
Noname manuscript No.
(will be inserted by the editor)

Planning and Execution with Flexible Timelines:
a Formal Account

Marta Cialdea Mayer · Andrea Orlandini ·
Alessandro Umbrico

Received: TBD / Accepted: TBD

Abstract Planning for real world problems with explicit temporal constraints is
a challenging problem. Among several approaches, the use of flexible timelines in
Planning and Scheduling (P&S) has demonstrated to be successful in a number
of concrete applications, such as, for instance, autonomous space systems.

This paper builds on previous work and presents a revised and extended formal
account of flexible timelines with the aim of providing a general semantics for re-
lated planning concepts such as domains, goals, problems, constraints, and flexible
plans. Some sources of uncertainty are also modeled in the proposed framework
and taken into account in the characterization of valid plans, that are assumed not
to take decisions on components the planner cannot control. A formal definition
of different forms of plan controllability is also proposed.

Keywords Temporal Planning · Flexible Timelines · Execution Controllability

1 Introduction

Planning for real world problems with explicit temporal constraints is a chal-
lenging problem [6]. Among different approaches, the use of flexible timelines in
Planning and Scheduling (P&S) has demonstrated to be successful in a number of
concrete applications, such as, for instance, autonomous space systems [9, 24, 28].
Timeline-based planning has been introduced by Muscettola [28], under a modeling
assumption inspired by classical control theory. A planning problem is modeled
by identifying a set of relevant components whose temporal evolution must be
controlled to obtain a desired behavior. Components represent logical or physical
subsystems whose state may vary over time. The behavior of the domain features
under control are modeled as temporal functions whose values have to be decided

M. Cialdea Mayer · A. Umbrico
Università degli Studi Roma Tre, Rome, Italy
E-mail: cialdea@dia.uniroma3.it, alessandro.umbrico@uniroma3.it

A. Orlandini
CNR-ISTC, National Research Council, Rome, Italy
E-mail: andrea.orlandini@istc.cnr.it

2 Marta Cialdea Mayer et al.

over a temporal horizon. Such functions are synthesized during problem solving
by posting planning decisions. The evolution of a single temporal feature over a
temporal horizon is called the timeline of that feature.

In general, plans synthesized by temporal P&S systems may be (i) temporally
flexible and (ii) not fully controllable. Time flexibility reflects on modeling plans
as made up of flexible timelines, describing transition events that are associated
with temporal intervals (with given lower and upper bounds), instead of exact
temporal occurrences. In other words, a flexible plan describes an envelope of
possible solutions with the aim of facing uncertainty during actual execution. As a
matter of fact, many P&S architectures return flexible plans, which are commonly
accepted to be less brittle than fully specified plans, when coping with execution.
The second above-mentioned property is due to the fact that not every value
transition in a plan is under the system control, as events exist that depend on the
environment. The execution of a flexible plan is usually under the responsibility
of an executive system that forces value transitions over the timelines dispatching
commands to the concrete system, while continuously accepting feedback and,
thus, monitoring plan execution. In such cases, the execution time of controllable
tasks should be chosen so that they can face uncontrollable events. This is known
as the controllability problem [35].

A remarkable research effort has been dedicated to design, build, and deploy
software environments for the synthesis of timeline-based P&S applications, like
Europa [3], Aspen [13] and Apsi-Trf [12] and, mostly related to them, several
attempts have also been made to characterize the concept of timeline. Cesta and
Oddi [8] describe a domain description language able to represent physical do-
mains to solve P&S problems. Frank and Jónsson [20] present a constraint-based
attribute and interval planning paradigm for representing and reasoning about
temporal plans. A characterization of the paradigm, based on temporal intervals
and attributes is given in order to enable the description of planning domains with
time, resources, concurrent activities, etc. Chien et al. [14] describe a basic time-
line representation to represent a set of states, resources, timing, and transition
constraints, aiming at generalizing previous efforts provided in a number of P&S
systems designed for space applications. In [19], Frank aims at defining what is a
timeline under a knowledge engineering point of view, i.e., discussing it as a data
structure with associated services that a planning system may use in order to solve
problems.

The above cited works are aimed to describe the exploited concepts, languages
and tools, but do not provide a formally grounded definition for them. A first com-
prehensive and semantically well-founded framework for timeline-based planning
is provided by Cimatti et al. [17], including temporal uncertainty but without ex-
plicitly considering time flexibility. In Bernardini’s PhD thesis work [5], temporal
flexibility is also considered but temporal networks are exploited in order to rep-
resent constraints and, more in general, controllability issues are not addressed.
Cialdea Mayer et al. [16] provide a first formal characterization of flexible timelines
and plans independent of temporal networks and Cialdea Mayer and Orlandini [15]
address the controllability issue.

As far as controllability is concerned, previous works have tackled the issue
of robust plan execution within a Constraint-based Temporal Planning (CBTP)
framework, deploying specialized techniques based on temporal-constraint net-
works [23, 26, 27, 35]. Controllability issues have been formalized and investigated

Planning and Execution with Flexible Timelines: a Formal Account 3

for Simple Temporal Problems with Uncertainty by Vidal and Fargier [35], who
give the basic formal notions properly defining dynamic controllability. Several
authors, e.g., Hunsberger [23] and Morris [26], have proposed a dispatchable exe-
cution approach, where a flexible temporal plan is used by a plan executive that
schedules activities on-line while guaranteeing constraint satisfaction. These no-
tions have also been extended to a timeline-based framework by Cesta et al. [11],
exploiting a method based on model checking with Timed Game Automata (TGA)
to check flexible plans against dynamic controllability and to generate a robust
plan controller able to execute flexible timeline-based plans [29, 30]. Although fol-
lowing the same TGA-based approach, Cialdea Mayer and Orlandini [15] advance
such previous work providing a formalization for flexible timelines with uncertainty
(not considered in the above mentioned approach) and including information about
controllability in plan representation.

The contribution of this work is, up to our knowledge, the first comprehen-
sive formalization of flexible timelines with uncertainty. It combines, extends and
revises the characterization of flexible timelines and plans presented by Cialdea
Mayer et al. [16] and Cialdea Mayer and Orlandini [15]. The paper provides a
general semantics for timeline-related planning concepts such as domains, goals,
problems, constraints and flexible plans, taking into account the difference be-
tween controllable and uncontrollable activities. Uncertainty is taken into account
in the characterization of valid plans, that are assumed not to take decisions on
components the planner cannot control. The main controllability properties for
flexible plans are finally defined.

Differently from all the previous works, that rely on external structures to
represent timelines and, in particular, on temporal networks to characterize and
address the controllability issue (apart from [17], with the limitations mentioned
above), a key contribution of this work is to provide a formal stand-alone defini-
tion of the main concepts of timeline-based planning and the relative controllability
properties, that is independent from the concrete structure exploited to represent
timelines. In this way, controllability issues can be address independently from
both the exploited plan representation and the solving engine. The importance of
this feature is due to the fact that representing a flexible timeline-based plan as a
temporal network entails a sort of simplification of the associated plan structure,
thus causing a lost of information on the causal/temporal “dependencies” among
its components. Such information can be useful for planning engines (like shown,
for instance, by Umbrico et al. [33]) and, in general, for supporting a more detailed
analysis of the relevant features enclosed in the generated plans. As a final remark,
it is worth underscoring that, to the best of our knowledge, a comprehensive in-
vestigation of the formal relationship between temporal networks and timelines,
either in terms of expressivity or complexity, is missing. This is an interesting, non
trivial, open issue and the work presented here constitutes a first mandatory step
to address such an issue in the future.

The paper is organized as follows. Section 2 provides the basic notions underly-
ing timeline-based planning: state variables, flexible timelines and their schedules.
The components of a planning domain are introduced in Section 3, presenting,
in particular, the forms of constraints that may be imposed on the behavior of
different system components. Section 4 defines flexible plans in such a way that
they contain all the information needed for their execution. Planning problems
and solutions plans are presented in Section 5, highlighting the fact that a well-

4 Marta Cialdea Mayer et al.

defined planning problem must include information about the behavior of external
state variables. The standard notions of controllability are defined and discussed
in Section 6. Finally, Section 7 concludes the paper providing a brief analysis of the
adequacy of the proposed formalization to capture the frameworks underlying the
approaches adopted by related P&S systems, a final discussion, and an overview
of future work.

2 State Variables and Timelines

The timeline-based approach to planning pursues the general idea that planning
and scheduling (P&S) for controlling complex physical systems consist of the syn-
thesis of desired temporal behaviors (or timelines). According to this paradigm, a
domain is modeled as a set of features with an associated set of temporal functions
on a finite set of values. The time-varying features are usually called multi-valued
state variables [28]. Like in classical control theory, the evolution of the features
is described by some causal laws and limited by domain constraints. These are
specified in a domain specification. The task of a planner is to find a sequence of
decisions that brings the timelines into a final desired set, satisfying the domain
specification and special conditions called goals. Causal and temporal constraints
specify which value transitions are allowed, the minimal and maximal duration of
each valued interval and (so-called) synchronization constraints between different
state variables.

In real-world domains, once a temporally flexible plan is generated, it is to be
executed by an executive system that manages controllable processes in the pres-
ence of exogenous events. In this scenario, the execution process is not completely
under the control of the executive. Thus, a mandatory requirement for dealing
with P&S in real-world contexts is to distinguish between controllable and uncon-
trollable tasks. This work considers two sources of uncertainty. On the one hand,
the evolution of some components of the system may be completely outside the
control of the executive; such components are modeled by means of external state
variables, and what the planner and the executive know about them is only what
is specified in the underlying planning problem. The distinction between external
and planned state variables is part of the domain specification. On the other hand,
some events may be only partially controllable: the system can decide when to
start an activity, but is not allowed to fix its duration exactly. When the duration
of a value cannot be controlled, it is tagged as uncontrollable, and what the planner
and the executive may assume is only that its duration is included within given
lower and upper bounds.

This section is devoted to properly define the basic notions modelling the sys-
tem components and their temporal behavior, i.e., state variables, flexible time-
lines,1 and non-flexible ones.

For the sake of generality, temporal instants and durations are taken from an
infinite set of non negative numbers T, including 0. For instance, T can be the set
of natural numbers N (in a discrete time framework), as well as the non-negative
real numbers R≥0. Sometimes, ∞ is given as an upper bound to allowed numeric

1 In this work, “timeline” refers to what Cialdea Mayer et al. [16] call flexible timeline, while
non-flexible timelines are called “scheduled timelines”. The latter are defined as particular cases
of (flexible) timelines.

Planning and Execution with Flexible Timelines: a Formal Account 5

values, with the meaning that t < ∞ for every t ∈ T. The notation T∞ will be
used to denote T∪{∞}, T>0 = T−{0} and T∞>0 = T∞−{0}. When dealing with
temporal intervals, if s, e ∈ T, the (closed) interval [s, e] denotes the set of time
points {t | s ≤ t ≤ e}.

In order to support the formal definitions given below, a simple case study will
be used as a running example. The domain is inspired by a space mission long-
term planning problem as described by Cesta et al. [12]. The mission consists of
a remote satellite operating around a target planet. The satellite can either point
to the planet and use its instruments to produce scientific data, e.g., take pictures
with an infrared camera, or point towards a communication station, e.g., an Earth
ground station, and communicate previously-produced data. It can also perform
some maintenance operations. A set of operative constraints must be satisfied.
For instance, the satellite sleweing between two different pointing states takes
some time, and communication with Earth must occur within a ground-station
availability window.

2.1 State Variables

A state variable x is characterized by four components: the set V of values the
variable may assume, a function T mapping each value v ∈ V to the set of values
that are allowed to follow v, a function γ tagging each value with information
about its controllability, and a function D which may set upper and lower bounds
on the duration of each variable value.

Definition 1 A state variable x, where x is a unique identifier, called the variable
name, is a tuple (V, T, γ,D), where:

1. V , also denoted by values(x), is a non-empty set, whose elements are the state
variable values.

2. T : V → 2V is a total function, called the state variable value transition
function.

3. γ : V → {c, u} is a total function, called the controllability tagging function;
γ(v) is the controllability tag of the value v. If γ(v) = c, then v is a controllable
value, and if γ(v) = u, then v is uncontrollable.

4. D : V → T × T∞ is a total function such that D(v) = (dmin, dmax) for some
dmin ≥ 0 and dmax ≥ dmin, and if γ(v) = u, then dmin > 0 and dmax 6= ∞;
D is called the state variable duration function.

If γ(v) = c, then the value v is under complete control of the system, which can
exactly decide when to start and finish, i.e., to execute, the corresponding activity.
When γ(v) = u, the value v models an activity whose exact duration cannot be
controlled by the system, i.e., it is under the control of the environment.

The intuition behind the duration function is that if D(v) = (dmin, dmax),
then the duration of each interval in which x has the value v is included between
dmin and dmax inclusive, if dmax ∈ T; it is not shorter than dmin and has no
upper bound, if dmax =∞.

In practice, existing systems, such as, for instance, Europa [3] and Apsi-Trf
[10], allow values to be represented by means of parametrized expressions and
constraints on the parameters of adjacent values can be imposed. In the present

6 Marta Cialdea Mayer et al.

theoretical approach, values are taken to be completely instantiated in order to
simplify the presentation. This amounts to describing sets and functions by enu-
meration and does not diminish the expressive power.

In what follows, we assume that, whenever a set of state variables SV is con-
sidered, for every distinct pair x and y in SV , x 6= y. Moreover, we assume that
the set SV is partitioned into two disjoints sets, SVP , containing the planned state
variables, and SVE , the set of the external ones. Every value v of an external state
variable is uncontrollable, i.e., γ(v) = u. An external variable represents a com-
ponent of the “external world”, that is completely outside the system control: the
planner cannot decide when to start/end its activities. What is known about an
external variable is specified in the planning problem. On the contrary, a planned
state variable represents a component of the system that is under the control of
the executive. Nevertheless, controllable sub-systems may also have uncontrollable
activities, i.e., activities whose starting times can be decided by the executive, but
their durations, and consequently their ending times, are not controllable. In other
terms, the planner can decide when to start an uncontrollable activity of a planned
variable, i.e., when the variable assumes an uncontrollable value, even if it cannot
be precisely predicted how long it will last. Obviously, in general, when an activity
(either controllable or not) is preceded by an uncontrollable one, the system can-
not control its start time, since it depends on the duration of the uncontrollable
previous one.

Example 1 In our running example, the timeline-based specification identifies two
state variables, that will be called pm (for “pointing mode”) and gv (for “ground
station visibility”), whose values and transitions are illustrated in Figure 1. There-
fore the set of considered state variables is SV = {pm, gv}.

The state variable pm models the satellite’s pointing sub-system which can
be oriented towards the Earth, stay oriented to the Earth while communicating
with the ground station, perform maintanance operations, slew to point towards
a predefined target, or gather scientific data. We assume that the only activity
with uncertain duration is communication. The state variable is pm = (Vpm, Tpm,
γpm, Dpm), where Vpm = {Earth,Comm,Maintenance, Science, Slewing}; Tpm
is the value transition function such that Tpm(Earth) = {Comm,Maintenance,
Slewing}, Tpm(Comm) = {Earth,Maintenance}, Tpm(Maintenance) = {Earth},
Tpm(Science) = {Slewing}, Tpm(Slewing) = {Earth, Science}; γpm is the con-
trollability tagging function such that γpm(Comm) = u, and γpm(Earth) =
γpm(Maintenance) = γpm(Science) = γpm(Slewing) = c; and Dpm is the dura-
tion function such that Dpm(Earth) = [1,∞], Dpm(Comm) = [30, 50], Dpm(Sci-
ence) = [36, 58], Dpm(Maintenance) = [90, 90], Dpm(Slewing) = [30, 30].

The state variable gv models the ground station visibility windows during
the satellite orbit and it is the tuple gv = (Vgv, Tgv, γgv, Dgv), where Vgv =
{V isible,NotV isible}; the function γgv tags both values V isible and NotV isible
with u; Tgv is such that Tgv(V isible) = {NotV isible} and Tgv(NotV isible) =
{V isible}, and Dgv is the duration function such that Dgv(V isible) = [60, 100]
and Dgv(NotV isible) = [1, 100].

In the planning domain representing this system, pm is a planned state variable,
while gv is an external one: it is completely uncontrollable and the system is not
allowed to take decisions on its behavior. Therefore SVP = {pm} and SVE = {gv}.

Planning and Execution with Flexible Timelines: a Formal Account 7

Earth
[1,+INF]

Comm
[30,50]

Maintenance
[90,90]

Slewing
[30,30]

Science
[36,58]

pointing mode

Not
Visible
[1,100]

Visible
[60,100]

ground station visibility

Fig. 1 State variables for the satellite domain.

2.2 Timelines

A timeline represents the temporal evolution of a system component up to a given
time. It is made up of a sequence of valued intervals, called tokens, each of which
represents a time slot in which the variable assumes a given value. For instance,
Figure 2-a, on the left, represents a timeline made up of three tokens: the first one,
lasting from 0 to 25, has the value Earth; the following token, with value Slewing,
begins at time point 25 and ends at 55; the last one, with value Science, starts at
55 and ends at 100. When planning with timelines, time flexibility is taken into
account by allowing token durations to range within given bounds. For instance,
Figure 2-b, on the right, represents a flexible timeline, where the exact times in
which tokens begin and end are replaced by time intervals; the first token may
end at a time ranging between 23 and 28, etc. The notion of (flexible) timeline is
introduced in the following definition.

Earth Slewing Science

0 25 55 100

Earth Slewing Science

0 23-28 53-58 100-110

(a) A timeline with fixed bounds (b) A flexible timeline

Fig. 2 Representation of two timelines

Definition 2 If x = (V, T, γ,D) is a state variable, a token for the variable x has
the form:

xi = (v, [e, e′], [d, d′], γ(v))

where xi, for i ∈ N, is the token name, v ∈ V , e, e′, d, d′ ∈ T, e ≤ e′ and dmin ≤
d ≤ d′ ≤ dmax, for D(v) = (dmin, dmax). The value γ(v) is called the token
controllability tag; if γ(v) = c, then the token is controllable and if γ(v) = u, then
it is an uncontrollable token.

A timeline FTLx for the state varible x = (V, T, γ,D) is a finite sequence of
tokens for x, of the form:

x1 = (v1, [e1, e
′
1], [d1, d

′
1], γ(v1)), . . . , xk = (vk, [ek, e

′
k], [dk, d

′
k], γ(vk)),

8 Marta Cialdea Mayer et al.

where for all i = 1 . . . k−1, vi+1 ∈ T (vi) and e′i ≤ ei+1. The interval [ek, e
′
k] in the

last token is called the horizon of the timeline and the number k of tokens making
up FTLx is its length.

If xi = (v, [e, e′], [d, d′], γ(v)) is a token in the timeline FTLx, then:

– val(xi) = v;
– end time(xi) = [e, e′];
– start time(x0) = [0, 0] and start time(xi+1) = end time(xi);
– duration(xi) = [d, d′];
– with an abuse of notation, γ(xi) denotes the token controllability tag γ(v).

Intuitively, a token xi of the above form represents the set of valued intervals
starting at some s ∈ start time(xi), ending at some e ∈ end time(xi) and whose
durations are in the range duration(xi). The horizon of the timeline is the end
time of its last token.

Example 2 Let us consider the timeline FTLpm for the state variable pm, in the
satellite case study, made of the following sequence of tokens:

pm1 = (Earth, [23, 28], [20, 30], c)
pm2 = (Slewing, [53, 58], [30, 30], c)
pm3 = (Science, [100, 110], [45, 58], c)

Figure 2-b gives a graphical representation of FTLpm (where duration bounds and
controllability tags are not repesented). The horizon of FTLpm is [100, 110].

The timeline for pm made of the following sequence of tokens:

pm1 = (Earth, [25, 25], [20, 30], c)
pm2 = (Slewing, [55, 55], [30, 30], c)
pm3 = (Science, [100, 100], [45, 58], c)

is represented in Figure 2-a. Its horizon is [100, 100].

It is worth pointing out that often in the literature (e.g., [16, 21]) a flexible
token contains also a start interval. However, once a token xi is embedded in a
timeline, the time interval to which its start point belongs (start time(xi)) can
easily be computed like shown in the definition above. Thus, including it as part
of the token itself is redundant.

On the contrary, duration restrictions alone would be inadequate to precisely
identify when the valued intervals represented by a given token must begin and
end. As a matter of fact, duration and end time bounds interact when determining
which legal values a token end time may assume. Let us assume, for instance, that
the duration of a given token xi is [20, 30] and that one may compute, from the
durations of the previous tokens, that its start time is [40, 50]. One can then infer
that the end points of the valued intervals it represents are necessarily in the range
[60, 80] = [40 + 20, 50 + 30]. However, it may be the case that a stricter end time
is required, for instance [65, 75]. In this case, starting xi at 50 and ending it at 80,
though respecting the duration bounds, would not be a legal value to “execute”
the token, since 80 6∈ [65, 75]. So, differently from the case of non-flexible timelines,
durations alone are not sufficient to suitably represent tokens. Analogously, end
time bounds do not capture all the necessary information: the above described

Planning and Execution with Flexible Timelines: a Formal Account 9

token xi does not represent a valued interval starting at 40 and ending at 75,
since, though it respects the start and end time bounds, it violates the duration
constraint.

Controllability tags are among the components of token structures for a dif-
ferent reason. Although γ(xi) is equal to γ(val(xi)), such information is included
in the token xi with the aim of having a self-contained representation of flexible
plans, encapsulating all the relevant execution information. This allows the exec-
utive system to handle plans with no need of considering also the description of
the state variables.

When considering a set FTL of timelines for the state variables in SV , it is
always assumed that it contains exactly one timeline for each element of SV .

2.3 Schedules

A scheduled timeline is a particular case where each token has a singleton [t, t]
as its end time, i.e., the end times are all fixed. A schedule of a timeline FLTx is
essentially obtained from FLTx by narrowing down to singletons (time points) the
tokens end times. This subsection is devoted to define such notions. The schedule of
a token corresponds to one of the valued intervals it represents, i.e., it is obtained by
choosing an exact end point in the allowed interval, without changing its duration
bounds. A scheduled timeline is a sequence of scheduled tokens satisfying the
duration requirements. Tokens, timelines and sets of timelines represent the set
of their schedules. In general, STLx and STL will be used as meta-variables for
scheduled timelines and sets of scheduled timelines, respectively, while FTLx and
FTL as meta-variables for generic (flexible) timelines and sets of timelines.

In what follows, an interval of the form [t, t], consisting of a single time point,
will be identified with the time point t (and, with an abuse of notation, singleton
intervals are allowed as operands of additions, subtractions, comparison operators,
etc.).

Definition 3 A scheduled token is a token of the form xi = (v, [t, t], [d, d′], γ(v))
(or succintly xi = (v, t, [d, d′], γ(v))). A schedule of a token xi = (v, [e, e′], [d, d′], γ(v))
is a scheduled token xi = (v, t, [d, d′], γ(v)), where e ≤ t ≤ e′.

A scheduled timeline STLx is a timeline consisting only of scheduled tokens and
such that if k is the timeline length, then: for all 1 ≤ i ≤ k, if duration(xi) = [di, d

′
i],

then di ≤ end time(xi)− start time(xi) ≤ d′i.
A scheduled timeline STLx for the state variable x is a schedule of FTLx if

STLx and FTLx have the same length k, and for all i, 1 ≤ i ≤ k, the token xi of
STLx is a schedule of the token xi of FTLx.

Let FTL be a set of timelines for the state variables in SV . A schedule STL
of FTL is a set of scheduled timelines for the state variables in SV , where each
STLx ∈ STL is a schedule of the timeline FTLx ∈ FTL.

In simple terms, a scheduled timeline is a timeline where every end time is
a singleton respecting the duration bounds. A schedule of a timeline is a way
of assigning values to each token end time, so that both duration and end time
bounds are respected. Tokens, timelines, and sets of timelines represent the set of
their respective schedules.

10 Marta Cialdea Mayer et al.

Example 3 Let us consider the flexible timeline FTLpm of example 2:

FTLpm = pm1 = (Earth, [23, 28], [20, 30], c)
pm2 = (Slewing, [53, 58], [30, 30], c)
pm3 = (Science, [100, 110], [45, 58], c)

It is worth pointing out that, since the start time of the first token of a timeline is
[0, 0], its end time bounds are usually equal to its duration bounds, but, like this
example shows, it is not necessarily so. Obviously, when the two intervals differ, the
end point of the corresponding first token in any schedule of the timeline belongs
to their intersection.

Each schedule of the timeline FTLpm represents a series of choices for the to-
kens end points, within the allowed intervals and respecting the allowed durations.
For instance, the following timeline is a schedule of FTLpm:

STLpm = pm1 = (Earth, 25, [20, 30], c)
pm2 = (Slewing, 55, [30, 30], c)
pm3 = (Science, 105, [45, 58], c)

In fact, it satisfies all the endpoint and duration bounds in FTLpm.
Obviously, not every sequence of scheduled tokens is a scheduled timeline. For

instance, the sequence of tokens obtained from STLpm by replacing the token pm2

with pm2 = (Slewing, 58, [30, 30], c) is not a scheduled timeline at all, since it does
not satisfy the duration constraints for pm2: end time(pm2)− start time(pm2) >
30.

Let us now consider the scheduled timeline STL′pm obtained from STLpm by
replacing the token pm3 with pm3 = (Science, 113, [45, 58], c). Although STL′pm
satisfies all the duration bounds, it is not a schedule of FTLpm, since the end time
of pm3 is not in the allowed interval [100, 110].

3 Temporal Relations, Synchronization Rules, and Planning Domains

The behavior of state variables may be restricted by requiring that time intervals
with given state variable values satisfy some temporal constraints. For instance,
in our sample domain, the satellite can communicate its data to the Earth only
during a ground station visibility window. In other terms, for every token pmi in
the timeline for the state variable pm having the value Comm, there must exist a
token in the timeline for gv, with the value V isible and bearing a given temporal
relation with pmi. This section is devoted to see how such synchronization rules
can be expressed, thus completing the definition of all the components of a domain
specification.

3.1 Temporal Relations

As a first step, the set of allowed temporal relations is introduced. They are either
relations between two intervals or relations between an interval and a time point.
In this work, quantitative temporal constraints are considered and, for the sake of
simplicity, a small set of primitive relations is chosen, all of which are parametrized

Planning and Execution with Flexible Timelines: a Formal Account 11

by a (single) temporal interval. Other constraints corresponding to the quantitative
extension of Allen’s temporal relations between intervals [2] and those used by
systems like Europa [3] and Apsi-Trf [10], can be easily defined in terms of the
primitive ones, as it will be shown below.

Definition 4 A temporal relation between intervals is an expression of the form
Aρ[lb,ub]B, where A = [sA, eA] and B = [sB , eB] are time intervals, with sA,
eA, sB , eB ∈ T, ρ ∈ R = { start before start, end before end, start before end,
end before start}, lb ∈ T and ub ∈ T∞. The following table defines when a relation
Aρ[lb,ub]B holds:

the relation holds if

A start before start[lb,ub]B lb ≤ sB − sA ≤ ub
A end before end[lb,ub]B lb ≤ eB − eA ≤ ub
A start before end[lb,ub]B lb ≤ eB − sA ≤ ub
A end before start[lb,ub]B lb ≤ sB − eA ≤ ub

A temporal relation between an interval and a timepoint is an expression of the
form Aρ[lb,ub]t, where A = [s, e] is a time interval, with s, e ∈ T, ρ ∈ R′ =
{starts before, starts after, ends before, ends after}, t, lb ∈ T, and ub ∈ T∞. The
following table defines when a relation Aρ[lb,ub]t holds:

the relation holds if

A starts before[lb,ub] t lb ≤ t− s ≤ ub
A starts after[lb,ub] t lb ≤ s− t ≤ ub
A ends before[lb,ub] t lb ≤ t− e ≤ ub
A ends after[lb,ub] t lb ≤ e− t ≤ ub

Other relations can be defined in terms of the primitive ones, like those in
Table 1 (and their converses). In the following, when the relations in the leftmost
column of the table are used, they are meant as abbreviations of the corresponding
expressions on their right.

the relation is defined as
A equals B A start before start[0,0] B and

A end before end[0,0] B

A meets B A end before start[0,0] B

A before[lb,ub] B A end before start[lb,ub] B

A overlaps[lb1,ub1][lb2,ub2] B A start before start[lb1,ub1] B and

A end before end[lb2,ub2] B and
B start before end[0,∞] A

A contains[lb1,ub1][lb2,ub2] B A start before start[lb1,ub1] B and
B end before end[lb2,ub2] A

A starts[lb,ub] B A start before start[0,0] B and
A end before end[lb,ub] B

A finishes[lb,ub] B A start before start[lb,ub] B and
A end before end[0,0] B

A starts at t A starts before[0,0] t

A ends at t A ends before[0,0] t

Table 1 Defined temporal relations

12 Marta Cialdea Mayer et al.

Once relations on time intervals are defined, they can be transposed to relations
on tokens. The expressions used to denote such relations refer to tokens by means
of their names.

Definition 5 Let xi and yj be names of tokens belonging to scheduled timelines
for the state variables x and y, respectively, with start time(xi) = si, end time(xi) =
ei, start time(yj) = sj , end time(yj) = ej . Let moreover t, lb ∈ T, ub ∈ T∞. Ex-
pressions of the form xi ρ[lb,ub]y

j , for ρ ∈ R, and xi ρ[lb,ub]t, for ρ ∈ R′, are

called relations on tokens. The relation xi ρ[lb,ub]y
j holds iff [si, ei] ρ[lb,ub][sj , ej]

holds. And, the relation xi ρ[lb,ub]t holds iff [si, ei] ρ[lb,ub]t holds. When a relation
on tokens holds, we also say that the tokens whose names occur in the relation
satisfy it and that any set of scheduled timelines containing such tokens satisfies
the relation.

Example 4 Let STL = {STLpm, STLgv} be a set of timelines for the satellite
domain, where STLpm contains the tokens

pm5 = (Earth, 100, [1, 43], c)
pm6 = (Comm, 140, [30, 50], u)

and STLgv contains the tokens

gv1 = (NotV isible, 60, [60, 80], u)
gv2 = (V isible, 130, [50, 90], u)

The expressions gv2 start before start[5,∞] pm
6 and pm6 ends before[20,30] 165 are

relations on tokens and they are satisfied by STL.

3.2 Synchronizations

A synchronization constraint can be informally thought as a statement of the form
“for every token . . . there exist tokens such that . . . ”, i.e., it represents a kind of
quantified sentence. The formal counterpart of this kind of assertions makes use of
variables: for every var0 . . . there exist var1, . . . varn such that The variables
used to express synchronizations are called token variables and are taken from a
(potentially infinite) set X = {a0, a1, . . . } of names, whose elements are all dif-
ferent from variable names, values and numbers. These variables are intended to
range over tokens in the considered set of timelines. Making a step forward, it can
be observed that synchronization assertions actually use a form of bounded quan-
tification: “for all/exist tokens with value v in the timeline for the state variable
x . . . ”. Such token variables with restricted range will be denoted by expressions
of the form ai[x = v], where ai is a token variable, x is a state variable name, and
v ∈ values(x), and are called annotated token variables.

Next definition introduces the form of the assertions that can be used to express
parametrized relations on tokens.

Definition 6 An atom is either the special constant > or an expression of the
form ai ρ[lb,ub]aj or ai ρ

′
[lb,ub]t, where ai and aj are token variables, lb, t ∈ T,

ub ∈ T∞, ρ ∈ R, and ρ′ ∈ R′.

Planning and Execution with Flexible Timelines: a Formal Account 13

An existential statement is an expression of the form

∃ a1[x1 = v1] . . . an[xn = vn] . C

where

(i) a1, . . . , an are distinct token variables;
(ii) for all i = 1, . . . , n, xi is a state variable and vi ∈ values(xi) (i.e., ai[xi = vi] is

an annotated token variable);
(iii) C is a conjunction of atoms.

The bound variables of the statement are a1, . . . , an and any variable different from
a1, . . . , an possibly occurring in C is said to occur free in the statement.

Disjunctions of existential statements constitute the body of synchronization
rules.

Definition 7 A synchronization rule is an expression of the form

a0[x0 = v0]→ E1 ∨ · · · ∨ Ek

(for k ≥ 1) where every Ei is an existential statement whose bound variables are
all different from a0 and where only the token variable a0 may occur free. The
left-hand part of the synchronization rule, a0[x0 = v0], is called the trigger of the
rule.

A synchronization rule with empty trigger is an expression of the form:

> → E1 ∨ · · · ∨ Ek

(for k ≥ 1) where every Ei is an existential statement with no free variables.

Intuitively, a synchronization rule with non-empty trigger of the above form
requires that, whenever the state variable x0 assumes the value v0 in some interval
a0, there is at least an existential statement Ei = ∃ a1[x1 = v1] . . . an[xn = vn] . C
and tokens ai (1 ≤ i ≤ n) where the variable xi has the value vi, such that C
holds. (If C = >, no temporal relation is required to hold.) When the trigger is
empty, the existence of the intervals ai and the relations among them have to hold
unconditionally. Synchronization rules with empty trigger are useful to represent
domain invariants, as well as planning goals (both called “facts” by Cimatti et
al. [17]). The use of token variables (that is absent in [17]) allows one to refer
to different intervals having the same value. Indeed, although the token variables
a0, . . . , an are pairwise distinct, multiple occurrences of state variable names and
values are allowed.

It is worth pointing out that a more compact formulation of synchronization
rules can be obtained by allowing C to be an arbitrary combination of atoms by
means of both conjunctions and disjunctions (like in [16]). However, this would
require a planner to be able to transform positive boolean formulae into disjunctive
normal form, in order to obtain the set of possible choices (conjunctions of atoms)
implying that C holds (i.e., the implicants of C).

14 Marta Cialdea Mayer et al.

Example 5 Let us consider the sample operational constraint in the satellite do-
main seen at the beginning of this section: the satellite communicates with the
Earth only when the ground station is visible. A synchronization rule expressing
this constraint is the following:

a0[pm = Comm]→ ∃ a1[gv = V isible] . a1 contains[0,∞][0,∞] a0

According to this rule, whenever the state variable pm assumes the value Comm
in an interval a0, the state variable gv has the value Visible in some interval a1
containing a0.

Synchronization rules with empty trigger may be useful to state known facts,
such as, for instance:

> → ∃a1[pm = Earth]. a1 starts at 0

This rule represents the fact that, at the beginning, the satellite is locked on the
Earth.

Synchronization rules with empty trigger are also used to represents planning
goals, as it will be described later on.

The following definition introduces the semantics of synchronizations on sched-
uled timelines. Since the statement of a synchronization rule makes use of token
variables, each of them must be “interpreted”, i.e., mapped to a token of the
considered timelines.

Definition 8 Let FTL be a set of timelines for the state variables SV and
{x1, . . . , xn} ⊆ SV . A token assignment for a set of annotated token variables
{a1[x1 = v1], . . . , an[xn = vn]} on FTL is a function ϕ mapping every ai to
a token of the timeline FTLxi ∈ FTL and such that val(ϕ(ai)) = vi for all
i = 1, . . . , n.

Let C = A1 ∧ · · · ∧Am be a conjunction of atoms and STL a set of scheduled
timelines, including a timeline for every state variable occurring in C. A token
assignment ϕ on STL satisfies C if for every atom A ∈ {A1, . . . , Am},

(i) if A = ai ρ[lb,ub]aj then the relation ϕ(ai) ρ[lb,ub]ϕ(aj) holds;
(ii) if A = ai ρ[lb,ub]t, then the relation ϕ(ai) ρ[lb,ub]t holds.

A token assignment ϕ on STL satisfies an existential statement of the form
∃ a1[x1 = v1] . . . an[xn = vn] . C if ϕ is a token assignment for a set of annotated
variables including a0[x0 = v0], . . . , an[xn = vn] and ϕ satisfies C.

Let S = a0[x0 = v0] → E1 ∨ · · · ∨ Ek be a synchronization rule. A set of
scheduled timelines STL for the state variables SV satisfies the synchronization
rule S if for every token xk0 in STLx0 ∈ STL such that val(xk0) = v0, there exists
a token assignment ϕ on STL such that ϕ(a0) = xk0 and ϕ satisfies Ei for some
i ∈ {1, . . . , k}.

A set of timelines STL for the state variables SV satisfies a synchronization
rule with empty trigger > → E1 ∨ · · · ∨ Ek if, for some i ∈ {1, . . . , k}, there exists
a token assignment ϕ on STL satisfying Ei.

Let SV be a set of state variables, S be a set of synchronization rules concerning
variables in SV and STL be a set of scheduled timelines for the state variables in
SV . STL satisfies the set of synchronizations S iff STL satisfies all the elements
of S.

Planning and Execution with Flexible Timelines: a Formal Account 15

Example 6 Let us consider, for instance, the synchronization rule given in Example
5, that constrains the satellite to communicate only when the ground station is
visible:

a0[pm = Comm]→ ∃ a1[gv = V isible] . a1 contains[0,∞][0,∞] a0

Let STLpm and STLgv be two scheduled timelines. Let us assume that the timeline
for the pointing system contains a single token whose value is Comm, and has the
form:

STLpm = . . . , pmi−1 = (Earth, 90, [50, 80], c), pmi = (Comm, 130, [30, 50], u), . . .

Let us also assume that the timeline STLgv for the ground station visibility con-
tains the token gvj = (V isible, 170, [60, 100], u), with start time(gvj) = 80.

The synchronization rule is satisfied by the set of scheduled timelines {STLpm,
STLgv}. Indeed, pmi is the only token in STLpm whose value is Comm, and
the token assignment ϕ, such that ϕ(a0) = pmi and ϕ(a1) = gvj , satisfies the
existential statement ∃ a1[gv = V isible] . a1 contains[0,∞][0,∞] a0: val(ϕ(a1)) =
V isible and ϕ satisfies a1 contains[0,∞][0,∞] a0. The latter assertion holds because

ϕ(a1) contains[0,∞][0,∞] ϕ(a0) – i.e., gvj contains[0,∞][0,∞] pmi – holds, since
[80, 170] contains[0,∞][0,∞] [90, 130] holds.

3.3 Planning Domains

A planning domain is described by specifying a set of state variables and a set
of synchronization rules. The formal definition of planning domains is given next,
together with the notion of a set of scheduled timelines respecting the requirements
of the domain.

Definition 9 A planning domain is a triple (SVP , SVE ,S), where:

– SVP is a set of planned state variables;
– SVE is a set of external state variables (with SVP ∩ SVE = Ø);
– S is a set of synchronization rules involving state variables in SVP ∪ SVE .

A set of scheduled timelines STL for the state variables in SV is valid with
respect to the planning domain D = (SVP , SVE ,S) if SV = SVP ∪SVE and STL
satisfies the set of synchronizations S.

Example 7 Let us consider the planning domain D = (SVP , SVE ,S} where SVP =
{pm}, SVE = {gv} – for the state variables pm and gv of example 1 – and S
contains only the synchronization rule of examples 5 and 6: a0[pm = Comm] →
∃ a1[gv = V isible] . a1 contains[0,∞][0,∞] a0.

Let moreover STL be the set of timelines containing

STLpm = pm1 = (Earth, 90, [50, 80], c)
pm2 = (Comm, 130, [30, 50], u)
pm3 = (Earth, 200, [80, 130], c)

STLgv = gv1 = (NotV isible, 80, [70, 100], u)
gv2 = (V isible, 170, [60, 100], u)
gv3 = (NotV isible, 200, [10, 50], u)

16 Marta Cialdea Mayer et al.

The set STL is valid with respect to the planning domainD: it contains exactly one
timeline for each state variable in SVP ∪ SVE and it satisfies the synchronization
rule of the domain, as shown in example 6.

4 Flexible Plans

The main component of a flexible plan is a set FTL of timelines, representing
different sets STLi of scheduled ones. It may be the case that not every STLi
satisfies the synchronization rules of the domain. We aim at defining plans so that
they contain all the information needed to execute them, without having to check
how the behavior of state variables and timelines is constrained by the planning
domain.2 Consequently, in order to guarantee that every set of scheduled timelines
represented by a given flexible plan Π (i.e., the different ways of executing Π) is
valid with respect to the underlying planning domain, the plan has to be equipped
with additional information about the temporal relations that have to hold in
order to satisfy the synchronization rules of the domain.

As a schematic example showing why a set of timelines does not convey enough
information to represent a flexible plan, let us consider a domain with a synchro-
nization rule S of the form a0[x = v] → ∃a1[y = v′]. a0 meets a1 and time-
lines for the state variables x and y containing, respectively, the tokens xi =
(v, [30, 50], [20, 30], γ(v)) and yj , with val(yj) = v′ and start time(yj) = [30, 50].
Obviously, not every pair of schedules of xi and yj satisfies S. Thus, the rep-
resentation of a flexible plan must include also information about the relations
that must hold between tokens in order to satisfy the synchronization rules of the
planning domain. In the example above, it would include the relation xi meets yj .
In general, a flexible plan includes a set of relations on tokens. When there are
different ways to satisfy a synchronization rule by the same set FTL of flexible
timelines, there are also different (valid) flexible plans with the same set of time-
lines FTL: each of them represents a different way to satisfy the synchronizations.
A flexible plan represents the set of its “instances”: the schedules of its timelines
which satisfy the relations on tokens required by the plan.

Definition 10 A flexible plan Π is a pair (FTL,R), where FTL is a set of time-
lines and R is a set of relations on tokens, involving token names in some timelines
in FTL.

An instance of the flexible plan Π = (FTL,R) is any schedule of FTL that
satisfies every relation in R.

Example 8 Let Π = (FTL,R), where:

– FTL contains the timelines

FTLpm = pm1 = (Earth, [50, 70], [50, 70], c)
pm2 = (Comm, [80, 120], [30, 50], u)
pm3 = (Earth, [200, 200], [80, 120], c)

FTLgv = gv1 = (NotV isible, [70, 90], [70, 90], u)
gv2 = (V isible, [130, 190], [60, 100], u)
gv3 = (NotV isible, [200, 210], [10, 70], u)

2 For the same reason controllability tags are included in token descriptions.

Planning and Execution with Flexible Timelines: a Formal Account 17

– R = {pm2 end before end[30,50] gv
2}

Π is a flexible plan, and the set STL of scheduled timelines containing

STLpm = pm1 = (Earth, 70, [50, 70], c)
pm2 = (Comm, 120, [30, 50], u)
pm3 = (Earth, 200, [80, 120], c)

STLgv = gv1 = (NotV isible, 80, [70, 90], u)
gv2 = (V isible, 170, [60, 100], u)
gv3 = (NotV isible, 205, [10, 70], u)

is an instance of Π, since {STLpm, STLgv} is a schedule of FTL and it satisfies
the relation pm2 end before end[30,50] gv

2 (pm2 ends 50 time points before the end

of gv2).

If however the end time of pm2 in STLpm is replaced by 100, the so obtained
set of scheduled timelines is not an instance of Π, although it is a schedule of
FTL. In fact, the relation in R is not satisfied.

In order to determine when a plan is valid with respect to a planning domain,
the semantics of synchronizations on flexible plans must be defined. Essentially, a
plan Π = (FTL,R) satisfies a synchronization rule S if the constraints represented
by S are guaranteed to hold for any schedule of FTL satisfying the relations in R.
In other terms, R represents a possible way to satisfy S. The intuition underlying
the formal definition can be explained as follows. When considering a plan Π =
(FTL,R), a mapping is used to assign the annotated token variables occurring
in the synchronization to token names occurring in FTL. Let us consider, for
instance a rule of the form a0[x = v] → ∃a1[y = v′].a1 end before start[10,20] a0.

Let us moreover assume that x3 is a token in the timeline for x in FTL with
val(x3) = v, and that the timeline for y in FTL contains exactly two tokens y5 and
y8 having value v′. In order for the rule to be satisfied, FTL must be constrained
by requiring that x3 starts from 10 to 20 time units after the end of either y5 or
y8. The plan Π commits to one of the two alternatives: binding a1 to either y5 or
y8. The correspondence between token variables and token names is established by
use of a function ϕ mapping a1 to either y5 or y8. According to the chosen option,
the set of relations R in the plan contains either y5 end before start[10,20] x

3 or

y8 end before start[10,20] x
3.

Definition 11 Let C = A1 ∧ · · · ∧Am be a conjunction of atoms, Π = (FTL,R)
a flexible plan, where FTL contains a timeline for every state variable occurring
in C, and ϕ a token assignment on FTL. The plan Π satisfies C with ϕ if for every
atom A ∈ {A1, . . . , Am}, (i) if A = ai ρ[lb,ub]aj , then ϕ(ai) ρ[lb,ub]ϕ(aj) ∈ R, and
(ii) if A = ai ρ[lb,ub]t, then ϕ(ai) ρ[lb,ub]t ∈ R.

Let E = ∃ a1[x1 = v1] . . . an[xn = vn] . C be an existential statement and ϕ be a
token assignment on FTL. The flexible plan Π satisfies E with ϕ if ϕ is an assign-
ment for a set of annotated token variables including a0[x0 = v0], . . . , an[xn = vn]
and Π satisfies C with ϕ.

The plan Π satisfies a synchronization rule with non-empty trigger

a0[x0 = v0]→ E1 ∨ · · · ∨ Ek

18 Marta Cialdea Mayer et al.

if for every flexible token xm0 of the timeline FTLx0 ∈ FTL such that val(xm0) = v0,
there exists a token assignment ϕ on FTL such that ϕ(a0) = xm0 and Π satisfies
Ei with ϕ, for some i ∈ {1, . . . , k}.

The plan Π satisfies a synchronization rule with empty trigger

> → E1 ∨ · · · ∨ Ek

if, for some i ∈ {1, . . . , k}, there exists a token assignment ϕ on FTL such that Π
satisfies Ei with ϕ.

Example 9 Let us consider a flexible timeline FTLpm for the state variable pm
representing the evolution of the pointing sub-system through the states Slewing−
Science − Slewing − Earth − Comm − Earth, whose fifth token (the only one
where the satellite is in communication mode) is:

pm5 = (Comm, [120, 130], [30, 50], u)

with start time(pm5) = [70, 80]. Moreover, let FTLgv be a timeline containing the
token

gv4 = (V isible, [110, 170], [60, 100], u)

with start time(gv4) = [10, 70]. The flexible plan Π = (FTL,R), where FTL =
{FTLpm, FTLgv} and

R = {gv4 start before start[0,∞] pm
5, pm5 end before end[0,∞] gv

4}

satisfies the synchronization rule of Example 5. Considering in fact the definition
of the relation contains given in Table 1, the rule can be rewritten as:

a0[pm = Comm]→ ∃ a1[gv = V isible] . (a1 start before start[0,∞] a0)
∧ (a0 end before end[0,∞] a1)

The set R contains both atoms

ϕ(a1) start before start[0,∞] ϕ(a0)
and ϕ(a0) end before end[0,∞] ϕ(a1),

for the token assignment ϕ such that ϕ(a0) = pm5 and ϕ(a1) = gv4.
Clearly, there might be schedules of the set of timelines FTL that do not

satisfy the requirement gv4 contains[0,∞][0,∞] pm
5. For example, the requirement

is not satisfied by schedules where start time(pm5) = 80, end time(pm5) = 130,
start time(gv4) = 50 and end time(gv4) = 120, which consequently are not in-
stances of the flexible plan Π. However, if, for example, start time(pm5) = 80,
end time(pm5) = 130, start time(gv4) = 50 and end time(gv4) = 150, the re-
quirement gv4 contains[0,∞][0,∞] pm

5 is satisfied, thus schedules of FTL with such
tokens are also instances of Π.

As a further example showing how a plan commits to a choice among the
possibly different ways to satisfy a synchronization rule, let us consider a set FTL
of timelines and a rule S of the form

a0[x = v]→ ∃a1[y = v′]. a1 end before start[10,20] a0
∨ ∃a1[z = v′′]. a0 end before start[5,∞] a1

Planning and Execution with Flexible Timelines: a Formal Account 19

Let us moreover assume that x3 and x7 are the only tokens with value v in the
timeline FTLx for x in FTL, that the timeline FTLy for y in FTL contains
exactly one token y5 having value v′, and that FTLz contains exactly one token
z8 with value v′′.

In order to satisfy the rule S:

1. Rmust contain either y5 end before start[10,20] x
3 or x3 end before start[5,∞] z

8.
In fact, the plan has to satisfy either (i) ∃a1[y = v′]. a1 end before start[10,20] a0
or (ii) ∃a1[z = v′′]. a0 end before start[5,∞] a1 with a token assignment ϕ such

that ϕ(a0) = x3. If R contains y5 end before start[10,20] x
3, then the plan

satisfies the existential statement (i) with ϕ, when ϕ(a1) = y5. If it contains
x3 end before start[5,∞] z

8, then the plan satisfies (ii) with ϕ, when ϕ(a1) = z8.

2. Rmust contain either y5 end before start[10,20] x
7 or x7 end before start[5,∞] z

8:

the reasoning is the same as above, just replacing x7 for x3.

Therefore, for instance, the plans

(FTL, {y5 end before start[10,20] x
3, x7 end before start[5,∞] z

8})
and (FTL, {x3 end before start[5,∞] y

5, y5 end before start[10,20] x
7})

satisfy S.

The notions of plan validity and consistency can finally be defined.

Definition 12 A flexible plan Π = (FTL,R) is valid with respect to a planning
domain D = (SVP , SVE ,S) iff:

1. FTL is a set of timelines for the state variables SV = SVP ∪ SVE ;
2. Π satisfies all the synchronization rules in S;
3. for each planned state variable x = (V, T, γ,D) ∈ SVP , and each uncontrollable

token xi in FTLx ∈ FTL, if D(val(xi)) = (dmin, dmax) and start time(xi) =
[s, s′], then duration(xi) = [dmin, dmax] and end time(xi) = [s + dmin, s

′ +
dmax].

The plan Π is consistent if there exists at least an instance of Π.

The last condition required for a plan to be valid guarantees that the plan
does not make any hypothesis on the duration of uncontrollable values of planned
variables. The restriction is not applied to external variables, since the planner
is not allowed to control them at all: their behavior is described in the planning
problem as a sort of observation of the external world.

Plan consistency is a minimal requirement for a plan to be considered mean-
ingful, though, obviously, when the domain includes uncontrollable elements, it is
not enough to guarantee its executability. Cialdea Mayer et al. [16] prove a result
showing that there exists a set Θ of flexible plans for which an effective consis-
tency check procedure exists, and yet every scheduled valid plan is an instance of
some flexible plan in Θ. Intuitively, each plan Π ∈ Θ is such that the sequence of
scheduled tokens obtained by fixing every token end point to the lower bound of
the respective end time interval is an instance of Π (i.e., it is a scheduled timeline
respecting the relations in Π). The mentioned result implies that, when searching
for a consistent plan, it is sufficient to consider candidate plans in Θ, respecting
the above condition.

20 Marta Cialdea Mayer et al.

5 Planning Problems and Solution Plans

5.1 Planning Goals

A planning problem includes the description of the underlying planning domain
and of a desired goal to be accomplished. This work considers temporally extended
goals: a planning goal specifies that some planned variables have to assume some
given values in some intervals and, possibly, that such intervals must satisfy some
temporal relations. Disjunctive goals are also allowed.

Definition 13 A planning goal G for a domain D = (SVP , SVE ,S) is a pair
(Γ,∆), where:

(i) Γ is a set of accomplishment goals, i.e., expressions of the form g = (x, v),
where g is a token variable, called the goal name, x ∈ SVP , and v ∈ values(x);

(ii) ∆, called relational goal, is a disjunction D1 ∨ · · · ∨ Dk, where each Di is a
conjuntion of atoms containing only goal names occurring in Γ .

A planning goal G = (Γ,∆), with Γ = {g1 = (x1, v1), . . . , gn = (xn, vn)} and
∆ = D1∨· · ·∨Dk, is represented by a synchronization rule SG with empty trigger,
of the form:

> → ∃ g1[x1 = v1] . . . gn[xn = vn].D1 ∨ · · · ∨ ∃ g1[x1 = v1] . . . gn[xn = vn].Dk

It is worth pointing out that restrictions on the start and end intervals of
a given goal (like in [10, 17]) can be expressed by means of relational goals. In
particular, if the start point of a given goal g is required to be in the interval [s, s′]
and its end point in [e, e′], then such restrictions are expressed by the relational
goal (g starts after[0,s′−s] s) ∧ (g ends after[0,e′−e] e).

Next definition introduces the notion of goal fulfillment for scheduled timelines.

Definition 14 A set of scheduled timelines STL fulfills the planning goal G if it
satisfies the synchronization rule SG representing G.

Example 10 A simple planning goal for the satellite domain may be that, in or-
der to accomplish the mission, the satellite has to perform a scientific opera-
tion and then communicate the results to the ground station no later than 65
time units after the completion of the scientific task. It is represented by the
pair (Γ,∆), where Γ = {g1 = (pm, Science), g2 = (pm,Comm)} and ∆ =
g1 end before start[0,65] g2; which can be turned into the synchronization rule

> → ∃ g1[pm = Science] g2[pm = Comm] . g1 end before start[0,65] g2

Analogously, if the satellite has to perform a communication and a maintenance
operation and we want to specify an alternative ordering constraint between
them, i.e., the maintenance operation is accomplished either no more than 90
time units before or immediately after the communication task, the goal is G =
(Γ,∆), where Γ = {g1 = (pm,Comm), g2 = (pm,Maintenance)}, and ∆ =
(g2 end before start[0,90] g1) ∨ (g1 meets g2). The corresponding synchronization
rule is:

> → ∃ g1[pm = Comm] g2[pm = Maintenance] . g2 end before start[0,90] g1
∨ ∃ g1[pm = Comm] g2[pm = Maintenance] . g1 meets g2

Planning and Execution with Flexible Timelines: a Formal Account 21

5.2 Planning Problems

In timeline-based planning, a planning problem includes also a planning horizon,
i.e., the time up to which the system behavior has to be planned. Finally, since
the external state variables are not under the system control, the problem must
include information about their behavior up to the given horizon. Such information
is given in the form of a set of flexible timelines and temporal relations on their
tokens.

Definition 15 A planning problem is a tuple (D,G,O, H), where D = (SVP , SVE ,
S) is a planning domain, G a planning goal for D, H ∈ T>0 is the planning horizon,
and O = (FTLE ,RE), where

(i) FTLE is a set containing exactly one flexible timeline for each external state
variable in SVE ;

(ii) the horizon of every timeline in FTLE is [h, h′] for some h ≥ H;
(iii) RE is a set of temporal relations on tokens of timelines in FTLE ;
(iv) (FTLE ,RE) is consistent, i.e., there is at least one schedule of FTLE satisfying

the relations in RE .

The pair O, called the observation, specifies the behavior of external state
variables up to a time point not less than the planning horizon. Item (iv) rules
out inconsistent observations, i.e., descriptions of the behavior of the external state
variables with no instances (the pair (FTLE ,RE) can be viewed as a flexible plan);
in particular, even whenRE = Ø, the set of timelines FTLE must have at least one
schedule. The planner must respect what is specified by the set of timelines FTLE ,
without taking any autonomous decision: this requirement is fulfilled simply when
the timeline for each external variable in the plan is exactly the timeline for the
same state variable in FTLE . The relations in RE represent known facts about
the external world.3 During the planning phase, they are actually ignored, but
they are taken into account by the executor, which is allowed to assume that the
behavior of the external state variables is restricted so that the constraints in RE
are respected (see Section 6).

It is worth pointing out that, since FTLE is a set of timelines, the planner
knows how the external components evolve, i.e., the sequence of activities/states
constituting their behavior, the only uncertainty being the duration of such states.
This rules out, for instance, scenarios where the uncontrollable events might occur
an unknown number of times within the giving horizon.

Example 11 For instance, a planning problem for our sample domain can be the
problem Π = (D,G,O, H), where

– D is the planning domain of example 7, i.e., D = (SVP , SVE ,S} where SVP =
{pm}, SVE = {gv} – for the state variables pm and gv of example 1 –
and S contains only the synchronization rule a0[pm = Comm] → ∃ a1[gv =
V isible] . a1 contains[0,∞][0,∞] a0;

– G = {(Γ,∆), where Γ = {g1 = (pm, Science), g2 = (pm,Comm)} and ∆ =
g1 before[0,65] g2 (like in example 10);

3 Cialdea Mayer and Orlandini [15] do not allow constraints on the behavior of external
state variables.

22 Marta Cialdea Mayer et al.

– O = ({FTLgv},Ø), where FTLgv =

gv1 = (NotV isible, [60, 80], [60, 80], u)
gv2 = (V isible, [150, 160], [80, 100], u)
gv3 = (NotV isible, [250, 260], [90, 100], u)

– H = 250.

5.3 Solution Plans

Definition 16 Let P = (D,G,O, H) be a planning problem and Π = (FTL,R)
be a flexible plan. Π is a flexible solution plan for P if:

1. for every planned state variable x, the horizon of FTLx ∈ FTL is [H,H];
2. Π is valid with respect to D;
3. Π satisfies the synchronization rule SG representing G;
4. If O = (FTLE ,RE), then FTLE ⊆ FTL.

The first condition above guarantees that the behavior of the planned state
variables is determined exactly up to the horizon of the planning problem, hence-
forth (condition 3) all the planning goals are achieved in due time. It is worth
pointing out that condition 1 implies that the last token of each planned time-
line must be controllable. Condition 4 ensures that the plan does not make any
assumption on external variables, except for what is implied by the state variable
definition and the observation.

Example 12 Let us consider, for instance, the problem P of example 11 and the
flexible plan Π = (FTL,R), where:

– FTL = {FTLgv, FTLpm}, where FTLgv is the timeline of example 11 and
FTLpm is the following timeline:

pm1 = (Earth, [1, 33], [1, 33], c)
pm2 = (Slewing, [31, 63], [30, 30], c)
pm3 = (Science, [67, 99], [36, 58], c)
pm4 = (Slewing, [97, 129], [30, 30], c)
pm5 = (Earth, [98, 140], [1, 43], c)
pm6 = (Comm, [128, 190], [30, 50], u)
pm7 = (Earth, [250, 250], [90, 122], c)

– R contains the two relations on tokens pm3 end before start[0,65] pm
6 and

gv2contains[0,∞],[0,∞]pm
6.

The plan Π is a flexible solution plan for the planning problem P because:

– the horizon of FTLpm is 250;
– Π is valid with respect to D:

– FTL contains the two timelines for pm and gv;
– Π satisfies the synchronization rule of the domain: the only token in FTLpm

with value Comm is pm6 and R contains gv2contains[0,∞],[0,∞]pm
6, where

the value of gv2 is V isible;

Planning and Execution with Flexible Timelines: a Formal Account 23

– the only uncontrollable token in FTLpm is pm6, Dpm(Comm) = [30, 50] =
duration(pm6), start time(pm6) = [98, 140], and end time(pm6) = [128, 190]
=[98 + 30, 140 + 50].

– Π satisfies the synchronization rule SG representing G: the tokens pm3 and
pm6 have values Science and Comm, respectively, and R contains the relation
pm3 before[0,65] pm

6.
– FTLgv ∈ FTL.

The next result proves that information encoded by a flexible solution plan Π
for a given planning problem is sufficient to ensure that every instance of Π is valid
with respect to the planning domain and it fulfills the goal. Although the proof
of this result is a straightforward consequence of the definitions, it deserves to be
stated explicitly, since flexible plans without such a property would be meaningless.

Theorem 1 If the plan Π is a flexible solution plan for the problem P = (D,G,
O, H), then every instance of Π is valid with respect to D and fulfills the goal G.

Proof Since the state variables of a flexible plan Π and any of its instances are the
same, it is sufficient to show that if Π satisfies a synchronization rule S (according
to Definition 11), then every instance of Π satisfies S (according to Definition 8).
This implies also that any instance of Π fulfills the planning goal G, because Π
satisfies the synchronization rule SG representing G.

Let us assume that Π = (FTL,R) satisfies the synchronization rule

S = a0[x0 = v0]→ E1 ∨ · · · ∨ Ek

and STL is an instance of Π.
Let xm0 be a token of the timeline STLx0 ∈ STL, with val(xm0) = v0. The

corresponding token xm0 in FTLx0 ∈ FTL has the same value v0. Since Π satisfies
S, there exists a token assigment ϕ, with ϕ(a0) = xm0 , such that Π satisfies Ei with
ϕ for some i ∈ {1, . . . , k}. Consequently, if Ei = ∃ a1[x1 = v1] . . . an[xn = vn] .C,
ϕ is a token assignment for a set of annotated token variables including a1[x1 =
v1], . . . , an[xn = vn] (i.e., val(ϕ(ai)) = vi for all i = 1, . . . , n) and Π satisfies C
with ϕ. This means that, if C = A1 ∧ · · · ∧Am, for every atom A ∈ {A1, . . . , Am}:

(i) if A = ai ρ[lb, ub] aj , then ϕ(ai) ρ[lb, ub]ϕ(aj) ∈ R; since STL is an instance
of Π, it satisfies the relation ϕ(ai) ρ[lb, ub]ϕ(aj).

(ii) If A = ai ρ[lb, ub] t, then ϕ(ai) ρ[lb, ub] t ∈ R, and, like above, STL satisfies
ϕ(ai) ρ[lb, ub] t.

As a consequence, the token assignment ϕ on STL satisfies C and the same as-
signment satisfies the existential statement Ei. Since ϕ(a0) = xm0 , STL satisfies
the synchronization rule S. The case of synchronization rules with empty trigger
is treated similarly. ut

6 Controllability Properties of Flexible Plans

Once a flexible plan Π = (FTL,R) is built, controllability tags and the set of
temporal constraints on tokens of external state variables given in the planning
problem are the important features to be taken into consideration when facing

24 Marta Cialdea Mayer et al.

the controllability problem for flexible plans. Controllability issues have been ad-
dressed representing a flexible plan as a Simple Temporal Network with Uncer-
tainty (STNU) [35] . In order to transpose the same concepts into our framework,
it can be observed that token end points correspond to nodes in the network,
while token durations and the temporal constraints given in the sets of relations
R contained in the plan and in the observationsRE given by the planning problem
correspond to network edges. Durations of uncontrollable tokens and relations in
RE correspond to what are usually called contingent links in a STNU.

It is worth pointing out that, although disjunctions are allowed in the formu-
lation of synchronization rules, disjunctive constraints do not occur in a flexible
plan. i.e., the set of relations of a plan represents a commitment to exactly one of
the possible ways to satisfy the synchronizations.

This section proposes a definition of the various notions of plan controllability,
very much in the style of similar works on STNU [22, 27, 35]. Some flaws present
in the corresponding definitions given by Cialdea Mayer and Orlandini [15] are
also corrected.

In what follows, if FTL is a set of timelines, tokens(FTL) denotes the set of
all the tokens making up the timelines in FTL, tokensC(FTL) is the set of con-
trollable tokens occurring in some timeline in FTL, and tokensU (FTL) contains
the uncontrollable tokens of FTL.

The notion of situation, introduced next, copes with the temporal uncertainty
represented by the uncontrollable tokens of a set of timelines FTL. A situation is a
function assigning a (legal) value to the duration of each uncontrollable token. The
set of situations defined over a set FTL of timelines represents all the associated
uncontrollable temporal evolutions. Every situation ω for FTL induces a set of
timelines where the duration of every uncontrollable token xi in FTL is replaced
by the (singleton) value ω(xi). In other terms, if xi is an uncontrollable token of the
form (v, [e, e′], [d, d′]), then it is replaced in ω(FTL) by (v, [e, e′], ω(xi)); control-
lable tokens are left unchanged. The set of timelines obtained in this way is called
a projection of FTL: in a projection, the duration of each uncontrollable token is
fixed. Intuitively, a projection corresponds to one of the possible combinations of
uncontrollable behaviors in FTL.

Definition 17 Let FTL be a set of timelines and ω a total function

ω : tokensU (FTL)→ T

If FTLx ∈ FTL, the projection ω(FTLx) is the timeline obtained from FTLx by
replacing the duration of every uncontrollable token xi with [ω(xi), ω(xi)]. The
projection ω(FTL) is the set {ω(FTLx) | FTLx ∈ FTL}.

A function ω : tokensU (FTL)→ T is a situation for FTL iff:

1. for every xi ∈ tokensU (FTL), with duration(xi) = [d, d′], d ≤ ω(xi) ≤ d′;
2. every timeline in the projection ω(FTL) has at least one schedule.

The set of all the situations for FTL is called the space of situations for FTL
and is denoted by ΩFTL.

It is worth observing that if (FTL,R) is a flexible plan, then (ω(FTL),R) is
a flexible plan too.

Planning and Execution with Flexible Timelines: a Formal Account 25

Example 13 Let us consider the set FTL of timelines containing:

FTLx = x1 = (v1, [100, 150], [100, 150], c),
x2 = (v2, [130, 180], [20, 30], u),
x3 = (v3, [200, 200], [20, 70], c)

FTLy = y1 = (v′1, [130, 180], [130, 180], u),
y2 = (v′2, [200, 240], [20, 70], u)

Let moreover ω be the function such that ω(x2) = 25, ω(y1) = 150 and ω(y2) = 20.
Its projection ω(FTL) is the set of timelines containing:

ω(FTLx) = x1 = (v1, [100, 150], [100, 150], c),
x2 = (v2, [130, 180], 25, u),
x3 = (v3, [200, 200], [20, 70], c)

ω(FTLy) = y1 = (v′1, [130, 180], 150, u),
y2 = (v′2, [200, 240], 20, u)

The function ω satisfies condition 1 of Definition 17. However, since the only
way to fix the end points of tokens in ω(FTLy) in order to satisfy the duration
constraints is to set end time(y1) = 150 and end time(y2) = 170 6∈ [200, 240], the
timeline ω(FTLy) has no schedules. As a consequence, ω is not a situation for
FTL.

On the contrary, the function ω′ with ω′(x2) = 25, ω′(y1) = 150 and ω′(y2) =
50 is a situation for FTL. In fact, its projection

ω′(FTLx) = x1 = (v1, [100, 150], [100, 150], c),
x2 = (v2, [130, 180], 25, u),
x3 = (v3, [200, 200], [20, 70], c)

ω′(FTLy) = y1 = (v′1, [130, 180], 150, u),
y2 = (v′2, [200, 240], 50, u)

has at least one schedule.

Like shown in example 13, if x is an external state variable and FTLx is a
timeline for x, then ω(FTLx) has only one schedule: since all the tokens in FTLx
are uncontrollable, once their durations are exactly fixed, their end times are also
fixed. In what follows, the projection ω(FTLx) of an external state variable will be
identified with its single schedule. As a consequence, it can be determined whether
a given set of projections of timelines for external state variables satisfies a relation
on tokens. In general, it can be determined whether a projection ω(FTL) satisfies
a relation on tokens of external state variables.

When the planning problem contains information on some temporal relations
that are known to hold between the tokens of external state variables (the com-
ponent RE of the observation), the executor is allowed to assume that the actual
evolution of external components will respect such constraints. As a consequence,
it can restrict the space of situations for FTL to those satisfying such constraints,
that are called relevant to the problem.

Definition 18 If P = (D,G,O, H) ia a planning problem, withO = (FTLE ,RE),
a situation ω for FTL is relevant to P if ω(FTL) satisfies all the relations in RE .

The subset of ΩFTL containing the situations relevant to P (the space of
relevant situations) will be denoted by ΩFTL,P .

26 Marta Cialdea Mayer et al.

It is worth pointing out that, since the observation in a planning problem P is
consistent (according to Definition 15), the set of situations relevant to P is not
empty. In the following, the planning problem will sometime be left implicit and
we shall simply refer to “relevant situations”.

Obviously, there is a one-to-one correspondence between situations for a given
set of timelines and their projections. Analogously, the set of schedules of a given
set FTL of timelines bears a one-to-one correspondence with the set of functions
assigning a (legal) fixed value to each token end time. Such functions are called
scheduling functions and are defined next.

Definition 19 Let FTL be a set of timelines and θ a total function

θ : tokens(FTL)→ T

Such a function induces the set STLθ of sequences of scheduled tokens obtained
from FTL by replacing the end time of each token xi ∈ tokens(FTL) with
[θ(xi), θ(xi)].

A scheduling function for FTL is a function θ : tokens(FTL) → T, such that
STLθ is a set of scheduled timelines (i.e., each sequence of tokens in STLθ respects
all the duration bounds). The set of all the scheduling functions for FTL is denoted
by T FTL.

Let Π = (FTL,R) be a flexible plan. A scheduling function θ for FTL is
consistent with Π iff the set STLθ of scheduled timelines induced by θ is an
instance of Π.

It is worth noticing that, while a situation fixes token durations (and maybe
only indirectly their end times), a scheduling function assigns values to token
end times. Moreover, situations are defined only on uncontrollable tokens, while
scheduling functions are defined for all the tokens in the set of timelines.

Intuitively, a scheduling function that is consistent with the planΠ = (FTL,R)
induces a set of scheduled timelines that respect all the duration requirements in
FTL and all the relations in R.

Example 14 Let us consider the set of timelines FTL = {FTLx, FTLy} of exam-
ple 13:

FTLx = x1 = (v1, [100, 150], [100, 150], c),
x2 = (v2, [130, 180], [30, 30], c),
x3 = (v3, [200, 200], [20, 70], c)

FTLy = y1 = (v′1, [130, 180], [130, 180], u),
y2 = (v′2, [200, 240], [20, 70], u)

Let θ be the function such that θ(x1) = 120, θ(x2) = θ(y1) = 150, θ(x3) = 200,
and θ(y2) = 220. θ is a scheduling function for FTL, inducing the set STLθ of
scheduled timelines containing:

STLx = x1 = (v1, 120, [100, 150], c),
x2 = (v2, 150, [30, 30], c),
x3 = (v3, 200, [20, 70], c)

STLy = y1 = (v′1, 150, [130, 180], u),
y2 = (v′2, 220, [20, 70], u)

Planning and Execution with Flexible Timelines: a Formal Account 27

Let now Π = (FTL,R) be a flexible plan, withR = {x2 meets y2}. The scheduling
function θ is consistent with Π, since STLθ is an istance of Π: STLθ is a schedule
of FTL (the duration constraints are satisfied by STLθ, i.e., it is a set of scheduled
timelines, and every token end time is in the allowed interval), and STLθ satisfies
the relation x2 meets y2.

Execution strategies are defined next. An execution strategy for a given plan
Π maps every relevant situation to a scheduling function: once the duration of the
uncontrollable tokens is known, the strategy decides how to schedule all the token
end points.

Definition 20 Let Π = (FTL,R) be a flexible solution plan for the planning
problem P. An execution strategy for Π is a mapping σ : ΩFTL,P → T FTL.

The execution strategy σ is viable if for each relevant situation ω ∈ ΩFTL,P ,
the scheduling function σ(ω) is consistent with Π and for every uncontrollable
token xi in the set of scheduled timelines induced by σ(ω), duration(xi) = ω(xi).

A viable strategy for the plan (FTL,R) maps each relevant situation ω to a
scheduling function inducing a set of scheduled timelines STL such that:

– STL respects the end time and duration bounds in FTL;
– STL satisfies the relations in R;
– the duration of each uncontrollable token xi in STL is equal to the exact

duration of xi given by ω.

Example 15 Let Π = (FTL,R) be the flexible plan of example 14 and let σ be the
execution strategy mapping every (relevant) situation ω to the scheduling function
θ such that θ(x1) = ω(y1) − 30, θ(x2) = ω(y1), θ(x3) = 200, θ(y1) = ω(y1), and
θ(y2) = ω(y1) +ω(y2). If ω is a situation, σ(ω) induces the set STLω of scheduled
timelines containing:

STLx = x1 = (v1, ω(y1)− 30, [100, 150], c),
x2 = (v2, ω(y1), [30, 30], c),
x3 = (v3, 200, [20, 70], c)

STLy = y1 = (v′1, ω(y1), [130, 180], u),
y2 = (v′2, ω(y1) + ω(y2), [20, 70], u)

In order to show that σ is viable it must be shown that for every situation ω:

1. the duration of every uncontrollable token xi in STLω is equal to ω(xi). This
is a consequence of the fact that duration(y1) = end time(y1) = ω(y1) and
duration(y2) = end time(y2)− end time(y1) = ω(y1) +ω(y2)−ω(y1) = ω(y2).

2. σ(ω) is consistent with (FTL,R), i.e., STLω is an instance of (FTL,R). This
holds because:
– STLω is a schedule of FTL. First of all, we prove that STLω is a set of

scheduled timelines, i.e. each token end point complies with the respective
duration constraints. Since, by hypothesis, ω is a situation, duration(y1) =
ω(y1) ∈ [130, 180]. Consequently, duration(x1) = ω(y1) − 30 ∈ [100, 150],
duration(x3) = 200 − ω(y1) ∈ [20, 70]. Moreover duration(x2) = ω(y1) −
(ω(y1)− 30) ∈ [30, 30] and duration(y2) = ω(y2) ∈ [20, 70] (because situa-
tions respect duration bounds).

28 Marta Cialdea Mayer et al.

The fact that each token end point in STLω belongs to the respective end
time interval in FTL follows similarly from the fact that, by hypothesis,
ω(y1) ∈ [130, 180].

– STLω satisfies the relation x2 meets y2, because end time(x2) = ω(y1) =
start time(y1).

As a consequence, σ is a viable execution strategy.

In order to define dynamic execution strategies, i.e., strategies which are able to
schedule a given event only on the base of what happened before, partial situations
must be considered.

Definition 21 Let FTL be a set of timelines, t ∈ T, and θ a scheduling function
for FTL. The prehistory of θ relative to t is the partial function

θ≺t : tokensU (FTL)→ T

such that:

θ≺t(x
i) =


θ(xi) if θ(xi) < t and i = 1

θ(xi)− θ(xi−1) if θ(xi) < t and i > 1

undefined if θ(xi) ≥ t

The prehistory θ≺t is a partial situation which specifies the durations of the
uncontrollable tokens that finish before t according to θ: it is defined only for the
uncontrollable tokens xi such that θ(xi) < t. When θ≺t(x

i) is defined, its value is
the (exact) duration of the token xi in the timelines induced by θ: θ≺t(x

i) = θ(xi)−
θ(xi−1), except when i = 1 (xi is the first token of a timeline), where θ≺t(x

1) =
θ(x1). Consequently, a prehistory defines a partial projection of FTL fixing the
duration of uncontrollable tokens whose end points are less than t according to θ.

Note that, notwithstanding the notation used for prehistories, θ≺t is not a (par-
tial) scheduling function, but a partial situation: it assigns values to the durations
of uncontrollable tokens.

Example 16 Let FTL be the set of timelines of example 14 and θ the scheduling
function of the same example. If t ≤ 150, θ≺t is undefined everywhere. If 150 <
t ≤ 220, θ≺t is the function such that θ≺t(y

1) = 150 (the duration of y1 in the
timeline STLy) and is undefined elsewhere. If t > 220, then θ≺t is defined on both
the uncontrollable tokens in FTL: θ≺t(y

1) = 150 and θ≺t(y
2) = 70.

Definition 22 Let Π = (FTL,R) be a flexible plan for the planning problem
P. A dynamic execution strategy (DES) for Π is an execution strategy σ for Π
such that, for all relevant situations ω, ω′ ∈ ΩFTL,P and every controllable token
xi ∈ tokensC(FTL), if σ(ω) = θ, σ(ω′) = θ′ and θ(xi) = t, then

θ≺t = θ′≺t implies θ′(xi) = θ(xi)

Example 17 Let us consider the plan Π ′ = (FTL′,R′), where FTL′ contains the
timelines

FTLx = x1 = (v1, [20, 30], [20, 30], c),
x2 = (v2, [40, 40], [10, 20], c)

FTLy = y1 = (v′1, [10, 15], [10, 15], u),
y2 = (v′2, [40, 50], [20, 35], u)

Planning and Execution with Flexible Timelines: a Formal Account 29

and R′ = {y1 end before start[10,10] x
2} (i.e., x2 is constrained to start 10 time

units after the end of y1). Let σ be the execution strategy such that, for every
situation ω, σ(ω) is the scheduling function θ such that θ(x1) = ω(y1)+10, θ(x2) =
40, θ(y1) = ω(y1), θ(y2) = ω(y1)+ω(y2). If ω and ω′ are two situations, σ(ω) = θ,
and σ(ω′) = θ′, then θ(x2) = θ′(x2), so the condition for σ to be a DES has to
be checked only for the token x1. Let θ(x1) = t ∈ [20, 30]. Since θ(y1) ∈ [10, 15],
θ(y1) < θ(x1). Therefore, if θ≺t = θ′≺t, then also θ(y1) = θ′(y1) and, consequently,
θ′(x1) = ω′(y1) + 10 = θ′(y1) + 10 = θ(y1) + 10 = ω(y1) + 10 = θ(x1) = t. This
implies that σ is a dynamic execution strategy.

Finally, the controllability properties considered for STNUs – weak, strong and
dynamic controllability – can be defined on flexible plans. In simple terms, if the
executor of a weakly controllable plan knows in advance how the uncontrollable
events will evolve, i.e., the complete relevant situation ω, it can safely adopt the
decisions induced by the scheduling function associated to ω. If the events turn
out to be like modeled by ω, such decisions lead to a successful execution of the
plan. But in case actual events evolve differently from ω, the executor might be
unable to adapt its strategy to the new situation. Therefore, the higher the level
of uncertainty in the plan, the higher is the probability to fail while executing it.
When, on the contrary, a plan is strongly controllable, its executor is on a safe
side: whichever the uncontrollable events turn out to be, it can take the same deci-
sions (posted by a fixed scheduling function) to face the situation and successfully
complete the execution of the plan. Unfortunately, few plans are strongly control-
lable, especially in highly dynamic domains. Finally, when a plan is dynamically
controllable, its executor has to monitor what is happening in the world step by
step, and decide what to do accordingly. However, it is always sure to be able to
adapt its schedules: at each step, whatever happened in the past, there is a deci-
sion that can be taken for the next controllable event, in such a way that the plan
will at the end be executed successfully. As a consequence, the desired goals can
be achieved for any possible turnout of uncontrollable events. Dynamic controlla-
bility constitutes a highly desirable property for a flexible plan Π. As a matter of
fact, the associated viable DES can be exploited to endow a timeline-based control
architecture ensuring robust plan execution (see for instance [12]).

The three controllability properties are formally defined for flexible plans as
follows.

Definition 23 Let Π = (FTL,R) be a flexible plan for the planning problem P.
The plan Π is weakly controllable if there is a viable execution strategy for Π.
The plan Π is strongly controllable if there is a viable execution strategy σ

such that, for all relevant situations ω, ω′ ∈ ΩFTL,P , if σ(ω) = θ and σ(ω′) = θ′,
then for every controllable token xi ∈ tokensC(FTL):

θ(xi) = θ′(xi)

The plan Π is dynamically controllable if there exists a viable DES for Π.

Example 18 Let us consider the flexible plan Π = (FTL,R) and the viable exe-
cution strategy σ of example 15. Since a viable execution strategy exists for Π,
it is weakly controllable. However, it is not strongly controllable: the values as-
signed to token end points by σ(ω), for any execution strategy σ, forcely depend

30 Marta Cialdea Mayer et al.

on the values of ω(y1). Nor is Π dynamically controllable. Intuitively, the deci-
sion on the end time of x1 (and consequently of x2) depend on the end time of
y1, which is in the future. Formally, let us consider, for instance, situations ω
and ω′, with ω(y1) = 140 and ω′(y1) = 150. Let σ be any excution strategy,
σ(ω) = θ, and σ(ω′) = θ′. In order for σ to be viable, it must be θ(x1) = 110 and
θ′(x1) = 120. Both prehistories θ≺110 and θ′≺110 are undefined everywhere, since
both θ(yi) > 110 and θ′(yi) > 110, for i = 1, 2. However θ′(x1) 6= 110.

As an example of a strongly controllable plan, let us considerΠ ′′ = (FTL′′,R′′)
with FTL′′ containing the two timelines

FTLx = x1 = (v1, [10, 20], [10, 20], c),
x2 = (v2, [50, 50], [30, 40], c)

FTLy = y1 = (v′1, [15, 30], [15, 30], u),
y2 = (v′2, [50, 60], [20, 35], u)

and R′′ = {x1 end before start[0,∞] y
2}. Let σ be the strategy such that, for every

situation ω, σ(ω) is the scheduling function θ such that θ(x1) = 10, θ(x2) = 50,
θ(y1) = ω(y1), and θ(y2) = ω(y1) + ω(y2). Whatever is the value of ω(y1),
end time(y1) = start time(y2) ≥ 15, therefore x1 end before start[0,∞] y

2 is satis-
fied by the set of timelines induced by θ, i.e., θ is consistent with Π ′′ and σ is a
viable execution strategy. As a consequence, Π ′′ is strongly controllable.

Finally, let us consider the plan Π ′ of example 17. The existence of the viable
DES σ implies that Π ′ is dynamically controllable.

Cialdea Mayer and Orlandini [15] define a semantics of flexible plans in terms
of networks of Timed Game Automata (TGA), showing how they can be encoded
into such networks. The translations allows for exploiting existing verification tools
for TGA in order to check the dynamic controllability property for flexible plans
and, possibly, generate a dynamic execution strategy that can be used for robust
plan execution.

7 Related Work and Concluding Remarks

This paper proposes the first (up to our knowledge) comprehensive formal ac-
count of flexible timelines and plans with uncertainty, combining and extending
the work by Cialdea Mayer et al. [16] and Cialdea Mayer and Orlandini [15].
A general semantics is provided for related planning concepts such as domains,
goals, problems, constraints and flexible plans, introducing quantitative temporal
relations and taking into account the difference between controllable and uncon-
trollable activities. Execution aspects and controllability issues are also taken into
account, and the distinction between controllable and uncontrollable components
of the system is modeled (i) introducing the notion of “external” state variable,
modeling components that are outside the planner control, and (ii) considering
the possibility that the exact duration of a controllable event cannot be foreseen
exactly. Finally, such notions are exploited in order to formally define different
forms of plan controllability.

The main motivation of this work relies on the lack in the current state of the
art of a formal reference framework capturing the modeling features of most of
the timeline-based approaches, like Cbtp [5, 18, 20], Apsi-Trf [7], IxTeT [25]

Planning and Execution with Flexible Timelines: a Formal Account 31

and the one proposed by Cimatti et al. [17]. They share the view of plans as
essentially made up of sets of flexible timelines allowing one to model complex
systems as a set of relevant features that must be controlled in time aiming at
obtaining some desired behavior. However, with the exception of Cimatti et al.,
who nevertheless do not explicitly embed temporal flexibility into timelines, the
above-mentioned works do not provide a formally grounded definition of the ex-
ploited concepts, languages and tools. More in general, they rely on external struc-
tures, such as temporal networks (Cbtp), decision networks (Apsi), or constraint
satisfaction problems (IxTeT), to represent constraints among intervals/events.
Consequently, the notion of solution plan is associated with the particular imple-
mentation of the plan itself. It is worth pointing out that one of the main points
of strength of the formalization proposed in this work is specifically connected to
this issue: the proposed framework provides a homogeneous and generalized rep-
resentation of planning domains, timelines and flexible plans, on the base of which
the notion of valid plan is defined independently from the specific representation
technology. In this way, controllability issues can be address independently from
both the exploited plan representation and the solving engine. The importance of
this feature is due to the fact that representing a flexible timeline-based plan by
means of different representations, such as, e.g., temporal networks, entails a sort
of simplification of the associated plan structure, thus causing a loss of information
on the causal/temporal “dependencies” among its components.

The expressiveness provided by the synchronization rules defined in the present
work aims at capturing the corresponding structures used to state operational con-
straints in the other considered approaches. The introduction of disjunctions and
unambiguous references to valued intervals by means of token variables makes the
right-hand side of synchronization rules more expressive and semantically clearer
than in other approaches. The formalism proposed by Cimatti et al. [17] to express
synchronizations allows neither disjunctions nor token variables, thus preventing
to mention different intervals having the same value. A formal comparison with
respect to the expressive power cannot be made for the other approaches, be-
cause of the lack of a formal counterpart. Thus, our analysis is based on practical
considerations and application experiences.

Concerning uncertainty and controllability issues, this work follows and extends
the work by Cialdea Mayer and Orlandini [15] considering also planning domains
and other associated definitions, as well as enhancing and correcting some flaws in
the definitions of observations and the controllability properties. More in general,
this work advances the state of the art in several ways. In fact, the definition of
planning domains, in both Apsi-Trf and IxTeT, allows one to model uncertainty
only by means of timelines for external variables and not tokens with uncontrol-
lable durations. On the other hand, in Cbtp uncertainty is not considered at all
in the description of the planning domain. In fact, the Cbtp framework addresses
the controllability problem by relying on the representation of a flexible plan as a
STNU. Similarly, Apsi-Trf does not addresses directly controllability issues, but
it exploits a model checking approach based on Timed Game Automata (TGA)
[11, 29]. In [1], Abdedaim et al. propose a mapping from IxTeT planning problems
to TGA reachability problems and the use of a model checking tool for plan syn-
thesis, but they do not explicitly address controllability issues. On the contrary,
Cimatti et al. [17] use an explicit annotation of state variable values, partitioning
them into controllable and uncontrollable ones, similarly to what is done by means

32 Marta Cialdea Mayer et al.

of the controllability tagging function of the present work. Synchronization rules
may also be annotated as uncontrollable, though the semantics of such annota-
tion is left implicit. Finally, strong controllability is the only property taken into
account for plans by Cimatti et al. [17], thus preventing the deployment of least
commitment control approaches that are usually more effective while dealing with
highly dynamic systems.

As a further remark, it is worth pointing out that, although the main no-
tions defined for STNU and concerning controllability can be transposed into the
timeline-based framework presented in this paper (like shown in Section 6), no
formal analysis of the relation between the two frameworks has ever been done.
As a matter of fact, it would not have been possible, since the timeline-based
framework (with temporal flexibility and uncertainty) lacked a formally grounded
specification. The contribution of the present work opens the way to addressing
such an important issue.

In conclusion, the formalization presented in this work aims at constituting
a unified framework where the main timeline-based approaches to P&S can be
embedded. Since the focus here is on causal and temporal reasoning, additional
interesting features, such as, for instance, the representation of sharable and un-
sharable resources modeled in IxTeT, are currently not addressed and they can
be considered as possible future work.

As a final remark, it is worth pointing out that the formal framework proposed
in this paper allows for the definition of complex planning specifications. In this
regard, even though the deployment of P&S applications for autonomous systems
in real-world contexts achieved several successes over the last decade, the proposed
models and solutions turn out very often to be neither obvious nor immediately
acceptable for users. Validating and verifying the correctness and effectiveness of
these systems by simple inspection can indeed be a very complex task [4]. In this
regard, Knowledge Engineering environments for P&S systems [3, 31, 32, 34] are
required to simplify the access to this technology and, then, to provide support
for the development of applications to an enlarged community of users (not just
“leading edge” specialists). Particularly relevant to the present framework is the
exploitation of Timed Game Automata model checking techniques, proposed by
Orlandini et al. [31], to integrate verification and validation (V&V) tools and
formal methods.

As far as future work is concerned, two main issues are currently under in-
vestigation: (i) the definition of a specification language compliant with the for-
mal framework and aiming at constituting a reference language for other already
existing P&S applications, and (ii) the definition of generalized algorithms and
heuristics capable of managing controllability issues while solving P&S problems.
The long-term goal is to operationalize all the above results, contributing to de-
velop richer software environments and to synthesize a new generation of robust
problem-solving applications.

Acknowledgements. The authors wish to thank the anonymous reviewers of this
work for pointing out some flaws in the original presentation, as well as for their
helpful comments and suggestions.

Planning and Execution with Flexible Timelines: a Formal Account 33

References

1. Abdedaim Y, Asarin E, Gallien M, Ingrand F, Lesire C, Sighireanu M (2007)
Planning robust temporal plans: A comparison between CBTP and TGA ap-
proaches. In: Proceedings of the 17th International Conference on Automated
Planning and Scheduling (ICAPS 2007), pp 2–10

2. Allen JF (1983) Maintaining knowledge about temporal intervals. Communi-
cations of the ACM 26(11):832–843

3. Barreiro J, Boyce M, Do M, Frank J, Iatauro M, Kichkaylo T, Morris P,
Ong J, Remolina E, Smith T, Smith D (2012) EUROPA: A Platform for AI
Planning, Scheduling, Constraint Programming, and Optimization. In: The
4th Int. Competition on Knowledge Engineering for Planning and Scheduling
(ICKEPS 2012)

4. Bensalem S, Havelund K, Orlandini A (2014) Verification and validation meet
planning and scheduling. International Journal on Software Tools for Technol-
ogy Transfer 16(1):1–12

5. Bernardini S (2008) Constraint-based temporal planning: Issues in domain
modelling and search control. PhD thesis, Università degli Studi di Trento

6. Castillo L, Cortellessa G, Yorke-Smith N (2011) Special issue on scheduling
and planning applications: Selected papers from the SPARK workshop series.
Computational Intelligence 27(1)

7. Cesta A, Fratini S (2008) The Timeline Representation Framework as a Plan-
ning and Scheduling Software Development Environment. In: Proceedings of
the 27th Workshop of the UK Planning and Scheduling Special Interest Group
(PlanSIG-08)

8. Cesta A, Oddi A (1996) DDL.1: A Formal Description of a Constraint Repre-
sentation Language for Physical Domains. In: Ghallab M, Milani A (eds) New
Directions in AI Planning, IOS Press, pp 341–352

9. Cesta A, Cortellessa G, Fratini S, Oddi A, Policella N (2007) An Innovative
Product for Space Mission Planning: An A Posteriori Evaluation. In: Proceed-
ings of the Seventeenth International Conference on Automated Planning and
Scheduling (ICAPS 2007), pp 57–64

10. Cesta A, Cortellessa G, Fratini S, Oddi A (2009) Developing an End-to-End
Planning Application from a Timeline Representation Framework. In: Pro-
ceedings of the 21st Conference on Innovative Applications of Artificial Intel-
ligence (IAAI-09), pp 66–71

11. Cesta A, Finzi A, Fratini S, Orlandini A, Tronci E (2010) Analyzing flexible
timeline-based plans. In: Proceedings of the 19th European Conference on
Artificial Intelligence (ECAI 2010), pp 471–476

12. Cesta A, Cortellessa G, Fratini S, Oddi A (2011) MrSPOCK: Steps in devel-
oping an end-to-end space application. Computational Intelligence 27(1):83–
102

13. Chien S, Tran D, Rabideau G, Schaffer S, Mandl D, Frye S (2010) Timeline-
based space operations scheduling with external constraints. In: Proceedings
of the 20th International Conference on Automated Planning and Scheduling
(ICAPS 2010), pp 34–41

14. Chien SA, Johnston M, Frank J, Giuliano M, Kavelaars A, Lenzen C, Poli-
cella N (2012) A generalized timeline representation, services, and interface
for automating space mission operations. In: Proceedings of Space Operations

34 Marta Cialdea Mayer et al.

(SpaceOps) 2012
15. Cialdea Mayer M, Orlandini A (2015) An executable semantics of flexible plans

in terms of Timed Game Automata. In: Proceedings of the 22nd International
Symposium on Temporal Representation and Reasoning (TIME 2015), pp 160–
169

16. Cialdea Mayer M, Orlandini A, Umbrico A (2014) A formal account of plan-
ning with flexible timelines. In: Proceedings of the 21st International Sympo-
sium on Temporal Representation and Reasoning (TIME 2014), pp 37–46

17. Cimatti A, Micheli A, Roveri M (2013) Timelines with temporal uncertainty.
In: Proceedings of the 27th AAAI Conference on Artificial Intelligence, pp
195–201

18. Finzi A, Pirri F (2005) Representing flexible temporal behaviors in the Situ-
ation Calculus. In: Proceedings of the 19th International Joint Conference on
Artificial Intelligence (IJCAI-05), pp 436–441

19. Frank J (2013) What is a timeline? In: Proceedings of the 4th Workshop on
Knowledge Engineering for Planning and Scheduling (KEPS 2013), pp 31–38

20. Frank J, Jónsson A (2003) Constraint-based attribute and interval planning.
Constraints 8(4):339–364

21. Fratini S, Pecora F, Cesta A (2008) Unifying Planning and Scheduling as
Timelines in a Component-Based Perspective. Archives of Control Sciences
18(2):231–271

22. Hunsberger L (2009) Fixing the semantics for dynamic controllability and pro-
viding a more practical characterization of dynamic execution strategies. In:
Proceedings of the 16th International Symposium on Temporal Representation
and Reasoning (TIME 2009), pp 155–162

23. Hunsberger L (2010) A fast incremental algorithm for managing the execution
of dynamically controllable temporal networks. In: Proceedings of the 17th
International Symposium on Temporal Representation and Reasoning (TIME
2010), pp 121–128

24. Jonsson A, Morris P, Muscettola N, Rajan K, Smith B (2000) Planning in
interplanetary space: Theory and practice. In: Proceedings of the 5th Interna-
tional Conference on Artificial Intelligence Planning Systems (AIPS ’00), pp
177–186

25. Laborie P, Ghallab M (1995) IxTeT: an integrated approach for plan gen-
eration and scheduling. In: Proceedings of the INRIA/IEEE Symposium on
Emerging Technologies and Factory Automation (ETFA’95), pp 485–495

26. Morris P (2014) Dynamic controllability and dispatchability relationships. In:
Integration of AI and OR Techniques in Constraint Programming, Proceedings
of the 11th International Conference, CPAIOR 2014, Springer, LNCS, vol
8451, pp 464–479

27. Morris PH, Muscettola N, Vidal T (2001) Dynamic control of plans with tem-
poral uncertainty. In: Proceedings of the 17th International Joint Conference
on Artificial Intelligence (IJCAI 2001), pp 494–502

28. Muscettola N (1994) HSTS: Integrating planning and scheduling. In: Zweben,
M and Fox, MS (ed) Intelligent Scheduling, Morgan Kauffmann, pp 169–212

29. Orlandini A, Finzi A, Cesta A, Fratini S (2011) TGA-based controllers for
flexible plan execution. In: KI 2011: Advances in Artificial Intelligence, Pro-
ceedings of the 34th Annual German Conference on AI, Springer, LNCS, vol
7006, pp 233–245

Planning and Execution with Flexible Timelines: a Formal Account 35

30. Orlandini A, Suriano M, Cesta A, Finzi A (2013) Controller synthesis for safety
critical planning. In: Proceedings of the IEEE 25th International Conference
on Tools with Artificial Intelligence (ICTAI 2013), pp 306–313

31. Orlandini A, Bernardi G, Cesta A, Finzi A (2014) Planning meets verification
and validation in a knowledge engineering environment. Intelligenza Artificiale
8(1):87–100

32. Simpson RM, Kitchin DE, McCluskey TL (2007) Planning Domain Definition
using GIPO. Knowledge Engineering Review 22(2):117–134

33. Umbrico A, Orlandini A, Cialdea Mayer M (2015) Enriching a temporal plan-
ner with resources and a hierarchy-based heuristic. In: AIxIA 2015 Advances
in Artificial Intelligence, Proceedings of the 14th International Conference of
the Italian Association for Artificial Intelligence, Springer, LNCS, vol 9336,
pp 410–423

34. Vaquero TS, Silva JR, Tonidandel F, Beck JC (2013) itSIMPLE: Towards an
Integrated Design System for Real Planning Applications. Knowledge Engi-
neering Review 28(2):215–230

35. Vidal T, Fargier H (1999) Handling contingency in temporal constraint net-
works: from consistency to controllabilities. Journal of Experimental and The-
oretical Artificial Intelligence 11:23–45

