋃

G )

We denote by ∼PB,gbg,# the largest #-group-by-group probabilistic bisimulation.

Theorem 4 Let (S,A,−→) be an image-finite NPLTS satisfying the minimal probability as-
sumption. Let s1,s2 ∈ S. Then:

s1 ∼PB,gbg,t s2 ⇐⇒ s1 ∼PML∀,≤ s2

s1 ∼PB,gbg,u s2 ⇐⇒ s1 ∼PML∀,≥ s2

Proof The proof of the first result is similar to the proof of Thm. 1 – based on Lemmata 1
and 2 – up to the use of

⊔
in place of individual values when comparing the probabilities of

reaching a group of equivalence classes and the use of ∼i
PB,gbg,t, F i

PML∀,≤
, and MPML∀,≤ in

place of ∼i
PB,gbg,=, F i

PML∃,I
, and MPML∃,I wherever necessary.

In particular, for the induction step of Lemma 2 we point out that:

– In the (=⇒) part, from s1 ∈MPML∀,≤ [[〈a〉pφ ′]] and s2 /∈MPML∀,≤ [[〈a〉pφ ′]], it follows
that:

– s1
a−→ and D1(MPML∀,≤ [[φ ′]])≤ p for all D1 such that s1

a−→D1.

– s2 6
a−→ or D2(MPML∀,≤ [[φ ′]]) > p for some D2 such that s2

a−→D2.

Since φ ′ ∈ Fi
PML∀,≤

, by the induction hypothesis there exists G ∈ 2S/∼i
PB,gbg,t such that⋃

C∈G C = MPML∀,≤ [[φ ′]]. Then:

– s1
a−→ and

⊔
s1

a−→D1

D1(
⋃

G )≤ p.

– s2 6
a−→ or

⊔
s2

a−→D2

D2(
⋃

G ) > p.

– In the (⇐=) part, if s1 ∼i
PB,gbg,t s2, then there exist p ∈ R[0,1] and G ∈ 2S/∼i

PB,gbg,t such
that:

– s1
a−→ and

⊔
s1

a−→D1

D1(
⋃

G ) = p.
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– s2 6
a−→ or

⊔
s2

a−→D2

D2(
⋃

G ) = q 6= p.

Let G1 = {C ∈ S/∼i
PB,gbg,t | ∃D1.s1

a−→D1 ∧D1(C) > 0} and G2 = {C ∈ S/∼i
PB,gbg,t

| ∃D2.s2
a−→D2 ∧D2(C) > 0}. The distinguishing formula in Fi+1

PML∀,≤
for s1 and s2 is

then:
– 〈a〉pφG if s2 6

a−→ or p < q.
– 〈a〉qφG if s2

a−→ and q < p.

The proof of the second result is similar to the proof of the first one up to the use of
d

in
place of

⊔
, ≥ in place of ≤, < in place of >, and > in place of < wherever necessary.

5.3 Multistep Variants of Probabilistic Bisimilarities and PCTL/PCTL*

Bisimulation equivalences can also be defined by matching entire computations instead of
individual transitions. The multistep variants of probabilistic bisimilarities for NPLTS mod-
els can be defined in several different ways.

The first option, inspired by bisimilarity for fully nondeterministic processes, consists
of changing the one-step definitions by considering traces α ∈ A∗ in place of actions a ∈ A
and α=⇒ in place of a−→ (resp. α=⇒c in place of a−→c ), where s α=⇒D means that there
exists a computation from s labeled with α whose last step is originated by a transition
reaching distribution D . When α is the empty sequence ε , we let s ε=⇒ δs. It was shown
in [17] that the discriminating power of bisimilarity for fully nondeterministic processes
does not change if the multistep transition relation α=⇒ is used instead of the one-step
relation a−→ . As expected, this result carries over class-distribution and group-by-group
probabilistic bisimilarities for nondeterministic and probabilistic processes (see App. A).

The second option, inspired by probabilistic bisimilarity for reactive probabilistic pro-
cesses, does not only compare the probability values arising from the last step of the com-
putations, but additionally considers the probability of performing the entire computations.
While it can be shown that the discriminating power of the probabilistic bisimilarity for re-
active probabilistic processes of [21] and of class-distribution probabilistic bisimilarities for
nondeterministic and probabilistic processes does not change if multistep probability val-
ues are compared instead of one-step values, this is not the case with the group-by-group
probabilistic bisimilarities (see App. B).

Finally, the third option, which is orthogonal to the previous two, consists of imposing
some constraints along the computations, such as passing through specific sets of states at
each step. This is the idea exploited in [30] in order to define – following the second op-
tion above – four probabilistic bisimilarities over nondeterministic and probabilistic Kripke
structures that are respectively characterized by PCTL, PCTL*, and their variants without
the next-time operator, which are interpreted as in [5].

Although the strong 1-depth bisimulation of [30] and our ∼PB,gbg,≤ are deeply related,
the probabilistic bisimilarities built in [30] on top of the strong 1-depth bisimulation are finer
than our group-by-group probabilistic bisimilarities. Consider for instance the two NPLTS
models in Fig. 4. We have that s1 ∼PB,gbg,= s2 – and hence s1 ∼PB,gbg,≤ s2 – as witnessed by
the equivalence relation that pairs states with identically labeled transitions and, in the case
of b-transitions, identical target distributions. However, s1 and s2 are distinguished by the
probabilistic bisimilarity of [30] that is characterized by PCTL*. In fact, let us view the two
NPLTS models as two nondeterministic and probabilistic Kripke structures by eliminating
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Fig. 4 Two models identified by ∼PB,gbg,= and ∼PB,gbg,≤ that are distinguished by PCTL*

actions from transitions and labeling each state with the set of its next-actions. Then the
PCTL* formula Pr≤0.61(XXc) is satisfied by s2 but it is not satisfied by s1, because the
probability of reaching in two steps a state that enables c in the maximal resolution of s1
starting with the rightmost a-transition is 0.8 · 0.7 + 0.2 · 0.6 = 0.68 and hence it is greater
than 0.61.

6 The Spectrum of Probabilistic Bisimilarities and PML Equivalences

If we investigate the discriminating power of the six group-by-group probabilistic bisimi-
larities considered so far, we discover that all of them are coarser than ∼PB,dis and, most
importantly, five of them are coarser than ∼PB,gbg,= and boil down to the same relation.
The latter property consequently extends to the corresponding logical equivalences, with
∼PML∃,I turning out to be finer than the other five PML-based equivalences.

Theorem 5 Let L = (S,A,−→) be an NPLTS and s1,s2 ∈ S. Then:

1. s1 ∼PB,dis s2 =⇒ s1 ∼PB,gbg,= s2 =⇒ s1 ∼PB,gbg,tu s2.
2. s1 ∼PB,gbg,tu s2 ⇐⇒ s1 ∼PB,gbg,t s2 ⇐⇒ s1 ∼PB,gbg,u s2.
3. s1 ∼PB,gbg,t s2 ⇐⇒ s1 ∼PB,gbg,≤ s2 when L is image finite.
4. s1 ∼PB,gbg,u s2 ⇐⇒ s1 ∼PB,gbg,≥ s2 when L is image finite.

Proof We proceed as follows:

1. The fact that s1 ∼PB,dis s2 implies s1 ∼PB,gbg,= s2 is a straightforward consequence of the
fact that a class-distribution probabilistic bisimulation is trivially a =-group-by-group
probabilistic bisimulation.
Suppose now that s1 ∼PB,gbg,= s2. This means that there exists a =-group-by-group
probabilistic bisimulation B over S such that (s1,s2) ∈B. In other words, whenever
(s′1,s

′
2) ∈B, then for all a ∈ A and G ∈ 2S/B:
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– For each s′1
a−→D1 there exists s′2

a−→D2 such that D1(
⋃

G ) = D2(
⋃

G ).
– For each s′2

a−→D2 there exists s′1
a−→D1 such that D2(

⋃
G ) = D1(

⋃
G ).

This means that, whenever (s′1,s
′
2) ∈B, then for all a ∈ A and G ∈ 2S/B:

– If s′1
a−→, then s′2

a−→ with
⋃

s′1
a−→D1

{D1(
⋃

G )} ⊆
⋃

s′2
a−→D2

{D2(
⋃

G )}.

– If s′2
a−→, then s′1

a−→ with
⋃

s′2
a−→D2

{D2(
⋃

G )} ⊆
⋃

s′1
a−→D1

{D1(
⋃

G )}.

Equivalently, if both s′1 and s′2 have at least one outgoing a-transition, then:⋃
s′1

a−→D1

{D1(
⋃

G )} =
⋃

s′2
a−→D2

{D2(
⋃

G )}

and hence: ⊔
s′1

a−→D1

D1(
⋃

G ) =
⊔

s′2
a−→D2

D2(
⋃

G )

d

s′1
a−→D1

D1(
⋃

G ) =
d

s′2
a−→D2

D2(
⋃

G )

Thus, B is also a tu-group-by-group probabilistic bisimulation, i.e., s1 ∼PB,gbg,tu s2.
2. We start by proving that ∼PB,gbg,t and ∼PB,gbg,u coincide.

Suppose that s1 ∼PB,gbg,t s2. This means that there exists a t-group-by-group proba-
bilistic bisimulation B over S such that (s1,s2)∈B. In other words, whenever (s′1,s

′
2)∈

B, then for all a ∈ A and G ∈ 2S/B it holds that s′1
a−→ iff s′2

a−→ and:⊔
s′1

a−→D1

D1(
⋃

G ) =
⊔

s′2
a−→D2

D2(
⋃

G )

Then B must be a u-group-by-group probabilistic bisimulation as well and hence
s1 ∼PB,gbg,u s2. In fact, if this were not the case, then there would exist a′ ∈ A and

G ′ ∈ 2S/B such that s′1
a′−→, s′2

a′−→, and:d

s′1
a′−→D1

D1(
⋃

G ′) 6=
d

s′2
a′−→D2

D2(
⋃

G ′)

As a consequence, denoting by G ′′ the group of all the equivalence classes not in G ′, it

would hold that s′1
a′−→, s′2

a′−→, and:⊔
s′1

a′−→D1

D1(
⋃

G ′′) = 1−
d

s′1
a′−→D1

D1(
⋃

G ′) 6=

6= 1−
d

s′2
a′−→D2

D2(
⋃

G ′) =
⊔

s′2
a′−→D2

D2(
⋃

G ′′)

thus contradicting the fact that B is a t-group-by-group probabilistic bisimulation.
By proceeding in a similar way, we can prove that s1 ∼PB,gbg,u s2 implies s1 ∼PB,gbg,t s2.
We conclude by proving that ∼PB,gbg,tu and ∼PB,gbg,t coincide.
If s1 ∼PB,gbg,tu s2, then s1 ∼PB,gbg,t s2 because a tu-group-by-group probabilistic
bisimulation is trivially a t-group-by-group probabilistic bisimulation. Suppose now
that s1∼PB,gbg,t s2. This means that there exists a t-group-by-group probabilistic bisim-
ulation B over S such that (s1,s2)∈B. Since B must also be a u-group-by-group prob-
abilistic bisimulation, whenever (s′1,s

′
2) ∈B, then for all a ∈ A and G ∈ 2S/B it holds

that s′1
a−→ iff s′2

a−→ and: ⊔
s′1

a−→D1

D1(
⋃

G ) =
⊔

s′2
a−→D2

D2(
⋃

G )

d

s′1
a−→D1

D1(
⋃

G ) =
d

s′2
a−→D2

D2(
⋃

G )
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This means that B is also a tu-group-by-group probabilistic bisimulation, i.e.,
s1 ∼PB,gbg,tu s2.

3. Suppose that s1 ∼PB,gbg,≤ s2. This means that there exists a ≤-group-by-group proba-
bilistic bisimulation B over S such that (s1,s2)∈B. In other words, whenever (s′1,s

′
2)∈

B, then for all a ∈ A and G ∈ 2S/B:
– For each s′1

a−→D1 there exists s′2
a−→D2 such that D1(

⋃
G )≤D2(

⋃
G ).

– For each s′2
a−→D2 there exists s′1

a−→D1 such that D2(
⋃

G )≤D1(
⋃

G ).
This means that, whenever (s′1,s

′
2) ∈B, then for all a ∈ A and G ∈ 2S/B:

– If s′1
a−→, then s′2

a−→ with
⊔

s′1
a−→D1

D1(
⋃

G )≤
⊔

s′2
a−→D2

D2(
⋃

G ).

– If s′2
a−→, then s′1

a−→ with
⊔

s′2
a−→D2

D2(
⋃

G )≤
⊔

s′1
a−→D1

D1(
⋃

G ).

Equivalently, if both s′1 and s′2 have at least one outgoing a-transition, then:⊔
s′1

a−→D1

D1(
⋃

G ) =
⊔

s′2
a−→D2

D2(
⋃

G )

Thus, B is also a t-group-by-group probabilistic bisimulation, i.e., s1 ∼PB,gbg,t s2.
The reverse implication holds too when L is image finite. In fact, this property guaran-
tees that the following two sets:⋃

s′1
a−→D1

{D1(
⋃

G )} and
⋃

s′2
a−→D2

{D2(
⋃

G )}

are finite. In turn, the finiteness of those two sets ensures that their suprema respectively
belong to the two sets themselves. As a consequence, starting from:⊔

s′1
a−→D1

D1(
⋃

G ) =
⊔

s′2
a−→D2

D2(
⋃

G )

or equivalently: ⊔
s′1

a−→D1

D1(
⋃

G ) ≤
⊔

s′2
a−→D2

D2(
⋃

G )

⊔
s′2

a−→D2

D2(
⋃

G ) ≤
⊔

s′1
a−→D1

D1(
⋃

G )

when both s′1 and s′2 have at least one outgoing a-transition, the following holds:

– For each s′1
a−→D ′1 there exists s′2

a−→D ′2 such that D ′1(
⋃

G ) ≤ D ′2(
⋃

G ), because
we can take D ′2 such that D ′2(

⋃
G ) =

⊔
s′2

a−→D2

D2(
⋃

G ).

– For each s′2
a−→D ′2 there exists s′1

a−→D ′1 such that D ′2(
⋃

G ) ≤ D ′1(
⋃

G ), because
we can take D ′1 such that D ′1(

⋃
G ) =

⊔
s′1

a−→D1

D1(
⋃

G ).

4. Similar to the proof of the previous result up to the use of≥ in place of≤ and u in place
of t wherever necessary.

The two implications in Thm. 5 cannot be reversed: Fig. 1 shows that ∼PB,dis is strictly
finer than ∼PB,gbg,= and Fig. 2 shows that ∼PB,gbg,= is strictly finer than ∼PB,gbg,tu. It can
be noted from its proof that the result relating ∼PB,gbg,tu, ∼PB,gbg,t, and ∼PB,gbg,u holds
because groups of equivalence classes are considered. Analogous bisimilarities defined in a
class-by-class fashion would not coincide.

Another interesting property is that the five coinciding group-by-group probabilistic
bisimilarities are the same as their ct-variants, and hence are insensitive to whether de-
terministic or randomized schedulers are employed to resolve nondeterminism. This is not
the case with ∼PB,dis and ∼PB,gbg,=. Moreover, the ct-variants of all the six group-by-group
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probabilistic bisimilarities boil down to the same equivalence, which is ∼PB,gbg,≤, meaning
that, in the bisimulation game, randomized schedulers reduce the discriminating power of
the =-comparison to that of the ≤-comparison.

Theorem 6 Let L = (S,A,−→) be an NPLTS and s1,s2 ∈ S. Then:

1. s1 ∼ct
PB,dis s2 =⇒ s1 ∼ct

PB,gbg,= s2.
2. s1 ∼PB,gbg,. s2 =⇒ s1 ∼ct

PB,gbg,. s2 for . ∈ {=,≤,≥,tu,t,u}.
3. s1 ∼PB,gbg,/ s2 ⇐= s1 ∼ct

PB,gbg,/ s2 for / ∈ {≤,≥}.
4. s1 ∼PB,gbg,/ s2 ⇐= s1 ∼ct

PB,gbg,/ s2 for / ∈ {tu,t,u} when L is image finite.
5. s1 ∼ct

PB,gbg,= s2 ⇐⇒ s1 ∼ct
PB,gbg,tu s2 when L is image finite.

Proof We proceed as follows:

1. A straightforward consequence of the fact that a class-distribution ct-probabilistic bisim-
ulation is trivially a =-group-by-group ct-probabilistic bisimulation.

2. An immediate consequence of the fact that an ordinary transition is a special case of
combined transition in which a single transition is taken with probability 1.

3. Suppose that s1 ∼ct
PB,gbg,≤ s2. This means that there exists a ≤-group-by-group

ct-probabilistic bisimulation B over S such that (s1,s2) ∈ B. In other words, when-
ever (s′1,s

′
2) ∈B, then for all a ∈ A and G ∈ 2S/B it holds that for each s′1

a−→D1 there
exists s′2

a−→c D2 such that D1(
⋃

G )≤D2(
⋃

G ). On the side of s′2, this means that there
exist n∈N>0, (pi ∈R]0,1] | 1≤ i≤ n), and (s′2

a−→D2,i | 1≤ i≤ n) such that ∑
n
i=1 pi = 1

and ∑
n
i=1 pi ·D2,i = D2. As a consequence:

D2(
⋃

G ) ≤
n
∑

i=1
pi · max

1≤i≤n
D2,i(

⋃
G ) = max

1≤i≤n
D2,i(

⋃
G ) ·

n
∑

i=1
pi = max

1≤i≤n
D2,i(

⋃
G )

and hence there exists D ′2 such that s′2
a−→D ′2 with D1(

⋃
G ) ≤ D ′2(

⋃
G ). This means

that B is also a ≤-group-by-group probabilistic bisimulation, i.e., s1 ∼PB,gbg,≤ s2.
The proof of s1 ∼ct

PB,gbg,≥ s2 =⇒ s1 ∼PB,gbg,≥ s2 is similar to the previous proof up to the
use of ≥ in place of ≤ and min in place of max wherever necessary.

4. Suppose that s1 ∼ct
PB,gbg,tu s2. This means that there exists a tu-group-by-group

ct-probabilistic bisimulation B over S such that (s1,s2) ∈ B. In other words, when-
ever (s′1,s

′
2) ∈B, then for all a ∈ A and G ∈ 2S/B it holds that s′1

a−→ iff s′2
a−→ and:⊔

s′1
a−→c D1

D1(
⋃

G ) =
⊔

s′2
a−→c D2

D2(
⋃

G )

d

s′1
a−→c D1

D1(
⋃

G ) =
d

s′2
a−→c D2

D2(
⋃

G )

Given a ∈ A, G ∈ 2S/B , and s ∈ S having at least one outgoing a-transition, when L is
image finite it holds that: ⊔

s a−→c D

D(
⋃

G ) =
⊔

s a−→D

D(
⋃

G )

d

s a−→c D

D(
⋃

G ) =
d

s a−→D

D(
⋃

G )

because the supremum and the infimum on the left are respectively achieved by two or-
dinary a-transitions of s. In fact, let Dt (resp. Du) be the target of an a-transition of s
assigning the maximum (resp. minimum) value to

⋃
G among all the a-transitions of s

and consider an arbitrary convex combination of a tuple (s a−→Di | 1≤ i≤ n) of those
transitions, with probabilities p1, . . . , pn and n ∈ N>0. Then:
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n
∑

i=1
pi ·Di(

⋃
G ) ≤

n
∑

i=1
pi ·Dt(

⋃
G ) = Dt(

⋃
G )

n
∑

i=1
pi ·Di(

⋃
G ) ≥

n
∑

i=1
pi ·Du(

⋃
G ) = Du(

⋃
G )

As a consequence, whenever (s′1,s
′
2) ∈B, then for all a ∈ A and G ∈ 2S/B it holds that

s′1
a−→ iff s′2

a−→ and: ⊔
s′1

a−→D1

D1(
⋃

G ) =
⊔

s′2
a−→D2

D2(
⋃

G )

d

s′1
a−→D1

D1(
⋃

G ) =
d

s′2
a−→D2

D2(
⋃

G )

This means that B is also a tu-group-by-group probabilistic bisimulation, i.e.,
s1 ∼PB,gbg,tu s2.
The proofs of s1∼ct

PB,gbg,t s2 =⇒ s1∼PB,gbg,t s2 and s1∼ct
PB,gbg,u s2 =⇒ s1∼PB,gbg,u s2

are similar to the previous proof and rely on L being image finite.
5. Suppose that s1 ∼ct

PB,gbg,= s2. This means that there exists a =-group-by-group
ct-probabilistic bisimulation B over S such that (s1,s2) ∈ B. In other words, when-
ever (s′1,s

′
2) ∈B, then for all a ∈ A and G ∈ 2S/B:

– For each s′1
a−→D1 there exists s′2

a−→c D2 such that D1(
⋃

G ) = D2(
⋃

G ).
– For each s′2

a−→D2 there exists s′1
a−→c D1 such that D2(

⋃
G ) = D1(

⋃
G ).

This implies that, whenever (s′1,s
′
2) ∈B, then for all a ∈ A and G ∈ 2S/B:

– For each s′1
a−→c D1 there exists s′2

a−→c D2 such that D1(
⋃

G ) = D2(
⋃

G ).
– For each s′2

a−→c D2 there exists s′1
a−→c D1 such that D2(

⋃
G ) = D1(

⋃
G ).

As a consequence, whenever (s′1,s
′
2) ∈B, then for all a ∈ A and G ∈ 2S/B:

– If s′1
a−→, then s′2

a−→ and
⋃

s′1
a−→c D1

{D1(
⋃

G )} ⊆
⋃

s′2
a−→c D2

{D2(
⋃

G )}.

– If s′2
a−→, then s′1

a−→ and
⋃

s′2
a−→c D2

{D2(
⋃

G )} ⊆
⋃

s′1
a−→c D1

{D1(
⋃

G )}.

Equivalently, if both s′1 and s′2 have at least one outgoing a-transition, then:⋃
s′1

a−→c D1

{D1(
⋃

G )} =
⋃

s′2
a−→c D2

{D2(
⋃

G )}

and hence: ⊔
s′1

a−→c D1

D1(
⋃

G ) =
⊔

s′2
a−→c D2

D2(
⋃

G )

d

s′1
a−→c D1

D1(
⋃

G ) =
d

s′2
a−→c D2

D2(
⋃

G )

Thus, B is also atu-group-by-group ct-probabilistic bisimulation, i.e., s1∼ct
PB,gbg,tu s2.

Suppose now that s1 ∼ct
PB,gbg,tu s2. This means that there exists a tu-group-by-group

ct-probabilistic bisimulation B over S such that (s1,s2)∈B. Given a∈A and G ∈ 2S/B ,
assume that there exists s1

a−→D1 such that D1(
⋃

G ) = p. Since (s1,s2) ∈B and L

is image finite, there exist s2
a−→c D ′2 such that D ′2(

⋃
G ) = p′ ≤ p and s2

a−→c D ′′2 such
that D ′′2 (

⋃
G ) = p′′ ≥ p. If p′ = p (resp. p′′ = p), then s1

a−→D1 is trivially matched by
s2

a−→c D ′2 (resp. s2
a−→c D ′′2 ) with respect to ∼ct

PB,gbg,= when considering G .

Assume that p′ < p < p′′ and note that s2
a−→c (x ·D ′2 + y ·D ′′2 ) for all x,y ∈ R]0,1] such

that x+ y = 1. Indeed, directly from the definition of combined transition, we have that:
– Since s2

a−→c D ′2, there exist n ∈ N>0, (p′i ∈ R]0,1] | 1 ≤ i ≤ n), and (s2
a−→ D̂ ′i |

1≤ i≤ n) such that ∑
n
i=1 p′i = 1 and ∑

n
i=1 p′i · D̂ ′i = D ′2.
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PB,gbg,~
PB,gbg,~ct

PB,gbg,~
PB,gbg,~ct

~PB,gbg,

~PB,gbg,
ct

PB,gbg,~
PB,gbg,~ct

PB,gbg,~
PB,gbg,~ct

ct~PML,  ,I∃

~PB,gbg,=
ct

~ ∀PML,  ,I
ct~ ∃PML,  ,

ct~ ∃PML,  ,
ct ~ ∀PML,  ,

ct ~ ∀PML,  ,
ct

~ ∀PML,  ,I~ ∃PML,  ,~ ∃PML,  , ~ ∀PML,  , ~ ∀PML,  ,

~PB,dis

~PML,  ,I∃

~PB,gbg,=
~PB,dis

ct

Fig. 5 The spectrum of probabilistic bisimilarities and PML-based equivalences

– Since s2
a−→c D ′′2 , there exist m ∈ N>0, (p′′j ∈ R]0,1] | 1 ≤ j ≤ m), and (s2

a−→ D̂ ′′j |
1≤ j ≤ m) such that ∑

m
j=1 p′′j = 1 and ∑

m
j=1 p′′j · D̂ ′′j = D ′′2 .

Hence, (x ·D ′2 + y ·D ′′2 ) can be obtained from the appropriate combination of the two
transition tuples (s2

a−→ D̂ ′i | 1 ≤ i ≤ n) and (s2
a−→ D̂ ′′j | 1 ≤ j ≤ m) with coefficients

(x · p′i ∈ R]0,1] | 1 ≤ i ≤ n) and (y · p′′j ∈ R]0,1] | 1 ≤ j ≤ m). If we take x = p′′−p
p′′−p′ and

y = p−p′
p′′−p′ , then s2

a−→c

(
p′′−p
p′′−p′ ·D

′
2 + p−p′

p′′−p′ ·D
′′
2

)
with:(

p′′−p
p′′−p′ ·D

′
2 + p−p′

p′′−p′ ·D
′′
2

)
(
⋃

G ) = p′′−p
p′′−p′ ·D

′
2(
⋃

G )+ p−p′
p′′−p′ ·D

′′
2 (
⋃

G )

= p′′−p
p′′−p′ · p

′+ p−p′
p′′−p′ · p

′′

= p′·p′′−p·p′+p·p′′−p′·p′′
p′′−p′

= p · p′′−p′
p′′−p′ = p = D1(

⋃
G )

Due to the generality of (s1,s2) ∈B, a ∈ A, and G ∈ 2S/B , it turns out that B is also a
=-group-by-group ct-probabilistic bisimulation, i.e., s1 ∼ct

PB,gbg,= s2.

The inclusion of∼ct
PB,dis in∼ct

PB,gbg,= is strict, as shown by Fig. 1. Moreover, Fig. 2 shows
that the inclusion of ∼PB,gbg,= in ∼ct

PB,gbg,= is strict; the central offer-transition of s1 can be
matched by a convex combination of the two offer-transitions of s2 both with coefficient 0.5.
Finally, Figs. 1 and 2 show that ∼PB,gbg,= and ∼ct

PB,dis are incomparable with each other.
To summarize, all the relationships established so far among the probabilistic bisimilar-

ities of this paper and those of [27], as well as the PML-based equivalences of this paper, are
depicted in Fig. 5 in the case of image-finite NPLTS models satisfying the minimal probabil-
ity assumption. Each arrow means more-discriminating-than. Equivalences collected in the
same dashed box coincide; notice that the top part of each dashed box contains behavioral
equivalences, while the bottom part contains logical ones.

It is possible to establish a deeper relationship among the four different probabilistic
bisimilarities in Fig. 5. To this purpose, we introduce a parallel composition operator ‖L
expressing that two NPLTS models synchronize on a set of actions L and proceed indepen-
dently of each other on any other action (we will apply the same notation to states).

Definition 10 Let Li = (Si,A,−→i) be an NPLTS for i = 1,2. The parallel composition of
L1 and L2 with synchronization on L⊆A is the NPLTS L1 ‖L L2 = (S1×S2,A,−→) where
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s1 s2

s1||A s ||As2 s

a a

0.6 0.4 0.6 0.4

a

0.4 0.6

a

s

0.7 0.30.6 0.4

a

0.4 0.6 0.4 0.6

a a

a
a a

0.580.420.28 0.18

0.54

0.12 0.88

a
a a

0.42 0.12

0.46

0.28 0.72 0.18 0.82

b c b d c d cb c db d b c

bb c c bb c c

Fig. 6 Example illustrating that ∼PB,gbg,= and ∼PB,gbg,≤ are not congruences

−→ ⊆ (S1× S2)×A×Distr(S1× S2) is such that (s1,s2)
a−→D iff one of the following

holds:

– a ∈ L, s1
a−→1 D1, s2

a−→2 D2, and D(s′1,s
′
2) = D1(s′1) ·D2(s′2) for all (s′1,s

′
2) ∈ S1×S2.

– a /∈ L, s1
a−→1 D1, D(s′1,s

′
2) = D1(s′1) if s′2 = s2, and D(s′1,s

′
2) = 0 if s′2 ∈ S2 \{s2}.

– a /∈ L, s2
a−→2 D2, D(s′1,s

′
2) = D2(s′2) if s′1 = s1, and D(s′1,s

′
2) = 0 if s′1 ∈ S1 \{s1}.

While∼PB,dis and∼ct
PB,dis are congruences with respect to parallel composition [27], this

is not the case for ∼PB,gbg,= and ∼PB,gbg,≤. This is exemplified in Fig. 6. States s1 and s2
(which are distinguished by ∼PB,dis) are related by ∼PB,gbg,= and ∼PB,gbg,≤, but s1 ‖A s and
s2 ‖A s are no longer related by those two bisimilarities. For instance, the leftmost a-transition
of s1 ‖A s reaches with probability 0.46 the group of equivalence classes of states having only
an outgoing transition labeled with b or c, whilst the three a-transitions of s2 ‖A s reach the
same group with probabilities 0.54, 0.28, and 0.18, respectively. Interestingly, it turns out
that ∼PB,dis and ∼ct

PB,dis are the coarsest congruences with respect to parallel composition
respectively contained in ∼PB,gbg,= and ∼PB,gbg,≤.

Theorem 7 Let L = (S,A,−→) be an image-finite NPLTS in which the target of each tran-
sition has finite support. Let s1,s2 ∈ S. Then:

s1 ∼PB,dis s2 ⇐⇒ ∀L⊆ A. ∀s ∈ S. s1 ‖L s ∼PB,gbg,= s2 ‖L s
s1 ∼ct

PB,dis s2 ⇐⇒ ∀L⊆ A. ∀s ∈ S. s1 ‖L s ∼PB,gbg,≤ s2 ‖L s

Proof If s1 ∼PB,dis s2, then for all L⊆ A and s∈ S it holds that s1 ‖L s ∼PB,dis s2 ‖L s because
∼PB,dis is a congruence with respect to parallel composition, and hence s1 ‖L s ∼PB,gbg,=
s2 ‖L s by virtue of Thm. 5(1).
If s1 6∼PB,dis s2, we show that there exist L ⊆ A and s ∈ S such that s1 ‖L s 6∼PB,gbg,= s2 ‖L s.
We assume that s1 ∼PB,gbg,= s2, otherwise trivially s1 ‖ /0 0 6∼PB,gbg,= s2 ‖ /0 0 where 0 is the
terminal state.
From s1 6∼PB,dis s2, it follows that there exists a transition s1

a−→D1 such that for each tran-
sition s2

a−→D2 there exists an equivalence class C ∈ S/∼PB,dis such that D1(C) 6= D2(C).
Since s1

a−→D1 and s1 ∼PB,gbg,= s2, state s2 has at least one outgoing a-transition; from the
image finiteness of L , the number of such transitions must be finite, say m ∈ N≥1.
Let us consider the following set of equivalence classes with respect to ∼PB,dis:

C = {C ∈ S/∼PB,dis|D1(C) > 0} = {C1,C2, . . . ,Cn}
which is not empty, because of the existence of s1

a−→D1, and finite, because supp(D1) is
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finite, hence n ∈N≥1. Moreover, let s be a state having a single outgoing transition s a−→D ,
where D assigns probability pi ∈ R]0,1[ to the representative state sCi of class Ci for all
i = 1, . . . ,n, with ∑1≤i≤n pi = 1.
Recalling that the equivalence classes with respect to ∼PB,gbg,= are unions of equivalence
classes with respect to ∼PB,dis due to Thm. 5(1), we focus on:

G = {C′ ∈ (S‖A S)/∼PB,gbg,=| ∃C ∈ C .(C‖A C)⊆C′}
and prove that the transition s1 ‖A s a−→D ′1, deriving from the synchronization of the tran-
sition s1

a−→D1 with the transition s a−→D , is such that for each transition s2 ‖A s a−→D ′2,
deriving from the synchronization of one of the m transitions s2

a−→D2 with the transition
s a−→D , it holds that D ′1(

⋃
G ) 6= D ′2(

⋃
G ). There are two cases:

– If the set of actions labeling the outgoing transitions of sCi is disjoint from the set of
actions labeling the outgoing transitions of sC j for all i 6= j, then sCi ‖A sC j is a terminal

state not belonging to
⋃

G and for each of the m transitions s2 ‖A s a−→D ′2 it holds that
D ′1(

⋃
G ) 6= D ′2(

⋃
G ), i.e., D ′1(

⋃
G )−D ′2(

⋃
G ) 6= 0, iff:

n
∑

i=1
pi ·D1(Ci)−

n
∑

i=1
pi ·D2(Ci) =

n
∑

i=1
pi · (D1(Ci)−D2(Ci)) 6= 0

which yields a system of m inequalities with respect to the n unknowns p1, p2, . . . , pn.
Each of the associated equations:

n
∑

i=1
pi · (D1(Ci)−D2(Ci)) = 0

describes a hyperplane that separates the space Rn into two half spaces (depending on
whether we impose > 0 or < 0) because at least one of the coefficients D1(Ci)−D2(Ci)
is different from 0 (see the initial part of the proof). Since the number of inequali-
ties/hyperplanes is finite, there exists a nonempty subspace of Rn identified by the hy-
perplanes themselves, whose points satisfy all the m inequalities. If we take one point
of the subspace that does not belong to any of the hyperplanes and whose coordinates
are all not negative, its normalization to 1 (obtained by dividing each coordinate of the
selected point by the sum of its coordinates) is again a point that satisfies all the m in-
equalities; notice that the normalized point belongs to the hyperplane ∑1≤i≤n pi = 1 and
that such a hyperplane does not contain the origin of Rn, while each of the m considered
hyperplanes contains the origin, hence the normalized point does not belong to any of
those hyperplanes. This proves the existence of a probability distribution p1, p2, . . . , pn
satisfying all the m inequalities.

– If the set of actions labeling the outgoing transitions of sCi is not disjoint from the set
of actions labeling the outgoing transitions of sC j for some i 6= j, then it is sufficient
to decorate each “shared” action labeling a transition from one of those states with
the name of the equivalence class with respect to ∼PB,dis to which the source state of
the transition belongs. Observing that two states are related by ∼PB,dis iff so are their
“decorated” versions, we can then proceed as in the previous case.

With the same proof strategy, we can show that ∼ct
PB,dis is the coarsest congruence con-

tained in ∼ct
PB,gbg,=, where the latter coincides with ∼PB,gbg,≤ by virtue of Thms. 6 and 5

as L is image finite.

7 Conclusion

We have addressed the problem of defining behavioral relations for nondeterministic and
probabilistic processes that are characterized by modal logics as close as possible to PML,
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the natural probabilistic extension of HML, the by now standard modal logic for fully non-
deterministic processes. We have focussed on two new probabilistic bisimilarities, denoted
by ∼PB,gbg,= and ∼PB,gbg,≤, following a so called group-by-group approach that consid-
ers groups of equivalence classes rather than single classes. Interestingly enough, ∼PB,gbg,=
has naturally emerged in a framework recently developed to provide a uniform model for
different classes of nondeterministic, probabilistic, and stochastic processes [3].

For the proposed equivalences, we have studied the relationships with an existential and
a universal interpretation of three variants of PML, in which the diamond is respectively dec-
orated with a probability interval, a probability lower bound, or a probability upper bound.
We have shown that five out of the six logical equivalences do coincide with ∼PB,gbg,≤.
The only exception is the logic based on existential interpretation and probability intervals,
which corresponds to ∼PB,gbg,=. This indicates that, in PML, adopting a universal interpre-
tation rather than an existential one does not matter, for comparison purposes, as long as
diamond operators are decorated with probability bounds.

In the group-by-group approach, the three initially introduced probabilistic bisimilari-
ties, whose definitions differ for the requirements on the comparison between sets of proba-
bilities (=,≤,≥), have been equipped with alternative characterizations obtained by simply
comparing extremal probabilities (resp. both t and u, only t, only u). We have also consid-
ered six variants relying on combined transitions. Quite surprisingly, all such variants, except
the one based on =, coincide with the relations relying on ordinary transitions. This result
is particularly interesting because it shows that, in our approach, resolving nondeterminism
with deterministic schedulers or with randomized ones leads to the same identifications,
except when checking probabilities for equality in the bisimulation game.

Our modal logic characterizations and backward compatibility results for ∼PB,gbg,≤, to-
gether with the modal logic characterizations of probabilistic bisimilarity over reactive prob-
abilistic processes [21,22] and of class-distribution probabilistic bisimilarity over alternating
processes [23], show that PML constitutes a uniform framework for reasoning on different
classes of processes including probability and various degrees of nondeterminism.

Our work has a number of points in common with [30], where new probabilistic bisimi-
larities over nondeterministic and probabilistic Kripke structures have been defined that are
in full agreement with PCTL and PCTL*. Indeed, both [30] and our work witness that, in
order to characterize the equivalences induced by PCTL/PCTL*/PML in a nondeterministic
and probabilistic setting, it is necessary to:

– Anticipate the quantification over the sets of equivalent states to be reached in the bisim-
ulation game, as done in [31] in the setting of approximate probabilistic relations. Plac-
ing this quantification after the comparison of probability values, like in [27], results in
a much finer probabilistic bisimilarity that needs a modal logic much more expressive
than PML as shown in [23,18,16].

– Consider groups of classes of equivalent states rather than only individual classes, as
done in [14,7,10] in the setting of bisimilarity for continuous-state probabilistic pro-
cesses. Otherwise, due to the anticipation of the previously mentioned quantification, a
much coarser probabilistic bisimilarity would be obtained (see Sect. 5.1).

– Focus only on the extremal probabilities of reaching certain sets of states or, equiva-
lently, check the probabilities of reaching those sets of states for ≤ or ≥ rather than =.
In this way, the presence of nondeterminism within processes and the probabilistic
bounds in logical formulae fit well together.

Our results and those of [30] also show that, in the case of nondeterministic and proba-
bilistic processes, it is not possible to define a single probabilistic bisimilarity that is char-
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acterized by both PML – interpreted as in this paper – and PCTL* – interpreted as in [5].
Thus, for nondeterministic and probabilistic processes the situation is quite different from
the case of fully nondeterministic processes, where probabilistic bisimilarity is character-
ized by both HML [17] and CTL* [6], and from the case of reactive probabilistic processes,
where probabilistic bisimilarity is characterized by both PML [21,22] and PCTL* [1].

As future work, we plan to investigate further properties of group-by-group probabilistic
bisimilarities. Results along this direction would also be useful for a better understanding
of the probabilistic bisimilarities of [30]. Another obvious direction of research would be
to define the weak variants of the group-by-group probabilistic bisimilarities and find the
corresponding modal logics. Finally, we would like to study expressiveness of the variants
of PML introduced in this paper in terms of the systems properties they can model.
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A Multistep Variants Inspired by ∼B

We start by formalizing the notion of computation in the NPLTS setting as a sequence of state-to-state steps
each derived from a state-to-distribution transition.

Definition 11 Let L = (S,A,−→) be an NPLTS. A sequence c ≡ s0
a1
−7→ s1

a2
−7→ s2 . . .sn−1

an
−7→ sn is a com-

putation of L of length n going from s0 to sn iff for all i = 1, . . . ,n there exists a transition si−1
ai−→Di such

that si ∈ supp(Di), with Di(si) being the execution probability of step si−1
ai
−7→ si of c conditioned on the

selection of transition si−1
ai−→Di of L at state si−1; in this case, we write s0

α=⇒Dn where α = a1 a2 . . .an,
with s0

ε=⇒ δs0 when α = ε . We call combined computation a computation in which every step arises from a
combined transition, denoted by =⇒c.

We now introduce the multistep variant of ∼B and prove that it coincides with ∼B itself.

Definition 12 Let (S,A,−→) be an NPLTS in which the target of each transition is a Dirac distribution.
A relation B over S is a multistep bisimulation iff, whenever (s1,s2) ∈B, then for all traces α ∈ A∗:

– For each s1
α=⇒ δs′1

there exists s2
α=⇒ δs′2

such that (s′1,s
′
2) ∈B.

– For each s2
α=⇒ δs′2

there exists s1
α=⇒ δs′1

such that (s′1,s
′
2) ∈B.

We denote by ∼B,m the largest multistep bisimulation.

Theorem 8 Let (S,A,−→) be an NPLTS in which the target of each transition is a Dirac distribution.
Let s1,s2 ∈ S. Then:

s1 ∼B,m s2 ⇐⇒ s1 ∼B s2

Proof Suppose that s1 ∼B,m s2. This means that there exists a multistep bisimulation B over S such that
(s1,s2) ∈B. As a consequence, it holds in particular that, whenever (s′1,s

′
2) ∈B, then for all a ∈ A:

– For each s′1
a=⇒ δs′′1

there exists s′2
a=⇒ δs′′2

such that (s′′1 ,s′′2) ∈B.

– For each s′2
a=⇒ δs′′2

there exists s′1
a=⇒ δs′′1

such that (s′′1 ,s′′2) ∈B.

Since a=⇒ coincides with a−→, we have that B is also a bisimulation and hence s1 ∼B s2.
Suppose now that s1 ∼B s2. This means that there exists a bisimulation B over S such that (s1,s2) ∈ B.
We prove that B is also a multistep bisimulation, so that s1 ∼B,m s2 will follow. Given s′1,s

′
2 ∈ S such that

(s′1,s
′
2) ∈B and α ∈ A∗, we proceed by induction on |α|:

– If |α| = 0, then s′1
α=⇒ δs′1

and s′2
α=⇒ δs′2

are the only possible computations from s′1 and s′2 labeled
with α , hence the result trivially holds.
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– Let |α|= n∈N>0 and suppose that the result holds for all traces of length n−1. Assume α = aα ′. Since
(s′1,s

′
2) ∈B and B is a bisimulation, it holds that for each s′1

a−→ δs′′′1
there exists s′2

a−→ δs′′′2
(and vice

versa) such that (s′′′1 ,s′′′2 ) ∈B.

Suppose that s′1
α=⇒ δs′′1

with s′1
a−→ δs′′′1

and s′′′1
α ′=⇒ δs′′1

. Then s′2
a−→ δs′′′2

with (s′′′1 ,s′′′2 ) ∈B and by the

induction hypothesis we have that s′′′2
α ′=⇒ δs′′2

with (s′′1 ,s′′2) ∈ B. As a consequence, s′2
α=⇒ δs′′2

with

(s′′1 ,s′′2) ∈B. With a similar argument, we derive that s′2
α=⇒ δs′′2

implies s′1
α=⇒ δs′′1

with (s′′1 ,s′′2) ∈B.

We now provide the ∼B,m-inspired definition of each of the probabilistic bisimilarities considered in
this paper and prove that it coincides with the original one-step equivalence. The ct-variants of the ∼B,m-
inspired probabilistic bisimilarities can be defined similarly and satisfy an analogous coincidence property
with respect to the original one-step ct-equivalences.

Definition 13 Let (S,A,−→) be an NPLTS. An equivalence relation B over S is a multistep class-distribution
probabilistic bisimulation iff, whenever (s1,s2)∈B, then for all traces α ∈A∗ it holds that for each s1

α=⇒D1

there exists s2
α=⇒D2 such that, for all equivalence classes C∈ S/B, D1(C) = D2(C). We denote by∼PB,dis,m

the largest multistep class-distribution probabilistic bisimulation.

Theorem 9 Let (S,A,−→) be an NPLTS and s1,s2 ∈ S. Then:
s1 ∼PB,dis,m s2 ⇐⇒ s1 ∼PB,dis s2

Proof Suppose that s1 ∼PB,dis,m s2. This means that there exists a multistep class-distribution probabilis-
tic bisimulation B over S such that (s1,s2) ∈B. As a consequence, we have in particular that, whenever
(s′1,s

′
2) ∈ B, then for all a ∈ A it holds that for each s′1

a=⇒D1 there exists s′2
a=⇒D2 such that, for all

C ∈ S/B, D1(C) = D2(C). Since a=⇒ coincides with a−→, we have that B is also a class-distribution prob-
abilistic bisimulation and hence s1 ∼PB,dis s2.
Suppose now that s1 ∼PB,dis s2. This means that there exists a class-distribution probabilistic bisimulation B
over S such that (s1,s2) ∈B. We prove that B is also a multistep class-distribution probabilistic bisimula-
tion, so that s1 ∼PB,dis,m s2 will follow. Given s′1,s

′
2 ∈ S such that (s′1,s

′
2) ∈B and α ∈ A∗, we proceed by

induction on |α|:

– If |α| = 0, then s′1
α=⇒ δs′1

and s′2
α=⇒ δs′2

are the only possible computations from s′1 and s′2 labeled
with α and for all C ∈ S/B it holds that:

δs′1
(C) = δs′2

(C) =
{

1 if {s′1,s′2} ⊆C
0 if {s′1,s′2}∩C = /0

because (s′1,s
′
2) ∈B and C is an equivalence class with respect to B.

– Let |α|= n∈N>0 and suppose that the result holds for all traces of length n−1. Assume α = aα ′. Since
(s′1,s

′
2) ∈B and B is a class-distribution probabilistic bisimulation, it holds that for each s′1

a−→D ′1
there exists s′2

a−→D ′2 such that, for all C ∈ S/B, D ′1(C) = D ′2(C).

Suppose that s′1
α=⇒D1 with s′1

a−→D ′1, s′′1
α ′=⇒D1, and D ′1(s

′′
1) > 0. Then there exists s′2

a−→D ′2 such that,
for all C ∈ S/B, D ′1(C) = D ′2(C). If we take s′′2 such that (s′′1 ,s′′2) ∈B and D ′2(s

′′
2) > 0, by the induction

hypothesis there exists s′′2
α ′=⇒D2 such that, for all C ∈ S/B, D1(C) = D2(C). As a consequence, there

exists s′2
α=⇒D2 such that, for all C ∈ S/B, D1(C) = D2(C).

Definition 14 Let (S,A,−→) be an NPLTS and ./∈ {=,≤,≥}. An equivalence relation B over S is a mul-
tistep ./-group-by-group probabilistic bisimulation iff, whenever (s1,s2) ∈B, then for all traces α ∈ A∗ and
for all groups of equivalence classes G ∈ 2S/B it holds that for each s1

α=⇒D1 there exists s2
α=⇒D2 such

that D1(
⋃

G ) ./ D2(
⋃

G ). We denote by ∼PB,gbg,./,m the largest multistep ./-group-by-group probabilistic
bisimulation.

Theorem 10 Let (S,A,−→) be an NPLTS, s1,s2 ∈ S, and ./∈ {=,≤,≥}. Then:
s1 ∼PB,gbg,./,m s2 ⇐⇒ s1 ∼PB,gbg,./ s2

Proof Suppose that s1 ∼PB,gbg,./,m s2. This means that there exists a multistep ./-group-by-group probabilis-
tic bisimulation B over S such that (s1,s2) ∈B. As a consequence, we have in particular that, whenever
(s′1,s

′
2) ∈B, then for all a ∈ A and G ∈ 2S/B it holds that for each s′1

a=⇒D1 there exists s′2
a=⇒D2 such that
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D1(
⋃

G ) ./ D2(
⋃

G ). Since a=⇒ coincides with a−→, we have that B is also a ./-group-by-group probabilis-
tic bisimulation and hence s1 ∼PB,gbg,./ s2.
Suppose now that s1 ∼PB,gbg,./ s2. This means that there exists a ./-group-by-group probabilistic bisimulation
B over S such that (s1,s2) ∈B. We prove that B is also a multistep ./-group-by-group probabilistic bisim-
ulation, so that s1 ∼PB,gbg,./,m s2 will follow. Given s′1,s

′
2 ∈ S such that (s′1,s

′
2) ∈B, α ∈ A∗, and G ∈ 2S/B ,

we proceed by induction on |α|:

– If |α| = 0, then s′1
α=⇒ δs′1

and s′2
α=⇒ δs′2

are the only possible computations from s′1 and s′2 labeled
with α and it holds that:

δs′1
(
⋃

G ) = δs′2
(
⋃

G ) =
{

1 if {s′1,s′2} ⊆C for some C ∈ G
0 if {s′1,s′2}∩C = /0 for all C ∈ G

because (s′1,s
′
2) ∈B and G is a group of equivalence classes with respect to B.

– Let |α|= n∈N>0 and suppose that the result holds for all traces of length n−1. Assume α = aα ′. Since
(s′1,s

′
2) ∈B and B is a ./-group-by-group probabilistic bisimulation, for all G ′ ∈ 2S/B it holds that for

each s′1
a−→D ′1 there exists s′2

a−→D ′2 such that D ′1(
⋃

G ′) ./ D ′2(
⋃

G ′).

Suppose that s′1
α=⇒D1 with s′1

a−→D ′1, s′′1
α ′=⇒D1, and D ′1(s

′′
1) > 0. Let G ′ = {C′} with C′ being the

equivalence class containing s′′1 . Then there exists s′2
a−→D ′2 such that D ′1(

⋃
G ′) ./ D ′2(

⋃
G ′). If we take

s′′2 such that (s′′1 ,s′′2) ∈ B and D ′2(s
′′
2) > 0 – it obviously exists in the case that ./∈ {=,≤} because

D ′1(s
′′
1) > 0, and it also exists in the case that ./ is ≥ because, if s′2 had no a-transition reaching G ′

with probability greater than 0, then all a-transitions of s′2 would reach G ′′ = 2S/B \G ′ with probability
1 and hence for the transition s′1

a−→D ′1 we would have D ′1(
⋃

G ′′) = 1−D ′1(
⋃

G ′) < 1 = D ′2(
⋃

G ′′)
for all transitions s′2

a−→D ′2, i.e., B would not be a ≥-group-by-group probabilistic bisimulation – by

the induction hypothesis there exists s′′2
α ′=⇒D2 such that D1(

⋃
G ) ./ D2(

⋃
G ). As a consequence, there

exists s′2
α=⇒D2 such that D1(

⋃
G ) ./ D2(

⋃
G ).

Definition 15 Let (S,A,−→) be an NPLTS. An equivalence relation B over S is a multistep tu-group-by-
group probabilistic bisimulation iff, whenever (s1,s2) ∈B, then for all traces α ∈ A∗ and for all groups of
equivalence classes G ∈ 2S/B it holds that s1

α=⇒ iff s2
α=⇒ and:⊔

s1
α=⇒D1

D1(
⋃

G ) =
⊔

s2
α=⇒D2

D2(
⋃

G )

d

s1
α=⇒D1

D1(
⋃

G ) =
d

s2
α=⇒D2

D2(
⋃

G )

We denote by ∼PB,gbg,tu,m the largest multistep tu-group-by-group probabilistic bisimulation.

Theorem 11 Let (S,A,−→) be an NPLTS and s1,s2 ∈ S. Then:
s1 ∼PB,gbg,tu,m s2 ⇐⇒ s1 ∼PB,gbg,tu s2

Proof Suppose that s1 ∼PB,gbg,tu,m s2. This means that there exists a multistep tu-group-by-group proba-
bilistic bisimulation B over S such that (s1,s2) ∈B. As a consequence, we have in particular that, whenever
(s′1,s

′
2) ∈B, then for all a ∈ A and G ∈ 2S/B it holds that s′1

a=⇒ iff s′2
a=⇒ and:⊔

s′1
a=⇒D1

D1(
⋃

G ) =
⊔

s′2
a=⇒D2

D2(
⋃

G )

d

s′1
a=⇒D1

D1(
⋃

G ) =
d

s′2
a=⇒D2

D2(
⋃

G )

Since a=⇒ coincides with a−→, we have that B is also a tu-group-by-group probabilistic bisimulation and
hence s1 ∼PB,gbg,tu s2.
Suppose now that s1 ∼PB,gbg,tu s2. This means that there exists a tu-group-by-group probabilistic bisimula-
tion B over S such that (s1,s2) ∈B. We prove that B is also a multistep tu-group-by-group probabilistic
bisimulation, so that s1 ∼PB,gbg,tu,m s2 will follow. Given s′1,s

′
2 ∈ S such that (s′1,s

′
2) ∈ B, α ∈ A∗, and

G ∈ 2S/B , we proceed by induction on |α|:

– If |α| = 0, then s′1
α=⇒ δs′1

and s′2
α=⇒ δs′2

are the only possible computations from s′1 and s′2 labeled
with α and it holds that:

δs′1
(
⋃

G ) = δs′2
(
⋃

G ) =
{

1 if {s′1,s′2} ⊆C for some C ∈ G
0 if {s′1,s′2}∩C = /0 for all C ∈ G

because (s′1,s
′
2) ∈B and G is a group of equivalence classes with respect to B. Therefore:
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⊔
s′1

α=⇒D1

D1(
⋃

G ) = δs′1
(
⋃

G ) = δs′2
(
⋃

G ) =
⊔

s′2
α=⇒D2

D2(
⋃

G )

d

s′1
α=⇒D1

D1(
⋃

G ) = δs′1
(
⋃

G ) = δs′2
(
⋃

G ) =
d

s′2
α=⇒D2

D2(
⋃

G )

– Let |α|= n∈N>0 and suppose that the result holds for all traces of length n−1. Assume α = aα ′. Since
(s′1,s

′
2) ∈B and B is a tu-group-by-group probabilistic bisimulation, for all G ′ ∈ 2S/B it holds that

s′1
a−→ iff s′2

a−→ and: ⊔
s′1

a−→D ′1

D ′1(
⋃

G ′) =
⊔

s′2
a−→D ′2

D ′2(
⋃

G ′)

d

s′1
a−→D ′1

D ′1(
⋃

G ′) =
d

s′2
a−→D ′2

D ′2(
⋃

G ′)

Suppose that s′1
α=⇒ with s′1

a−→D ′1, s′′1
α ′=⇒, and D ′1(s

′′
1) > 0. Let G ′ = {C′} with C′ being the equiva-

lence class containing s′′1 . Then s′2
a−→ with:⊔

s′1
a−→D ′1

D ′1(
⋃

G ′) =
⊔

s′2
a−→D ′2

D ′2(
⋃

G ′)

d

s′1
a−→D ′1

D ′1(
⋃

G ′) =
d

s′2
a−→D ′2

D ′2(
⋃

G ′)

If we take s′′2 and D ′2 such that (s′′1 ,s′′2) ∈B, D ′2(s
′′
2) > 0, and s′2

a−→D ′2, by the induction hypothesis we

have that s′′2
α ′=⇒ with: ⊔

s′′1
α ′=⇒D1

D1(
⋃

G ) =
⊔

s′′2
α ′=⇒D2

D2(
⋃

G )

d

s′′1
α ′=⇒D1

D1(
⋃

G ) =
d

s′′2
α ′=⇒D2

D2(
⋃

G )

As a consequence, s′2
α=⇒ with: ⊔

s′1
α=⇒D1

D1(
⋃

G ) =
⊔

s′2
α=⇒D2

D2(
⋃

G )

d

s′1
α=⇒D1

D1(
⋃

G ) =
d

s′2
α=⇒D2

D2(
⋃

G )

Definition 16 Let (S,A,−→) be an NPLTS and # ∈ {
⊔

,
d
}. An equivalence relation B over S is a multistep

#-group-by-group probabilistic bisimulation iff, whenever (s1,s2) ∈B, then for all traces α ∈ A∗ and for all
groups of equivalence classes G ∈ 2S/B it holds that s1

α=⇒ iff s2
α=⇒ and:

#
s1

α=⇒D1

D1(
⋃

G ) = #
s2

α=⇒D2

D2(
⋃

G )

We denote by ∼PB,gbg,#,m the largest multistep #-group-by-group probabilistic bisimulation.

Theorem 12 Let (S,A,−→) be an NPLTS, s1,s2 ∈ S, and # ∈ {
⊔

,
d
}. Then:

s1 ∼PB,gbg,#,m s2 ⇐⇒ s1 ∼PB,gbg,# s2

Proof Similar to the proof of Thm. 11. With regard to the induction step of the proof that s1 ∼PB,gbg,# s2

implies s1 ∼PB,gbg,#,m s2, we observe that s′′2 and D ′2 such that (s′′1 ,s′′2) ∈ B, D ′2(s
′′
2) > 0, and s′2

a−→D ′2
obviously exist in the case that # is t because D ′1(s

′′
1) > 0. They also exist in the case that # is u because,

if s′2 had no a-transition reaching G ′ (the group composed only of the equivalence class containing s′′1) with
probability greater than 0, then all a-transitions of s′2 would reach G ′′ = 2S/B \G ′ with probability 1 and
hence we would have: d

s′1
a−→D ′1

D ′1(
⋃

G ′′) < 1 =
d

s′2
a−→D ′2

D ′2(
⋃

G ′′)

i.e., the considered relation B would not be a u-group-by-group probabilistic bisimulation

We conclude by showing that all the considered ∼B,m-inspired probabilistic bisimilarities collapse into
∼B,m when restricting attention to fully nondeterministic processes. An analogous result holds for their
ct-variants.

Theorem 13 Let (S,A,−→) be an NPLTS in which the target of each transition is a Dirac distribution.
Let s1,s2 ∈ S and ◦ ∈ {=,≤,≥,tu,t,u}. Then:

s1 ∼PB,dis,m s2 ⇐⇒ s1 ∼PB,gbg,◦,m s2 ⇐⇒ s1 ∼B,m s2
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Proof Since every multistep transition of this specific NPLTS can reach with probability greater than 0 a
single state and hence a single class of any equivalence relation – which are thus reached with probability 1
– the reflexive, symmetric, and transitive closure of a multistep bisimulation is trivially a multistep class-
distribution probabilistic bisimulation and a multistep ◦-group-by-group probabilistic bisimulation.

B Multistep Variants Inspired by ∼PB

We start by introducing the multistep variant of ∼PB and proving that it coincides with ∼PB itself. Given an
NPLTS (S,A,−→) in which the transitions of each state have different labels and given s ∈ S, α ∈ A∗, and
S′ ⊆ S, we inductively define the multistep probability of reaching a state in S′ from s via α as follows:

probm(s,α,S′) =


∑

s′∈S
D(s′) ·probm(s′,α ′,S′) if α = aα ′ and s a−→D

1 if α = ε and s ∈ S′

0 if α = aα ′ and s 6a−→, or α = ε and s /∈ S′

Definition 17 Let (S,A,−→) be an NPLTS in which the transitions of each state have different labels. An
equivalence relation B over S is a p-multistep probabilistic bisimulation iff, whenever (s1,s2) ∈B, then for
all traces α ∈ A∗ and for all equivalence classes C ∈ S/B it holds that:

probm(s1,α,C) = probm(s2,α,C)
We denote by ∼PB,pm the largest p-multistep probabilistic bisimulation.

Theorem 14 Let (S,A,−→) be an NPLTS in which the transitions of each state have different labels.
Let s1,s2 ∈ S. Then:

s1 ∼PB,pm s2 ⇐⇒ s1 ∼PB s2

Proof Suppose that s1 ∼PB,pm s2. This means that there exists a p-multistep probabilistic bisimulation B
over S such that (s1,s2) ∈B. As a consequence, we have in particular that, whenever (s′1,s

′
2) ∈B, then for

all a ∈ A and C ∈ S/B:
probm(s′1,a,C) = probm(s′2,a,C)

Since a=⇒ coincides with a−→ and for all s ∈ S such that s a−→D it holds that:
probm(s,a,C) = ∑

s′∈C
D(s′) = D(C)

we have that the existence of s′1
a−→D1 implies the existence of s′2

a−→D2 and D1(C) = D2(C). In other
words, B is also a probabilistic bisimulation and hence s1 ∼PB s2.
Suppose now that s1 ∼PB s2. This means that there exists a probabilistic bisimulation B over S such that
(s1,s2) ∈ B. We prove that B is also a p-multistep probabilistic bisimulation, so that s1 ∼PB,pm s2 will
follow. Given s′1,s

′
2 ∈ S such that (s′1,s

′
2) ∈B, α ∈ A∗, and C ∈ S/B, we proceed by induction on |α|:

– If |α| = 0, then s′1
α=⇒ δs′1

and s′2
α=⇒ δs′2

are the only possible computations from s′1 and s′2 labeled
with α and it holds that:

probm(s′1,α,C) = probm(s′2,α,C) =
{

1 if {s′1,s′2} ⊆C
0 if {s′1,s′2}∩C = /0

because (s′1,s
′
2) ∈B and C is an equivalence class with respect to B.

– Let |α| = n ∈ N>0 and suppose that the result holds for all traces of length n− 1. Assume α = aα ′.
Since (s′1,s

′
2) ∈B and B is a probabilistic bisimulation, for all C′ ∈ S/B it holds that the existence of

s′1
a−→D1 implies the existence of s′2

a−→D2 and D1(C′) = D2(C′).
Given s ∈ S such that s α=⇒ with s a−→D , it holds that:

probm(s,α,C) = ∑
s′∈S

D(s′) ·probm(s′,α ′,C)

= ∑
C′∈S/B

∑
s′∈C′

D(s′) ·probm(s′,α ′,C)

= ∑
C′∈S/B

∑
s′∈C′

D(s′) ·probm(sC′ ,α
′,C)

= ∑
C′∈S/B

probm(sC′ ,α
′,C) · ∑

s′∈C′
D(s′)

= ∑
C′∈S/B

probm(sC′ ,α
′,C) ·D(C′)
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where sC′ ∈C′ and the factorization of probm(sC′ ,α
′,C) stems from the application of the induction hy-

pothesis on α ′ to all states of each equivalence class C′. Since the existence of s′1
a−→D1 implies the

existence of s′2
a−→D2 and D1(C′) = D2(C′) for all C′ ∈ S/B – remember that the quantification over

C′ can be equivalently anticipated or postponed in the absence of internal nondeterminism – we derive
that:

probm(s′1,α,C) = probm(s′2,α,C)

When considering an arbitrary NPLTS (S,A,−→), internal nondeterminism comes into play and hence
there might be several computations labeled with the same trace belonging to different resolutions of non-
determinism. In that case, their multistep probabilities have to be kept separate, otherwise they would be
summed up like in the case of reactive probabilistic processes.

Since preserving the connection between each computation and the resolution of nondeterminism to
which it belongs is important to define a ∼PB,m-inspired multistep variant of ∼PB,dis, we formalize below
the notion of resolution. We call resolution of a state s of an NPLTS L any possible way of resolving
nondeterminism starting from s. Each resolution is a tree-like structure whose branching points represent
probabilistic choices. This is obtained by unfolding from s the graph structure underlying L and by selecting
at each state a single transition of L – deterministic scheduler – or a convex combination of equally labeled
transitions of L – randomized scheduler – among all the transitions possible from that state. A resolution of
s can be formalized as an NPLTS Z rooted at a state zs corresponding to s, in which every state has at most
one outgoing transition and hence function probm can be safely applied.

Definition 18 Let L = (S,A,−→) be an NPLTS and s ∈ S. An NPLTS Z = (Z,A,−→Z ) is a resolution
of s obtained via a deterministic scheduler iff there exists a state correspondence function corr : Z→ S such
that s = corr(zs), for some zs ∈ Z, and for all z ∈ Z:

– If z a−→Z D , then corr(z) a−→D ′ with D(z′) = D ′(corr(z′)) for all z′ ∈ Z.
– If z

a1−→Z D1 and z
a2−→Z D2, then a1 = a2 and D1 = D2.

We denote by Res(s) the set of resolutions of s.

On the basis of the notion above, we provide a ∼PB,pm-inspired definition of ∼PB,dis and show that it
coincides with ∼PB,dis itself. The ct-variant of the ∼PB,pm-inspired equivalence can be defined similarly by
relying on resolutions obtained from randomized schedulers, and satisfies an analogous property with respect
to the original one-step ct-equivalence.

Definition 19 Let (S,A,−→) be an NPLTS. An equivalence relation B over S is a p-multistep class-distribu-
tion probabilistic bisimulation iff, whenever (s1,s2) ∈B, then for all traces α ∈ A∗ it holds that for each
resolution Z1 ∈ Res(s1) there exists a resolution Z2 ∈ Res(s2) such that for all equivalence classes C ∈ S/B:

probm(zs1 ,α,corr−1
Z1

(C)) = probm(zs2 ,α,corr−1
Z2

(C))
We denote by ∼PB,dis,pm the largest p-multistep class-distribution probabilistic bisimulation.

Theorem 15 Let (S,A,−→) be an NPLTS and s1,s2 ∈ S. Then:
s1 ∼PB,dis,pm s2 ⇐⇒ s1 ∼PB,dis s2

Proof Suppose that s1 ∼PB,dis,pm s2. This means that there exists a p-multistep class-distribution probabilis-
tic bisimulation B over S such that (s1,s2) ∈B. As a consequence, we have in particular that, whenever
(s′1,s

′
2) ∈B, then for all a ∈ A it holds that for each Z1 ∈ Res(s1) there exists Z2 ∈ Res(s2) such that for all

C ∈ S/B:
probm(zs1 ,a,corr−1

Z1
(C)) = probm(zs2 ,a,corr−1

Z2
(C))

Since a=⇒ coincides with a−→ and for all s ∈ S and Z ∈ Res(s) it holds that:
probm(zs,a,corr−1

Z (C)) = ∑

zs′∈corr−1
Z (C)

D(zs′ ) = D(corr−1
Z (C))

we have that for each s′1
a−→D1 there exists s′2

a−→D2 such that, for all C ∈ S/B, D1(C) = D2(C). In other
words, B is also a class-distribution probabilistic bisimulation and hence s1 ∼PB,dis s2.
Suppose now that s1 ∼PB,dis s2. This means that there exists a class-distribution probabilistic bisimulation B
over S such that (s1,s2) ∈B. We prove that B is also a p-multistep class-distribution probabilistic bisimu-
lation, so that s1∼PB,dis,pm s2 will follow. Given s′1,s

′
2 ∈ S such that (s′1,s

′
2) ∈B and α ∈ A∗, we proceed by

induction on |α|:
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– If |α| = 0, then zs′1
α=⇒ δzs′1

and zs′2
α=⇒ δzs′2

are the only possible computations labeled with α in any

resolution Z1 ∈Res(s′1) and any resolution Z2 ∈Res(s′2), respectively, and for all C ∈ S/B it holds that:

probm(zs′1
,α,corr−1

Z1
(C)) = probm(zs′2

,α,corr−1
Z2

(C)) =
{

1 if {s′1,s′2} ⊆C
0 if {s′1,s′2}∩C = /0

because (s′1,s
′
2) ∈B and C is an equivalence class with respect to B.

– Let |α|= n∈N>0 and suppose that the result holds for all traces of length n−1. Assume α = aα ′. Since
(s′1,s

′
2) ∈B and B is a class-distribution probabilistic bisimulation, it holds that for each s′1

a−→D1

there exists s′2
a−→D2 such that, for all C ∈ S/B, D1(C) = D2(C).

Given s ∈ S such that zs
α=⇒ with zs

a−→D in a resolution Z ∈ Res(s), for all C ∈ S/B it holds that:
probm(zs,α,corr−1

Z (C)) = ∑
zs′∈Z

D(zs′ ) ·probm(zs′ ,α
′,corr−1

Z (C))

= ∑
C′∈S/B

∑

zs′∈corr−1
Z (C′)

D(zs′ ) ·probm(zs′ ,α
′,corr−1

Z (C))

= ∑
C′∈S/B

∑

zs′∈corr−1
Z (C′)

D(zs′ ) ·probm(zsC′ ,α
′,corr−1

Z (C))

= ∑
C′∈S/B

probm(zsC′ ,α
′,corr−1

Z (C)) · ∑

zs′∈corr−1
Z (C′)

D(zs′ )

= ∑
C′∈S/B

probm(zsC′ ,α
′,corr−1

Z (C)) ·D(corr−1
Z (C′))

where sC′ ∈C′ and the factorization of probm(zsC′ ,α
′,corr−1

Z (C)) stems from the application of the in-

duction hypothesis on α ′ to all states of each equivalence class C′. Since for each s′1
a−→D1 there exists

s′2
a−→D2 such that, for all C′ ∈ S/B, D1(C′) = D2(C′), we derive that for each Z1 ∈ Res(s′1) there

exists Z2 ∈ Res(s′2) such that for all C ∈ S/B:
probm(zs′1

,α,corr−1
Z (C)) = probm(zs′2

,α,corr−1
Z (C))

Using the notion of resolution, we can also provide a∼PB,pm-inspired definition of each of the six group-
by-group probabilistic bisimilarities. The ct-variants of the six ∼PB,pm-inspired group-by-group probabilistic
bisimilarities can be defined similarly by relying on resolutions obtained from randomized schedulers.

Definition 20 Let (S,A,−→) be an NPLTS and ./∈ {=,≤,≥}. An equivalence relation B over S is a
p-multistep ./-group-by-group probabilistic bisimulation iff, whenever (s1,s2)∈B, then for all traces α ∈A∗

and for all groups of equivalence classes G ∈ 2S/B it holds that for each resolution Z1 ∈ Res(s1) there exists
a resolution Z2 ∈ Res(s2) such that:

probm(zs1 ,α,corr−1
Z1

(
⋃

G )) ./ probm(zs2 ,α,corr−1
Z2

(
⋃

G ))
We denote by ∼PB,gbg,./,pm the largest p-multistep ./-group-by-group probabilistic bisimulation.

Definition 21 Let (S,A,−→) be an NPLTS. An equivalence relation B over S is a p-multistep tu-group-
by-group probabilistic bisimulation iff, whenever (s1,s2) ∈B, then for all traces α ∈ A∗ and for all groups
of equivalence classes G ∈ 2S/B it holds that s1

α=⇒ iff s2
α=⇒ and:⊔

Z1∈Res(s1)s.t.zs1
α=⇒

probm(zs1 ,α,corr−1
Z1

(
⋃

G )) =
⊔

Z2∈Res(s2)s.t.zs2
α=⇒

probm(zs2 ,α,corr−1
Z2

(
⋃

G ))

d

Z1∈Res(s1)s.t.zs1
α=⇒

probm(zs1 ,α,corr−1
Z1

(
⋃

G )) =
d

Z2∈Res(s2)s.t.zs2
α=⇒

probm(zs2 ,α,corr−1
Z2

(
⋃

G ))

We denote by ∼PB,gbg,tu,pm the largest p-multistep tu-group-by-group probabilistic bisimulation.

Definition 22 Let (S,A,−→) be an NPLTS and # ∈ {
⊔

,
d
}. An equivalence relation B over S is a

p-multistep #-group-by-group probabilistic bisimulation iff, whenever (s1,s2) ∈B, then for all traces α ∈ A∗

and for all groups of equivalence classes G ∈ 2S/B it holds that s1
α=⇒ iff s2

α=⇒ and:
#

Z1∈Res(s1)s.t.zs1
α=⇒

probm(zs1 ,α,corr−1
Z1

(
⋃

G )) = #
Z2∈Res(s2)s.t.zs2

α=⇒
probm(zs2 ,α,corr−1

Z2
(
⋃

G ))

We denote by ∼PB,gbg,#,pm the largest p-multistep #-group-by-group probabilistic bisimulation.

The six ∼PB,pm-inspired group-by-group probabilistic bisimilarities can be alternatively defined without
making explicit use of the notion of resolution. Given s ∈ S, α ∈ A∗, and S′ ⊆ S, we inductively define the set
of multistep probabilities of reaching a state in S′ from s via α as follows:
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probsetm(s,α,S′) =



⋃
s a−→D

{ ∑
s′∈S

D(s′) · ps′ | ps′ ∈ probsetm(s′,α ′,S′)} if α = aα ′ and s a−→

{1} if α = ε and s ∈ S′

{0} if α = aα ′ and s 6a−→
or α = ε and s /∈ S′

Since probsetm(s,α,S′) = {probm(zs,α,corr−1
Z (S′)) |Z ∈ Res(s)}, it is easy to see that in Defs. 20 to 22 we

could have used probsetm(si,α,
⋃

G ) in place of probm(zsi ,α,corr−1
Zi

(
⋃

G )) for i = 1,2. This is not possible
in Def. 19 because the use of probsetm causes the connection between each computation and the resolution
to which it belongs to be broken.

Each of the six ∼PB,pm-inspired group-by-group probabilistic bisimilarities is contained in the corre-
sponding original one-step equivalence. The ct-variants of the six∼PB,pm-inspired group-by-group probabilis-
tic bisimilarities satisfy an analogous inclusion property with respect to the original one-step ct-equivalences.

Theorem 16 Let (S,A,−→) be an NPLTS, s1,s2 ∈ S, and ◦ ∈ {=,≤,≥,tu,t,u}. Then:
s1 ∼PB,gbg,◦,pm s2 =⇒ s1 ∼PB,gbg,◦ s2

Proof Let ./∈ {=,≤,≥} and suppose that s1 ∼PB,gbg,./,pm s2. This means that there exists a p-multistep
./-group-by-group probabilistic bisimulation B over S such that (s1,s2) ∈B. As a consequence, we have in
particular that, whenever (s′1,s

′
2) ∈B, then for all a ∈ A and G ∈ 2S/B it holds that for each Z1 ∈ Res(s′1)

there exists Z2 ∈ Res(s′2) such that:
probm(zs′1

,a,corr−1
Z1

(
⋃

G )) ./ probm(zs′2
,a,corr−1

Z2
(
⋃

G ))

Since a=⇒ coincides with a−→ and for all s ∈ S and Z ∈ Res(s) it holds that:
probm(zs,a,corr−1

Z (
⋃

G )) = ∑

zs′∈corr−1
Z (

⋃
G )

D(zs′ ) = D(corr−1
Z (
⋃

G ))

we have that for each s′1
a−→D1 there exists s′2

a−→D2 such that D1(
⋃

G ) ./ D2(
⋃

G ). In other words, B is
also a ./-group-by-group probabilistic bisimulation and hence s1 ∼PB,gbg,./ s2.
Suppose now that s1 ∼PB,gbg,tu,pm s2. This means that there exists a p-multistep tu-group-by-group proba-
bilistic bisimulation B over S such that (s1,s2) ∈B. As a consequence, we have in particular that, whenever
(s′1,s

′
2) ∈B, then for all a ∈ A and G ∈ 2S/B it holds that s′1

a=⇒ iff s′2
a=⇒ and:⊔

Z1∈Res(s′1)s.t.zs′1
a=⇒

probm(zs′1
,α,corr−1

Z1
(
⋃

G )) =
⊔

Z2∈Res(s′2)s.t.zs′2
a=⇒

probm(zs′2
,α,corr−1

Z2
(
⋃

G ))

d

Z1∈Res(s′1)s.t.zs′1
a=⇒

probm(zs′1
,α,corr−1

Z1
(
⋃

G )) =
d

Z2∈Res(s′2)s.t.zs′2
a=⇒

probm(zs′2
,α,corr−1

Z2
(
⋃

G ))

Since a=⇒ coincides with a−→ and for all s ∈ S and Z ∈ Res(s) it holds that:
probm(zs,a,corr−1

Z (
⋃

G )) = ∑

zs′∈corr−1
Z (

⋃
G )

D(zs′ ) = D(corr−1
Z (
⋃

G ))

we have that s′1
a−→ iff s′2

a−→ and: ⊔
s′1

a−→D1

D1(
⋃

G ) =
⊔

s′2
a−→D2

D2(
⋃

G )

d

s′1
a−→D1

D1(
⋃

G ) =
d

s′2
a−→D2

D2(
⋃

G )

In other words, B is also a tu-group-by-group probabilistic bisimulation and hence s1 ∼PB,gbg,tu s2.
Finally, the proof that s1 ∼PB,gbg,#,pm s2 implies s1 ∼PB,gbg,# s2 for # ∈ {t,u} is similar to the proof that
s1 ∼PB,gbg,tu,pm s2 implies s1 ∼PB,gbg,tu s2.

Unlike Thm. 15, the reverse implication of Thm. 16 does not hold in general. For example, in Fig. 7 we
have that s1 ∼PB,gbg,= s2 but s1 6∼PB,gbg,=,pm s2 because, for α = abc and G containing all the states with no
outgoing transitions, it turns out that the multistep probability of reaching G via α in the maximal resolution
of s1 starting with the rightmost a-transition – which is 0.1 ·0.7+0.9 ·0.6 = 0.61 – is not matched by any of
the multistep probabilities of reaching G via α in the three maximal resolutions of s2 starting with the three
a-transitions – which are 0.8 ·0.7+0.2 ·0.6 = 0.68, 0.1 ·0.7 = 0.07, and 0.9 ·0.6 = 0.54.

We conclude by showing that all the considered ∼PB,pm-inspired probabilistic bisimilarities collapse
into ∼PB,pm when restricting attention to reactive probabilistic processes. An analogous result holds for their
ct-variants.

Theorem 17 Let (S,A,−→) be an NPLTS in which the transitions of each state have different labels.
Let s1,s2 ∈ S and ◦ ∈ {=,≤,≥,tu,t,u}. Then:

s1 ∼PB,dis,pm s2 ⇐⇒ s1 ∼PB,gbg,◦,pm s2 ⇐⇒ s1 ∼PB,pm s2
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Fig. 7 Two models related by ∼PB,gbg,= that are distinguished by ∼PB,gbg,=,pm

Proof Since every state of this specific NPLTS has at most one transition labeled with a certain action, a
p-multistep probabilistic bisimulation is trivially a p-multistep class-distribution probabilistic bisimulation
and a p-multistep ◦-group-by-group probabilistic bisimulation.
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