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Abstract. We continue the investigation of parameterized extensions
of Linear Temporal Logic (LTL) that retain the attractive algorith-
mic properties of LTL: a polynomial space model checking algorithm
and a doubly-exponential time algorithm for solving games. Alur et al.
and Kupferman et al. showed that this is the case for Parametric LTL
(PLTL) and PROMPT-LTL respectively, which have temporal operators
equipped with variables that bound their scope in time. Later, this was
also shown to be true for Parametric LDL (PLDL), which extends PLTL
to be able to express all w-regular properties.

Here, we generalize PLTL to systems with costs, i.e., we do not bound
the scope of operators in time, but bound the scope in terms of the
cost accumulated during time. Again, we show that model checking and
solving games for specifications in PLTL with costs is not harder than
the corresponding problems for LTL. Finally, we discuss PLDL with costs
and extensions to multiple cost functions.

1 Introduction

Parameterized linear temporal logics address a serious shortcoming of Linear-
temporal Logic (LTL): LTL is not able to express timing constraints, e.g., while
G(q — Fp) expresses that every request ¢ is eventually answered by a response p,
the waiting time between requests and responses might diverge. This is typically
not the desired behavior, but cannot be ruled out by LTL.

To overcome this shortcoming, Alur et al. introduced parameterized LTL [I],
which extends LTL with parameterized operators of the form F<, and G<y,
where x and y are variables. The formula G(¢ — F<;p) expresses that every
request is answered within an arbitrary, but fixed number of steps «(z). Here,
« is a variable valuation, a mapping of variables to natural numbers. Typically,
one is interested in whether a PLTL formula is satisfied with respect to some
variable valuation. For example, the model checking problem asks whether a
given transition system satisfies a given PLTL specification ¢ with respect to
some q, i.e., whether every path satisfies ¢ with respect to «. Similarly, solving
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infinite games amounts to determining whether there is an « such that Player 0
has a strategy such that every play that is consistent with the strategy satis-
fies the winning condition with respect to a. Alur et al. showed that the PLTL
model checking problem is PSPACE-complete. Kupferman et al. later considered
PROMPT-LTL [18], which can be seen as the fragment of PLTL without the pa-
rameterized always operator, and showed that PROMPT-LTL model checking is
still PSPACE-complete and that PROMPT-LTL realizability, an abstract notion
of infinite game, is 2EXPTIME-complete. While the results of Alur et al. relied
on involved pumping arguments, the results of Kupferman et al. where all based
on the so-called alternating-color technique, which basically allows to reduce
PROMPT-LTL to LTL. Furthermore, the result on realizability was extended
to infinite games on graphs [28], again using the alternating-color technique.

Another serious shortcoming of LTL (and its parameterized variants) is their
expressiveness: LTL is equi-expressive to first-order logic with order and thus
not as expressive as w-regular expressions. This shortcoming was addressed by
a long line of temporal logics [T4ATI2526/27] with regular expressions, finite au-
tomata, or grammar operators to obtain the full expressivity of the w-regular
languages. One of these logics is Linear Dynamic Logic (LDL), which has tem-
poral operators (r) and [r], where r is a regular expression. For example, the
formula [ro] (¢ — (r1)p) holds in a word w, if every request at a position n
such that wy ---w, matches rqg, there is a position n’ > n such that p holds
at n’ and w,, - - - w, matches r;. Intuitively, the diamond operator corresponds
to the eventuality of LTL, but is guarded by a regular expression. Dually, the
box-operator is a guarded always. Although LDL is more expressive than LTL,
its algorithmic properties are similar: model checking is PSPACE-complete and
solving games is 2EXPTIME-complete [25].

All these logics tackle one shortcoming, but not both simultaneously. This was
achieved for the first time by adding parameterized operators to LDL. The logic,
called parameterized LDL (PLDL), has additional operators (r)_, and [r].,
with the expected semantics: the variables bound the scope of the operator. And
even this logic, which has parameters and is more expressive than LTL, model
checking is still PSPACE-complete and solving games is 2EXPTIME-complete.
Again, these problems were solved by an application of the alternating-color
technique. One has to overcome some technicalities, but the general proof tech-
nique is the same as for PROMPT-LTL.

The decision problems for the parameterized logics mentioned above are
boundedness problems, e.g., one asks for an upper bound on the waiting times
between requests and responses in case of the formula G(q¢ — F<,p). Recently,
more general boundedness problems in logics and automata received a lot of
attention to obtain decidable quantitative extensions of monadic second-order
logic and better synthesis algorithms. in general, boundedness problems are un-
decidable for automata with counters, but become decidable if the acceptance
conditions can refer to boundedness properties of the counters, but the transi-
tion relation has no access to counter values. Recent advances include logics and
automata with bounds [3l6], satisfiability algorithms for these logics [4I57124],



and regular cost-functions [I3]. However, these formalisms, while very expressive,
are intractable and thus not suitable for verification and synthesis. Thus, less
expressive formalisms were studied that appear more suitable for practical appli-
cations, e.g., finitary parity [11], parity with costs [17], energy-parity [10], mean-
payoff-parity [12], consumption games [§], and the use of weighted automata
for specifying quantitative properties [2/9]. In particular, the parity condition
with cost is defined in graphs whose edges are weighted by natural numbers
(interpreted as costs) and requires the existence of a bound b such that almost
every occurrence of an odd color is followed by an occurrence of a larger even
color such that the cost between these positions is at most b. Although strictly
stronger than the classical parity condition, solving parity games with costs is
as hard as solving parity games [17].

Our contribution: We investigate parameterized temporal logics in a weighted
setting similar to the one of parity conditions with costs: our graphs are equipped
with cost-functions that label the edges with natural numbers and parameter-
ized operators are now evaluated with respect to cost instead of time, i.e., the
parameters bound the accumulated cost instead of the elapsed time. Thus, the
formula G(¢ — F<,p) requires that every request ¢ is answered with cost at
most a(z). We show the following results about PLTL with costs (cPLTL):

First, we refined the alternating-color technique to the cost-setting, which
requires to tackle some technical problems induced by the fact that accumulated
cost, unlike time, does not increase in every step, e.g., if an edge with cost zero
is traversed.

Second, we show that Kupferman et al.’s proofs based on the alternating-
color technique can be adapted to the cost-setting as well. For model-checking,
we again obtain PSPACE-completeness while solving games is still 2EXPTIME-
complete.

Third, we consider PLDL with costs (cPLDL), which is defined as expected.
Again, the complexity does not increase: model checking is PSPACE-complete
while solving games is 2EXPTIME-complete.

Fourth, we generalize both logics to a setting with multiple cost-functions.
Now, the parameterized temporal operators have another parameter ¢ that deter-
mines the cost-function under which they are evaluated. Even these extensions
do not increase complexity: model checking is again PSPACE-complete while
solving games is still 2EXPTIME-complete.

Fifth, we also investigate model checking and solving games as an optimiza-
tion problem, which is a very natural view on the problems, i.e., we are interested
in computing the optimal variable valuation such that a given system satisfies
a given specification. For cPLTL and cPLDL, we show that the model checking
optimization problem can be solved in polynomial space while the optimization
problem for infinite games can be solved in triply-exponential time. These results
are similar to the ones obtained for PLTL [2§]. In particular, the exponential
gap between the decision and the optimization variant of solving infinite games
exists already for PLTL.

All proofs omitted due to space restrictions can be found in the appendix.



2 Parametric LTL with Costs

Let V be an infinite set of variables and let P be a set of atomic propositions.
The formulae of cPLTL are given by the grammar

pu=plplene|leVe|Xe|eUp| Ry | F<.0| Geo,

where p € P and z € V. We use the derived operators tt :=pV-p and £f :=pA—-p
for some fixed p € P, Fo:=ttUy, and Gy :=£fRp. Furthermore, we use p — ¢
and —p — 1 as shorthand for —p V ¢ and p V ¢, respectively. Additional derived
operators are introduced on page

The set of subformulae of a ¢cPLTL formula ¢ is denoted by cl(p) and
we define the size of ¢ to be the cardinality of cl(p). Furthermore, we define
varp(p) = {z € V| F<,¢ € cl(p)} to be the set of variables parameterizing even-
tually operators in ¢, varg(p) = {z € V | G< ¥ € cl(¢)} to be the set of vari-
ables parameterizing always operators in ¢, and set var(p) = varg (@) Uvarg ().
From now on, we denote variables in varg(p) by = and variables in varg(¢) by
y, if the formula ¢ is clear from context.

cPLTL is evaluated on so-called cost-traces (traces for short) of the form

w
W = WyCoWi ClWaCo -+ E (2P- N) ,

which encode the evolution of the system in terms of the atomic propositions
that hold true in each time instance, and the cost of changing the system state.
The cost of the trace w is defined as cst(w) = 3_;- ¢;, which might be infinite.
A finite cost-trace is required to begin and end with an element of 2. The
cost cst(w) of a finite cost-trace w = wocowicy - - - 1wy, is defined as cst(w) =
>0 ¢

Furthermore, we require the existence of a special atomic proposition s such
that all cost-traces satisfy c¢; > 0 if and only if x € wj41, i.e., k¥ indicates that
the last step had non-zero cost. We use the proposition x to reason about costs:
for example, we are able to express whether a trace has cost zero or co. In the
following, we will ensure that all our systems only allow traces that satisfy this
assumption.

Also, to evaluate formulas we need to instantiate the variables parameterizing
the temporal operators. To this end, we define a variable valuation to be a
mapping a: V — N. Now, we can define the model relation between a cost-
trace w = wg cowi ¢y wa Co - -+, a position n of w, a variable valuation «, and
a cPLTL formula as follows:

— (w,n,a) = p if and only if p € w,,

— (w,n,a) = —pif and only if p ¢ wy,

— (w,n,a) = p A if and only if (w,n,a) E ¢ and (w,n, ) E ¥,

— (w,n,a) E ¢V if and only if (w,n,a) E ¢ or (w,n,a) E 9,

— (w,n,a) E Xy if and only if (w,n + 1,a) E ¢,

— (w,n,a) = Uy if and only if there exists a j > 0 such that (w,n+7j,a) E ¢
and (w,n + k, @) = ¢ for every k in the range 0 < k < 7,



— (w,n,a) E R if and only if for every j > 0: either (w,n + j,«) = ¢ or
there exists a k in the range 0 < k < j such that (w,n + k,a) = ¢,

— (w,n,a) = F<,p if and only if there exists a j > 0 with
cSt(WnCp - -+ Cngj—1Wntj) < az) such that (w,n + j, ) = ¢, and

— (w,n,a) E Gz, if and only if for every j > 0 with
CSt(WnCp -+ Cngj—1Wntj) < a2): (w,n+j,a) = .

Note that we recover the semantics of PLTL as the special case where every ¢,
is equal to one.

For the sake of brevity, we write (w, @) = ¢ instead of (w,0, @) = ¢ and say
that w is a model of ¢ with respect to a. For variable-free formulas, we even
drop the o and write w = a.

As usual for parameterized temporal logics, the use of variables has to be
restricted: bounding eventually and always operators by the same variable leads
to an undecidable satisfiability problem [I].

Definition 1. A ¢PLTL formula ¢ is well-formed, if varg(p) Nvarg(¢) = 0.

In the following, we only consider well-formed formulas and omit the qual-
ifier “well-formed”. We consider the following fragments of cPLTL. Let ¢ be a
cPLTL formula:

— ¢ is an LTL formula, if var(y) = 0.
— ¢ is a cPLTLy formula, if varg(p) = 0.
— ¢ is a cPLTLg formula, if varg(p) = 0.
Ezample 1.

1. The formula G(¢ — F<,p) is satisfied with respect to «, if every request (a
position where ¢ holds) is followed by a response (a position where p holds)
such that the cost of the infix between the request and the response is at
most a(z).

2. The (max-) parity condition with costs [I7] can be expressed in ¢cPLTL via

/
FG </\ce{1,3 ,,,,, d—1} <c “F< \/C’E{c+1,c+3 ..... d} ¢ >) ’

where d is the maximal color, which we assume w.l.0.g. to be even. However,
the Streett condition with costs [I7] cannot be expressed in ¢cPLTL, as it is
defined with respect to multiple cost functions, one for each Streett pair. We
extend ¢cPLTL to multiple cost functions in Section [7

As for PLTL, one can also parameterize the until and the release operator
and also consider bounds of the form “> 2”. However, this does not increase
expressiveness of the logic. Formally, we define

— (w,n, @) E U<, if and only if there exists a j > 0 with
cst(WnCp -+ Cngj—1Wntj) < a(z) such that (w,n + j,a) = ¢ and (w,n +
k,a) = @ for every k in the range 0 < k < j,



— (w,n, o) E= pR< ¢ if and only if for every j > 0 with
cst(Wncp -+ Cngj—1Wntj) < az): (w,n+ j,a) = 1 or there exists a k in the
range 0 < k < j such that (w,n+k,a) = ¢,

— (w,n,a) = Fs.¢ if and only if there exists a j > 0 with
eSt(WnCp - -+ Cngj—1Wntj) > z) such that (w,n + j, ) = ¢, and

— (w,n,a) E Gs.¢ if and only if for every j > 0 with
cst(WnCp « -+ Cngj—1Wntj) > afz) satisfies (w,n + j,a) = ¢.

— (w,n,a) = pUs 4 if and only if there exists a j > 0 with
cst(Wncp -+ Cngj—1Wntj) > afz) such that (w,n + j,a) = ¢ and (w,n +
k,a) £ ¢ for every k in the range 0 < k < j, and

— (w,n,a) = pRs 9 if and only if for every j > 0 with
CSt(WnCp -+ Cngj—1Wntj) > a2): (w,n+ j,a) =1 or there exists a k in the
range 0 < k < j such that (w,n +k, o) = ¢.

Let o = 9 denote equivalence of the formulas ¢ and 1, i.e., for every w, every n,
and every a, we have (w,n, ) | ¢ if and only if (w,n, ) = . Then, we have
the following equivalences (which also restrict the use of variables as defined in
Definition [II):

— U<, = Uy AF<, 0 — Gsp =F<,GX (-, V Gyp)
- @Rgzlﬂ = SDR'L/J V nglﬂ - SDU>Z"/J = GSZ(SD A FX(H A @Uw))
- F..p =G, FX(k ANFp) — R0 =F<,(¢VGX(-kVyRY))

Note that we defined cPLTL formulae to be in negation normal form. Nev-
ertheless, a negation can be pushed to the atomic propositions using the duality
of the operators. Thus, we can define the negation of a cPLTL formula.

Lemma 1. For every cPLTL formula ¢ there exists an efficiently constructible
cPLTL formula —¢ s.t.

1. (w,n,a) | ¢ if and only if (w,n,a) & —p for every w, every n, and every

a,

=l = gl

If ¢ is well-formed, then so is —p.

If ¢ is an LTL formula, then so is —p.

If ¢ is a ¢cPLTLg formula, then —¢ is a cPLTLg formula and vice versa.

Guds Lo b0

Proof. We construct —¢ by induction over the construction of ¢ using the dual-
ities of the operators:

— =(p)=p - =(p)=p

— (e AY) = (—p) V() = (e V) = (=) A (=)
- 2(pU%) = ~pR— — 2(pRY) = ~pU

— (F<rp) = Geamp - (Geyp) =F<yp

The latter four claims of Lemma[Il follow from the definition of —¢ while the
first one can be shown by a straightforward induction over the construction of

®.



Another important property of parameterized logics is monotonicity: increas-
ing (decreasing) the values of parameterized eventuality operators (parameter-
ized always operators) preserves satisfaction.

Lemma 2. Let ¢ be a cPLTL formula and let « and 8 be variable valuations
satisfying B(x) > a(x) for every x € varp(p) and B(y) < aly) for every y €
varg(p). If (w,a) = ¢, then (w, ) E ¢.

Especially, if we are interested in checking whether a formula is satisfied with
respect to some o, we can always recursively replace every subformula G<,
by ¥ V X(-£U(—k A ¢)), as this is equivalent to G<y% with respect to every
variable valuation mapping y to zerdd, which is the smallest possible value for
y. Note that we have to ignore the current truth value of k, as it indicates the
cost of the last transition, not the cost of the next one.

3 The Alternating-Color Technique for Costs
Fix a fresh atomic proposition p ¢ P. We say that a cost-trace
w
w' = wycyw|cjwhey -+ € (QPU{p} : N)

is a coloring of a cost trace w = wycowiciwacy -+ € (2P . N)w, if w, NP =w,
and ¢}, = ¢, for every n, i.e., w’ and w only differ in the truth values of the new
proposition p. A position n is a changepoint of w’, if n = 0 or if the truth value
of p in wy,_; and wy, differs. A block of w' is an infix wj,c], - w;,, ; of w’ such
that n and n + j 4+ 1 are successive changepoints. If a coloring has only finitely
many changepoints, then we refer to its suffix starting at the last changepoint
as its tail, i.e., the coloring is the concatenation of a finite number of blocks and
its tail.

Let k € N. We say that w’ is k-bounded if every block and its tail (if it has
one) has cost at most k. Dually, we say that w' is k-spaced, if every block has
cost at least k. Note that we do not have a requirement on the cost of the tail
in this case.

Given a cPLTLy formula ¢, let rel(¢) denote the LTL formula obtained from
¢ by recursively replacing every subformula F <, by

(p — pU(=pUrel(¥))) A (=p — —pU(pUrel(v)))).

Intuitively, the relativized formula requires rel(¢)) to be satisfied within at most
one changepoint. On bounded and spaced colorings, ¢ and rel(p) are “equiva-
lent”.

Lemma 3 (cp. Lemma 2.1 of [18]). Let w be a cost-trace and let ¢ be a
cPLTLg formula.

! Here, we use our assumption on  indicating the sign of the cost.



1. Let (w,a) | ¢ for some variable valuation . Then, w' = rel(p) for every
(k + 1)-spaced coloring w' of w, where k = maxycvar(p) ().

2. Let w' |= rel(y) for some k-bounded coloring w' of w. Then, (w,a) = ¢,
where a(x) = 2k for every x.

Proof. Note that w and its colorings coincide on their cost. Hence, when speaking
about the cost of an infix or suffix, we do not have to specify whether we refer
to w or to a coloring of w.

@) Fix a (k 4 1)-spaced coloring w’ of w, where k = max,cvar(y) a(z). We
show that (w, n, ) | ¢ implies (w’,n) | rel(p) by induction over the construc-
tion of .

The only non-trivial case is the one of a parameterized eventuality: thus,
assume (w, n, @) = F<,1, ie., there is a j with cst(wpcy, - - - g jm1wWnyj) < a(z)
and (w,n + j,a) E 9. By induction hypothesis, we have (w',n + j) | rel(y).
As w' is (k + 1)-spaced, i.e., the cost of each block is at least k + 1, there is at
most one changepoint between (and including) the positions n and n+j — 1 in
w’. Hence, (w',n) E pU(—pUrel(v)))), if p € w),, and (w',n) = —-pU(pUrel(y))))
otherwise. Thus, (w',n) = rel(F<1).

1) Dually, fix a k-bounded coloring w’ of w and define the variable valu-
ation a with a(z) = 2k for every x. We show that (w’,n) |= rel(yp) implies
(w,n, @) = ¢ by induction over the construction of ¢.

Again, the only non-trivial case is the one of a parameterized eventuality:
thus, let (w',n) | rel(F<z1). We assume (w’,n) = p (the other case is dual).
Then, we have (w’,n) = pU(—pUrel(v)), i.e., rel(¢) is satisfied at some posi-
tion n+j such that there is at most one changepoint between (and including) the
positions n and n+j — 1 in w’. As w’ is k-bounded, this implies that the cost of
the infix wycy, - - - wp4; is bounded by 2k. Furthermore, applying the induction
hypothesis yields (w,n + j, @) = 9. Hence, (w,n, a) = F<z9.

4 Model Checking

A transition system S = (5, sy, F, ¢, cst) consists of a finite directed graph (S, E),
an initial state s; € S, a labeling function £: S — 2F, and a cost function
cst: ' — N. We assume that every state has at least one successor to spare us
from dealing with finite paths. Recall our requirement on cost-traces having a
distinguished atomic property & indicating the sign of the cost of the previous
transition. Thus, we require S to satisfy the following property: if x € £(v'), then
cst(v,v") > 0 for every edge (v,v") € E leading to v'. Dually, if x ¢ ¢(v), then
cst(v,v') = 0 for every edge (v,v') € F

A path through S is a sequence m = sps18o2--- satisfying s = s; and
(SnySn+1) € E for every n. Its cost-trace tr(m) is defined as

tr(m) = £(so)cst(so, s1)€(s1)cst(s1, s2)l(s2)cst(sa, s3) - -,

which satisfies our assumption on the proposition k.



The transition system S satisfies a cPLTL formula ¢ with respect to a variable
valuation «, if the trace of every path through S satisfies ¢ with respect to a.
The cPLTL model checking problem asks, given a transition system S and a
cPLTL formula ¢, whether S satisfies ¢ with respect to some a.

Theorem 1. The ¢PLTL model checking problem is PSPACE-complete.

The proof we give below is a generalization of the one for PROMPT-LTL
by Kupferman et al. [I8]. We begin by showing PSPACE-membership. First note
that we can restrict ourselves to cPLTLg formulas: given a cPLTL formula ¢, let
¢’ denote the formula obtained by recursively replacing every subformula G<,
by ¢ V X(=xU(—k A ¢)). Due to Lemma 2] and the discussion below it, every
transition system S satisfies ¢ with respect to some « if and only if S satisfies
¢’ with respect to some .

Next, we show how to apply the alternating-color: recall that the classical
algorithm for LTL model checking searches for a fair path, i.e., one that visits
infinitely many accepting states, in the product of § with a Biichi automaton
recognizing the models of the negated specification. If such a path exists, then &
does not satisfy the specification, as the fair path contains a path 7 through &
and an accepting run of the automaton on its trace, i.e., the trace does not satisfy
the specification. If there is no such fair path, then S satisfies the specification.

For ¢cPLTL we have to find such a path for every « in order to show that
S does not satisfy the specification with respect to any a. To this end, one
relativizes the ¢cPLTLF specification as described in Section Bl and builds an
automaton for the negation of the relativized formula in conjunction with a
formula that ensures that every ultimately periodic model is both k-bounded
and k’-spaced for some appropriate k and k’. Then, we search for a pumpable
fair path in the product of the system and the Biichi automaton recognizing the
models of the negated specification, which is non-deterministically labeled by p.
Applying Lemma Bl and pumping a fair path through the product appropriately
yields a counterexample for every «. Thus, model checking is reduced to finding
a pumpable fair path. Let us stress again that this algorithm is similar to the one
for PROMPT-LTL, we just have to pay attention to some intricacies stemming
from the fact that we want to bound the cost, not the waiting time: there might
be paths with finite cost, which have to be dealt with appropriately.

Recall that p is the distinguished atomic proposition used to relativize cPLTL
formulas. A colored Biichi graph with costs (V, vy, E, £, cst, F') consists of a finite
direct graph (V, E), an initial vertex v;, a labeling function ¢: V — 2{} a cost-
function cst: £ — N, and a set F' C V of accepting vertices. A path vgvivg - - -
is pumpable, if each of its blocks induced by p contains a vertex repetition such
that the cycle formed by the repetition has non-zero costd. Note that we do not
have a requirement on the cost of the tail, if the path has one. The path is fair,
if it visits F' infinitely often. The pumpable non-emptiness problem asks, given
a colored Biichi graph with costs, whether it has an initial pumpable fair path.

2 Note that our definition is more involved than the one of Kupferman et al., since we
require a cycle with non-zero cost instead of any circle.



Lemma 4. If a colored Biichi graph with costs has an initial pumpable fair path,
then also one of the form momy with |mom1| € O(n?), where n is the number of
vertices of the graph.

Proof. Let m be an arbitrary initial pumpable fair path. First, assume it has
only finitely many changepoints. If there are two blocks that start with the same
vertex, then we can remove all blocks in between and obtain another initial
pumpable fair path. Thus, we can assume that 7 has at most n blocks. Fur-
thermore, the length of each block can be bounded by O(n) by removing cycles
while retaining the state repetition with non-zero cost and at least one accepting
vertex (provided the block has one). Now, consider the tail: by removing infixes
one can find a cycle of length at most n containing an accepting vertex and a
path of length at most n leading from the last changepoint to a vertex on the
cycle. Hence, we define my to be the prefix containing all blocks and the path
leading to the cycle and define 7; to be the cycle. Then, we have |momi| € O(n?)
and w7y is an initial pumpable fair path.

On the other hand, if 7 contains infinitely many changepoints, then we can
remove blocks and shorten other blocks as described above until we have con-
structed a prefix mom; such that mo7m{ has the desired properties. In this case,
we can assume that the first position of 7 is a changepoint by “rotating” m
appropriately and appending a suitable prefix of it to .

Let S = (S, s, E, £, cst) be a transition system and let ¢ be a ¢cPLTLg for-
mula. Furthermore, consider the LTL formula x = (GFp A GF—p) + GFk,
which is satisfied by a cost-trace, if the trace has infinitely many changepoints if
and only ifd it has cost oc. Now, let 2 = (Q, 2PUAP} ;. 6, F) be a nondetermin-
istic Biichi automaton recognizing the models of the LTL formula —rel(p) A ¥,
which we can pick such that its number of states is bounded exponentially
in |p]. Now, define the colored Biichi graph with costs S x A = (S x Q x
20} (s1,qr,0), E', ¢, cst/, F') where

- ((s,4,C),(s',q',C")) € E' if and only if (s,s') € E and ¢’ € 6(q,4(s) UC),
- E(S,q,C) =C,

— cst’((s,q,C), (s',¢',C")) = cst(s, s'), and

- F'=8 x F x2{r},

Lemma 5. [cp. Lemma 4.2 of [18]] S does not satisfy ¢ with respect to any «
if and only if S X A has an initial pumpable fair path.

Proof. Let S not satisfy ¢ with respect to any variable valuation. Fix k =
(|S] - 1Q| + 3) - W, where W is the largest cost in S, and define the valuation «
by a(x) = 2k for every x. As S does not satisfy ¢ with respect to «, there is a
path 7 through S with (tr(7), @) = ¢. Thus, due to Lemma[3l2] every k-bounded
coloring of w does not satisfy rel(¢p).

Now, let w’ be a k-bounded and (k—W)-spaced coloring of tr(m) which starts
with p not holding true. Such a coloring can always be constructed, as W is the

3 Here, we use our assumption on x indicating the sign of the costs.



largest cost appearing in S. Note that w’ satisfies x by construction. Thus, we
have w' | —wrel(p) A X, i.e., there is an accepting run goqigz--- of 2 on w'.
Consider the path

(80, q0, w(l) N {p})(81, q1, wll N {p})(825 qQaw/Q N {p}) T

where sgs18s - - - = 7, which is fair by construction. We claim that it is pumpable:
consider a block, which is (k — W)-spaced. Thus, it contains at least |S|- |Q] + 2
many edges with non-zero cost, enough to enforce a vertex repetition with non-
zero cost in between. To this end, one takes the sets V; of vertices visited between
the j-th and the (j 4+ 1)-th edge with non-zero cost (including the j-th edge).
This yields |S|-|Q| 4 1 non-empty sets of vertices of S x 2 that coincide in their
third component, as we are within one block. However, there are only |S| - |Q]
many such vertices, which yields the desired repetition.

Now, consider the second implication and let o/ be an arbitrary variable
valuation. We show that S does not satisfy ¢ with respect to o’. Due to Lemma[2]
it is sufficient to show that S does not satisfy ¢ with respect to the valuation «
mapping every variable to k = mingeyar(y) @ ().

Fix an initial pumpable fair path of S x 2. It has a vertex repetition in every
block such that the induced cycle has non-zero cost. We pump each such cycle
k + 1 times to obtain the path

(50,490,Co)(51,q1,C1)(s2,42,C2) - - - .

By construction, m = sgs182 - -+ is a path through S and
w = (6(80) U Co)(f(sl) U Cl)(f(SQ) U CQ) cee

is a coloring of its trace tr(m). Also, gog1g= - - - is an accepting run of 2l on w', i.e.,
w' | —rel(p) Ax. Lastly, w' is (k+1)-spaced by construction, as the cost-function
of § x 2 is induced by the one of S.

Assume towards a contradiction that S satisfies ¢ with respect to «, which
implies (tr(m),a) | . Applying Lemma [BI] yields that every (k + 1)-spaced
coloring of tr(r) satisfies rel(¢). However, w’ is a (k + 1)-spaced coloring which
satisfies —rel(¢p), i.e., we have derived the desired contradiction.

Now, we are ready to prove Theorem [II

Proof. PSPACE-hardness holds already for LTL [23], which is a fragment of
cPLTL. Membership is witnessed by the following algorithm: check whether the
colored Biichi graph S x 2 has an initial pumpable fair path, which is correct
due to Lemmal5l But as the graph is of exponential size, it has to be constructed
and tested for non-emptiness on-the-fly.

Due to Lemma], it suffices to check for the existence of an ultimately periodic
path w7y such that |momi| < n € O(]S x A|), i.e., n is exponential in the size of
¢ and linear in the size of S. To this end, one guesses a vertex v (the first vertex
of 71) and checks the following reachability properties:



1. Is v reachable from wv; via a path where each block contains a cycle with
non-zero cost?

2. Is v reachable from v via a non-empty path that visits an accepting vertex
and which either has no changepoint or where each block contains a cycle
with non-zero cost? In this case, we also require that v and the last vertex
on the path from v; to v guessed in item[) differ on their third component
in order to make v a changepoint. This spares us from having a block that
spans mg and 7.

All these reachability problems can be solved in non-deterministic polynomial
space, as a successor of a vertex of S x2l can be guessed and verified in polymonial
time and the length of the paths to be guessed is bounded by n, which can be
represented with polynomially many bits.

Furthermore, by applying both directions of the proof of Lemmab] we obtain
an exponential upper bound on the values of a satisfying variable valuation, if
one exists. This is asymptotically tight, as one can already show exponential
lower bounds for PROMPT-LTL [I§].

Corollary 1. Fix a transition system S and a cPLTL-formula ¢ such that S
satisfies @ with respect to some «. Then, S satisfies @ with respect to a valuation
that is bounded exponentially in the size of p and linearly in the number of states
of § and the maximal cost in S.

Dually, using pumping arguments one can show the existence of an exponen-
tial variable valuation that witnesses whether a given cPLTLg specification is
satisfied with respect to every variable valuation.

Lemma 6. Fiz a transition system S and a cPLTLg-formula ¢ such that S does
not satisfy @ with respect to every a. Then, S does not satisfy ¢ with respect
to a valuation that is bounded exponentially in the size of ¢ and linearly in the
number of states of S and the maximal cost in S.

The proof of the preceding Lemma is similar to the one of Lemma 7 in [16].

5 Infinite Games

An arena A = (V,Vy, V4, v1, E, £, cst) consists of a finite directed graph (V, E),
a partition (Vp, V1) of V, an initial vertex vy € V, a labeling £: V — 2P and
a cost function cst: £ — N. Again, we assume that every vertex has at least
one successor to avoid dealing with finite paths. Also, we again ensure our re-
quirement on the proposition x to indicate the sign of the costs in a cost-trace:
if kK € £(v'), then we require cst(v,v’) > 0 for every edge (v,v") € E leading to
v'. Dually, if k ¢ £(v'), then cst(v,v") = 0 for every edge (v,v’) € E.

A play p = pgop1p2--- is a path through A starting in v; and its cost-
trace tr(p) is defined as

tr(p) = £(po) cst(po, p1) £(p1) cst(p1, p2) £(p2) cst(pz, p3) - - - -



A strategy for Player ¢ € {0,1} is a mapping o: V*V; — V satisfying
(v,0(wv)) € E for every w € V* and v € V;. A play p is consistent with o
if ppt1 =0(po - pn) for every n with p, € V;.

A ¢PLDL game G = (A, @) consists of an arena A and a winning condition ¢,
which is a cPLDL formula. A strategy o for Player 0 is winning with respect to
some variable valuation «, if the trace of every play that is consistent with o
satisfies the winning condition ¢ with respect to a.

We are interested in determining whether Player 0 has a winning strategy
for a given cPLDL game, and in determining a winning strategy for her if this
is the case.

Theorem 2. Determining whether Player 0 has a winning strategy in a given
¢PLTL game is 2EXPTIME-complete. Furthermore, a winning strategy (if one
exists) can be computed in doubly-exponential time.

Our proof technique is a generalization of the one for infinite games with
PLTL winning conditions [28], which in turn extended Kupferman et al.’s so-
lution to the PROMPT-LTL realizability problem [I8]. First, we note that it
is again sufficient to consider cPLTLg formulas, as we are interested in the ex-
istence of a variable valuation (see the discussion below Lemma []). Next, we
apply the alternating-color technique: to this end, we modify the arena to al-
low Player 0 to produce colorings of plays of the original arena and use the
relativized winning condition, i.e., we reduce the problem to a game with LTL
winning condition. The winner (and a winning strategy) of such a game can be
computed in doubly-exponential time [20/21].

To allow for the coloring, we double the vertices of the arena, additionally
label one copy with p and the other not, and split every move into two: first, the
player whose turn it is picks an outgoing edge, then Player 0 decides in which
copy she wants to visit the target, thereby picking the truth value of p.

Formally, given an arena A = (V,Vy, V1, vr, E, £, cst), the extended arena
A = (V' Vg, Vv, E' 0 est’) consists of

- V' =V x{0,1}UE,

- VH:VOX{O,l}UEaDd V{:Vl X{O,l},

— vy = (vr,0),

- E{I = {((U’O)ae)a (('Ua 1)’6)’ (e’ (UI’O))a (6, ('UI’ 1) | €= (Uavl) € E},

D
— 0'(e) =0 for every e € E and ¢'(v,b) = {f(v) if b=0, od

)u{p) ifb=1,"
— cst’((v,b), (v,0")) = cst(v,v') and cst’((v,v), (v, 1)) = 0.

A path through A" has the form (pg, bg)eo(p1,b1)e1(p2,b2) - - - for some path
popipz - -+ through A, where e, = (pn,pn+1) and b, € {0,1}. Also, we have
|A’| € O(JA|?). Note that we use the costs in A’ only to argue the correctness
of our construction, not to define the winning condition for the game in A’.

Note that the additional choice vertices of the form e € E have to be ig-
nored when it comes to evaluating the winning condition on the trace of a play.



Thus, we consider games with LTL winning conditions under so-called blink-
ing semantics: Player 0 wins a play p = pgp1p2 - -+ under blinking semantics, if
£(po)l(p2)l(py) - - - satisfies the winning condition ¢; otherwise, Player 1 wins.
Winning strategies under blinking semantics are defined as expected. Determin-
ing whether Player 0 has a winning strategy for a given game with LTL winning
condition under blinking semantics is 2EXPTIME-complete, which can be shown
by a slight variation of the proof for LTL games under classical semantics [20021].
Furthermore, if Player 0 has a winning strategy for such a game, then also a
finite-state one of at most doubly-exponential size in |¢|.

Such a strategy is given by a memory structure M = (M, my,upd) with a
finite set M of memory states, an initial memory state m; € M, and an update
function upd: M x V — M, and by a next-move function nxt: Vo x M — V
satisfying (v, nxt(v,m)) € E for every m and every v. The function upd*: V* —
M is defined via upd”(v) = m; and upd®(wv) = upd(upd”(w),v). Then, the
strategy o implemented by M and nxt is defined by o(wv) = nxt(v, upd* (wv)).
The size of o is (slightly abusively) defined as |M].

Given a game (A, p) with ¢cPLTLy winning condition ¢, define A" as above
and let ¢ = rel(¢) A x, where x = (GFp A GF—p) + GFk. Recall that x is
satisfied by a cost-trace, if the trace has infinitely many changepoints if and only
if it has cost oo.

Lemma 7. [cp. Lemma 3.1 of [18]] Player 0 has a winning strategy for (A, )
with respect to some « if and only if she has a winning strategy for (A, ¢') under
blinking semantics.

Proof. Let o be a winning strategy for Player 0 in (A, ¢) with respect to some
fixed o and define k = max,cyar(p) a(z). We define a strategy o’ for A’ as follows:

o' ((p0,b0)(p0s p1) =+ (Pr—1, Pn) (P> bn)) = (P, o(po -+ - pn))

if (pn,bn) € V{, which implies p, € V. Thus, at a non-choice vertex, Player 0
mimics the behavior of o. At choice vertices, she alternates between the two
copies of the arena every time the cost has exceeded k + 1: let

w = (po,b0)(po, p1) - (Pn, bn)(Pns Prt1)

be a play prefix ending in a choice vertex and let n’ < n be the last changepoint
in ¢'(po,bo) -+ ' (pn, brn). Now, we define

(pn+1,0) if (cst(pns -+ - pn) < k+1 and b, =0) or
(cst(pps -+ pn) > k+1and b, =1),

(pn+1,1) if (cst(pp -+ pn) < k+1and b, =1) or
(cst(pn -+ pn) > k+1 and b, =0).

o' (w) =

Let p = pop1p2 -+ be a play in A’ that is consistent with ¢’ and let

P\ = popzpa -+ = (vo,bo)(v1,b1)(v2,bg) - .



By definition of ¢’, the sequence vyvivs - - - is a play in A that is consistent with
o and thus winning for Player 0 with respect to «, i.e., (tr(vovive---), @) E ¢.
Also, w' = €/ (vg, bg)t' (v1,b1)¢' (v2,b2) - - - is a (k + 1)-spaced coloring of the trace
tr(vovivg - -+ ). Hence, w' | ¢ due to Lemma B0l Finally, w’ satisfies x by
construction. Thus, ¢’ is a winning strategy for (A’, ¢') under blinking semantics.

Now, let ¢’ be a winning strategy for Player 0 in (A’,¢’) which we can
assume (w.l.o.g.) to be implemented by M’ = (M’,m/,upd’) and some next-
move function nxt’ such that |M’| is doubly-exponential in |p|. We define a
strategy o for A by simulating a play in A’ that is consistent with o’.

To this end, define the memory structure M = (M, my,upd) for A with
M = (V x{0,1}) x M’, m; = ((v,0),m}), and

upd(((v,b),m),v") = (nxt’(e,m’), upd’ (m’, nxt’ (e, m")))

where e = (v,v) and m’ = upd’(m, e). Intuitively, the update-function mimics
two moves in A’: first, the one from (v, b) to e = (v,v’) and then the move from
this choice vertex determined by the strategy o', which is given by nxt’(e, m’),
where m/ is the updated memory state.

Let w be a play prefix of a play in 4. The memory state upd*(w) = ((v,b), m)
encodes the following information: the simulated play w’ in A’ ends in (v, b),
where v is the last vertex of w, and we have upd”™ (w’) = m. Hence, it contains
all information necessary to apply the next-move function nxt’ to mimic o’.
Hence, we define the next-move function nxt: Vo x M — V for Player 0 in A by

v” if v =" and nxt/((v/,b), m) = (v',v"),

nxt(v, ((v',b),m)) = {_

U otherwise, for some ¥ € V with (v,7) € E.

By definition of M, the second case of the definition is never invoked, since
upd*(wv) = ((v',b), m) always satisfies v = v'.

It remains to show that the strategy o implemented by M and nxt is indeed
a winning strategy for Player 0 for (A, ¢) with respect to some «. To this end,
let k = (V|- |M|+ 3)-W and define a(x) = 2k for every =, where W is the
largest weight in A.

Let popip2--- be a play in A that is consistent with o. A straightfor-
ward induction shows that there exist bits bg,b1,bs, - such that the play
(p0,b0)(po, p1)(p1,b1)(p1, p2)(p2,b2) - -+ in A’ is consistent with ¢’. Hence, w” =
(po,bo)l' (p1,b1)l (p2,b2) - - - satisfies ¢’. We show that w” is k-bounded. This
suffices to finish the proof as we can apply LemmaBl2land obtain (tr(p), a) = ¢,
as w” is a k-bounded coloring of tr(p). Thus, o is a winning strategy for Player 0
for (A, ¢) with respect to a.

Towards a contradiction assume that w” is not k-bounded. Then, there exist
positions ¢ < j such that

upd”™((po, bo) - - - (pi, bi)) = upd”™ ((po, bo) - - - (pj,b;)),
— the bits b;,...,b; are all equal, and
— CSt(pi o p]) > 0.



To show this, one defines the sets V; of vertices visited between the j-th and
the (j 4+ 1)-th edge with non-zero cost (including the j-th edge). This yields
|[V|-|M] 4+ 1 non-empty sets of vertices of (V x {0,1}) x M that coincide on the
bit stored in their second component. Hence, we have derived the desired vertex
repetition, as there are only |V - |M| such vertices.

Hence, the play

p* = (po,bo) -+ (pi-1,bi—1)[(pis bi) -+ (pj—1,bj-1)(pi—1, )],

obtained by traversing the cycle between (p;, b;) and (p;,b;) infinitely often, is
consistent with ¢’, since the memory states reached at the beginning and the
end of the loop are the same. Remember that the bits do not change between
i and j. Thus, tr(p*) has only finitely many change points, but infinitely many
occurrences of k¥ and does therefore not satisfy y under blinking semantics. This
contradicts the fact that ¢’ is a winning strategy for (A’,rel(p) A x) under
blinking semantics.

Now, we are able to prove Theorem

Proof. Hardness follows immediately from the 2EXPTIME-hardness of determin-
ing the winner of an LTL game [2012], as LTL is a fragment of ¢cPLTL.

Membership in 2EXPTIME follows from the reductions described above: first,
we turn the winning condition into a cPLTLy formula and construct the LTL
game under blinking semantics obtained from expanding the arena and rela-
tivizing the winning condition. This game is only polynomially larger than the
original one and its winner (and a winning strategy) is computable in doubly-
exponential time.

By applying both directions of the proof of Lemma [l we obtain a doubly-
exponential upper bound on the values of a satisfying variable valuation, if one

exists. This is asymptotically tight, as one can already show doubly-exponential
lower bounds for PROMPT-LTL [28].

Corollary 2. Fiz a ¢cPLTL game G = (A, p) such that Player 0 has a winning
strategy for G with respect to some «. Then, Player 0 has a winning strategy for
G with respect to a valuation that is bounded doubly-exponentially in the size of
@ and linearly in the number of vertices of A and the mazximal cost in A.

6 Parametric LDL with Costs

Linear Dynamic logic (LDL) [1425] extends LTL by temporal operators guarded
with regular expressions, e.g., (r) ¢ holds at position n, if there is a j such that ¢
holds at position n+j and the infix between positions n and n+j matches r. The
resulting logic has the full expressiveness of the w-regular languages while retain-
ing many of LTL’s desirable properties like a simple syntax, intuitive semantics,
a polynomial space algorithm for model checking, and a doubly-exponential time



algorithm for solving games. Parametric LDL (PLDL) [15] allows to parameter-
ize such operators, i.e., (r)., ¢ holds at position n with respect to a variable
valuation a, if there is a j < a(z) such that ¢ holds at position n + j and the
infix between positions n and n+ j matches r. Model checking and solving games
with PLDL specifications is not harder than for LTL, although PLDL is more
expressive and has parameterized operators. In this section, we consider cPLDL
where the parameters bound the cost of the infix instead of the length.
Formally, formulas of cPLDL are given by the grammar

pu=pl-pleneleVvel|mellrlel (N, ellrlc.e
rao=¢ |t r+r|r;r|r”

where p € P, z € V, and where ¢ ranges over propositional formulas over P. As
for cPLTL, cPLDL formulas are evaluated on cost-traces with respect to variable
valuations. Satisfaction of atomic formulas and of conjunctions and disjunctions
is defined as usual, and for the four temporal operators, we define

— (w,n,a) = (r) ¢ if there exists j > 0 such that (n,n + j) € R(r,w,«) and
(w,n 4+ j,a) = o,

— (w,n,a) E [r] g if for all j > 0 with (n,n + j) € R(r,w, «) we have (w,n +
ha) = o

— (w,n,a) = (r)., ¢ if there exists j > 0 with cst(wncp - - Cngjm1Wntj) <
a(z) such that (n,n+ j) € R(r,w,«) and (w,n + j,a) E ¢,

— (w,n,a) = [r]c, ¢ if for all j > 0 with cst(wncn - Cnpj—1Wnyj) < a(z)
and with (n,n + j) € R(r,w, «) we have (w,n + j,a) E .

Here, the relation R(r, w,«) C N x N contains all pairs (m,n) € N x N such that

Wy, * + - Wp_1 Matches 7 and is defined inductively by
- R(p,w,a) = {(n,n+1) | w, |E ¢} for propositional ¢,
R(w?a w, a) = {(n’n) | (’LU, n, a) ': w}v
R(TO + T, w, Oé) = R(T()v w, O[) U R(Tla w, Oé),
— R(ro;ri,w,a) = {(ng,n2) | Ing s.t. (ng,n1) € R(ro,w, ) and (n1,n3) €
R(Tl y W, Oé)}, and
- R(r*,w,a) = {(n,n) | n € N} U{(no,ng+1) | In1,...,ng s.t. (nj,njy1) €
R(r,w,a) for all j < k}.

Again, we restrict ourselves to formulas where the set of variables parameterizing
diamond operators and the set of variables parameterizing box operators are
disjoint. Analogues of Lemma [Tl and Lemma [2] hold for ¢cPLDL,; too.

The alternating-color is applicable to PLDL [I5]: to this end, one introduces
changepoint-bounded variants of the diamond- and the box-operator whose se-
mantics only quantify over infixes with at most one changepoint. LDL formu-
las with changepoint-bounded operators can be translated into Biichi automata
of exponential size. This allows to extend the algorithms for model-checking
and realizability based on the alternating-color technique [I8] to PLDL. Even
more so, the algorithms presented in Section [ and Section [l can easily be
adapted to cPLDL as well, again relying on the translation to Biichi automata
via changepoint-bounded operators.



Theorem 3. The cPLDL model checking problem is PSPACE-complete and de-
termining the winner of games with cPLDL winning conditions is 2EXPTIME-
complete.

7 Multiple Cost Functions

In this section, we consider parameterized temporal logics with multiple cost-
functions. For the sake of simplicity, we restrict our attention to cPLTL, although
all results hold for cPLDL, too.

Fix some dimension d € N. The syntax of mult-cPLTL is obtained by equip-
ping the parameterized temporal operators by a coordinate i € {1,...,d}, de-
noted by F<,, and G<,,. Here, a cost-trace is of the form wq ¢y w; ¢y wa €z - - -
where w,, € 27 and ¢, € N¢. Thus, for every i € {1,...,d}, we can define

n—1

CStZ‘(’LU()EO .. 'Enfl’wn) = Z(Ej)i

=0

for every finite cost-trace wgco - - - ¢,_1w,. Furthermore, we require for every
coordinate ¢ a proposition &; such that k; € wy41 if and only if (¢,); > 0.

The semantics of atomic formulas, boolean connectives, and unparameterized
temporal operators are unchanged and for the parameterized operators, we define

— (w,n,a) E F<, @ if and only if there exists a j > 0 with

sty (WnCr, - - Cntj—1Wntj) < a(z) such that (w,n + j,a) E ¢, and
— (w,n,a) = Gz, if and only if for every j > 0 with

sty (WG - - Crtjm1Wntj) < a(2): (w,n+ j,a) = ¢.

Again, we restrict ourselves to formulas where no variable parameterizes an
eventually- and an always-operator, but we allow a variable to parameterize
operators with different coordinates. Analogues of Lemma [Tl and Lemma [ hold
for mult-cPLTL as well.

Ezample 2. A Streett condition with costs (Qs, P;)ie{1,...,ay [L7] can be expressed
in mult-cPLTL via

FG (/\ie{l,...,d} (Qi = Fei Pi)) '

In this setting, we consider the model checking problem for transition systems
with d cost functions and want to solve games in arenas with d cost functions.

The alternating-color technique is straightforwardly extendable to the new
logic mult-cPLTL: one introduces a fresh proposition p; for each coordinate i
and defines x = A?Zl((GFpi A GF-p;) + GFk;). Furthermore, the notions
of i-blocks, k-boundedness in coordinate i, and k-spacedness in coordinate i are
defined as expected. Then, the proofs presented in Section@and Section Blremain
valid in this setting, too.



In the case of model-checking, the third component of the colored Biichi
graph S x 2 has the form 2{P1-Pa} ie. it is exponential. However, this is no
problem, as the automaton 2l is already of exponential size. Similarly, in the
case of infinite games, each vertex of the original arena has 2¢ copies in A’, one
for each element in 2{P1P4} allowing Player 0 to produce appropriate colorings
with the propositions p;. The resulting game has an arena of exponential size
(in the size of the original arena and of the original winning condition) and an
LTL winning condition under blinking semantics. Such a game can still be solved
in doubly-exponential time. To this end, one turns the winning condition into
a deterministic parity automaton of doubly-exponential size with exponentially
many colors, constructs the product of the arena and the parity automaton,
which yields a parity game of doubly-exponential size with exponentially many
colors. Such a game can be solved in doubly-exponential time [22].

Theorem 4. The mult-cPLTL model checking problem is PSPACE-complete and
determining the winner of aninfinite game with mult-cPLTL winning condition
is 2EXPTIME-complete.

Again, the same results hold for mult-cPLDL, which is defined as expected.

8 Optimization Problems

It is natural to treat model checking and solving games with specifications in
parameterized linear temporal logics as an optimization problem: determine the
optimal variable valuation such that the system satisfies the specification with
respect to it. For parameterized eventualities, we are interested in minimizing
the waiting times while for parameterized always’, we are interested in maxi-
mizing the waiting times. Due to the undecidability results for not well-defined
formulas one considers the optimization problems for the unipolar fragments, i.e.,
for formulas having either no parameterized eventualities or no parameterized
always’.

In this section, we present algorithms for such optimization problems given
by ¢cPLTL specifications. For model checking, we are interested in the following
four problems: given a transition system S and a cPLTLg formula ¢g and a
cPLTLg formula ¢g, respectively, determine

. min{a|8 satisfies pr w.r.t. a} mianVarp(zpp) a(z),

. min{a|$ satisfies pr w.r.t. o} MaXzcvarg (¢r) CY((E),

- INAX14|S satisfies pg w.r.t. a} MAXycvarg (pa) O‘(?J)a and
- INAX{n|S satisfies pa w.r.t. a} minvaarG (vc) Oé(y)

=W N

Applying the monotonicity of the parameterized operators and (in the first
case) the alternating-color technique to all but one variable reduces the four
optimization problems to ones where the specification has a single variable. Fur-
thermore, the upper bounds presented in Corollary [[l and in Lemma [G] yield an
exponential search space for an optimal valuation: if this space is empty, then



there is no « such that S satisfies pp with respect to o in the first two cases
respectively S satisfies pg with respect to every « in the latter two cases.

Thus, it remains the check whether the specification is satisfied with re-
spect to some valuation that is bounded exponentially. In this setting, one can
construct an exponentially sized non-deterministic Biichi automaton recogniz-
ing the models of the specification with respect to the given valuation (using
a slight adaption of the construction presented in [28] accounting for the fact
that we keep track of cost instead of time). This automaton can be checked for
non-emptiness in polynomial space using an on-the-fly construction. Thus, an
optimal «a can be found in polynomial space.

Theorem 5. The ¢cPLTL model checking optimization problems can be solved
i polynomial space.

A similar approach works for infinite games as well. Here, we are interested
in computing

Inin{o¢|Pl. 0 has winning strategy for Gg w.r.t. a} mianVarF(zpp) Oé(SC),
Inin{o¢|Pl. 0 has winning strategy for Gg w.r.t. a} maXmEvarF(zpp) Oé(SC),
Inin{o¢|Pl. 0 has winning strategy for Gg w.r.t. a} mianVarG(zpc) Oz(:L'), and
Inin{o¢|Pl. 0 has winning strategy for Gg w.r.t. a} ma‘XIEV&I‘G(lpG) Oé(l')

L

and witnessing winning strategies for given cPLTL games G with cPLTLg win-
ning condition pg and Gg with cPLTLg winning condition ¢q.

Again, one can reduce these problems to the case of winning conditions with
a single variable and by applying determinacy of games with respect to a fixed
valuation, it even suffices to consider the case of cPLTLy winning conditions
with a single variable, due to duality of games: swapping the players in a game
with cPLTLg winning condition yields a game with ¢cPLTLy winning condi-
tion. Corollary 2] gives a doubly-exponential upper bound on an optimal vari-
able valuation. Hence, one can construct a deterministic parity automaton of
triply-exponential size with exponentially many colors recognizing the models of
the specification with respect to a fixed variable valuation « that is below the
upper bound (again, see [28] for the construction). Player 0 wins the parity game
played in the original arena but using the language of the automaton as winning
condition if and only if she has a winning strategy for the cPLTLy game with
respect to a. Such a parity game can be solved in triply-exponential time [22].

Theorem 6. The cPLTL optimization problems for infinite games can be solved
in triply-exponential time.

Furthermore, the same results hold for cPLDL using appropriate adaptions
of the automata constructions presented in [I5J16].

Theorem 7. The ¢cPLDL model checking optimization problems can be solved
in polynomial space and the cPLDL optimization problems for infinite games can
be solved in triply-exponential time.



However, for parameterized logics with multiple cost-functions, these results
do not remain valid, as one cannot reduce the optimization problems to ones
with a single variable, as a variable may bound operators in different dimensions.
Thus, one has to keep track multiple costs, which incurs an exponential blow-up
when done naively. Whether this can be improved is an open question.

9 Conclusion

We introduced parameterized temporal logics whose operators bound the accu-
mulated cost instead of time as usual: cPLTL and cPLDL as well as their variants
mult-cPLTL and mult-cPLDL with multiple cost functions retain the attractive
algorithmic properties of LTL like a polynomial space model checking algorithm
and a doubly-exponential time algorithm for solving infinite games. Even the
optimization variants of these problems are not harder for cPLTL and ¢cPLDL
than for PLTL: polynomial space for model checking and triply-exponential time
for solving games. However, it is open whether these problems are harder for log-
ics with multiple cost functions. Another open question concerns the complexity
of the optimization problem for infinite games: can these problems be solved in
doubly-exponential time, i.e., is finding optimal variable valuations as hard as
solving games? Note that this question is already open for PLTL. Finally, one
could consider weights from some arbitrary semiring and corresponding weighted
parameterized temporal logics.
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