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Abstract

Based on BRGC inspired order relations we define Gray codes and give a generating
algorithm for q-ary words avoiding a prescribed factor. These generalize an early 2001 result
and a very recent one published by some of the present authors, and can be seen as an
alternative to those of Squire published in 1996. Among the involved tools, we make use of
generalized BRGC order relations, ultimate periodicity of infinite words, and word matching
techniques.

1 Introduction

A very special way for listing a class of combinatorial objects is the so called combinatorial
Gray code, where two consecutive objects differ ‘in some pre-specified small way’ [7]. In [17] a
general definition is given, where a Gray code is defined as ‘an infinite set of word-lists with
unbounded word-length such that the Hamming distance between any two adjacent words is
bounded independently of the word-length’ (the Hamming distance is the number of positions
in which the words differ).

In [6] Guibas and Odlyzko enumerated the set of length n words avoiding an arbitrary factor,
and a systematic construction and enumeration results for particular factor avoidance in binary
case are considered in [2, 3]. In Gray code context, Squire in his early paper [12] explores the
possibility of listing factor avoiding words such that consecutive words differ in only one position,
and by 1 or −1 in this position, and in [14] is given a Gray code and a generating algorithm for
binary words avoiding ℓ consecutive 1s. The result in [14] was recently generalized in [1] where
two Gray codes (one prefix partitioned and the other trace partitioned) for q-ary words avoiding
a factor constituted by ℓ consecutive equal symbols are given.

Here, we adopt a different approach by relaxing Squire’s ‘one position constraint’ and give
Gray codes for length n words avoiding any given factor, where consecutive words differ in at
most three positions. Our definitions for these Gray codes are based on two order relations in-
spired from the original Binary Reflected Gray Code [5]; similar techniques were used previously
(less or more explicitly) for other combinatorial classes, see for example [18, 11, 15] and the
references therein. More precisely, we characterize forbidden factors inducing zero periodicity
(defined later), which is a crucial notion for our construction; and we show that the zero peri-
odicity property of a forbidden factor is a sufficient condition for the set of words avoiding this
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factor when listed in the appropriate order to be a Gray code. However, this is not a necessary
condition and we show that there are forbidden factors with no zero periodicity property, and
the set of words avoiding one of them when listed in the appropriate order yields a Gray code.
Also, among all qℓ forbidden factors of length ℓ on a q-ary alphabet, all but ℓ+1 of them induce
zero periodicity; and when a Gray code is prohibited by lack of zero periodicity property of the
forbidden factor, we give a simple transformation of this factor which allows to eventually obtain
the desired Gray code. Finally, we give a constant average time generating algorithm for these
Gray codes using ℓ · q extra space and a Knuth-Morris-Pratt word matching technique [8]. A C

implementation of the obtained algorithm is on the web site of the last author [16].
Although in [9] it is proved that the set of words avoiding a given factor is ‘reflectable’ under

some conditions on the alphabet cardinality and the forbidden factor, our construction yields
Gray codes for any alphabet and forbidden factor, and has a natural algorithmic implementation.

2 Notations and definitions

Words over a finite alphabet

An alphabet A is simply a set of symbols, and a length n word is a function {1, 2, . . . , n} → A,
and ǫ is the empty (i.e., length zero) word. We adopt the convention that lower case bold letters
represent words, for example a = a1a2 . . . an; and An denotes the set of words of length n over
A, A∗ = ∪n≥0A

n and A+ = ∪n≥1A
n. For a ∈ A∗, |a| denotes the length of a, or equivalently,

the number of symbols in a, and |a|6=0 the number of non-zero symbols in a. An infinite word
is a function N → A, and A∞ is the set of infinite words over A. For a ∈ A∗, i ≥ 0, ai is the
word obtained by i repetitions of a (a0 being the empty word ǫ) and a∞ is the infinite periodic
word aaa . . .. The word a ∈ A∞ is ultimately periodic if there are b ∈ A∗ and c ∈ A+ such that
a = bc∞, and we say that a has ultimate period c. Incidentally, we will make use of left infinite
words, which are infinite words a of the form a = . . . a−3a−2a−1. Left infinite words are reverse
of infinite words, and formally a left infinite word is a function {. . . ,−3,−2,−1} → A, and for
a ∈ A∗, a−∞ is the left infinite word . . .aaa.

The word f is a factor of the word a if there are words b and c such that a = bfc; when
b = ǫ (resp. c = ǫ), then f is a prefix (resp. suffix) of a; and in this case, the prefix or the suffix
is proper if f 6= a and f 6= ǫ.

For a word a and a set of words X we denote by a|X the set of words in X having the
prefix a, and by X(a) those avoiding a, i.e, the words in X which do not contain a as a factor.
Thus, for example, p|X(f) is the set of words in X having prefix p and avoiding f . Clearly
A∗(a) = ∪n≥0A

n(a).
Through this paper we consider the alphabet Aq = {0, 1, . . . , q − 1} with q ≥ 2.

Gray codes

We will adopt the following definition: a list of same length words is a Gray code if there is a
d such that the Hamming distance between any consecutive words in the list is bounded from
above by d; and often we refer to this list as a d-Gray code, and so, for example, a 3-Gray code
is also a 4-Gray code. In addition, if for any two consecutive words in the list the leftmost and
the rightmost positions where they differ are separated by at most e− 1 symbols, then the Gray
code is called e-close.
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Order relations

Our constructions of Gray codes for factor avoiding words are based on two order relations on
An

q we will define below. The first one captures the order induced by q-ary Reflected Gray Code
[4], which is the natural extension of Binary Reflected Gray Code introduced by Frank Gray [5];
and the second one is a variation of the previous one.

Definition 1 ([14, 15, 11]). Let s = s1s2 . . . sn and t = t1t2 . . . tn be two words in An
q , k be the

leftmost position where they differ, and u =
∑k−1

i=1 si =
∑k−1

i=1 ti. We say that s is less than t in
Reflected Gray Code order, denoted by s ≺ t, if either

• u is even and sk < tk, or

• u is odd and sk > tk.

It follows that the set An
q listed in ≺ order yields precisely the q-ary Reflected Gray Code

(see [4, 19]) where two consecutive words differ in one position and by 1 or −1 in this position.
For a set of same length words X, we refer to ≺-first (resp.≺-last) word in X for the first

(resp. last) word in X with respect to ≺ order.

In the binary case, Definition 1 can be re-expressed as following. For s, t and k as in Definition
1, let v be the number of non-zero symbols in the length k − 1 prefix of s and of t. Then s ≺ t

if either

• v is even and sk < tk, or

• v is odd and sk > tk.

By ‘adding’ u in Definition 1 and v defined above we obtain a new order relation.

Definition 2. Let s = s1s2 . . . sn and t = t1t2 . . . tn be two words in An
q , k be the leftmost

position where they differ, u =
∑k−1

i=1 si =
∑k−1

i=1 ti, and v be the number of non-zero symbols
in the length k − 1 prefix of s. We say that s is less than t in Dual Reflected Gray Code order,
denoted by s ⊳ t, if either

• u+ v is even and sk < tk, or

• u+ v is odd and sk > tk.

Clearly, listing a set of words in ≺ or in ⊳ order gives a prefix partitioned list, in the sense
that words with the same prefix are consecutive. See Table 2 in Appendix for the set A4

3 listed
in ⊳ order.

For a set of same length words X, we refer to ⊳-first (resp.⊳-last) word in X for the first (resp.
last) word in X with respect to ⊳ order. In the following, without explicitly precise otherwise
we will consider ≺ order on A∗

q when q is even and ⊳ order when q is odd.
The next remark says that ⊳ order yields a Gray code when q is odd, but generally for q

even, An
q listed in ⊳ order is not a Gray code.

Remark 1. For any odd q ≥ 3 and n ≥ 1, the set An
q listed in ⊳ order is a Gray code where

two consecutive words differ in at most two adjacent positions. In addition, if s and t are two
consecutive words in this list and k is the leftmost position where they differ, then
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• sk = tk ± 1, and

• if sk+1 6= tk+1, then {sk+1, tk+1} = {0, q − 1}.

We define the parity of the word a = a1a2 . . . an ∈ An
q according to two cases:

• when q is even, the parity of a is the parity of the integer
∑n

i=1 ai, and

• when q is odd, the parity of a is the parity of the integer
∑n

i=1 ai + |a|6=0.

For example, if a = 0222, then

• considering a ∈ A∗
4, the parity of a is even, and given by 0 + 2 + 2 + 2 = 6, and

• considering a ∈ A∗
5, the parity of a is odd, and given by 0 + 2 + 2 + 2 + 3 = 9.

Now we introduce a critical concept for our purposes: we say that the forbidden factor
f ∈ A∗

q induces zero periodicity on A∞
q if for any p ∈ A∗

q(f) the first and the last (as mentioned
previously, with respect to ≺ order for even q, or ⊳ order for odd q) words in p|A∞

q (f) both have
ultimate period 0. Consequently, if f ∈ A∗

q does not induce zero periodicity on A∞
q , it follows

that there exists a p ∈ A∗
q(f) such that the first and/or the last word in p|A∞

q (f) do not have
ultimate period 0.

Whether or not f induces zero periodicity on A∞
q depends on q; and q will often be under-

stood from the context. For example f = 3130 induces zero periodicity on A∞
6 but not on A∞

4 .
Indeed, the first word in ≺ order in A∞

6 (f) and having prefix 313 is 3135000 . . ., and the last
one is 3131500 . . .; whereas the last word in ≺ order in A∞

4 (f) and with the same prefix is the
periodic word 31313 . . ..

In Section 4 it is shown that the Graycodeness of the set An
q (f) listed in the appropriate

order is intimately related to that f induces zero periodicity.

Outline of the paper

Avoiding a factor of length one is equivalent to shrink the underlying alphabet, but for the sake
of generality, we will consider most of the time forbidden factors of any positive length.

In the next section we will characterize the forbidden factors f inducing zero periodicity on
A∞

q . By means of three sets Uq, V,Wq ⊂ A+
q , these factors are characterized in Corollary 1. The

non-zero ultimate periods produced by forbidden factors that do not induce zero periodicity
have the form 1(q − 1)0m, 10m or (q − 2), see Propositions 1, 3 and 5.

Theorems 4 to 6 and Proposition 12 in Section 4 prove that the property of f to induce zero
periodicity guarantees the set An

q (f) listed in the appropriate order to be a Gray code. However,
this property of f is not a necessary condition: there are two ‘special’ forbidden factors, namely
f = 0ℓ and f = (q − 1)0ℓ belonging to Uq (and so, which do not induce zero periodicity) but
An

q (f) listed in ≺ order is still a Gray code. These two cases are discussed in Section 4.2. Table
1 summarizes the Graycodeness for the set An

q (f) if f does not induce zero periodicity. Section
4 ends by showing that simple transformations of forbidden factors f which do not induce zero
periodicity allow to obtain Gray code for the set An

q (f).

Finally, we present in Section 5 an efficient generating algorithm for the obtained Gray codes.
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3 Periodicity

As stated above, without restriction, the set An
q listed in ≺ order is a 1-Gray code for any q ≥ 2,

and listed in ⊳ order a 2-Gray code for odd q ≥ 3. Roughly, it is due to that for any p ∈ A∗
q

the first and the last words—with respect to ≺ order for any q ≥ 2, or ⊳ order for odd q ≥ 3—
in the set p|A∞

q are among the three infinite words: p0∞, p(q − 1)0∞, and p(q − 1)∞. This
phenomenon is no longer true if an arbitrary factor f is forbidden. For example, if f = 130, then
the ≺-last word in 03|A∞

4 (f) is 0300000 . . ., and the ≺-first one in 13|A∞
4 (f) is 1313131 . . .; and

0300000 and 1313131 are consecutive words in A7
4(f), in ≺ order. Or, for f = 223, the ≺-last

word in 123|A∞
4 (f) is 123300 . . . and the ≺-first one in 122|A∞

4 (f) is 122222 . . .; and 123300 and
122222 are consecutive words in A6

4(f), in ≺ order.
However, it is easy to understand the next remark.

Remark 2. If f ∈ A∗
q is a forbidden factor ending by a symbol other than 0 or q − 1, then for

any p ∈ A∗
q(f), q ≥ 2 and even (resp. q ≥ 3 and odd), the set formed by the ≺-first and the

≺-last (resp. the ⊳-first and the ⊳-last) words in p|A∞
q (f) is {p0∞,p(q − 1)0∞}.

In other words, the previous remark says that any factor ending by a symbol other than 0
or q − 1 induces zero periodicity. However, there exist forbidden factors ending by 0 or q − 1
that do induce zero periodicity. For example, with f = 120, the ≺-first and ≺-last words in
12|A∞

4 (f) are 1230000 . . . and 1213000 . . ..
In the following we will use (often implicitly) the next straightforward remark which provides

the form of the words on the right of a fixed prefix p ∈ A∗
q(f), with respect to the appropri-

ate order. It is obtained by the following observation: the first/last word in p|An
q (f) is the

appropriate prefix of the first/last word in p|A∞
q (f).

Remark 3. Let q be even, f ∈ A∗
q be a forbidden factor, p, r ∈ A∗

q(f), and let p have even
(resp. odd) parity such that pr ∈ A∗

q(f). Then:

• If pr is a prefix of the ≺-first (resp. ≺-last) word in p|A∞
q (f), then r is the smallest word,

in ≺ order, with this property; that is, if s ∈ A∗
q with |s| = |r| and s 6= r is such that ps

is the prefix of some word in p|A∞
q (f), then r ≺ s.

• If pr is a prefix of the ≺-last (resp. ≺-first) word in p|A∞
q (f), then r is the largest word,

in ≺ order, with this property; that is, if s ∈ A∗
q with |s| = |r| and s 6= r is such that ps

is the prefix of some word in p|A∞
q (f), then s ≺ r.

Similar results hold when q is odd by replacing ≺ by ⊳ and considering the words parity as in
the definition given after Remark 1.

Remark 4 below specifies the form of the first and last words in An
q , subject to the additional

constraint that they do not begin by 0 or q−1. Later on we will see that when f does not induce
zero periodicity, then the possible non-zero periods of the first or the last word in p|A∗

q(f) are
related to those words. This remark will be used in the proofs of Propositions 1, 3 and 5.

Remark 4.

• For q even, the first word in An
q , with respect to ≺ order, which does not begin by 0 is

1(q − 1)0n−2.
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• For q odd, the first word in An
q , with respect to ⊳ order, which does not begin by 0 is

10n−1.

• For q ≥ 2 (even or odd), the last word in An
q , with respect to the appropriate order, which

does not begin by a q − 1 is (q − 2)(q − 1)0n−2.

In the following we need the technical lemma below.

Lemma 1. Let u,g ∈ A∗
q and v ∈ A+

q be such that g is a suffix of both u and uv. Then there
exist a j ≥ 0 and a (possibly empty) suffix w of v such that g = wvj (or equivalently, g is a
suffix of the left infinite word v−∞).

Proof. We prove the statement by induction on k = ⌊ |g||v|⌋. When k = 0, since the length of g
is less than that of v, and g is a suffix of uv the statement follows by considering j = 0 and
w = g.

Let now k = ⌊ |g||v|⌋ > 0. In this case the length of g is greater than that of v, and it follows

that v is a suffix of both g and u. By considering u′ and g′ such that

• u = u′v

• g = g′v

we have that g′ is a suffix of both u′ and u = u′v. Since |g′| = |g|−|v| we have that ⌊ |g
′|

|v| ⌋ = k−1
and the statement follows by induction on k.

3.1 Forbidden factor ending by 0 and not inducing zero periodicity

We will determine, according to the parity of q, the form of the first and the last words in
p|A∞

q (f) having no ultimate period 0 for f ending by 0, and consequently the form of the
forbidden factors f that do not induce zero periodicity.

q even

Proposition 1. Let q ≥ 2 be even and f ∈ A+
q be a forbidden factor ending by 0 and not

inducing zero periodicity. Let also p ∈ A∗
q(f) be such that one of the ≺-first or the ≺-last

word in p|A∞
q (f) does not have ultimate period 0, and let a be this word. Then a is ultimately

periodic, more precisely there is an m ≥ 0 such that either

(i) a = p0i(1(q − 1)0m)∞, for some i ≤ m, or

(ii) a = p((q − 1)0m1)∞.

Proof. We will show that when p has even (resp. odd) parity, then either

1. a is the ≺-first (resp. ≺-last) word in p|A∞
q (f), and in this case a has the form given in

point (i) above, or

2. a is the ≺-last (resp. ≺-first) word in p|A∞
q (f), and in this case a has the form given in

point (ii) above.
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For the point 1, considering the parity of p and since a does not have ultimate period 0, there
is an i ≥ 0 such that p0i+1 contains the factor f , but p0i does not. Now, by Remark 4, since
f ends by a 0, it follows that there is an m ≥ 0 such that p0i 1(q − 1)0m is a prefix of a, but
p0i1(q − 1)0m+1 is not. Thus, the length maximal 0 suffix of f is 0m+1, and reasoning in the
same way, it follows that there is an m′ ≥ 0 such that p0i 1(q − 1)0m 1(q − 1)0m

′
is a prefix

of a, but p0i 1(q − 1)0m 1(q − 1)0m
′+1 is not. Since 0m+1 is the length maximal 0 suffix of f ,

necessarily m′ = m, and the statement holds by iterating this construction.
Similarly, point 2 holds considering that p(q− 1) is a prefix of a and there is an m ≥ 0 such

that p(q − 1)0m+1 contains the factor f .

Now we characterize the forbidden factors f ∈ A+
q ending by 0, for even q ≥ 2, and not

inducing zero periodicity.
For even q ≥ 2, let define the set Uq ⊂ A+

q as

Uq =
⋃

m≥0

{b0 | b a suffix of (1(q − 1)0m)−∞}. (1)

Alternatively, Uq is the set of words of the form b0, where b is either empty, or for some
m ≥ 0, a factor of (1(q−1)0m)∞ ending by 0m ifm > 0 and ending by q−1 elsewhere. Clearly, Uq

contains exactly n words of length n, for example, U4∩A
5
4 = {00000, 30000, 13000, 01300, 13130}.

Proposition 2. For even q ≥ 2, if a forbidden factor f ∈ A+
q ending by 0 does not induce zero

periodicity, then f ∈ Uq.

Proof. If f is such a factor, then by Proposition 1 there is a p ∈ A∗(f) and an m ≥ 0 such that,
a, the ≺-first or the ≺-last word in p|A∞

q (f) is

• a = p0i(1(q − 1)0m)∞, for some i ≤ m, or

• a = p((q − 1)0m1)∞.

Let g be the word obtained from f after erasing its last 0. In the first case it follows that g is
a suffix of both p0i 1(q − 1)0m and p0i 1(q − 1)0m 1(q − 1)0m, and by Lemma 1 the statement
holds. The proof is similar for the second case.

Remark 5. If f ∈ Uq and q is even, then f does not induce zero periodicity. Indeed, let for
example f = b0 with b a suffix of (1(q − 1)0m)−∞ be as in relation (1). Then either the first
word in b|A∞

q (f) when b has even parity, or the last word in b|A∞
q (f) when b has odd parity,

has ultimate period 1(q − 1)0m.

Example 1. Let f = 301300 ∈ U4 be a forbidden factor and let consider the prefix p =
0021301 ∈ A∗

4. The ≺-first word in p|A∞
4 (f) is p30(130)∞.

Combining Proposition 2 and Remark 5 we have the following theorem.

Theorem 1. For even q ≥ 2, the forbidden factor f ∈ A+
q ending by 0 does not induce zero

periodicity if and only if f ∈ Uq.
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q odd

Now we give the odd q counterpart of the previous results.

Proposition 3. Let q ≥ 3 be odd and f ∈ A+
q be a forbidden factor ending by 0 and not inducing

zero periodicity. Let also p ∈ A∗
q(f) be such that one of the ⊳-first or the ⊳-last word in p|A∞

q (f)
does not have ultimate period 0, and let a be this word. Then a is ultimately periodic, more
precisely there is an m ≥ 0 such that either

• a = p0i(10m)∞, for some i ≤ m, or

• a = p(q − 1)(0m1)∞.

Proof. The proof is similar to that of Proposition 1 and considering the second point of Remark 4.

Now we characterize the forbidden factor f ∈ A+
q ending by 0, for odd q ≥ 3, and not

inducing zero periodicity.
For q ≥ 3, let define the set V ⊂ A+

q as

V =
⋃

m≥0

{b0 | b a suffix of (10m)−∞}. (2)

Alternatively, V is the set of words of the form b0, where b is either empty, or for some
m ≥ 0, a factor of (10m)∞ ending by 0m if m > 0 (and ending by 1 elsewhere). Notice that V
does not depend on q, i.e. V ⊂ A+

q for any q ≥ 2. Clearly, V contains exactly n words of length
n, for example, V ∩A5

q = {00000, 10000, 01000, 10100, 11110}, for any q ≥ 2.
Considering Proposition 3 and the definition of ⊳ order relation, with the same arguments

as in the proof of Proposition 2 we have the next result.

Proposition 4. For odd q ≥ 3, if a forbidden factor f ∈ A+
q ending by 0 does not induce zero

periodicity, then f ∈ V .

Remark 6. If f ∈ V and q ≥ 3 is odd, then f does not induce zero periodicity on A∞
q (f).

Indeed, let for example f = b0 with b a suffix of (10m)−∞ be as in relation (2). Then either
the first word in b|A∞

q (f) when b has even parity, or the last word in b|A∞
q (f) when b has odd

parity, has ultimate period 10m.

Example 2. Let f = 0100010000 ∈ V a the forbidden factor and let consider the prefix
p = 430100010 ∈ A∗

5. The ⊳-last word in p|A∞
5 (f) is p00(1000)∞.

Combining Proposition 4 and Remark 6, we have the following theorem.

Theorem 2. For odd q ≥ 3, the forbidden factor f ∈ A+
q ending by 0 does not induce zero

periodicity if and only if f ∈ V .
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3.2 Forbidden factor ending by q − 1 and not inducing zero periodicity

The next proposition holds for q ≥ 3 (even or odd), and the case for q = 2 is stated in the
remark that follows it.

Proposition 5. Let q ≥ 3 (even or odd) and f ∈ A+
q be a forbidden factor ending by q− 1 and

not inducing zero periodicity. Let also p ∈ A∗
q(f) be such that one of the first or the last word

in p|A∞
q (f), with respect to the appropriate order, does not have ultimate period 0, and let a be

this word. Then a = p(q − 2)∞.

Proof. Nor p0 neither p(q−1) can not be a prefix of a; otherwise, in the first case a = p0∞ and
in the second one a = p(q−1)0∞. By the third point of Remark 4 and since f ends by a q−1, it
follows that p(q−2) is a prefix of a, but p(q−2)(q−1) is not (otherwise a = p(q−2)(q−1)0∞).
Again, p(q−2)(q−2) is a prefix of a, but p(q−2)(q−2)(q−1) is not; and finally a = p(q−2)∞.

When q = 2, the ultimate (q − 2) period of a in Proposition 5 becomes 0 period, and so, for
q = 2 any forbidden factor f ∈ A+

q ending by q − 1 = 1 induces zero periodicity. Thus, below
we will consider only factors ending by q − 1 and not inducing zero periodicity only for q ≥ 3
(even or odd).

For q ≥ 3, let define the set Wq as

Wq =
⋃

ℓ≥0

{(q − 2)ℓ(q − 1)}. (3)

With the previous terminology, Wq is the set of words of the form b(q − 1) with b a suffix
of (q − 2)−∞. Clearly, Wq contains exactly one word of each length, and for example, W4 =
{3, 23, 223, 2223, 22223, . . .}.

Proposition 6. For q ≥ 3 (even or odd), if the forbidden factor f ∈ A+
q ending by q − 1 does

not induce zero periodicity, then f ∈ Wq.

Proof. Let f be such a factor, and p ∈ A∗
q(f) such that, with respect to the appropriate order,

the first word in p|A∞
q (f) has not ultimate period 0 (the case of the first word being similar).

Let also g be the (possibly empty) word obtained from f after erasing its last symbol q− 1. By
Proposition 5, g is a suffix of both p(q− 2) and p(q− 2)(q− 2), and by Lemma 1 the statement
holds.

Remark 7. If f ∈ Wq, then f does not induce zero periodicity. Indeed, let for example
b = (q − 2)ℓ, for some ℓ ≥ 0, and f = b(q − 1) be as in relation (3). Then the last word in
b|A∞

q (f) has ultimate period (q − 2).

Example 3. Let f = 223 ∈ W4 be a forbidden factor and let consider the prefix p = 2322 ∈ A∗
4.

The ≺-first word in p|A∞
4 (f) is p2∞. And when f = 12 ∈ W3 and p = 01 ∈ A∗

3, the ⊳-last word
in p|A∞

3 (f) = p1∞.

Combining Proposition 6 and Remark 7, we have the following theorem.

Theorem 3. For q ≥ 3 (even or odd), the forbidden factor f ∈ A+
q ending by q − 1 does not

induce zero periodicity if and only if f ∈ Wq.

Even we will not make use later, it is worth to mention the following remark.

9



Remark 8. For q even (resp. odd), if f , |f | ≥ 2, does not have the form 0ℓ nor (q− 1)0ℓ (resp.
the form 0ℓ) for some ℓ ≥ 1, then for any p ∈ A∗

q(f), at least one among the ≺-first and the
≺-last word in p|A∞

q (f) (resp. the ⊳-first and the ⊳-last word in p|A∞
q ) has ultimate period 0.

3.3 Forbidden factor inducing zero periodicity

Here we characterize the first and the last words in p|A∞
q (f) when the forbidden factor f induces

zero periodicity; the resulting ultimate 0 periodic words will be used in the next section.

Proposition 7. Let q ≥ 2 be even, f ∈ A+
q \Uq be a forbidden factor ending by 0, ℓ ≥ 1 be the

length of the maximal 0 suffix of f , and p ∈ A∗
q(f). If a is the ≺-first or the ≺-last word in

p|A∞
q (f), then a has the form

pr0∞,

where

1. r = ǫ or r = 0i1(q − 1) for some i, 0 ≤ i ≤ ℓ − 1, if a is the ≺-first (resp. ≺-last) word
in p|A∞

q (f) and p has even (resp. odd) parity, or

2. r = q − 1 or (q − 1)0ℓ−11(q − 1) if a is the ≺-first (resp. ≺-last) word in p|A∞
q (f) and p

has odd (resp. even) parity.

Proof. We prove the first point, the second one being similar. Let a be the ≺-first (resp. ≺-
last) word in p|A∞

q (f) with p having even (resp. odd) parity. Let also suppose that r has
not the form prescribed in point 1. Reasoning as in the proof of Proposition 1 it follows that
0i1(q − 1)0ℓ−11(q − 1)0ℓ−1 is a prefix of r, for some i, 0 ≤ i ≤ ℓ − 1, and finally, by Lemma 1
that f ∈ Uq, which leads to a contradiction.

The proof of the next proposition is similar to that of Proposition 7.

Proposition 8. Let q ≥ 3 be odd, f ∈ A+
q \ V be a forbidden factor ending by 0, ℓ ≥ 1 be the

length of the maximal 0 suffix of f , and p ∈ A∗
q(f). If a is the ⊳-first or the ⊳-last word in

p|A∞
q (f), then a has the form

pr0∞,

where

1. r = ǫ or r = 0i1 for some i, 0 ≤ i ≤ ℓ−1, if a is the ⊳-first (resp. ⊳-last) word in p|A∞
q (f)

and p has even (resp. odd) parity, or

2. r = q − 1 or (q − 1)0ℓ−11 if a is the ⊳-first (resp. ⊳-last) word in p|A∞
q (f) and p has odd

(resp. even) parity.

It is routine to check the next two propositions.

Proposition 9. Let q ≥ 3, f ∈ A+
q \Wq be a forbidden factor ending by q − 1, and p ∈ A∗

q(f).
If a is the first or the last word in p|A∞

q (f) with respect to the appropriate order, then a has
the form

pr0∞,

where r is either ǫ, or q − 1, or (q − 2)(q − 1).

10



As mentioned in Remark 2, forbidden factors ending by other symbol than 0 or q− 1 induce
zero periodicity, and we have the following proposition.

Proposition 10. If f ∈ A∗
q is a forbidden factor that does not end by 0 nor by q − 1, then for

any p ∈ A∗
q(f), with respect to the appropriate order, both the first and the last word in p|A∞

q (f)
have the form:

pr0∞,

where r is either ǫ or q − 1.

We will see later that Propositions 7 to 10 above describe sufficient (but not a necessary)
conditions for the Graycodeness of An

q (f).
We conclude this section by the next corollary which summarizes the results in Remark 2

and Theorems 1, 2 and 3, and we will refer it later.

Corollary 1. The forbidden factor f ∈ A∗
q induces zero periodicity if and only if either:

• f does not end by 0 nor by q − 1, or

• q = 2 and f 6∈ U2, or

• q ≥ 4 is even and f 6∈ Uq ∪Wq, or

• q ≥ 3 is odd and f 6∈ V ∪Wq.

4 Gray codes

In this section we show that for forbidden factors f inducing zero periodicity on A∞
q (as stated

in Corollary 1) consecutive words—in ≺ order for q even, or ⊳ order for q odd—in An
q (f), beyond

the common prefix, have all symbols 0, except the first few of them; and this ensures that the
set An

q (f) listed in an appropriate order is a Gray code.
Nevertheless, the property of f to induce zero periodicity is not a necessary condition.

Indeed, listing the set An
q (f) in ≺ order with:

• f = 0ℓ for any q (not necessarily even), or

• f = (q − 1)0ℓ for q even,

where ℓ ≥ 1, yields a 1-Gray code, despite f ∈ Uq (and so, f does not induce zero periodicity
for q even). This particular cases are discussed in Section 4.2, and we show that such factors f ,
f ≥ 2, are the only ones giving Gray codes for forbidden factors not inducing zero periodicity.
In particular, the Gray code obtained for An

q (0
ℓ) is one of those defined in [1] as a generalization

of a Gray code in [14]. Finally, for forbidden factors f for which ≺ nor ⊳ does not produce
Gray codes on An

q (f), we give simple transformations of f , and eventually obtain Gray codes
for An

q (f) (in order other than ≺ or ⊳).

We will make use later of the following property of forbidden factors ending by 0 or q − 1:
for any q ≥ 2, if f ends by 0 or q − 1, then any two consecutive words in An

q (f), in both ≺ and
⊳ order, differ by 1 or −1 in the leftmost position where they differ.

11



Proposition 11. Let q ≥ 2 and f ∈ A+
q be a forbidden factor ending by 0 or q − 1, and

a = a1a2 . . . an and b = b1b2 . . . bn be two words in An
q (f), consecutive with respect to ≺ or ⊳

order. If k is the leftmost position where a and b differ, then bk = ak + 1 or bk = ak − 1.

Proof. If f ends by 0 let us suppose that bk < ak−1. It follows that f is a suffix of a1a2 . . . (ak−1),
so ak − 1 = 0 and thus bk < 0, which is a contradiction. The proof when bk > ak +1 or when f

ends by q − 1 is similar.

4.1 Factors inducing zero periodicity

We show that for factors f as in Corollary 1 the set An
q (f) listed in ≺ or ⊳ order is a Gray code.

Proposition 12. If q is even (resp. odd) and f ∈ A+
q does not end by 0 nor q− 1, then An

q (f),
n ≥ 1, listed in ≺ (resp. ⊳) order is a 2-adjacent Gray code.

Proof. Let a, b ∈ An
q (f), a = a1a2 . . . an and b = b1b2 . . . bn be two consecutive words with

respect to the appropriate order, and k be the leftmost position where they differ. Since f does
not end by 0 nor by q−1, it follows that q ≥ 3, and considering the definitions of ≺ and ⊳ order,
we have in both cases (see Remark 1) {ak+1, bk+1} ⊂ {0, q − 1} and ak+2 . . . an = bk+2 . . . bn =
0n−k−1. In any case, a and b differ in position k and possibly in position k + 1.

Theorem 4. If q ≥ 2 is even, f ∈ A+
q \Uq ends by 0, and ℓ is the length of the maximal 0 suffix

of f , then An
q (f), n ≥ 1, listed in ≺ order is an at most (ℓ+ 2)-close 3-Gray code.

Proof. Let a, b ∈ An
q (f), a = a1a2 . . . an and b = b1b2 . . . bn be two consecutive words with

respect to the appropriate order, and k be the leftmost position where a and b differ. By
Proposition 11, bk = ak+1 or bk = ak−1 and so the prefixes a′ = a1a2 . . . ak and b′ = b1b2 . . . bk
have different parity. Two cases arise according to the parity of a′.
• a′ has even parity, and so b′ has odd parity. By point 2 of Proposition 7

a = a′x,

and
b = b′y,

with x and y being the n − k prefixes of r0∞ and of r′0∞, where {r, r′} ⊂ {(q − 1), (q −
1)0ℓ−11(q−1)}. Thus a and b differ in position k and possibly in positions k+ℓ+1 and k+ℓ+2
if k + ℓ+ 1 ≥ n.
• a′ has odd parity, and so b′ has even parity. By point 1 of Proposition 7 either

(i) ak+1ak+2 . . . an = bk+1bk+2 . . . bn = 0n−k, or

(ii) at least one of ak+1ak+2 . . . an or bk+1bk+2 . . . bn is the n− k prefix of a word of the form
0i1(q − 1)0∞.

In case (i) a and b differ only in position k. And in case (ii) let us suppose that ak+1ak+2 . . . an is
the length n−k prefix of 0i1(q−1)0∞ (the corresponding case for bk+1bk+2 . . . bn being similar).
Considering that bk = ak + 1 or bk = ak − 1 it follows that bk+1bk+2 . . . bn is the length n − k
prefix of 0∞ and so a and b differ in positions k, and (possibly) k + i+ 1 and k + i+ 2.

In any case, a and b differ in at most three positions which are at most ℓ + 2 apart from
each other.
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Example 4. The words 00230130 and 00330000 are consecutive in A8
4(2300) listed in ≺ order.

They differ in 3 positions which are 4-close, and are in the worst case since the list is a 4-close
3-Gray code.

Considering the possible values of r in Proposition 8 it is easy to see that for f /∈ V ending
by 0 and q odd, the set An

q (f) listed in ⊳ order is a 4-Gray code. The next theorem gives a more
restrictive result.

Theorem 5. If q ≥ 3 is odd, f ∈ A+
q \ V ends by 0, and ℓ is the length of the maximal 0 suffix

of f , then An
q (f), n ≥ 1, listed in ⊳ order is an at most (ℓ+ 1)-close 3-Gray code.

Proof. Let a, b ∈ An
q (f), a = a1a2 . . . an and b = b1b2 . . . bn be two consecutive words, in ⊳

order, and k be the leftmost position where a and b differ. If a′ and b′ are the length k prefix
of a and b, by Proposition 8

a = a′x,

and
b = b′y,

with x and y being the n− k prefixes of r0∞ and of r′0∞, where {r, r′} ⊂ {ǫ, 0i1, (q − 1), (q −
1)0ℓ−11}, for some i, 0 ≤ i ≤ ℓ − 1. The statement holds by showing that {r, r′} ⊂ {0i1, (q −
1)0ℓ−11} is not possible. Indeed, let us suppose that r = 0i1 for some i, 0 ≤ i ≤ ℓ − 1, and
r′ = (q − 1)0ℓ−11 (the case r = (q − 1)0ℓ−11 and r′ = 0i1 being similar). This happens when
both a′ and b′ have both odd parity. By Proposition 11, bk = ak + 1 or bk = ak − 1, and since
a1a2 . . . ak−1 = b1b2 . . . bk−1 it follows that ak = 1 and bk = 0. Since r′ = (q−1)0ℓ−11, the factor
f must end by (q − 1)0ℓ and since ak = 1 it follows that r = ǫ, which leads to a contradiction.

Example 5. By Theorem 5, the sets A9
5(31000) and A9

5(24000) listed in ⊳ order are 4-close
3-Gray codes. However, it is easy to check that in particular, A9

5(31000) is a 3-close 3-Gray
code, and A9

5(24000) is 4-close 2-Gray code. For example:

• the words 001304000 and 001310010 are consecutive in A9
5(31000) when listed in ⊳ order;

they differ in 3 positions which are 3-close; and

• the words 001140000 and 001240010 are consecutive in A9
5(24000) when listed in ⊳ order;

they differ in 2 positions which are 4-close.

Theorem 6. If q is even (resp. odd) and f ∈ A+
q \Wq ends by q − 1, then An

q (f) listed in ≺
order (resp. ⊳ order) is a 2-close 3-Gray code (that is, a 3-adjacent Gray code).

Proof. Let k be the leftmost position where two consecutive words a = a1a2 . . . an and b =
b1b2 . . . bn, in An

q (f) differ. Exhausting the possible values of ak and bk, and since f 6∈ Wq ends
by q − 1 it follows that ai = bi = 0 for all i > k + 2 (see also Proposition 9).
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4.2 Particular cases

As mentioned before, there are two cases when f ∈ Uq, q ≥ 2 and even, but An
q (f) listed in ≺

order is a Gray code; these are f = 0ℓ and f = (q − 1)0ℓ, ℓ ≥ 1. Moreover, it turns out that
An

q (0
ℓ), q ≥ 3 and odd, also gives Gray code if listed in ≺ order. Similar phenomenon does not

occur for f ∈ V , i.e., the set An
q (f) listed in ⊳ order is not a Gray code for any f ∈ V , |f | ≥ 2

and q ≥ 3 odd, see for example Remark 9.

Before discussing these particular forbidden factors we introduce some notations.
Let q ≥ 2, ℓ ≥ 1, and let define the infinite words:

u = (0ℓ−11(q − 1))∞,
v = ((q − 1)0ℓ−11)∞.

(4)

Notice that u and v are suffixes to each other, and they are related with the infinite words
occurring in Proposition 1. It is easy to see that u and v are, respectively, the ≺-first and ≺-last
word in A∞

q (0ℓ) for even q; and thus the length n prefix of u and v are, respectively, the ≺-first

and ≺-last word in An
q (0

ℓ).

Moreover, for any p ∈ Ak
q (0

ℓ) with 1 ≤ k ≤ n and q even

• the ≺-first (resp. ≺-last) word in p|An
q (0

ℓ) is pv′ if p has an odd (resp. even) parity, where
v′ is the length n− k prefix of v;

• if p does not end by 0, then the ≺-first (resp. ≺-last) word in p|An
q (0

ℓ) is pu′ if p has an
even (resp. odd) parity, where u′ is the length n− k prefix of u.

Now let q ≥ 3 and odd, ℓ ≥ 1, and let define the infinite words:

s = 0ℓ−11(q − 1)∞,
t = (q − 1)∞,

(5)

and s and t have similar property as u and v for q odd and with same ≺ order.

The case f = 0ℓ

Proposition 13. For q ≥ 2 (even or odd), and ℓ, n ≥ 1, the set An
q (0

ℓ) listed in ≺ order is a
Gray code where two consecutive words differ in one position and by 1 or −1 in this position.

Proof. Let a and b be two consecutive words, in ≺ order, in An
q (0

ℓ), a′ = a1a2 . . . ak and
b′ = b1b2 . . . bk be the length k prefix of a and b, with k the leftmost position where a and b

differ.
When q is even, with u′ and v′ the length (n − k) prefix of u and v defined in relation (4),

we have

• a = a′v′ and b = b′v′ if a′ has an even parity (and so, by Proposition 11, b′ has odd
parity);

• a = a′u′ and b = b′u′, elsewhere, since ak 6= 0 and bk 6= 0 by considering the parity of the
common length k − 1 prefix of a and b.

Similarly, when q is odd, with s′ and t′ the length (n − k) prefix of s and t defined in
relation (5), we have
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• a = a′t′ and b = b′t′ if a′ has an even parity (given by
∑k

i=1 ai);

• a = a′s′ and b = b′s′ (since, ak 6= 0 and bk 6= 0 ), elsewhere.

In both cases a and b differ only in position k.

The case f = (q − 1)0ℓ for q even

Let q ≥ 2 be even, 1 ≤ k ≤ n, and v′ be the n − k prefix of v defined in relation (4). For any
p ∈ Ak

q ((q − 1)0ℓ) with ℓ ≥ 1 and 1 ≤ k ≤ n

• the ≺-first (resp. ≺-last) word in p|An
q ((q − 1)0ℓ) is pv′ if p has odd (resp. even) parity;

• if p does not end by 0 nor by q− 1, then the ≺-first (resp. ≺-last) word in p|An
q ((q− 1)0ℓ)

is p0n−k if p has even (resp. odd) parity.

Proposition 14. For q ≥ 2 even, and ℓ, n ≥ 1, the set An
q ((q−1)0ℓ) listed in ≺ order is a Gray

code where two consecutive words differ in one position and by 1 or −1 in this position.

Proof. Let a and b be two consecutive words, in ≺ order, in An
q ((q − 1)0ℓ), a′ = a1a2 . . . ak and

b′ = b1b2 . . . bk be the length k prefix of a and b with k the leftmost position where a and b

differ.
If a′ has even parity (and so, by Proposition 11, b′ has odd parity), then by the above

considerations a = a′v′ and b = b′v′.
If a′ has odd parity, by considering the parity of the common length k − 1 prefix of a and

b it follows that ak 6= q − 1 and bk 6= q − 1, and again, by the above considerations we have
a = a′0n−k and b = b′0n−k.

In both cases a and b differ only in position k.

4.3 Factors preventing Graycodeness

A consequence of the next remark and proposition, is Corollary 2 below. Proposition 15 sounds
like Remark 8 and says that if f , |f | ≥ 2 (|f | = 1 being trivial), does not induce zero periodicity
(see Corollary 1), and it is not in one of the two particular cases above, then consecutive words,
with respect to the appropriate order, in An

q (f) can differ in arbitrary many positions for enough
large n. One of these particular cases is explained below.

Remark 9. For q ≥ 3 and odd, ℓ ≥ 2 and f = 0ℓ, the set An
q (f) listed in ⊳-order is not a Gray

code. Indeed, for example, the words 02z′ and 1z′′ are consecutive in ⊳-order in An
q (f), where z

′

and z′′ are appropriate length prefixes of (0ℓ−11)∞, and they differ in arbitrary many positions
for enough large n.

Proposition 15. Let f ∈ A+
q , q ≥ 2 and |f | ≥ 2, be a forbidden factor not inducing zero

periodicity, other than 0ℓ or (q − 1)0ℓ, ℓ ≥ 1. Let also a and b be two consecutive words, in
appropriate order, in An

q (f), n ≥ 1, and k the leftmost position where a and b differ. If

• a′ = a1a2 . . . ak and b′ = b1b2 . . . bk are, respectively, the length k prefix of a and b, and

• a′′ and b′′ are, respectively, the last word in a′|A∞
q (f) and the first word in b′|A∞

q (f), in
appropriate order,
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then at most one among a′′ and b′′ does not have ultimate period 0.

Proof. Since f does not induce zero periodicity, we prove the statement according to f belongs
to Uq, V or Wq (see Corollary 1), and supposing that a′′ does not have ultimate period 0 (the
corresponding case for b′′ being similar).
If f ∈ Uq, q ≥ 2 and f does not have the form 0ℓ nor (q − 1)0ℓ:

• When a′ has odd parity, since ak must be a symbol of f , it follows that ak ∈ {0, 1, q − 1}.
From the parity of a′, it follows that ak = 0 implies that bk = ak − 1, and ak = q − 1
that bk = ak + 1, which are not possible, and necessarily ak = 1. Thus, either a′′ = a′0∞

(which is a contradiction with the non-zero periodicity of a) or b′′ = b′0∞.

• When a′ has even parity, then a′′ = a′v and since bk 6= ak, b
′′ = b′(q − 1)0∞, with v

defined in relation (4).

If f ∈ V , q ≥ 3 and odd, and f does not have the form 0ℓ:

• a′ can not have even parity, otherwise a′′ = a′(q−1)0∞, which is a contradiction with the
non-zero periodicity of a;

• When a′ has odd parity, the symbol ak must be one of the forbidden factor, so ak ∈ {0, 1}.
But ak = 0, implies bk = ak − 1, which again is not possible; and ak = 1 implies bk = 0,
and so b′′ = (q − 1)0∞, which does not contain the factor f if it is different from 0ℓ.

Finally, when f ∈ Wq, q ≥ 3 (even or odd) then a′′ = a′(q− 2)∞ and b′′ is either b′0∞ (this can
occur if q is odd) or b′(q − 1)0∞.

Table 1 summarizes the cases occurring in Proposition 15.
A consequence of Remark 9, Propositions 13 to 15 and Corollary 1, is the corollary below.

Corollary 2.

• For even q ≥ 2 and |f | ≥ 2, the set An
q (f ) listed in ≺ order is a Gray code for any n ≥ 1

if and only if f ∈ {0ℓ, (q − 1)0ℓ}ℓ≥1 ∪W2 ∪ (A∗
q \ (Uq ∪Wq)).

• For odd q ≥ 3 and |f | ≥ 2, the set An
q (f) listed in ⊳ order is a Gray code for any n ≥ 1 if

and only if f ∈ A∗
q \ (V ∪Wq).

4.4 Obtaining Gray code if f does not induce zero periodicity and beyond

the particular cases

According to the previous results, if the forbidden factor f does not induce zero periodicity,
then the set An

q (f) listed in ≺ or ⊳ order is not a Gray code, except for the two particular cases
in Section 4.2. Now we show how a simple transformation allows to define Gray codes, with
the same Hamming distance and closeness properties as for factors that induce zero periodicity,
when f does not have this property. By Theorems 1, 2 and 3, the last symbol of a factor that
does not induce zero periodicity is either 0, or q − 1 when q ≥ 3.

Let define the transformation φ : Aq → Aq depending on f as

• when the last symbol of f is 0, then φ(0) = 1, φ(1) = 0, and φ(x) = x if x 6∈ {0, 1}; and
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q
Order
rela-
tion

The set for forbidden
factor f

The set of
ultimate periods
of the last word
in a|A∞

q (f) and
the first one in

b|A∞
q (f)

Graycodeness of
An

q (f)

even ≺ Uq \ {0
ℓ, (q − 1)0ℓ}ℓ≥1 {1(q − 1)0ℓ−1, 0} Not Gray code

even ≺ {0ℓ, (q − 1)0ℓ}ℓ≥1 {1(q − 1)0ℓ−1} 1-Gray code

odd ≺ {0ℓ}ℓ≥1 {(q − 1)} 1-Gray code

odd ⊳ V \ {0ℓ}ℓ≥1 {10ℓ−1, 0} Not Gray code

odd ⊳ {0ℓ}ℓ≥2 {10ℓ−1} Not Gray code

q ≥ 3
even
(resp.
odd)

≺
(resp.
⊳)

Wq ∩A≥2
q {(q − 2), 0} Not Gray code

Table 1: The Graycodeness of An

q
(f) listed in appropriate order together with the ultimate periods of the

last word in a|A∞
q
(f) and the first word in b|A∞

q
(f ), when at least one of them does not have ultimate

period 0, and a and b are consecutive words; and A≥2
q

is the set of words on Aq of length at least two.
These summarize Propositions 13 to 15, and Corollary 2.

• when the last symbol of f is q− 1 (and so, q ≥ 3), then φ(q− 2) = q− 1, φ(q− 1) = q− 2,
and φ(x) = x if x 6∈ {q − 2, q − 1}.

In both cases, φ is an involution, that is, φ−1 = φ. By abuse of notation, for w ∈ A∗
q , φ(w) is

the word obtained from w by replacing each of its symbols x by φ(x), and for a list L of words,
φ(L) is the list obtained from L by replacing each word w in L by φ(w).

If f is a forbidden factor that does not induce zero periodicity, then φ(f) does not end by 0
nor by q − 1, and so it induces zero periodicity, see Remark 2. In this case φ(L) is a Gray code
for the set An

q (f), where L is the set An
q (φ(f)) listed in ≺ order for q even, and in ⊳ order for q

odd.

5 Algorithm considerations

Here we give a generating algorithm for the set An
q (f), n ≥ 1, for any forbidden factor f ∈ Aℓ

q,
ℓ ≥ 2 (the case ℓ = 1 being trivial). This generating algorithm produces recursively prefixes of
words in An

q (f), in ≺ order if q is even, or in ⊳ order if q is odd, and in particular, it generates
the previously discussed Gray codes for An

q (f ). We will show that this algorithm is efficient,
except for the trivial factors of the form 00 . . . 01 or 11 . . . 10, for which a simple transformation
of them makes the generating algorithm efficient.

The generating procedure GenAvoid in Figure 1 expands recursively a current generated
prefix w1w2 . . . wk−1 (k being the first parameter of GenAvoid) to w1w2 . . . wk−1j, with j cover-
ing the alphabet Aq in increasing or decreasing order, according to the value of dir ∈ {0, 1}, the
second parameter of the procedure, which is the parity of the word w1w2 . . . wk−1. Moreover,
when the length (ℓ−1) prefix of f = f1f2 . . . fℓ is a suffix of w1w2 . . . wk−1, the value fℓ is skipped
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for j in order not to produce the forbidden factor. To do this efficiently, the third parameter, i,
of procedure GenAvoid is the length of the maximal prefix of the forbidden factor f which is
also a suffix of the current generated word w1w2 . . . wk−1; and h in this procedure is the length
of the maximal suffix of w1w2 . . . wk−1j which is also a prefix of f , and it is given by Mi,j . So,
when h is equal to ℓ (the length of the forbidden factor), the current value of j is skipped for
the prefix expansion.

Now we explain in more details the array M used by algorithm GenAvoid. For a forbidden
factor f = f1f2 . . . fℓ ∈ Aℓ

q, the ℓ · q size two dimensional array M is defined as: for i ∈
{0, 1, . . . , ℓ − 1} and j ∈ {0, 1, . . . , q − 1} = Aq, Mi,j is the length of the maximal suffix of
f1f2 . . . fij which is also a prefix f . For instance, for q = 4 and f = 012011 ∈ A6

4 we have

M =

















1 0 0 0
1 2 0 0
1 0 3 0
4 0 0 0
1 5 0 0
1 6 3 0

















,

and, for example (see the entries in boldface in M)

• M2,0 = 1, since the length of the longest suffix of f1f20 = 010 which is a prefix of f is 1,

• M2,1 = 0, since there is no suffix of f1f21 = 011 which is a prefix of f ,

• M2,2 = 3, since f1f22 = 012 (of length 3) is a prefix of f .

procedure GenAvoid(k, dir, i)
if k = n+ 1 then type;
else if dir = 0 then S := 〈0, . . . , q − 1〉; else S := 〈q − 1, . . . , 0〉;

for j in S
h := M [i, j];
if h 6= ℓ then

w[k] := j; m := (dir + j) mod 2;
if q is odd and j 6= 0 then m := (m+ 1) mod 2;
GenAvoid(k + 1, m, h);

Figure 1: Algorithm producing the set An

q
(f), listed in ≺ order if q is even or in ⊳ order if q is odd. The

initial call is GenAvoid(1, 0, 0), and it uses array M , initialized in a preprocessing step by MakeArray;
and S is the list of symbols in the alphabet Aq in increasing or decreasing order.

The array M is initialized, in an O(ℓ ·q) time preprocessing step, by procedure MakeArray

in Figure 2, which in turn uses array b = b0b1b2 . . . bℓ, the border array of f defined as (see
for instance [10]): bi, 0 ≤ i ≤ ℓ, is the length of the border of f1f2 . . . fi, that is, the length
of the longest factor which is both a proper prefix and a proper suffix of f1f2 . . . fi; and by
convenience b0 = −1. For example if ℓ = 8 and f = 01001010, then b0b1 . . . b8 = −100112323;
and for instance, b5 = 2 since 01 is the longest proper prefix which is also a suffix of f1f2 . . . f5 =
01001. Actually, the border array b is a main ingredient for Knuth-Morris-Pratt word matching
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algorithm in [8] and it is initialized by an O(ℓ) time complexity preprocessing step by procedure
MakeBorder in Figure 3, see again [10].

procedure MakeArray()
for j := 0 to q − 1

for i := 0 to ℓ− 1
if f [i+ 1] = j then M [i, j] := i+ 1;
else if i > 0 then M [i, j] := M [b[i], j];

else M [i, j] := 0;

Figure 2: Algorithm initializing the array M .

procedure MakeBorder()
b[0] := −1;
i := 0;
for j := 1 to (ℓ− 1)

b[j] := i;
while (i ≥ 0 and f [j + 1] 6= f [i+ 1])

i := b[i];
i := i+ 1;

b[ℓ] := i;

Figure 3: Procedure computing the border array b of the length ℓ forbidden factor f , and used by
MakeArray.

Before analyzing the time complexity of the generating algorithm GenAvoid we show that,
if in the underlying tree induced by recursive calls of GenAvoid there are degree-one successive
calls, then q = 2 and the forbidden factor has the form 00 . . . 01 or 11 . . . 10. See Figure 4 for
words in An

2 (001) produced by degree-one consecutive calls of GenAvoid.
For a length ℓ ≥ 2 forbidden factor f let w ∈ A∗

q(f) and i, j ∈ Aq such that wij ∈ A∗
q(f)

and:

• wk ends by f for any k ∈ Aq, k 6= i, and

• wik ends by f for any k ∈ Aq, k 6= j.

In other words, when the current word is w as above, then the call of GenAvoid is a degree-
one call (producing wi) which in turn produces a degree-one call (producing wij). By the two
conditions above, it follows that q = 2 and i = j. When i = j = 0, the length ℓ− 1 suffix of w is

· · · 110
1100 11000 110000 · · ·

1101
· · ·
· · ·

Figure 4: In boldface a ‘branch’ of words produced by consecutive degree-one calls in the generating tree
of An

2
(001).
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equal to the ℓ−1 suffix of w0, which in this case must be 0ℓ−1, and finally f = 0ℓ−11. Similarly,
when i = j = 1, it follows that f = 1ℓ−10.

Let now f be a length ℓ ≥ 2 forbidden factor, and either q ≥ 3 or q = 2 and f is not
0ℓ−11 nor 1ℓ−10. In this case, by the previous considerations, each recursive call of GenAvoid

is either:

• a terminal call, or

• a call producing at least two recursive calls, or

• a call producing one recursive call, which in turn is in one of the two cases above,

and by Ruskey’s CAT principle in [13], it follows that, with the previous restrictions on q and
f , GenAvoid runs in constant amortized time, and so is an efficient generating algorithm.

Nevertheless, for the particular factors above, when ℓ = 2, An
2 (1

ℓ−10) is trivially the set
{0n, 0n−11, 0n−211, . . . , 1n}, and An

2 (0
ℓ−11) the set {0n, 10n−1, 110n−2, . . . , 1n}. And for ℓ ≥ 3,

both sets An
2 (1

ℓ−10) and An
2 (0

ℓ−11) can be generated efficiently in Gray code order. Indeed, for
An

2 (1
ℓ−10) with ℓ ≥ 3 it is enough to generate (efficiently) the Gray code for An

2 (01
ℓ−1) (see

Theorem 6) and then reverse each generated word; and for An
2 (0

ℓ−11) it is enough to generate
the Gray code for An

2 (1
ℓ−10) as previously, then complement each symbol in each word. The

following scheme describes this method (see the example in Table 3):

An
2 (01

ℓ−1)
Reverse
−−−−−→ An

2 (1
ℓ−10)

Complement
−−−−−−−−→ An

2 (0
ℓ−11).

Finally, notice that the generating order (≺ or ⊳ in our case) does not affect the efficiency
of the generating algorithm, which can obviously be modified to produce same set of factor
avoiding words in lexicographical order. A C implementation of our generating algorithm is on
the web site of the last author [16].

6 Conclusions

We introduce two order relations on the set of length n q-ary words, and show that the set of
words avoiding any from among the qℓ factors of length ℓ ≥ 2, except ℓ−1 or ℓ of them according
to the parity of q, when listed in the appropriate order is an (at most) 3-Gray code. For each of
the excepted factors we give a simple transformation which allows to eventually obtain similar
Gray codes. Finally, an efficient generating algorithm for the derived Gray codes is given.
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Appendix

0 0 0 0 0 1 2 2 1 0 1 0 1 2 2 0 2 2 2 2 2 0 1 2
0 0 0 1 0 1 2 1 1 0 1 1 1 2 2 1 2 2 2 1 2 0 1 1

0 0 0 2 0 1 2 0 1 0 1 2 1 2 2 2 2 2 2 0 2 0 1 0

0 0 1 0 0 2 2 0 1 0 2 2 1 2 1 2 2 1 2 0 2 0 0 2

0 0 1 1 0 2 2 1 1 0 2 1 1 2 1 1 2 1 2 1 2 0 0 1

0 0 1 2 0 2 2 2 1 0 2 0 1 2 1 0 2 1 2 2 2 0 0 0

0 0 2 2 0 2 1 2 1 1 0 0 1 2 0 2 2 1 1 2
0 0 2 1 0 2 1 1 1 1 0 1 1 2 0 1 2 1 1 1

0 0 2 0 0 2 1 0 1 1 0 2 1 2 0 0 2 1 1 0

0 1 0 0 0 2 0 2 1 1 1 0 2 2 0 0 2 1 0 2

0 1 0 1 0 2 0 1 1 1 1 1 2 2 0 1 2 1 0 1

0 1 0 2 0 2 0 0 1 1 1 2 2 2 0 2 2 1 0 0

0 1 1 0 1 0 0 0 1 1 2 2 2 2 1 0 2 0 2 0
0 1 1 1 1 0 0 1 1 1 2 1 2 2 1 1 2 0 2 1

0 1 1 2 1 0 0 2 1 1 2 0 2 2 1 2 2 0 2 2

Table 2: The set A4

3
listed in ⊳ order, inducing a 2-Gray code. The list is columnwise and the changed

symbols are in bold.

A4
2(011) A4

2(110) A4
2(001)

(a) (b) (c)

0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 1 1 0 0 0 0 1 1 1
0 0 1 0 0 1 0 0 1 0 1 1
0 1 0 1 1 0 1 0 0 1 0 1
0 1 0 0 0 0 1 0 1 1 0 1
1 1 0 0 0 0 1 1 1 1 0 0

1 1 0 1 1 0 1 1 0 1 0 0
1 1 1 1 1 1 1 1 0 0 0 0
1 1 1 0 0 1 1 1 1 0 0 0
1 0 1 0 0 1 0 1 1 0 1 0
1 0 0 1 1 0 0 1 0 1 1 0
1 0 0 0 0 0 0 1 1 1 1 0

Table 3: (a) The set A4

2(011) listed in ≺ order, inducing 3-adjacent Gray code; (b) the reverse of the list
in (a), giving Gray code for A4

2
(110); (c) the complement of the list in (b), giving Gray code for A4

2
(001).

The changed symbols are in bold

References

[1] A. Bernini, S. Bilotta, R. Pinzani and V. Vajnovszki, Two Gray codes for q-ary k-generalized
Fibonacci strings. ICTCS13, Palermo-Italy, September 9–11, 2013.

21



[2] S. Bilotta, E. Pergola and R. Pinzani, A construction for a class of binary words avoiding
1j0i. PU.M.A., 23(2), 81–102, 2012.

[3] S. Bilotta, D. Merlini, E. Pergola and R. Pinzani, Pattern 1j+10j avoiding binary words.
Fund. Inform., 117, 35–55, 2012.

[4] M.C. Er, On generating the N -ary reflected Gray code. IEEE Transaction on Computers,
33(8), 739–741, 1984.

[5] F. Gray, Pulse code communication, U.S. Patent 2632058, 1953.

[6] L.J. Guibas and A.M. Odlyzko, Periods in strings. J. Combin. Theory Ser. A, 30(1), 19–42,
1981.

[7] J. Joichi, D.E. White and S.G. Williamson, Combinatorial Gray codes. Siam J. on Com-
puting, 9, 130–141, 1980.

[8] D.E. Knuth, J.H. Morris and V.R. Pratt, Fast pattern matching in strings. SIAM J. on
Computing, 6:323–350, 1977.

[9] Y. Li and J. Sawada, Gray codes for reflectable languages. Inf. Process. Lett., 109(5) 296-
300, 2009.

[10] M. Lothaire, Applied Combinatorics on Words. Cambridge University Press, New York,
2005.

[11] A. Sabri and V. Vajnovszki, Reflected Gray code based orders on some restricted growth
sequences. To appear, The Computer Journal.

[12] M. Squire, Gray codes for A-free strings. Electr. J. Combinatorics, 3, paper R17, 1996.

[13] F. Ruskey, Combinatorial Generation, book in preparation.

[14] V. Vajnovszki, A loopless generation of bitstrings without p consecutive ones. DMTCS–
Springer, 227–240, 2001.

[15] V. Vajnovszki and R. Vernay, Restricted compositions and permutations: from old to new
Gray codes. Inf. Process. Lett., 111(13), 650–655, 2011.

[16] V. Vajnovszki, v.vincent.u-bourgogne.fr/0ABS/publi.html.

[17] T. Walsh, Generating Gray Codes in O(1) worst-case time per word. 4th Discrete Mathe-
matics and Theoretical Computer Science Conference, Dijon-France, 7–12 July 2003 (LNCS,
2731, 73–88).

[18] T. Walsh, Loop-free sequencing of bounded integer compositions. Journal of Combinatorial
Mathematics and Combinatorial Computing, 33, 323–345, 2000.

[19] S.G. Williamson, Combinatorics for Computer Science. Computer Science Press, Rockville,
Maryland, 1985.

22


	1 Introduction
	2 Notations and definitions
	3 Periodicity
	3.1 Forbidden factor ending by 0 and not inducing zero periodicity
	3.2 Forbidden factor ending by q-1 and not inducing zero periodicity
	3.3 Forbidden factor inducing zero periodicity

	4 Gray codes
	4.1 Factors inducing zero periodicity
	4.2 Particular cases
	4.3 Factors preventing Graycodeness
	4.4 Obtaining Gray code if bold0mu mumu ff2005/06/28 ver: 1.3 subfig packageffff does not induce zero periodicity and beyond the particular cases

	5 Algorithm considerations
	6 Conclusions

