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Abstract We present a formalism, algorithms and tools to synthesise reactive
systems that behave efficiently, i.e., which achieve an optimal trade-off between a
given cost and reward model.

Synthesis aims to automatically generate a program from a specification. Most
research in this area focuses on qualitative specifications, i.e., those that define
a system as either correct or incorrect. The result can be a system that is cor-
rect, but still shows undesired behaviour, e.g., because it is too slow, inefficient
or resource-intensive. Quantitative synthesis aims to use additional information
to guide the synthesizer towards a desired implementation. Trade-offs between
costs and rewards provide a natural source of information in order to guarantee
efficiency. The systems we want to synthesize are open, i.e., they react to input
signals from their environment. So, we have to specify how to combine the trade-
offs the system decides to make for each input. There are several possible ways,
e.g., worst or best case, or average case. In this paper we focus on the average
case, i.e., we focus on the expected trade-off achieved by a system.

We define the problem of finding the system with the best expected behaviour
according to a quantitative specification. This specification associates costs and
rewards with each decision the system makes and defines a probabilistic envi-
ronment that the system operates in. We analyze the feasibility of this task (i.e.,
prove that such systems exist and are computable) and present three algorithms to
compute an optimal system for a given specification. We compare a prototypical
implementation of these algorithms against each other and, based on the best-
performing algorithm, develop a novel symbolic implementation and integrate it
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into the probabilistic model checker PRISM. We report on experiments showing
that our algorithm can analyze models with several million states.

1 Introduction

Synthesis aims to automatically generate a program or system from a higher-level
specification of its required behaviour. This specification leaves many details un-
specified, and it is the synthesizer’s task to resolve this non-determinism such that
the specification is fulfilled. This higher-level specification allows a programmer or
designer to express his wishes concisely, while ignoring implementation details.

This form of abstraction becomes increasingly important as the programs that
we write become more complex due to of the arrival of multi-processor systems,
heterogeneous systems, increased security requirements and ever more computers
in safety-critical systems. The ubiquity of computer software also means that more
and more people may benefit from being able to create programs. A high-level
language and a synthesizer can lower the bar of creating custom programs.

Program synthesis looks especially promising in the area of embedded sys-
tems. Firstly, these systems are often small and less well equipped for interactive
development, so debugging becomes especially challenging. Secondly, embedded
systems are the most prevalent computer systems today, ranging from thermome-
ters to vehicles on Mars. Finally, embedded systems, by their very nature, have to
be customized for each new kind of hardware where they are deployed. Removing
unnecessary bugs altogether is therefore desirable and cost-effective.

Embedded systems are also reactive, i.e., they periodically read signals from
their environment and write answers to output ports. In this paper, we focus on
synthesizing reactive systems [28] from specifications given in temporal logics [33].
In this setting, specifications are usually given with a qualitative meaning, i.e., they
classify systems either as good (meaning that the system satisfies the specification)
or as bad (meaning that the system violates the specification). Quantitative speci-
fications, on the other hand, assign to each system a value that provides additional
information. Traditionally, quantitative techniques are used to analyze properties
like response time, throughput or reliability (see, e.g., [13,20,3]).

Recently, quantitative reasoning has been used to state preference relations
between systems satisfying the same qualitative specification [4]. For example, we
can compare systems with respect to robustness, i.e., how reasonably they be-
have under unexpected behaviours of their environments [6]. A preference relation
between systems is particularly useful in synthesis, because it allows the user to
guide the synthesizer and ask for “the best” system.

In many settings, though, a better system comes at a higher price. For example,
consider an assembly line that can be operated at several speeds, i.e., the number
of units produced per time unit. We would prefer a controller that produces as
many units as possible. However, running the line in a faster mode increases the
power consumption and the probability to fail, resulting in higher repair costs. We
are interested in an “efficient” controller, i.e., a system that minimizes the power
and repair costs per produced unit. The efficiency of a system is a natural question
to ask; it has also been observed by others, e.g., Yue et al. [41] used simulation to
analyze energy-efficiency in a MAC (Media Access Control) protocol.
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The systems we want to synthesize are open, i.e., they react to signals from
their environment. We are looking for a system that is globally optimal, i.e., on all
possible behaviours of its environment. Once we have defined a local evaluation
criterion, i.e., the efficiency of a system on a single environment input, we need to
define a global evaluation criterion. There are several possible ways, e.g., worst-
case, best-case or average. In this paper we focus on the average case, i.e., we
consider the expected trade-off that a system makes.

To define the average, we assume that the system operates in a probabilis-
tic environment: assembly lines need repairing randomly, network protocols have
randomly behaving participants, servers get random requests, etc. Probabilistic
modelling allows us to encode knowledge or expectations about the environment’s
behaviour. Modelling environments with probabilistic behaviour also allows us to
assume that the environment is not hostile, i.e., it is not in fact trying to do
its worst. Embedded systems are sometimes only required to operate in certain
conditions, which we can model probabilistically. A server, for example, is only
required to work given an expected average number of requests, whereas a DDOS
attack lies outside of its specification1. A different component takes care of shield-
ing the server in case of such an attack. Lastly, assuming probabilistic behaviour
can make quantitative synthesis questions more tractable than their qualitative
counterparts, admitting synthesis algorithms with expected polynomial instead of
exponential run-time.

Finally, we note that the system and its environment co-exist in a closed loop,
both able to impact the behaviour of the other. In the case of assembly lines, for
example, failing lines certainly influence the behaviour of their controller. Con-
versely, the reactions of the controller influence the probability of lines failing.

In this paper we show how to automatically synthesize a system that has an
“efficient” average-case behaviour in a given environment. The Oxford English
Dictionary defines the adjective efficient as: “(of a system or machine) achieving

maximum productivity with minimum wasted effort”. We analogously define efficiency
as the ratio between a given cost model and a given reward model. To further mo-
tivate this choice, consider the following example: assume we want to implement
an automatic gear-shifting unit (Automatic Clutch and Throttle System - ACTS)
that optimizes its behaviour for a given driver profile. The goal of our implemen-
tation is to optimize the fuel consumption per kilometer (l/km), a commonly used
unit to advertise efficiency. In order to be most efficient, our system has to maxi-
mize the speed (given in km/h) while minimizing the fuel consumption (measured
in liters per hour, i.e., l/h) for the given driver profile. If we take the ratio between
the fuel consumption (the “cost”) and the speed (the “reward”), we obtain l/km,
the desired measure.

Given an efficiency measure, we ask for a system with an optimal average-case
behaviour. The average-case behaviour with respect to a quantitative specification
is the expected value of the specification over all possible behaviours of the system
in a given probabilistic environment [11]. We describe the probabilistic environ-
ment using Markov decision processes (MDPs), which is a more general model
than the one considered in [11]. It allows us to describe environments that react
to the behaviour of the system (like the driver profile).

1 We can model a DDOS attack, e.g., by assuming that it happens with low probability:
on attack, the environment suddenly changes its behaviour drastically.
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Our contributions can be summarized as follows:

1. We present a framework to automatically construct a system with an efficient
average-case behaviour with respect to a reward and a cost model in a prob-
abilistic environment. To the best of our knowledge, this is the first approach
that allows automatic synthesis of such systems. We introduce our framework
using a simple example in Section 2, explaining necessary definitions along the
way. We analyze our framework in Section 3, proving that we can indeed find
optimal systems. This analysis is the foundation for the algorithms to come.

2. We present three algorithms to compute systems of optimal efficiency. These
are described in Section 4. All three start by decomposing the MDP into end
components [13], but differ in the way they compute an optimal strategy for
each one. The first algorithm uses fractional linear programming. The second,
a simple adaption of an algorithm presented in [13], is based on a reduction
to linear programming. The third algorithm is based on policy iteration and a
sequence of reductions to MDPs with long-run average-reward objective.

3. We present a semi-symbolic variant of the policy iteration algorithm, which
combines symbolic (binary decision diagram-based) and explicit-state tech-
niques for efficiency. Details are in Section 5.

4. We have implemented all algorithms in a standalone tool and compare them
on our examples in their respective sections. In order to increase the scope of
our approach, we also integrated the best-performing explicit algorithm and the
symbolic algorithm into PRISM [24], a well-known probabilistic model checker.
We report experiments with this implementation, and show that our algorithm
can analyze models with several million states.

Parts of this paper (contributions 1 and 2) are based on [37] and [38].

1.1 Related Work

Related work can be divided into two categories: (1) work using MDPs for quan-
titative synthesis and (2) work on MDP reward structures.

For the former, we first consider the work of Chatterjee et al. [11]. We general-
ize this work in two directions: (i) we consider ratio objectives, a generalization of
average-reward objectives and (ii) we introduce a more general environment model
based on MDPs that allows the environment to change its behaviour based on ac-
tions the system has taken. In the same category, there is the work of Parr and
Russell [32], who use MDPs with weights to present partially specified machines in
Reinforcement Learning. Our approach differs from this approach, as we allow the
user to provide the environment, the specification, and the objective function sep-
arately and consider the expected ratio reward, instead of the expected discounted
total reward, which allows us to ask for efficient systems. We also mention multi-
objective verification techniques for MDPs, which consider multiple quantitive
specifications using, e.g., linear temporal logic [12,15] or long-run rewards [7] but
these are not able to reason about ratios, as we do here. Finally, in [39], Wim-
mer et al. introduce a semi-symbolic policy algorithm for MDPs with the average
objective, while we present a semi-symbolic policy algorithm for MDPs with the
ratio objective, subsuming the former.
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Semi-MDPs [34] fall into the second category. Unlike work based on Semi-
MDPs, we allow a reward of value 0. Furthermore, we provide an efficient policy
iteration algorithm that works on our Ratio-MDPs as well as on Semi-MDPs. Ap-
proaches using the discounted reward payoff (cf. [34]) are also related but focus
on immediate rewards instead of long-run rewards. Similarly related is the work
of Derman [14], who considered the payoff function obtained by dividing the ex-
pected costs by expected rewards. These two objective functions are in general
not the same. We believe that our payoff function is more natural as we will show
in Section 3.4. The closest to our work is that of de Alfaro [13]. In this work, the
author also allows rewards with value 0, and he defines the expected payoff over
all runs that visit a reward with value greater than zero infinitely often. In our
framework the payoff is defined for all runs. De Alfaro also provides a linear pro-
gramming solution, which can be used to find the ratio value in an end component
(see Section 7). We provide two alternative solutions for end components including
an efficient policy iteration algorithm. Finally, we are the first to implement and
compare these algorithms and use them to synthesize efficient controllers.

2 The System and its Environment

In this section we will introduce the system, its environment and the quantitative
monitor. We will show how they operate in lockstep and how their combination
leads to a system with measurable performance. While doing so, we will introduce
the necessary notation and definitions.

2.1 The System

The systems we aim to synthesize are reactive systems. That is, systems that react
infinitely to events from their environment. As usual, we model a reactive system
as a Moore machine, i.e., a machine that reads letters from an alphabet as input and
writes letters in turn as output. Given a finite set of symbols or atomic propositions

AP , we form a set of letters Σ = 2AP as an alphabet. We denote by Σ∗ the set
of finite words over that alphabet, i.e., the set of finite sequences of those letters.
Analogously, by Σω we denote the set of infinite words over Σ, i.e., the set of
infinite sequences of those letters. Given a word w ∈ Σ∗ ∪ Σω, we denote by |w|

the length of the word and by wi the i-th letter of that word for 0 ≤ i < |w|, i.e.,
we start counting from zero.

Definition 1 (Transducer) A transducer is a tuple T = (S, s0, I, O, δ, γ). By S

we denote the finite set of states of T , by s0 its initial state, by I ⊆ AP its input
alphabet and by O ⊆ AP its output alphabet. Sets I and O form a partition of AP ,
i.e., I ∪ O = AP and I ∩ O = ∅. Function δ : S × 2I → S is the transition function

of T , defining how it moves from state to state in the course of reading its input.
Finally, function γ : S × 2I → 2O is the output function of T , defining what output
it writes, given the current state and the current input letter. If γ is constant
in its second parameter (i.e., if ∀s ∈ S ∀i0, i1 ∈ 2I : γ(s, i0) = γ(s, i1)), then we
call T a Moore machine, otherwise it is a Mealy machine. For Moore machines, we
sometimes use γ : S → 2O and γ : S × 2I → 2O equivalently.
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Fig. 1 Environment model and quantitative specification of the production line example

Given an infinite input word wI ∈ (2I)ω, the definition of T implies a run

ρ = s0s1 . . . of T on w defined by si = δ(si−1, w
I
i−1) for i > 0. Analogously, it

implies an output word wO ∈ (2O)ω by wO
i = γ(si, w

I
i ). The combined input-output

word w is defined by wi = wI
i ∪ wO

i for all i ≥ 0.

Consider a production plant that has several lines that can be turned on and
off. A system (i.e., the plant controller) here reads the state of the production lines
(e.g., if each one is broken or working). It then decides to turn specific lines on or
off based on this state information.

We model the events from the environment as an infinite stream of input letters,
and the reactions of the system as an infinite stream of output letters. It is our goal
to enable the probabilistic environment to react to the reactions of the system. To
that end, we make the output of the system the input of the environment, thus
forming a feedback loop. The system and the environment are stateful. Depending
on the reactions of the system, the environment changes its state. We model such
an environment as a Markov decision process.

Definition 2 (Markov decision process) A Markov decision process (MDP) is a
tuple M = (M,m0, A,A, p), where M is the finite set of states of M, m0 ∈ M is
the initial state, A ⊆ 2O is the set of actions, A ⊆ M × A is the action activation
relation and p : M × A × M → [0, 1] is the probability transition function, i.e.,
we require that

∑

m′∈M p(m, i,m′) = 1 for all states m ∈ M and actions i ∈ A.
We also demand that each state has at least one activated action, i.e., that ∀m ∈

M ∃a ∈ A : (m, a) ∈ A. When using an MDP to model the environment, we assume
without loss of generality that all actions are always activated, i.e., A = M × A.
For convenience, we also write A(m) to denote the set {a ∈ A | (m, a) ∈ A}.

AMarkov chain (MC) is a Markov decision process for which there exists exactly
one action for each state, i.e., for which the cardinality of the set A(m) is one for
all states m ∈ M . For a Markov chain M = (M,m0, A,A, p) we sometimes write
M = (M,m0, p), and then we also write p : M ×M → [0, 1].

A labelling for M is a function λ : M → 2I that is deterministic with respect
to the transition function of M, i.e., for all states m,m′,m′′ ∈ M and every action
a ∈ A such that p(m, a,m′) > 0 and p(m, a,m′′) > 0 and m′ 6= m′′ we have
λ(m′) 6= λ(m′′). The labelling intuitively allows us to decouple model states from
inputs the model feeds the system. We could do without it, but it occasionally
makes describing a model more pleasant.
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2.2 The Environment

Example 1 (Modelling a single production line) The model of a single production
line is shown in Figure 1(a). A line has two states: broken (  ) and ok ( X ).
In each of these states, the system can either turn a production line on to a slow
mode with action Slow , turn it on to a fast mode with action Fast , switch it off
with action Off , or repair it with action Repair . The failure of a production line
is controlled by the environment. We assume a failure probability of 1% when the
production line is running slowly and 2% when the production line is running fast.
If it is turned off, then a failure is impossible. Transitions in Figure 1(a) are labelled
with actions and probabilities, e.g., the transition from state X to X labelled with
action Slow and probability 0.99 means that we go from state X with action Slow

with probability 0.99 to state X . Note that the labels of the states ( X and  )
of this MDP correspond to decisions the environment can make. The actions of
the MDP are the decisions the system can use to control the environment. The
specification for n production lines is the synchronous product of n copies of the
model in Figure 1(a), i.e., the state space of the resulting MDP is the Cartesian
product, and the transition probabilities are the product of the probabilities; for
example, for two production lines, the probability to move from ( X , X ) to (

X , X ) on action ( Slow , Slow ) is 0.992.

System

Environment

Monitor

γλ

λ

γ

R

Fig. 2 Overview

The system and its environment now form a feed-
back loop, as depicted in Figure 2: First, M (the Envi-
ronment) signals its current (initial) state to T (the Sys-
tem). Then, T changes its state and provides an output
letter, based on its own state and the state of M. The
environment M will read that letter, change its state
probabilistically, and then provide the next output let-
ter. The system reads this letter, changes its state, and
provides the next letter. M reads this letter, makes a probabilistic choice based
on it and its current state, and provides the next letter, and so on ad infinitum.
This loop allows us to model control over the environment by the system.

2.3 The Monitor

The task of the monitor will be to measure the stream of states of the environment
and the outputs of the system. We model the monitor as a transducer, but one
whose output we fix to be two real numbers. These numbers model the cost and
reward of the decisions of the system.

Definition 3 (Monitor) A monitor O = (O, o0, IO, OO, δO, γO) for an MDP M =
(M,m0, A,A, p) is a transducer that reads letters from IO = M × A as input and
writes pairs of positive real values (i.e., OO = R

≥0×R
≥0) as output. We sometimes

write c, r : O × IO → R
≥0 for the first and second components of γO.

We use a monitor to evaluate a system with respect to a desired property. It
reads words over the joint input/output alphabet and assigns a value to them.
For example, the monitor for the production line controlling system reads pairs
consisting of (i) a state of a production line (input of the system) and (ii) an action
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(output of the system). We obtain this transducer by composing transducers with
a single cost function in various ways.

Example 2 (Monitor of a production line) In our example, we use for each produc-
tion line two transducers with a single cost function to express the repair costs
and the production due to this line. The transducer for the repair costs is shown
in Figure 1(b). It assigns repair costs of 10 for repairing a broken production
line immediately and costs 20 for a delayed repair. If we add the numbers the
transducer outputs, we obtain the repair costs of a run. For example, sequence
( X , Slow ) (  , Repair ) (  , Repair ) has cost 0+10+10 = 20. The amount of units
depends on the speed of the production line. The transducer describing the num-
ber of units produced assigns value 2 if a production line is running on slow speed,
4 if it is running on fast speed, and 0 if the production line is turned off or broken.

We extend the specification to multiple production lines by building the syn-
chronous product of copies of the transducer described above and compose the
cost and reward functions in the following ways: we sum the rewards for the pro-
duction and we take the maximum of repair costs of different production lines to
express a discount for simultaneous repairs of more than one production line. The
final specification transducer is the product of the production automaton and the
repair cost automaton with (i) the repair cost as cost function and (ii) the measure
of productivity as reward function.

In the current specification a system that keeps all production lines turned off
has the (smallest possible) value zero, because lines that are turned off do not break
down and repair is unnecessary. Therefore, we require that at least one of the lines
is working. We can specify this requirement by using a qualitative specification
described by a safety automaton2. This safety requirement can then be ensured
by adapting the cost functions of the ratio objective [11,37]. For simplicity, we say
here that any action in which all lines are turned off has an additional cost of 10.

2.4 Combining System, Environment and Monitor

In Section 2.2 we described how System and Environment work together. Now,
in addition, the system provides its output and the environment its state to the
monitor. The monitor then provides two numbers in a tuple. These numbers model
the cost and reward of the decision the system made in the current context. We
describe this collaboration graphically in Figure 2. We now combine these three
into one object as follows.

Definition 4 (Combination of System, Environment and Monitor) We define
the Extended MDP of Environment M = (M,m0, A,A, p) with a Monitor O =

(O, o0, IO, OO, δO, γO) to be the MDP M′ = (M ′,m′
0, A

′, A
′
, p′), where M ′ = M×O

is its set of states,m′
0 = (m0, o0) is its start state, A

′ = A is its set of actions, A
′
= A

is its action activation function, and p′ : M ′ × A′ ×M ′ → [0, 1] is its probabilistic
transition function, where p′((m, o), a, (m′, o′)) = p(m, a,m′) if o′ = δO(o, (m, a))
and zero otherwise.

2 Our approach can also handle liveness specifications resulting in a Ratio-MDP with parity
objective, which is then reduced to solving a sequence of MDPs with mean-payoff parity
objectives [11].
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This combination also induces an output function γM : M ′ × A → R
≥0 × R

≥0

of the MDP. The output function is defined as the output of the monitor in the
same context, i.e., γM((m, o), a) = γO(o, (m, a)). As for monitors, we often use
c, r : C → R

≥0 as shorthand for the cost and reward parts of γM.
The Combination of System T = (S, s0, I, O, δ, γ), Environment M = (M,

m0, A,A, p) with labelling λ and Monitor O = (O, o0, IO, OO, δO, γO) is defined
as a Markov chain, i.e., as a tuple C = (C, c0, pC), where C = S×M ×O is its set of
states, c0 = (s0,m0, o0) is its initial state and pC : C×C → [0, 1] is its probabilistic
transition function.

The probabilistic transition function pC models the progression of System, En-
vironment and Monitor in lockstep, i.e., pC((s,m, o), (s′,m′, o′)) = p(m, γ(s),m′) if
s′ = δ(s, λ(m)) is the next state of T , based on its current state and the labelling
of the state of the environment, and o′ = δO(o, (m, γ(s))) is the next state of the
monitor, based on its current state, the state of the Environment and the output
of the system. Otherwise the value of pC is zero.

This combination also induces an output function γC : C → R
≥0 × R

≥0 on
the Markov chain. The output function is defined as the output of the monitor in
the same context, i.e., γC(s,m, o) = γO(o, (m, γ(s))). As for monitors, we often use
c, r : C → R

≥0 as shorthand for the first and second part of γC .
We sometimes interpret the probabilistic transition function as a matrix, i.e.,

we enumerate the state space from 1 to n := |C|, and interpret pC as an n × n

matrix, where the entry in row i and column j has value pC(ci, cj). Analogously,
we can interpret every function f : C → R as a row or column vector of dimension
n, where entry i has value f(ci).

Example 3 (State transition probabilities of production lines) This combination pro-
vides us with a probability distribution over the development of System, Environ-
ment and Monitor over time. Consider the case of two production lines. The proba-
bility of moving, e.g., from (( X , X ), ( s0 , s0 )) to ((  ,  ), ( s0 , s0 )) when choosing

( Slow , Slow ) is 0.012, while the probability of moving to ((  ,  ), ( s1 , s1 )) is 0
because we cannot move from s0 to s1 with this input.

2.5 Measuring Efficiency

While we now have a way to measure local decisions, we are still lacking a means
to measure the global, long-run quality3 of the system. To that end, we will first
define how to evaluate the efficiency of a single run of the composition, and we
will then hint at how to evaluate the efficiency of the whole composition.

Definition 5 (Efficiency/Ratio of a Run) Let ρ ∈ Cω be an infinite run of a
Combination and let c, r : C → R

≥0 be two functions. We then define the efficiency

or ratio of the run as

R c
r
(ρ) = lim

l→∞
lim inf
u→∞

∑u
i=l c(ρi)

1 +
∑u

i=l r(ρi)

We call R c
r
the Ratio Payoff Function. We often leave out c and r if they are clear

from the context, just writing R. Intuitively, R computes the long-run ratio be-
tween the costs and rewards accumulated along a run. We divide costs by rewards,

3 Pun intended
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i.e., the higher the efficiency of a run, the lower the ratio. Therefore, in the rest of
this paper we try to minimize the ratio.

The first limit allows us to ignore a finite prefix of the run, which ensures that
we only consider the long-run behaviour. The 1 in the denominator avoids division
by 0 if the accumulated costs are 0 and has no effect if the accumulated costs are
infinite. We need the limit inferior here because the sequence of the limit might
not converge.

Consider a Combination with states s and t, and the run ρ = s1t2s4t8s16 . . . ,
where sk means that state s is visited k times. Assume state s and state t have
the following costs: c(s) = 0, r(s) = 1, c(t) = 1 and r(t) = 1. Then, the efficiency
of ρ0 . . . ρi will alternate between 1/6 and 1/3 with increasing i and hence the
sequence for i → ∞ will not converge. The limit inferior of this sequence is 1/6.

There is a special case of this ratio function in which the co-domain of the
reward function r is {1}. This leads us to the classic Mean Payoff Function [34].

Definition 6 (Mean Cost of a Run [34]) Let ρ ∈ Cω be a run of a Combination
and let c : C → R

≥0 be a cost function. We then define the mean cost Pc(ρ) of ρ with
the help of a reward function r1(c) = 1 for all states c. Formally, Pc(ρ) = R c

r1
(ρ).

Since we are aiming at optimal average efficiency, we need the expected value of
R over all runs. To do so, we interpret the runs of the Combination C as an MC, and
then use the standard definition of a probability measure µC over these runs [22].
Given a measurable function f over runs, we use EC [f ] to denote the expected
value of f under µC . The efficiency of a Combination of System, Environment and
Monitor is then the expected efficiency of all its runs.

Definition 7 (Efficiency/Ratio of a Combination) Given a Combination C, we
define the efficiency or ratio of the combination as EC [R].

Lemma 1 (Expected Ratio Exists) The expected ratio EC [R] exists since R is

bounded from below by zero.

We now can ask for an efficient system in a probabilistic environment. We
model the system and the monitor as transducers and the environment as an
MDP. We evaluate the performance of a system in this context as its expected
efficiency, modelled by the expected ratio of costs and rewards. In the next section
we will analyze the combination of the three components and show the theory
necessary to find the optimal system for an environment and a monitor.

3 Analysis

In this section, we will lay the foundations of the algorithms in Section 4. We will
introduce strategies, that is, functions resolving the non-determinism of an MDP,
based on the sequence of states the MDP has visited so far. We will show that
systems and strategies are one and the same. After having established that, we
will show that a class of simple strategies is sufficient, i.e., that we can always
find an optimal strategy in this class. Thus we will make our search for the most
efficient system simpler. We will further show how to calculate the expected ratio
of the simple strategies. On the basis of these results, we will look for algorithmic
solutions to this search in Section 4.
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3.1 Strategies and Systems

To find a system T such that the combination of T , Environment M and monitor O
is optimal, we combine M and O to obtain a new MDP as described in Definition 4.
We will then look for an optimal strategy in the resulting MDP.

Definition 8 (Strategy) A strategy (or policy) for an MDPM = (M,m0, A,A, p) is
a function d : (M ×A)∗M → D(A), where D(A) = {f : A → [0, 1] |

∑

a∈A f(a) = 1}
is the set of all probability distributions over A. This function assigns a probability
distribution to all finite sequences in (M ×A)∗M such that only active actions are
chosen, i.e., for all sequences w ∈ (M ×A)∗, states m ∈ M and actions a ∈ A such
that d(wm)(a) > 0 we have (m, a) ∈ A.

A strategy such that the co-domain of d(ρ) is {0, 1} for all ρ ∈ (M × A)∗M is
called deterministic, in which case we write it as a function of the form d : (M ×

A)∗M → A. A strategy that can be defined using domain M is called memoryless.
A memoryless, deterministic strategy is called pure and takes the form d : M → A.
We denote the set of pure strategies by D(M).

We can use transducers to describe an important class of strategies.

Definition 9 (Finite-memory strategies) Let d : (M ×A)∗M → A be a strategy
for an MDP M = (M,m0, A,A, p). If there is a transducer T = (S, s0, I, O, δ, γ)
such that d(m0) = γ(m0) and d(m0a0m1a1 . . .mn) = γ(sn) for all n ≥ 0, where
sn = δ(sn−1,mn−1), then we say d is a finite-memory or finite-state strategy.

Like transducers in Definition 4, pure strategies induce Markov chains.

Definition 10 (Induced Markov Chain) Let M be an MDP and d be a pure
strategy for M. Then by Md = (C, c0, pC) we denote the induced Markov chain,
where M and Md have the same set of states, i.e., C = M , the same start, i.e.,
c0 = m0, and the probability function is defined by d, i.e., pC(c, c

′) = p(c, d(c), c′)
for all states c, c′ ∈ C.

The following lemma states that for every pure strategy (i.e., a function getting
states as input) there is a transducer (i.e., a function getting sequences of labels as
input), such that the two induce the same Markov chain and therefore the same
expected ratio. The lemma follows from the determinism of the labeling.

Lemma 2 (Relation between Transducers and Pure Strategies) Let M be an

MDP and let d : M → A be a pure strategy for M. Then for any ratio function R

there is a transducer T such that for the combination C of T and M we have that

EC [R] = EMd
[R].

We are looking for an optimal pure strategy for the MDP constructed from
the Environment model and the Monitor. In the next subsection we will show that
there always exists an optimal pure strategy.

3.2 Pure Strategies are Sufficient

In [18], Gimbert proves that in an MDP any function mapping sequences of states
of that MDP to R that is submixing and prefix independent admits optimal pure
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strategies. Since R maps only to non-negative values and the set of measurable
functions is closed under addition, multiplication, limit inferior and superior and
division, provided that the divisor is not equal to 0, the expected value of R is
always defined and the theory presented in [18] also applies in our case. To adapt
the proof of [18] to minimizing the function instead of maximizing it, one only
needs to inverse the used inequalities and replace max by min. It remains to show
that R fulfills the following two properties.

Lemma 3 (R is submixing and prefix independent) Let M = (M,m0, A,A, p)
be a MDP and ρ be a run.

1. For every i ≥ 0 the prefix of ρ up to i does not matter, i.e., R(ρ) = R(ρiρi+1 . . . ).
2. For every sequence of non-empty runs u0, v0, u1, v1 · · · ∈ (A×M)+ such that ρ =

u0v0u1v1 . . . we have that the function of the sequence is greater than or equal to the

minimal ratio of sequences u0u1 . . . and v0v1 . . . , i.e., R(ρ) ≥ min{R(u0u1 . . . ),
R(v0v1 . . . )}.

Proof The first property follows immediately from the first limit in the definition
of R. For the second property we partition N into U and V such that U contains
the indexes of the parts of ρ that belong to a uk for some k ∈ N and such that V

contains the other indexes. Formally, we define U :=
⋃

i∈N
Ui where U0 := {k ∈ N |

0 ≤ k < |u0|} and Ui := {max(Ui−1) + |vi−1|+ k | 1 ≤ k ≤ |ui|}. Let V := N \ U be
the other indexes.

Now we look at the value from m to l for some m ≤ l ∈ N, i.e. Rl
m :=

(
∑

i=m...l c(ρi))/(1 +
∑

i=m...l r(ρi)). We can divide the sums into two parts, the
one belonging to U and the one belonging to V and we get

Rl
m =





∑

i∈{m...l}∩U

c(ρi)



+





∑

i∈{m...l}∩V

c(ρi)





1 +





∑

i∈{m...l}∩U

r(ρi)



+





∑

i∈{m...l}∩V

r(ρi)





We now define the sub-sums between the parentheses as u1 :=
∑

i∈{m...l}∩U c(ρi),

u2 :=
∑

i∈{m...l}∩U r(ρi), v1 :=
∑

i∈{m...l}∩V c(ρi) and v2 :=
∑

i∈{m...l}∩V r(ρi).
Then we obtain

Rl
m =

u1 + v1
1 + u2 + v2

We will now show

Rl
m ≥ min

{

u1

u2 + 1
,

v1
v2 + 1

}

Without loss of generality we can assume u1/(u2 +1) ≥ v1/(v2 +1), then we have
to show that

u1 + v1
1 + u2 + v2

≥
v1

v2 + 1
.

This holds if and only if (u1+v1)(1+v2) = u1+v1+u1v2+v1v2 ≥ v1+v1u2+v1v2
holds. By subtracting v1 and v1v2 from both sides we obtain u1 + u1v2 = u1(1 +
v2) ≥ u2v1. If u2 is equal to 0 then this holds because u1 and v2 are greater than or
equal to 0. Otherwise, this holds if and only if u1/u2 ≥ v1/(1+v2) holds. In general,
we have u1/u2 ≥ u1/(u2+1). From the assumption we have u1/(u2+1) ≥ v1/(v2+1)
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and hence u1/u2 ≥ v1/(v2 +1). The original claim follows because we have shown
this for any pair of m and l. ⊓⊔

Theorem 1 (There is always a pure optimal strategy) For each MDP with the

ratio function, there is a pure optimal strategy.

Proof See [18] and the last lemma. ⊓⊔

This theorem allows us to restrict the search for an optimal strategy (and
therefore optimal system) to a finite set of possibilities. In the next subsection,
we show how to calculate the expected ratio of a pure strategy. Then, in the next
section, we will show algorithms that perform better than brute force search.

3.3 Expected Ratio of Pure Strategy

To calculate the expected value of a pure strategy, we use the fact that an MDP
with a pure strategy induces a Markov chain and that the runs of a Markov chain
have a special property, which we can use to calculate the expected value. We will
first show how to calculate the expected value on a unichain MC, and will then
extend the result to any kind of Markov chain.

Definition 11 (Random variables of MCs [34]) Let pnC(c) be the probability of
being in state c at step n and let π(c) := limn→∞

1
n

∑n−1
i=0 piC(c). This is called the

steady state distribution of pnC . Let νnc denote the number of visits to state c up to
time n.

Definition 12 (Recurrent/Transient States, Recurrence Class, Unichain [34])

Let C be a Markov chain. A state c ∈ C is called transient if the probability of
it occurring infinitely often in a run of C is equal to zero; otherwise it is called
recurrent. A subset of states S of C is called a Recurrence Class if all states can reach
each other, all states are recurrent, and there is no such set of states S′ such that
S ⊂ S′. We say that a Markov chain is Unichain if it has at most one recurrence
class. We call an MDP unichain if every strategy induces a unichain MC.

We have the following lemma describing the long-run behaviour of Markov
chains [36,30].

Definition 13 (Well-Behaved runs) Let ρ be an infinite run of a Markov chain.

Then we call this run well-behaved if liml→∞
νl
c

l = π(c).

Lemma 4 (Runs are Well-Behaved Almost Surely [34]) Runs of a Markov chain

are well-behaved almost surely, i.e., P(well-behaved) = 1.

When we calculate the expected ratio, we only need to consider well-behaved
runs as shown in the following lemma.

Lemma 5 Let C = (C, c0, pC) be a Markov chain, let P = (Ω,F , µ) denote its induced

probability space, and let N denote the set of runs that are not well-behaved. Then

EC [R] =

∫

Ω\N

R dµ
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Proof The expected value is defined as E[R] =
∫

Ω
R dµ. According to a well known

property of Lebesgue integrals, we can ignore events having probability 0 when
calculating the integral, i.e.,

∫

Ω
R dµ =

∫

Ω\N
R dµ for any set of events N with

µ(N) = 0. From Lemma 4, it follows that the set of runs that are not well-behaved
has probability zero. ⊓⊔

For a well-behaved run, i.e., for every run that we need to consider when
calculating the expected value, we can calculate the ratio in the following way.

Lemma 6 (Calculating the Ratio of a Well-Behaved Run) Let ρ be a well-

behaved run of a unichain Markov chain C = (C, c0, pC) and let γC : C → R
≥0 × R

≥0

be an output function. Recall that we denote by c the first cost of γC , and by r the

reward.

R(ρ) =

∑

c∈C π(c)c(c)

liml→∞
1
l +

∑

c∈C π(c)r(c)

Proof By definition of R we have

R(ρ) = lim
l→∞

lim inf
m→∞

∑m
i=l c(ρi)

1 +
∑m

i=l r(ρi)

To get rid off the outer limit, we are going to assume, without loss of generality,
that there are no transient states. We can do this because every transient state will
not influence R(ρ) because ρ is well-behaved and because R is prefix independent.

R(ρ) = lim inf
l→∞

∑l
i=0 c(ρi)

1 +
∑l

i=0 r(ρi)

We can calculate the sums in a different way: we take the sum over the states and
count how often we visit one state, i.e.,

∑l
i=0 c(ρi)

1 +
∑l

i=0 r(ρi)
=

∑

c∈C c(c)νlc

1 +
∑

c∈C r(c)νlc
=

∑

c∈C c(c)(νlc/l)

1/l+
∑

c∈C r(c)(νlc/l)

We will now show that the sequence converges for lim instead of lim inf. But if
a sequence converges for lim, then it also converges to lim inf, and the two limits
have the same value. Because both the numerator and the denominator are finite
values we can safely draw the limit into the fraction, i.e.,

(†) lim
l→∞

(

∑

c∈C c(c)(νlc/l)

1/l+
∑

c∈C r(c)(νlc/l)

)

=
liml→∞

(

∑

c∈C c(c)(νlc/l)
)

liml→∞

(

1/l+
∑

c∈C r(c)(νlc/l)
)

=

∑

c∈C c(c) liml→∞(νlc/l)

liml→∞(1/l) +
∑

c∈C r(c) liml→∞(νlc/l)

‡
=

∑

c∈C c(c)π(c)

liml→∞(1/l) +
∑

c∈C r(c)π(c)

Equality ‡ holds because we have liml→∞
νl
c

l = π(c) by Lemma 4. The limit diverges
to ∞ if and only if the rewards are all equal to zero and at least one cost is not. In
this case the original definition of R diverges and hence R and the last expression
are the same. Otherwise the last expression converges, so † converges, and so lim inf
and lim of this sequence are the same. ⊓⊔
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Note that the previous lemma implies that the value of a well-behaved run is
independent of the actual run. In other words, on the set of well-behaved runs of
a unichain Markov chain the ratio function is constant. So the expected value of
such a Markov chain is equal to the ratio of any of its well-behaved runs.

Theorem 2 (Expected Ratio of a Unichain MC) Let C be a unichain MC and

let π denote the Cesaro limit of pnC of the induced Markov chain. Then the expected

ratio can be calculated as follows.

EC [R] =

∑

c∈C c(c)π(c)

liml→∞(1/l) +
∑

c∈C r(c)π(c)

As a special case, when r(c) = 1 for all states, we can compute the mean payoff [34]

as follows.

EC [P] =
∑

c∈C

c(c)π(c)

Proof This follows from Lemma 6 and the fact that R is constant on a Markov
chain (i.e., independent from the actual run). ⊓⊔

Note that this means that an expected value is ∞ if and only if the second
cost of every action in the recurrence class of the Markov chain is 0 and there is
at least one first cost that is not.

This provides us with an efficient method of calculating the expected ratio
of a Unichain MC. We can calculate π by solving the linear equation system
π(P − I) = 0 [34], where P is the probability matrix of C (Definition 4).

Each run of a MC will almost surely end in one recurrence class (the probability
of visiting only transient states is equal to zero). And since R is prefix-independent,
the ratio of this run will be equal to the ratio of the run inside the recurrence class.

Theorem 3 (Expected Ratio of a MC) Let C be a MC. For each recurrence class

C′, let π(C′) be the probability of reaching C′.

EC [R] =
∑

C′rec. class

π(C′)EC′ [R],

where C′ ranges over all recurrence classes of C and EC′ [R] denotes the expected ratio

of the MC consisting only of recurrence class C′.

3.4 Difference Between Ratio and Mean Payoff

Note that Theorem 3 also hints at the difference between the expected ratio and the
ratio between expectations (as considered by Derman [14]). The following example
shows that straight-forward reduction from MDPs with the ratio function to MDPs
with the mean-payoff function is not possible.

Example 4 (Expected Ratio vs Ratio of Expectations) In Figure 3(a) we have a Markov
chain with three states. m0 is the initial state, and the states labelled with c1

r1
and

c2
r2

are reached with probability 1
3 and 2

3 , respectively. The labels also define the
rewards and costs of each state.
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m0
c1
r1

c2
r2

1
3

2
3

11

(a) Expected Ratio vs Ratio of Expectations
Example 4

s0 10
1

5
1

1
100

1
1

s1

1

1
2

1
2

8
9

1
9

1

(b) MDP for example Example 5

Fig. 3 Two examples showing that the Ratio objective cannot be easily reduced to the Mean
objective

From the previous theorem it follows that we have E[R] = 1
3 · r1

c1
+ 2

3 · r2
c2
. Note

that this is not the same as dividing the expected average cost by the expected

average reward E[Pc]
E[Pr]

=
1

3
·c1+

2

3
·c2

1

3
·r1+

2

3
·r2

(i.e., the ratio of expected average rewards and

costs) for appropriate r1, r2, c1 and c2.

It is also not possible to just subtract costs from rewards and obtain the same
result. Recall the automatic gear-shifting unit (ACTS) from Section 1, page 3.
We want to optimize the relation of two measures: speed (km/h) and fuel con-
sumption (l/h). When subtracting kilometers per hour from liters, the value of
the optimal controller has no intuitive meaning. Furthermore, it can lead to non-
optimal strategies, as shown by the following example.

Example 5 (Subtraction Leads to Different Strategies) Consider an MDP with two
states, s0 and s1, as depicted in Figure 3(b). There is one action enabled in s1.
It has cost 1 and reward 100 and leads with probability 1 to s0. There are three
actions in s0: Action a0 has cost 5 and reward 1 and leads with probability 1/9
to s1 and with 8/9 back to s0. Action a1 has cost 10 and reward 1 and leads with
probability 1/2 to s1 and with 1/2 to s0. Action a2 has cost and reward 1 and
leads with probability 1 back to s0. We will ignore this action for the remainder
of this example.

The steady state distribution of the strategy choosing a0 is (9/10, 1/10), and
so its ratio value is (9/10 · 5 + 1/10 · 1)/(9/10 · 1 + 1/10 · 100) ≈ 0.42. For the
strategy choosing a1, the steady state distribution is (2/3, 1/3) and the ratio value
is (2/3 · 10+1/3 · 1)/(2/3 · 1+1/3 · 100) ≈ 0.634, which is larger than for a0. Hence
choosing a0 is the better strategy for the ratio objective (as we aim to minimize
the ratio). If we now subtract the reward from the cost and interpret the result
as a mean-payoff MDP, then we get rewards 4, 9, and −99 respectively. Choosing
strategy a0 gives us 9/10 · 4− 1/10 · 99 = −6.3, while choosing strategy a1 gives us
2/3 · 9− 1/3 · 99 = −27. So, choosing a1 is the better strategy for this objective.

Examples 4 and 5 show we cannot easily reduce the ratio payoff to mean payoff.
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4 Algorithms

In this section we discuss three algorithms to calculate the most efficient strategies
for MDPs. In all of them, we first decompose the MDPs into strongly connected
components (called end components) and then calculate optimal strategies for each
component. Finally we compose the resulting strategies into one optimal strategy
for the complete MDP.

We will first discuss end components. Then we will define the common struc-
ture for all algorithms. Afterwards we will discuss three ways to compute optimal
strategies for end components. Finally, we will evaluate the performances of all
three algorithms and discuss their implications.

4.1 End Components

End components [13] of an MDP are defined as follows.

Definition 14 (End Component) LetM = (M,m0, A,A, p) be an MDP. A subset
of its states M ′ ⊆ M is called an end component if

– for each pair of states m,m′ ∈ M ′ there is a strategy such that a run starting
at m will reach m′ with probability greater zero, and

– for each state m ∈ M ′ there is an action a ∈ A such that for all states m′ ∈ M

with p(m, a,m′) > 0 we have m′ ∈ M ′.

An end component is called maximal if there is no other end component that
contains all its states.

⊤

s0 s1

s2 s3

Fig. 4 end components

Figure 4 illustrates an MDP with two end components
(inside the boxes)). The left end component consists of
two states: s0 and s2 . s0 only has one possible choice:
it has to go to the action below it, from which the next
state is chosen probabilistically. However, s2 has two
possible choices: it can go up to the same action, or go
right, from which the next state will be s3 . So both
states in this end component can reach each other with
probability one. Both states have an action to stay inside
the end component. However, s2 does not have to.
There also is a strategy allowing it to only pass through
this end component, instead of remaining in it. So, while

every run has to end in an end component, a run that enters an end component
does not have to stay there. Note further that state s1 is not contained in an end
component, although it can reach itself by picking the action above it. While there
is an action from s1 that has a path leading back to s1 , there is no strategy
that enforces such a visit.

Lemma 7 (End Components Allow Optimal Unichain Strategies) Let M be

an end component, and let d be a non-unichain strategy for M. Then there is a unichain

strategy d′ with expected ratio that is at least as good as that of d.
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Input: MDPM, start state o0
Output: Value E[R] and optimal strategy d

1 ecSet← decompose(M);
2 foreach i← [0 . . . |ecSet| − 1] do
3 switch ecSeti do

4 case isZero : λi ← 0; di ← zero-cost strategy ;
5 case isInfty : λi ←∞; di ← arbitrary ;
6 otherwise : di ← solveEC(ecSeti) ;

7 endsw

8 end

9 d← compose(M, λ0, . . . , λ|ecSet|−1, d0, . . . , d|ecSet|−1);

Algorithm 1: Finding optimal strategies for MDPs

Input: MDPM, start state o0
Output: Set L of maximal end components

1 L← {M};
2 while L cannot be changed anymore do

3 M′ ← some element of L;
4 Deactivate all actions that lead outside ofM′;
5 LetM1, . . . ,Mn be the strongly connected components ofM′;

L← L \ {M′} ∪ {M1, . . . ,Mn};

6 end

Algorithm 2: Decomposition into maximal end components

Proof Lemma 3 and Definition 14 allow us to construct a unchain strategy from
an arbitrary pure strategy with the same or a better value: d′ fixes the recurrent
class C′ with the minimal value induced by d; for states outside of C′, d′ plays a
strategy to reach C′ with probability 1. ⊓⊔

4.2 General Algorithm Structure

As Lemma 7 shows, we can look for unichain strategies in the end components and
then compose these into an optimal strategy for the whole MDP. The general shape
of the algorithms is shown in Algorithm 1. In Line 1 we decompose the MDP into
maximal end components. Then we analyze each end component separately: the
predicates isZero and isInfty (Line 4 and 5, resp.) check if an end component has
value zero or infinity. This is necessary because the algorithms calculating optimal
strategies for end components (solveEC, Line 6) only work if a strategy with finite
ratio exists and if the optimal strategy has ratio greater than zero. Finally, function
compose (Line 9) takes values and strategies from all end components and computes
an optimal strategy for M using Lemma 10.

Decomposition into end components, using the algorithm proposed in [13],
happens in a sequence of refinements of MDPs, until no further refinement is
possible. We describe this formally in Algorithm 2. Functions isZero and isInfty

can be implemented efficiently as follows.

Lemma 8 For every MDP M = (M,m0, A,A, p) such that M is an end component

of M, we can check efficiently if the value of M is zero or infinity and construct

corresponding strategies.

Proof M has value zero if there exists a strategy such that the expected average
reward w.r.t. the cost function c is zero. We check this by removing all actions
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from states in M that have c > 0 and then recursively removing all actions that
lead to a state without enabled actions. If the resulting MDP M′ is non-empty,
then there is a strategy with value 0 for the original end component. It can be
computed by building a strategy that moves to and stays in M′.

M has value infinity iff (i) for every strategy the expected average reward
w.r.t. cost function c is not zero, i.e., M has not value zero, and (ii) for all strategies
the expected average reward w.r.t. the reward function r is zero. This can only be
the case if for all actions in the end component the value of cost function r is zero.
In this case, any arbitrary strategy will give value infinity. ⊓⊔

4.3 Algorithms for End Components

We will now discuss three algorithms for end components. For all of them, we
assume that there exists a strategy with a finite ratio value and that the optimal
strategy does not have value zero. The first two solutions are based on reduction
to linear programs. The last solution is a new algorithm based on strategy (or
policy) iteration.

Fractional Linear Program

Using Theorem 3, we transform the MDP into a fractional linear program. This is
done in the same way as is done for the expected average payoff case (cf. [34]). We
define variables x(m, a) for every state m ∈ M and every available action a ∈ A(m).
This variable intuitively corresponds to the probability of being in state m and
choosing action a at any time. Then we have for example π(m) =

∑

a∈A(m) x(m, a).

We need to restrict this set of variables. First of all, we always have to be in
some state and choose some action, i.e., the sum over all x(m, a) has to be one.
The second set of restrictions ensures that we have a steady state distribution,
i.e., the sum of the probabilities of going out of (i.e., being in) a state is equal to
the sum of the probabilities of moving into this state.

Definition 15 (Fractional Linear program for MDP) Let M be a unichain
MDP such that every Markov chain induced by any strategy contains at least one
non-zero reward. Then we define the following fractional linear program for it.

Minimize f =

∑

m∈M

∑

a∈A(m) x(m, a) · c(m, a)
∑

m∈M

∑

a∈A(m) x(m, a) · r(m, a)
(1)

subject to
∑

m∈M

∑

a∈A(M) x(m, a) = 1 and (2)

∀m ∈ M :
∑

a∈A(m) x(m, a) =
∑

m′∈M

∑

a∈A(m′) x(m
′, a) · p(m′, a,m) (3)

There is a correspondence between pure strategies and basic feasible solutions
to the linear program4. That is, the linear program always has a solution because
every positional strategy corresponds to a solution. See [34] for a detailed analysis
of this in the expected average reward case that also applies here.

4 A feasible solution is an assignment that fulfills the linear equations
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Input: feasible solution x0, MDPM
Output: Variable assignment, optimal solution

1 n← 0
2 repeat

3 g ← f(xn) ; /* f(xn) denotes the value of Eqn. 1 under assignment xn */

4 n← n+ 1
5 Minimize

∑

m∈M

∑

a∈A(m)

xn(m,a) · c(m,a)− g
∑

m∈M

∑

a∈A(m)

xn(m,a) · r(m,a)

subject to Equation 2 and Equation 3.
6 until f(xn−1) = f(xn);
7 return xn, f(xn)

Algorithm 3: Reduction of fractional linear program to a sequence of linear
programs [21]

In our implementation, we solve the fractional linear program in Definition 15
by solving a sequence of linear programs shown in Algorithm 3. This algorithm
is due to [21]. Once we have calculated a solution of the linear program, we can
calculate the strategy as follows.

Definition 16 (Strategy from solution of linear program) Let x(m, a) be the
solutions to the linear program. Let M ′ = {m ∈ M | ∃a ∈ A : x(m, a) > 0}. Then
we define strategy d as d(m) = a for all states m ∈ M and the only possible a ∈ A

such that x(m, a) > 0. For all other states, choose a strategy such that M ′ is
reached with probability 1 (Lemma 7).

Note that this is well defined because for each state m there is at most one
action a such that x(m, a) > 0 because of the bijection (modulo the actions of
transient states) between basic feasible solutions and strategies and because the
optimal strategy is always pure and memoryless.

Linear Program

We can also use the following linear program proposed in [13] to calculate an
optimal strategy. We are presenting it here for comparison to the other solutions
later in this section.

Definition 17 (Linear program for MDP) Let M be a unichain MDP such that
every Markov chain induced by any strategy contains at least one non-zero reward.
Then we define the following linear program for it.

Minimize λ subject to:

bm ≤ c(m, a)− λ · r(m, a) +
∑

m′∈M

p(m, a,m′) · bm′ ∀m ∈ M,a ∈ A(m) (4)

To calculate a strategy from a solution bm to the LP, we choose the actions for the
states such that the constraints are fulfilled when we interpret them as equations.
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Input: MDPM = (M,m0, A,A, p), mean payoff function r : M ×A→ R

Output: Value EMd
[P] and optimal strategy d

1 n← 0, d0 ← arbitrary strategy;
2 repeat

3 Obtain vectors gn, bn that satisfy:
(Pdn − I)gn = 0

rdn − gn + (Pdn − I)bn = 0
P ∗
dn

bn = 0
;

4 A
′
(m)← argmin

a∈A(m)

∑

m′∈M

p(m,a,m′)gn(m
′);

5 Choose dn+1 such that dn+1(m) ∈ A
′
(m);

6 foreach m ∈M do

7 if dn(m) ∈ A
′
(m) then dn+1(m)← dn(m);

8 end

9 if dn = dn+1 then

10 A
′
(m)← argmin

a∈A(m)

[r(m) +
∑

m′∈M

p(m,a,m′)bn(m
′)];

11 Choose dn+1 such that dn+1(m) ∈ A
′
(m);

12 foreach m ∈M do

13 if dn(m) ∈ A
′
(m) then dn+1(m)← dn(m);

14 end

15 end

16 n← n+ 1;

17 until dn−1 = dn;

Algorithm 4: Finding optimal strategies for MDPs with mean payoff [34]

Policy Iteration

We will now design a policy iteration algorithm for R that is based on the policy
iteration algorithm for mean cost P, which we show in Algorithm 4. Recall that
we use functions with finite domain and vectors interchangeably.

The goal of this algorithm is to find a strategy with minimal expected mean
payoff. The algorithm consists of one loop in which we produce a sequence of
strategies until no further improvement is possible (Line 17), i.e., until there is
no strategy with smaller expected payoff. At the beginning of the loop we solve a
linear equation system (Line 3). In this system, we denote by Pd the probability
matrix we obtain from combining M with d, i.e., Pd(m,m′) = p(m, d(m),m′).
Analogously, rdn

denotes the reward vector induced by strategy dn, i.e., rdn
(mi) =

r(mi, dn(mi)). Finally, by I we denote an identity matrix of appropriate size. The
resulting vectors are gain g and bias b. Gain g(m) is equal to the expected payoff
of a run starting in m. The bias can be interpreted as the expected total difference
between a reward obtained in a state and the expected reward of that state [34].
Its detailed semantics is not of material importance to this paper.

In Line 4 we collect all possible actions for each state that minimize the local
expected gain. In Line 5 we choose one strategy from the possible actions. To
guarantee termination of this algorithm we fix the chosen strategy (Line 8) such
that we choose the same action as the old strategy whenever possible. If it was
not possible to find an improved strategy in this way, then we perform the steps
from Line 4 to Line 8 with a different local target function (Line 9 to Line 14),
based on reward and bias.
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Theorem 4 (Algorithm 4 terminates and is correct) Algorithm 4 always termi-

nates and returns an optimal strategy.

Proof In each iteration of the algorithm we have one of the following cases [34]

– dn = dn+1: In this case there is no better strategy.
– dn 6= dn+1: We know that either gn < gn+1 or gn = gn+1 and bn < bn+1 (i.e.,

we have a lexicographic ordering).

In the first case we know that we found the best possible strategy. This implies
the correctness. From the second case it follows that no two strategies can show
up twice except for the first case. Since there are only finitely many strategies we
know that the algorithm therefore terminates. ⊓⊔

We are now going to reduce the search for an optimal ratio strategy for an
MDP M with reward r and cost c to the search for an optimal mean cost strategy.
According to Theorem 2, the ratio value of a unichain strategy d is λd = πdcd/πdrd,
if we interpret cd, rd and πd as vectors. Equivalently, (cd − λdrd)πd = 0. If we now
construct a mean payoff reward function r′ = c − λr, then d has therefore an
expected mean payoff of zero. We call r′ the reward induced by λ.

Definition 18 (Reward induced by λ) Let c and r be cost and reward functions
and let λ ∈ R be a constant. Then we define the reward induced by λ as r′(m, a) =
c(m, a)− λr(m, a).

The correlation between functions r, c and r′ go even further, as the following
lemma shows.

Lemma 9 (Relation of Ratio and Mean Payoff) Let M be an MDP, r and c

be payoff functions, d and d′ be two unichain strategies with expected ratio λ and λ′,

respectively, and r′ be the reward function induced by λ. Then the following all hold:

1. λ′ = λ if and only if the expected mean cost of d′ in M with r′ is zero i.e.,

EMd′
[Pr′ ] = 0.

2. λ′ < λ if and only if the value of d′ in M with r′ is smaller than zero, i.e.,

EMd′
[Pr′ ] < 0 ⇐⇒ EMd′

[R c
r
] < EMd

[R c
r
].

3. If λ is not optimal, there is a strategy with value smaller than zero for M and r′.

Proof For 1., EMd′
[Pr′ ] = 0 if and only if r′d′πd′ = 0 according to Theorem 2. By

definition of r′, this is equivalent to (cd′ − λrd′)πd′ = 0. By vector arithmetic, this
is equivalent to cd′πd′/rd′πd′ = λ. According to Theorem 2, cd′πd′/rd′πd′ = λ′. So
we obtain λ = λ′.

For 2., assume that d′ with r′ has a value smaller than zero, i.e., 0 > πd′r′d′ =
π(cd′ − λrd′) by the first claim, where πd′ is the steady state distribution of d′

in M. Equivalently, 0 > πd′cd′ − πd′λrd′ and λ > πd′cd′/πd′rd′ = λ′, where the
last equality follows from Theorem 3. Since all transformations are equivalent, the
proof of this claim is finished.

For 3., assume that d∗ is optimal in M with c and r and that its value is λ∗.
Also assume that d, i.e., that λ > λ∗ is not optimal. We will now show that d∗ has
a value smaller than zero in the combination of M and r′, i.e., prove the claim.

Let v = πd∗r′d∗ = πd∗(cd∗ − λrd∗) be the expected mean payoff value of d∗ for
r′ and let v∗ = πd∗(cd∗ − λ∗rd∗) be analogous for λ∗. From λ∗ < λ it follows that
v∗ > v. Since v∗ is the value of d∗ in the combination of M and the reward induced
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Input: End ComponentM, unichain strategy d0 (with 0 < λ0 <∞)
Output: Optimal unichain strategy dn

1 n← 0;
2 repeat

3 λn ← EMdn
[R];

4 dn+1 ← improved unichain strategy forMλn
;

5 n← n+ 1;

6 until dn−1 = dn;

Algorithm 5: Policy iteration for R

by λ∗, we know that v∗ is zero from the first claim. From 0 = v∗ > v we have that
v is smaller than zero. But v is the value of d∗ in the combination of M and r′ by
definition, i.e., d∗ is a better strategy in the induced MDP. ⊓⊔

Lemma 9 allows us to find an optimal strategy for R by starting with some
strategy d with value λ < ∞. We can then look for a better strategy with Algo-
rithm 4 in the combination of M and the function induced by λ. If we cannot find
such a strategy, then d is optimal, according to the third claim of the last lemma.
If we find such a strategy, then it has a ratio lower than λ according to the second
claim of the last lemma. This leads us to Algorithm 5.

This algorithm is correct and terminates since the expected values we produce
are always decreasing. From Lemma 9 it follows that the algorithm will always
find a correct strategy. Note that it is undefined how far we improve the strategy
in Line 4. We can take the first strategy having an expected payoff smaller than
zero or we can find an optimal strategy. As we will see in Section 4.5 there seems
to be little difference between the two approaches. However, the following example
shows that choosing the best strategy in the induced MDP is not always beneficial.

Example 6 (Choosing Optimally in the Induced MDP is not Always Optimal) Consider
Figure 3(b) on Page 16. If we choose for state s0 the action with cost 1 and reward
1, then we obtain 1 as expected ratio payoff of this MDP. In the MDP induced
by 1 we have −6.3 as expected mean payoff for choosing the action with cost 5
and reward 1, according to Example 5. Analogously, we have −27 for choosing the
other action. So, if we choose the optimal strategy in the induced MDP we will
pick the latter action. But, as seen in Example 5, the former is optimal. ⊓⊔

Theorem 5 (Correctness of Algorithm 5) Algorithm 5 terminates and is correct.

Proof Two strategies with different efficiencies cannot be the same. The ratios in
Algorithm 5 are monotonically improving. There are only finitely many strategies.
So termination follows. Correctness follows from Lemma 9. ⊓⊔

4.4 Composing MDPs

Once we have calculated optimal strategies for end components, we calculate a
strategy that selects end components and decisions to reach them optimally. To
that end, we employ algorithms for calculating optimal strategies of mean-payoff
MDPs, as discussed above.

We construct a new MDP in which each end component is represented by one
state, and each state not in an end component is represented by itself. If it was
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possible to move from one state or end component to another with a given action,
then it will be possible to move from one representing state to the other in the
new MDP. We will assign rewards such that staying in a state representing an
end component is rewarded by the expected payoff of that component. Moving
from one component to another has no cost. An optimal strategy for this MDP
defines an optimal strategy for states not in an end component as well as movement
between end components.

Lemma 10 Given an MDP M and an optimal pure strategy di for every maximal end

component Ci, 1 ≤ i ≤ n in M, we can compute the optimal value and construct an

optimal strategy for M.

Proof Let λi be the value obtained with di in the MDP induced by Ci. Without
loss of generality, we assume that every action is enabled in exactly one state.

Let M′ = (M ′,m′
0, A

′, A
′
, p′) be an MDP constructed from M as follows:

– M ′ = {Ci | ∀1 ≤ i ≤ n} ∪ {m ∈ M | m 6∈
⋃

Ci},

– m′
0 =

{

Ci m0 ∈ Ci

m0 otherwise

– A′ = A,
– A

′
= {(m, a) ∈ A | m 6∈

⋃

Ci} ∪ {(Ci, a) | ∃m ∈ Ci ∧ (m, a) ∈ A, 1 ≤ i ≤ n}, and
– let p′ be such that it respects the following conditions:

– ∀m,m′ ∈ M ∩ M ′ ∀a ∈ A : p′(m, a,m′) = p(m, a,m′), i.e., probability of
moving between two states m and m′ that are outside of any end component
are the same as in M,

– ∀m ∈ M ∩ M ′ ∀a ∈ A ∀1 ≤ i ≤ n : p′(m,Ci) =
∑

m′∈Ci
p(m, a,m′), i.e., the

probability of moving from a state m outside of any end component to end
component Ci in M′ is equal to the probability of moving from m to any
of the states of Ci in M,

– ∀m ∈ M ∩ M ′ ∀a ∈ A ∀1 ≤ i ≤ n : p′(Ci, a,m) = maxm′∈Ci
p(m′, a,m),

i.e., the probability of moving from end component Ci to a state m that is
outside of any end component with action a is equal to the probability of
moving from the single state a′ in which a is activated to m,

– ∀a ∈ A ∀1 ≤ i, j ≤ n : p′(Ci, a, Cj) = maxm∈Ci

∑

m′∈Cj
p(m, a,m′), i.e., the

probability of moving from end component Ci to end component Cj with
action a is equal to the probability of moving from the single state in which
a is activated to any of the states in Cj ; it is zero if no such state exists.

We modify M′ to obtain an MDP M′′ by removing all actions for which there
is a state m ∈ M ′ such that p′(m, a,m) = 1. Furthermore, for all states C that
represent an end component in M with value λi < ∞, we add a new action ai
with p(C, ai, C) = 1 and costs λi; all other actions have cost 0. We now recursively
remove states without enabled actions and actions leading to removed states. If
the initial state m0 is removed, the MDP has value infinity, because we cannot
avoid reaching and staying in an end component with value infinity.

Otherwise, let d′′ be an optimal strategy for M′′. We define d by d(m) = d′′(m′)
for all states m 6∈

⋃

Ci. For m ∈ Ci, if d
′′(m′) = ai, we set d(m) = di(m). Otherwise,

let a be the actions chosen in statem′, and letm′′ be the state in which a is enabled.
Then, we set d(m′′) = a and for all other states in Ci we choose d such that we
reach m′′ with probability 1. We can choose the strategy arbitrarily in states that
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were removed from M′′, because these states will never be reached by construction
of d. Because of the way we constructed M′′, d and d′′ have the same value, and
d is optimal because d′′ is optimal (Theorem 3). ⊓⊔

4.5 Evaluation

The goal of this first evaluation is to find out which of the given implementations
we should follow to try to scale to large systems. We therefore apply all three
implementations to a series of production line configurations of increasing size.
We also report on the synthesized strategies.

Test Cases and Results.

We synthesized optimal controllers for systems with two to five production lines,
i.e., the underlying MDP is a product of two to five copies of the environment
model (shown in Figure 1(a)) and the monitor (shown in Figure 1(b)).

The synthesized controllers behave as follows: For a system with two production
lines, the controller plays it safe. It turns one production line on in fast mode
and leaves the other one turned off. If the production line breaks, then the other
production line is turned on in slow mode and the first production line is repaired
immediately. For three production lines, all three production lines are turned on in
fast mode. As soon as one production line breaks, only one production line is turned
on in fast mode, the other one is turned off. Using this strategy, the controller
avoids the penalty of having no working production line with high probability. If
two production lines are broken, then the last one is turned on in fast mode and
the other two production lines are been repaired. In the case of four production
lines, all production lines are turned on in fast mode if they are all working. If
one production line breaks, then two production lines are turned on and the third
working production line is turned off. The controller has one production line in
reserve for the case that both used production lines break. If two production lines
are broken, then only one production line is turned on, and the other one is kept
in reserve. Only if three production lines are broken, the controller starts repairing
the production lines. Using this strategy, the controller maximizes the discount for
repairing multiple production lines simultaneously.

We also evaluated the ACTS described in Section 1. The model has two parts:
a motor (the system model) and a driver profile (environment model). The state
of the motor consists of revolutions per minute (RPM) and a gear. The RPM
ranges from 1000 to 6000, modelled as a number in the interval (10, 60), and
we have three gears. The driver is meant to be a city driver, i.e., who changes
between acceleration and deceleration frequently. Fuel consumption is calculated
as a polynomial function of degree three with the saddle point at 1800 rpm. The
final model has 384 states, which takes less than a second to build. Finding the
optimal strategy takes less than a second. The resulting expected fuel consumption
is 0.15 l/km. The optimal strategy is as expected: shifts occur as early as possible.
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Table 1 Experimental results table

n |M | |A| LP FLP Opt Imp.
2 9 144 0.002 13 0.015 14 0.003 13 0.003 14
3 27 1728 0.043 14 0.642 20 0.027 13 0.009 14
4 81 20736 1.836 41 14.73 332 0.122 21 0.122 24
5 243 248832 67.77 505 n/a n/a 1.647 162 1.377 166

Experiments.

We have implemented the algorithms presented in this paper. Our first implemen-
tation is written in Haskell5 and consists of 1500 lines of code. We use the Haskell
package hmatrix6 to solve the linear equation system and glpk-hs7 to solve the
linear programming problems. In order to make our work publicly available in a
widely used tool and to have access to more case studies, we have implemented
the best-performing algorithm within the explicit-state engine of PRISM. It is an
implementation of the strategy improvement algorithm and uses numeric approx-
imations instead of solving the linear equation systems.

First, we will give mean running times of our Haskell implementation on the
production line example, where we scale the number of production lines. The tests
were done on a Quad-Xeon with 2.67GHz and 3GB of heap space. Table 1 shows
our results. Column n denotes the number of production lines we use, |M | and |A|

denote the number of states and actions the final MDP has. Note that |M | = 3n

and |A| = 12n. The next columns contain the time (in seconds) and the amount
of memory (in MB) the different algorithms used. LP denotes the linear program,
FLP the fractional linear program. We have two versions of the policy iteration
algorithm: one in which we improve the induced MDP to optimality (Column
Opt.), and one where we only look for any improved strategy (Column Imp.). The
policy iteration algorithms perform best, and Imp. is slightly faster than Opt but
uses a little more memory. For n = 5, the results start to differ drastically. FLP
ran out of memory, LP needed about a minute to solve the problem, and both
Imp. and Opt. stay below two seconds.

Using our second implementation, we also tried our algorithm on some of the
standard PRISM benchmarks [25]. For example, we used the IPv4 zeroconf pro-
tocol model. We asked for the minimal expected number of occurrences of action
send divided by occurrences of action time. If we choose K = 5 and reset = true,
then the resulting model has 1097 states and finding the optimal strategy takes
5 seconds. For K = 2 and reset = false, the model has about 90000 states and
finding the best strategy takes 4 minutes on a 2.4GHz Core2Duo P8600 laptop.

5 Symbolic Implementation

In this section, we will discuss a symbolic variant of the policy iteration algorithm,
i.e., the structure of Algorithm 1 with Algorithm 5 implementing solveEC. Sym-
bolic encoding via binary decision diagrams (BDDs) has enabled model checking

5 http://www.haskell.org
6 http://code.haskell.org/hmatrix/
7 http://hackage.haskell.org/package/glpk-hs

http://www.haskell.org
http://code.haskell.org/hmatrix/
http://hackage.haskell.org/package/glpk-hs
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and qualitative synthesis to address the state explosion problem in many cases [9].
An extension called multi-terminal BDDs (MTBDDs) has also been widely used for
symbolic implementations of probabilistic model checking, and is a core part of
the PRISM tool, upon which we develop our techniques.

Recently, Wimmer et al. developed a semi-symbolic (or, in their terms, sym-

blicit) variant of Algorithm 4 [39] with promising results. In this section, we develop
an analogous algorithm for the case of Ratio-MDPs. We call the algorithm semi-
symbolic because it uses symbolically as well as explicitly encoded MDPs. BDDs
are good for encoding large structures but they are not suitable when it comes to
solving linear equation systems (see for example [19,23]). Therefore we (like [39])
encode MDPs and strategies symbolically but convert the induced MC into an
explicit linear equation system. For efficiency, before conversion, we reduce the
MC using symbolic bisimulation minimization [40].

In what follows, we give an overview of the symbolic implementation. We first
recall how to encode MDPs using MTBDDs and then describe how all the key
parts of Algorithm 1 are implemented using BDDs and MTBDDs.

5.1 Symbolic Encoding

BDDs encode Boolean functions 2V → B, where V is a finite set of variables, as
directed acyclic graphs [8]. Given, for example, V = {v, w} and function f : 2V → B,
we write f({v}) to denote the function value of the variable assignment v = 1∧w =
0. Accordingly, f(∅) denotes the value of f for the assignment v = 0 ∧ w = 0.

BDDs support several logical operations very efficiently (linear in the num-
ber of nodes). Given functions stored as BDDs B and B′, and variables V′ ⊆ V,
we can easily perform: negation (¬B), conjunction (B∧B′), disjunction (B∨B′),
existential quantification (∃V′ : B) and universal quantification (∀V′ : B).

MTBDDs [17,1] are an extension of BDDs that encode functions 2V → R, i.e.,
real-valued rather than Boolean-valued functions. Again, many useful operations
can be implemented efficiently. Given MTBDDs B and B′, variables V′ ⊆ V and
constant c ∈ R, we can perform: negation (−B), addition (B+B′), multiplication
(B×B′), division (B /B′), minimization (minV′ : B), maximization (maxV′ : B),
summation (

∑

V′ : B) and comparison with a constant (B < c).

MTBDDs can be used to represent and manipulate matrices [17,1] and proba-
bilistic models such as MCs and MDPs [19,2,31]. Consider, for example, an MDP
M = (M,m0, A,A, p). To represent this symbolically, we first need a symbolic
encoding of the state space M using ⌈log2(|M |)⌉ variables VM , described as an in-
jective function encM : M → 2VM , and a symbolic encoding of A using ⌈log2(|A|)⌉
variables VA, described as an injective function encA : A → 2VA .

We encode the action activation relation A of M as a BDD representing the
function f

A
: 2VM ∪VA → B such that f

A
(encM (m) ∪ encA(a)) = 1 if and only if

(m, a) ∈ A. To represent the transition function p of M, we also need a second

encoding of the state space enc′M : M → 2V
′

M , which is identical to encM , but
mapping to a second set of ⌈log2(|M |)⌉ variables V′

M . We encode p as an MTBDD

representing the function fp : 2VM ∪VA ∪V′

M → R such that fp(encM (m)∪encA(a)∪
enc′M (m′)) = p(m, a,m′) for all states m,m′ ∈ M and actions a ∈ A and 0 for every
other assignment.
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Input: S, p, E
Output: L

1 L0 ← [(S,E)];
2 n← 0;
3 repeat

4 Ln+1 ← [];
5 foreach (S′, E′)← Ln do

6 Let (S1, E1), . . . , (Sl, El) be the SCCs of (S′, E′) ;
7 E′

i ← Ei ∧ [∃a∀m′ : p→ Si)] ;
8 Add (Si, E

′
i) to Ln+1;

9 n← n+ 1;

10 end

11 until Ln = Ln−1;

Algorithm 6: Symbolic End Component Computation

Other entities we may need are encoded similarly. A set of states S ⊆ M is
represented by a function fS : 2VM → B, a pure strategy d : M → A by a function
fd : 2VM ∪VA → B, and costs and rewards as functions fc, fr : 2VM ∪VA → R. MCs
are encoded as for MDPs but omitting the actions.

5.2 Symbolic MDP Decomposition

We need to implement each part of Algorithm 1 symbolically, using the encoding
described above. The initial phase of the algorithm is the decomposition of the
MDP into its maximal end components, shown previously in Algorithm 2.

First, we generate a BDD E for the underlying graph of the MDP by replacing
every leaf in p that has a value greater than 0 by 1. We further abstract existentially
over all actions, i.e., E = ∃VA

(p > 0). Notice that, for clarity of presentation, we use
the same symbol for an (MT)BDD and what it represents (e.g., p is the MTBDD
representing transition function p). We now have that E represents the function
fE where fE(encM (m) ∪ enc′M (m′)) if and only if there is any action that makes
it possible to move from state m to state m′ in M.

Algorithm 6 works in exactly the same way as Algorithm 2. In Line 6, we
assume that there is a method of decomposing into strongly connected components
symbolically (see e.g. [5]). The only important line is Line 7, where we restrict the
set of possible actions to those that stay inside an EC. Here we restrict the directed
graph such that there is only an edge if there is any possible action that stays inside
the end component.

After identification of end components, we need to implement the checks isZero
and isInfty from Algorithm 1, which is done with a symbolic version of what we
described in Lemma 8. For isZero, we restrict the set of states to those that have a
cost of zero, i.e., M∧∃V′

M
∃VA

: c = 0. If the resulting MDP has an end component,

then isZero will return true. For isInfty we check if r = 0∧ [¬M ∨ (∃VM
∃VA

: c >
0)] is a tautology.

5.3 Symbolic Policy Iteration

The next part of Algorithm 1 is the optimization of each individual end component
using policy iteration. In Algorithm 7 we present the algorithm that finds the
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Input: MDP mdp consisting of a single end component
Output: strategy d and optimal ratio value λ of mdp

1 d = initial(mdp) ;
2 dold = ⊥;
3 while d 6= dold do

4 λ = lambda(mdp, d);
5 g, b = gainAndBias(mdp, d, λ);
6 while g ≥ 0 and dold 6= d do

7 dold = d;
8 d = next(mdp, d, λ, g, b);
9 g, b = gainAndBias(mdp, d, λ);

10 end

11 end

12 return unichain(mdp, d), λ

Algorithm 7: Optimisation for a Single End Component

optimal ratio value for an end component. The algorithm first picks any strategy d

that has a finite and strictly positive value (Line 1). We observed that the choice
of this strategy has a strong influence on the performance of our algorithm.

Then, in Line 3 we enter a loop that produces in every iteration a new strategy
that has the same or a better ratio value (λ) than the previous strategy. We exit
the loop if the same strategy is produced twice, i.e., there is no strategy with a
better ratio value for this MDP.

In the loop, we first compute the ratio value λ that can be obtained by a
strategy generated from the strategy d (Line 4). This computation is done semi-
symbolically. First, we compute the Markov chain C induced by strategy d. We
then apply symbolic bisimulation minimization to C, which allows us to construct
an equivalent smaller Markov chain C′. Then, we compute all recurrence classes
(i.e., the strongly connected components) of C′. For each recurrence class, we build
an explicit-state representation of the sub-model and calculate the steady-state
distribution, which in turn is used to calculate the ratio value of the recurrence
class. We set λ to the value of the best recurrence class. This value is not necessarily
the value of d but we can construct a strategy that has value λ. Furthermore, λ is
at least as good as the actual value of d (see proof of Lemma 7).

In the rest of the algorithm, we perform computation on an MDP with average
objective induced by the reward function c−λ×r (which we compute symbolically).
For this induced MDP, we compute gain (g) and bias (b) (as in Algorithm 4). The
computation of gain and bias is similar to the computation in Algorithm 4, i.e.,
we calculate gain and bias explicitly on an equivalent smaller Markov chain. We
know that a state has a gain smaller than zero in the induced MDP if and only if
its ratio value is smaller (i.e., better) than the ratio value from which the induced
MDP was calculated (Lemma 9). Since the ratio value of strategy d is at most as
good as λ, the gain of all states at this point is greater than or equal to zero.

We now enter the inner loop (Line 6), which runs while the strategy keeps
changing and all entries of the gain vector are greater than or equal to zero.
Equivalently, the loop runs until there is a recurrence class of the current strategy
that has a value smaller than λ or until there is no better strategy any more.

In the inner loop, we try to improve the strategy (Line 8) and calculate the
new strategy’s gain and bias (Line 9). Note that the choice of the next strategy
and the way of computing the value λ differs from our description in Section 4. In



30 C. von Essen, B. Jobstmann, D. Parker, R. Varshneya

the latter, we demanded a unichain strategy from the induced Mean MDP; here,
we allow any kind of strategy. Forcing the algorithm to use a unichain strategy was
a major bottleneck in our initial symbolic implementation, because it introduced
irregularity into the (MT)BDDs.

Instead we work with arbitrary strategies now. To calculate the expected ratio
of a strategy, we calculate the expected ratio of each recurrent class with Theorem 2
and take their minimum. The correctness of this approach follows trivially from
the existence of a unichain Strategy with the same recurrence class as the optimal
recurrence class, and therefore with the same value Lemma 7.

5.4 Symbolic Composition

We can build a strategy for the whole MDP once we have built a strategy for
the end components. This could be done exactly as in the explicit variant, and
by using a symbolic policy algorithm for mean-payoff MDPs, i.e., with a symbolic
variant of Algorithm 4. Instead, we reduce the problem of composing strategies to
the problem of finding a stochastic shortest path.

Definition 19 (Stochastic Shortest Path Problem) Let M = (M,m0, A,A, p)
be an MDP, and r : M × A → R be a reward function. Then the Total Reward

Fr : (M × A)ω → R defined by r is defined as Fr(ρ) =
∑∞

i=0 r(ρi). For a state
m ∈ M , an optimal strategy for the stochastic shortest path problem is one for
which the expected value is minimal, i.e., argmind∈D′ EMd

[F ], where D′ ⊆ D(M)
is the set of pure strategies reaching m almost surely.

We use the following definition to reduce strategy composition to a simple
variant of the shortest stochastic path problem.

Definition 20 (Reduction to Stochastic Shortest Path Problem) Let M =
(M,m0, A,A, p) be a MDP, r : M → R ∪ {⊥} be the optimal ratio calculated for
each state so far, or ⊥ if no reward has been calculated (because the state does
not lie in any end component).

We construct a new MDP M′ = (M ′,m′
0, A

′, A
′
, p′) by adding a special state

m⊥ to the set of states and keeping the start state, i.e., M ′ = M ∪ {⊥}, and
m′

0 = m0. Let E ⊆ M be the set of states in any end component of M.
We extend the set of inputs by a fresh symbol a⊥, i.e., A

′ = A ∪ {a⊥}, where

a⊥ is available in all states in any end component, i.e., A
′
= A ∪ E × {⊥}. For

any input a ∈ A in M, the transition function p′ of M′ is the same as in M, i.e.,
p′(m, a,m′) = p(m, a,m′) for all states m,m′ ∈ M . For the new input a⊥ we define
p′(m, a⊥,⊥) = 1 for all m ∈ E ∪ {⊥}.

As reward function r′ we assign r′(m,⊥) = r(m) for every state m ∈ E, and 0
for all other states and actions. (Note that all states in an end component have
the same value, so r(m) is the reward of the end component.)

The correctness of the above reduction follows from the fact that the expected
ratio payoff of a strategy of an MDP is equal to the sum over all end components
C, in which the expected ratio of C is multiplied by the probability of reaching
and staying in C, i.e., Ed

M[r] =
∑

C p(C)Ed
C [r]. So, whenever the strategy chooses

the edge (m,⊥), then it is optimal to stay in the end component of m. For every
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Input: min. Reward r, symb. transition fp, immediate reward I
Output: Values V ′, Strategy d

1 V ′ = r;
2 V ′(⊥) = 0 ;
3 V =∞ ;
4 while ||V − V ′|| ≥ ǫ do

5 V = V ′ ;

6 V ′ = minVp

∑

VM

(

fp · V ′(V′
M ← VM ) + I

)

7 end

Algorithm 8: Solving the Stochastic Shortest Path Problem

other state (i.e., transient states or end components that we want to traverse), an
optimal strategy of the stochastic shortest path problem is the optimal strategy
for the orignal (ratio-payoff) problem.

We use Value Iteration to solve this problem. This class of algorithms has been
studied extensively, and we will therefore not dwell on its correctness.

Lemma 11 (Algorithm 8 terminates and is correct) When given a symbolically

encoded MDP with r the minimal reward optimal reward of all end components, fp
the symbolic transition function and immediate reward function I : M × A → R,

Algorithm 8 terminates and delivers an ǫ-optimal strategy and ǫ-optimal values, i.e.,

the value of its strategy is at most ǫ away from the optimal value in the || · ||-norm.

Proof See [34].

Using Algorithm 8 and Definition 20, we obtain the following theorem.

Theorem 6 (Composing strategies) Let M = (M,m0, A,A, p) be an MDP and

let M′ be constructed from M as in Definition 20. Let E ⊆ 2M be the set of end

components of M, dE the optimal strategy for all end components E ∈ E, and let d′

be the optimal strategy for M′. We call an end component E active if there is a state

m ∈ E such that d′(m) = a⊥. Define d(M) ∈ A for m as

– d(m) = dE(m) if there is an active end component E ∈ E such that m ∈ E

– d(m) = d′(m) otherwise

Then d is optimal for M.

Proof First note that for every strategy d in M there is an analogous strategy d′

in M′, and vice versa. We define d based on d′ as defined above. For the other
direction, call and end component active if the probability of visiting and staying in
this end component is greater 0. We define d′ based on d by assigning d′(m) = d(m)
for all states m not in an active end component. For all active end components E

and all states m ∈ E, we assign d′(m) = a⊥. Finally, we assign d′(⊥) = a⊥.
Then, for every optimal strategy d for M, d′ is optimal for M′, and vice

versa. To see why, note that EMd
[R] =

∑

E∈E pd(E)r(E) =
∑

E∈E p′d′(E⊥)r(E) =
EM′

d′
[F ], where by pd(E) we denote the probability that a run in M will reach

end component E and stay in it, given that strategy d is used. Analogously, by
p′d′(E⊥) we denote the probability that a run in M′ will take action a⊥ from a
state in E, given that strategy d is used.

We chose this construction for the symbolic encoding because no numerical
computations (i.e., no equation solving) is involved. This is a great asset when
dealing with MTBDDs.
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Table 2 Experimental results table

Name #States #Blocks Time in sec RAM in MB

line3 386 271 0.9 112
line4 1560 945 5.6 150
line5 5904 3089 20.5 236
line6 21394 9448 96.8 326

rabin3 27766 722 5.2 199
rabin4 668836 12165 104.6 537

zeroconf 89586 29427 2948.7 608

acts 1734 1734 1.6 159

phil6 917424 303 1.2 181
phil7 9043420 303 1.9 262
phil8 89144512 342 2.6 295
phil9 878732012 342 3.3 287
phil10 8662001936 389 4.3 303

power1 8904 72 0.415 89.9
power2 8904 n/a n/a 85

5.5 Evaluation of the Symbolic Algorithm

Table 2 shows the results of our implementation on various benchmarks. The im-
plementation can be downloaded from http://www-verimag.imag.fr/~vonessen/

ratio.html. The first column shows the name of the example; column #States de-
notes the number of states the model has; #Blocks the maximum number of blocks
into which states are partitioned by bisimulation minimization while analyzing the
model; Time the total time needed; RAM the amount of memory used (including all
memory used by PRISM and its Java Virtual Machine). Below, we briefly describe
the examples and discuss the results.

Experiments. Examples line3-6 model the assembly line system described in Sec-
tion 1. We optimize the ratio between maintenance costs and number of units
produced by several lines running in parallel (recall that the underlying MDP is
the product of three to six copies of the environment model shown in Figure 1(a)
and three to six copies of the specification monitor shown in Figure 1(b)).8 Ex-
ample zeroconf is based on a model of the ZeroConf protocol [26]. We modify it
to measure the best-case efficiency of the protocol, finding the expected time it
takes to successfully acquire an IP address. We choose a model with two probes
sent, two abstract clients and no reset. This model shows the limit of our tech-
nique when bisimulation produces many blocks. In experiments phil6-10, we use
Lehmann’s formulation of the dining philosophers problem [27]. Here we measure
the amount of time a philosopher spends. This model is effectively a mean-payoff
model because we have a cost of one for each step. We use this experiment to
compare our implementation to [39]. We are several orders of magnitude faster.
We attribute the increase in speed to good initial strategy. These experiments
also show the effectiveness of bisimulation minimization on state spaces with a
very regular structure. In rabin3 and rabin4, we measure the efficiency of Rabin’s

8 Note that, due to the way that we model the assembly line here in PRISM, these are
different sized MDPs to the ones for the same example used in Table 1.

http://www-verimag.imag.fr/~vonessen/ratio.html
http://www-verimag.imag.fr/~vonessen/ratio.html
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mutual exclusion protocol [35]. We minimize the time of a process waiting for its
entry into the critical section per entry into the critical section. Note that only
the ratio objective allows us to measure exactly this property, because we grant a
reward every time a process enters the section and a cost for every time a process
has to wait for its entry. We also modelled an automatic clutch and transmis-
sion system (acts). Each state consists of a driver/traffic state (waiting in front
of a traffic light, breaking because of a slower car, free lane), current gear (1-4)
and current motor speed (100 - 500 RPM). We modelled the change of driver
state probabilistically, and assumed that the driver wants to reach a given speed
(50 km/h). Given this driver and traffic profile, the transmission rates and the
fuel consumption based on motor speed, we synthesized the best points to shift
up or down. In power1-2, we used the example from [29,16], which the authors
use to analyze dynamic power management strategies. Our implementation allows
solution of optimization problems that are not possible with either [29] or the
multi-objective techniques in [16]. For example, in power1 we ask the question
“What is the best average power consumption per served request”. In power2, we
ask for the best-case power-consumption per battery lifetime, i.e., we ask for how
many hours a battery can last.

Observations. The amount of time needed by the algorithms strongly depends on
the number of blocks (from bisimulation minimization) that it constructs. We
observed that a higher number of blocks increases the time necessary to construct
the partition. Each minimization refinement step takes longer the more blocks we
have. Analogously, the more blocks we have, the bigger the matrices we need to
analyze. We observed an almost monotone increase in the number of blocks while
policy iteration runs. Accordingly, it is beneficial to select an initial strategy with
as few blocks as possible.

In the original policy iteration algorithm of Section 4, we constructed unichain
strategies from Multichain strategies several times throughout the algorithm. As
it turns out, unichain strategies increase the amount of blocks dramatically. We
therefore successfully modified our algorithm to avoid them, which drastically
improved performance.

The symbolic encoding as well as bisimulation are crucial to handle models of
a size that the explicit implementation described in Section 4 could not handle
(storing a model of the size of phil10 was not feasible on our testing machine).

6 Conclusion

We have presented a framework for synthesizing efficient controllers, based on
finding optimal strategies in Ratio-MDPs. We first presented three algorithms for
this based on strategy improvement, fractional linear programming and linear pro-
gramming. We then compared performance characteristics of these algorithms and
integrated the best performing one into the probabilistic model checker PRISM.
Building upon this, we introduced a semi-symbolic policy iteration algorithm and
reported on experiments with its integration into PRISM.

Future Work. There still remains work to do. Of interest are methods to scale the
existing algorithms to even larger MDPs. For example, parallelization of the algo-
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rithms could be considered. In others direction, a variety of techniques for abstrac-
tion and decomposition of models to obtain smaller models have been developed,
which might prove beneficial in our setting. Finally, a considerable bottleneck in
our implementation is the decomposition into end components: faster algorithms
in this area (such as [10]) would improve performance significantly.
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