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Abstract Extended BNF grammars (EBNF) allow regular expressions in the right
parts of their rules. They are widely used to define languages, and can be repre-
sented by recursive Transition Networks (TN) consisting of a set of finite-state
machines. We present a novel direct construction of efficient shift-reduce ELR(1)
parsers for TNs. We show that such a parser works deterministically if the TN
is free from the classical shift-reduce and reduce-reduce conflicts of the LR(1)
parsers, and from a new conflict type called convergence conflict. Such a novel con-
dition for determinism is proved correct and is more general than those proposed
in the past for EBNF grammars or TNs. Such ELR(1) parsers perform fewer shift
moves than the equivalent LR(1) parsers. A simple optimization of the reduction
moves is described.

Keywords extended grammar · EBNF · syntax chart · ELR(1) · LR(1) · syntax
analysis · shift-reduce · bottom-up parsing · parsing conflicts · parser performance

1 Introduction

The Extended Backus-Naur Form grammars (EBNF) are widely used for language
specification, because the presence of regular expressions (RE) in the right-hand
sides of the rules makes these grammars more readable than the pure context-free
(CF) ones (here referred to as BNF). Such grammars are often represented by
graphs called Transition Networks (TN), pioneered, e.g., by [7], or also by the dual
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graphs called syntax diagrams (or charts) [15]. A TN is essentially a collection of
finite automata (FA), typically deterministic (DFA), each one acting as recognizer
of the regular expression associated to a nonterminal symbol of the grammar. In
the BNF case, since the right-hand sides are trivial REs that do not contain star
operators or inner alternatives, the state-transition graph of every FA in the TN
is a tree graph, where the only branching node is the initial one.

This paper contributes a new method for constructing fast deterministic parsers
starting from general TNs.

The Knuth’s LR(1) condition [17] characterizes the grammars of the deter-
ministic CF language family. Knuth’s classical parser-generation algorithm, to be
referred to as the standard method, maps a BNF grammar to a shift-reduce parser,
i.e., a deterministic pushdown automaton (DPDA). However, if the language is
specified by an EBNF grammar or by a general TN, the standard method by it-
self does not suffice. The EBNF rules must be first converted to BNF or, if the
language is specified by a TN, their graphs must be made tree-like. Therefore, we
call indirect such approaches to parser construction. Although the above trans-
formations are straightforward, as they essentially involve transforming iterations
into left- or right-recursive rules, there are practical drawbacks. First, the indirect
LR(1) parser obtained from such a BNF grammar is not in a one-to-one relation
with the official EBNF grammar (or syntax diagram) of the language. This may
cause a misalignment of semantic actions or of diagnostics issued by the compiler.
Second, the indirect parser pays an overhead (discussed in Sect. 4.1) corresponding
to the additional parser moves caused by the grammar transformation.

To eliminate both inconveniences, we present a new direct method, called
ELR(1), for constructing a shift-reduce parser from a general TN, i.e., not re-
stricted to the tree graph case. The problem is not new, but none of the past
attempts to solve it (discussed in Sect. 4.2) has been completely successful, either
because these attempts impose overly restrictive hypotheses, or because they in-
troduce various complications that have not been rigorously analyzed. For such
a reason, the classical book [11] on parsing methods does not deal with the LR
parsers for EBNF grammars, since “the implementation of the iterative interpreta-
tion is far from trivial”. Similar is also the conclusion of the accurate and extensive
survey [14], where the EBNF grammars are called extended context-free grammars
(ECFG) or regular right-part grammars (RRPG):

Any EBNF rule may be converted into a few equivalent BNF rules by replacing each
regular expression (RE) with a BNF subgrammar. Yet the known methods for directly
checking whether the resulting BNF grammar is deterministic, without actually build-
ing and analyzing it, are difficult or overly restricted, and none of them has reached
consensus. What has been published on the LR-like parsing theory is so complex that
not many feel tempted to use it . . . Such a simplistic resumé does not do justice to
the great efforts that have gone into the research and implementation of the methods
described. But it is a striking phenomenon that the ideas behind the recursive descent
parsing of ECFGs can be grasped and applied immediately, whereas most literature
on the LR-like parsing of RRPGs is very difficult to access. Given the developments
in computing power and software engineering, and the practical importance of ECFGs
and RRPGs, a uniform and coherent treatment of the subject seems in order.

Such a treatment is our objective: a practical and general direct construction
for such parsers. Most proposed methods for the construction of deterministic
parsers when TNs have bifurcating paths and cyclic paths, as well as recursive
invocations, add extra bookkeeping to the standard LR(1) method, to manage the
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reduction of strings of unbounded length. Our construction does not introduce
extra bookkeeping and the parser can be implemented very efficiently.

To ensure that the parser is deterministic, every parser generator needs to
check that the input grammar or the TN satisfies a condition, such as the LR(1)
condition for BNF grammars, which detects the violations, named shift-reduce (SR)
and reduce-reduce (RR) conflicts. We formulate a new ELR(1) condition on TNs
by adding a new conflict type called convergence conflict (CV). To prove that
our ELR(1) parser is correct, we show that it is equivalent to the LR(1) parser
indirectly obtained by the standard method, after a straightforward conversion
of the the original TN into a collection of tree graphs, which are in one-to-one
correspondence with a BNF grammar. Such a conversion creates a new nonterminal
symbol for each internal node of the TN graphs.

We have compared both the descriptional and the computational complexity
of direct ELR(1) parsers vs. indirect LR(1) parsers, and we have found that the
direct ones are better. An implementation of our parser generator is freely available
at http://github.com/FLC-project/ELRparser.

Sect. 2 sets the terminology and notation for (EBNF) grammars and TNs.
Sect. 3 contains the ELR(1) condition, the main property and its proof, and the
direct construction of shift-reduce parsers. Sect. 4 compares the descriptive and
computational complexities of the new parsers and of the standard indirect ones,
before and after an effective optimization for speeding-up the reduction operations.
It also discusses previous related research.

2 Basic definitions

The terminal alphabet is denoted by Σ and the empty word by ε. The special
character “⊣ ”, included in Σ, is used as a marker for the parser to identify the
end of the input word.

Let V be an alphabet and let f be a mapping defined on V such that, for every
a ∈ V , the image f (a) is a non-empty language. For two mappings f and g, we
denote their composition f

(

g (a)
)

by f g, we denote the iteration f . . . f (n times)

by fn, and in particular the identity mapping by f0. As usual, a substitution
(e.g., in [9]) is a mapping from V into languages, which is extended to the words
over V by f (ε) = ε and f ( a1 . . . an ) = f (a1) . . . f (an), with ai ∈ V , and to the
languages over V by f (L) =

⋃

w∈L f (w). It is said to be a substitution over V if
f (a) is a language over V , for all a ∈ V .

Let f be a substitution over V and let L be a language over V . The iterated

substitution f∗ of L is defined by

f
∗ (L) =

∞
⋃

n=0

f
n (L) .

A non-deterministic finite automaton (NFA)M is defined by a tuple (V, Q, δ, q0, F ),
where V is an alphabet and Q is a state set, with initial state q0 ∈ Q and final
states F ⊆ Q. The state-transition relation of M (often represented as an edge-
labeled graph) is δ ⊆ Q × V × Q. Relation δ is extended as usual to the domain
Q×V ∗×Q. In the state-transition graph a path from the state q0 to a state q ∈ F

is called accepting, and the concatenation of the edge labels of such a path forms
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an accepted word. The language recognized by M , with L (M) ⊆ V ∗, is the set of
all the accepted words. The automaton is deterministic (DFA) if the relation δ

is functional from Q × V to Q, i.e., δ : Q × V → Q. A DFA such that no edge of
δ enters the initial state is called non-reentrant. Clearly every DFA can be made
non-reentrant by adding one extra state and at most |V | edges.

2.1 Transition network

A syntax diagram is formalized by means of a set of DFAs, to be called a transition
network (TN). Let V be a bipartite alphabet, i.e., V = Σ ∪ VN and Σ ∩ VN = ∅,
where set Σ is a terminal alphabet and set VN = { S, A, B, . . . } is a nonterminal
alphabet that includes a distinguished symbol S, called axiom.

Definition 1 (transition network) A transition network TN is a finite collection
of DFAs, called machines1, M = { MS , MA, MB , . . . }. The machine denoted
by MS is distinguished as the starting machine. The set of machine names, VN =
{ S, A, B, . . . }, is called nonterminal alphabet. Every machine MA ∈ M is defined
by a tuple MA = (V, QA, δA, 0A, FA ) where the input alphabet V is the union
V = VN ∪ Σ of the nonterminal and terminal alphabets. We assume that every
machine is non-reentrant.

The state set of the TN M is Q =
⋃

MA ∈M QA. Without loss of generality, by
assuming that for any two distinct machines MA and MB it holds QA ∩ QB = ∅,
we may safely define the TN transition function as δ =

⋃

MA ∈M δA and write δ

instead of δA at no risk of confusion.

The (regular) language over V recognized by machine MA starting in some
state qA and ending in a final state is

R (MA, qA ) =
{

x ∈ V
∗ | δ ( qA, x ) ∈ FA

}

.

The TN M defines a substitution fM, or only f if M is understood, by means of

{

fM (a) = { a } a ∈ Σ

fM (A) = R (MA, 0A ) A ∈ VN .

The (context-free) language L over Σ recognized by a machine MA starting in
some state qA, is defined by means of the iterated substitution f∗ as

L (MA, qA ) = f
∗ (

R (MA, qA )
)

∩ Σ
∗
.

We may simply write L (qA) instead of L (MA, qA ) since the state name qA iden-
tifies the machine. Then the language defined by the TN, L (M ) ⊆ Σ∗, is

L (M ) = L (MS , 0S ) ,

therefore it follows L (M ) = f∗M (S) ∩ Σ∗. ⊓⊔

1 We reserve the term “automata” to the push-down machines of the parsers.



Fast Deterministic Parsers for Transition Networks 5

We briefly motivate the assumptions of Def. 1 about finite-state machines. We have
chosen deterministic machines because, to the best of our knowledge, the syntax
diagrams used in the language reference manuals are deterministic. A different
choice would moderately complicate the parser construction algorithm without
much benefit. Similarly, the non-reentrance hypothesis is unnecessary, but it sim-
plifies the (implementation of the) reduction moves of the parser as any TN path
never revisits the initial state. Every machine can be so normalized by adding a
new initial state and a few outgoing arcs, with a negligible overhead.

The transition function δ of a TN M may be partial and the machines of M are
not necessarily minimal. For every machineMA ∈ M, we also assume the following:
MA is trim, MA is recursively reachable from MS and it holds L (MA, 0A ) 6= ∅.

The set of starting characters for a set of words L ⊆ Σ∗ is defined as

First (L) =
{

a ∈ Σ |
(

aΣ
∗ ∩ L

)

6= ∅
}

.

Given a TN and a state q ∈ Q thereof, we define First (q) = First
(

L (q)
)

.

2.2 BNF and EBNF grammar

A BNF (i.e., context-free) grammar G is a 4-tuple (Σ, VN , P, S ), where the non-

terminal alphabet is VN , the set of rules is P and the axiom is S ∈ VN . A grammar

symbol is an element of the total alphabet V = Σ ∪ VN . In a rule A → α, the non-
terminal A ∈ VN is the left part and the string α ∈ V ∗ is the right part. A grammar
is right-linear if every right part α has the form aB with a ∈ Σ and B ∈ VN , or if
α is the empty word ε.

We also use Extended BNF grammar rules containing regular expressions. An
EBNF grammar G has exactly one rule A → α for each nonterminal A ∈ VN . The
right part α is a regular expression (RE) over the total alphabet V , with the usual
operators: concatenation, union (represented by a vertical bar “ | ”), Kleene star
“ ∗ ” and cross “+”, and parentheses. The language over V defined by the RE α

is called the regular language associated with A and is denoted RA, or also R (α).
We observe that a BNF grammar is also an EBNF one, provided we group all

the alternative rules A → α1, A → α2, . . . , A → αn of BNF into one EBNF rule
A → α, with α = α1 | α2 | . . . | αn.

For an EBNF grammar, an immediate derivation is a relation ⇒ over V ∗ × V ∗

such that z ⇒ z′ if z = uAv, z′ = uw v, A → α ∈ P and w ∈ RA. A derivation is
its reflexive and transitive closure, denoted

∗
=⇒. A derivation is rightmost if at any

step it holds v ∈ Σ∗. The reverse relation of an immediate derivation w ⇒ z is
named reduction and is denoted by z ❀ w.

We assume that all grammars are reduced : for every nonterminal A ∈ VN there
exist derivations S

∗
=⇒ uAv and A

∗
=⇒ w, where u, v ∈ V ∗ and w ∈ Σ∗. This implies

that for every A ∈ VN the regular language RA is not empty.
The language generated by grammar G starting from a nonterminal A ∈ VN

is L (G, A ) =

{

x ∈ Σ∗ A
∗
=⇒
G

x

}

. The language generated by G is L (G) =

L (G, S ). A language that contains the empty word ε is called nullable. Since gram-
mar G is reduced, for every A ∈ VN the regular language RA contains some string
(as said before), from which some terminal string derives, therefore L (G, A ) 6= ∅.
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It is well-known that the EBNF grammars have the same generative capacity
as the BNF ones, namely they generate the context-free languages. Two grammars
are equivalent if they define the same language.

2.3 Equivalence of TN and grammar

Given a TN M, we may write different EBNF or BNF grammars for the language
of M, and we need to examine two cases. First, we consider the EBNF grammars,
to be called associate, that reflect the structure of M as a collection of finite-state
machines, i.e., that have a bijective correspondence between their nonterminal
symbols and the machines of M.

Definition 2 (TN and EBNF) Let M = { MS , MA, MB , . . . } be a TN over
V = Σ ∪ VN . An EBNF grammar G =

(

Σ, V ′
N , P ′, S′

)

is said to be associated

with M if V ′
N = VN , S′ = S and, for every machine MA ∈ M and rule A → α ∈ P ′,

it holds R (MA, 0A ) = RA, i.e., the language over V recognized by machine MA

is the same as that defined by the RE α. ⊓⊔

It is obvious that a TN and any associated grammar define the same context-free
language for each machine and corresponding nonterminal.

Lemma 1 (equivalence of TN and EBNF) For every TN M and grammar G

associated with M, and for every machine MA ∈ M, it holds

f
∗
M

(

R (MA, 0A )
)

=

{

x ∈ V
∗

A
∗
=⇒
G

x

}

.

Therefore, it also holds L (MA, 0A ) = L (G, A ) and L (M ) = L (G ).

In other words, a TN represents the class of all the equivalent EBNF grammars
such that they use the same nonterminal symbols and the regular languages cor-
responding to nonterminal classes of identical name are equal. To construct an
associated grammar, by means of well-known methods we compute a regular ex-
pression RA for each machine MA and we create the rule A → RA. We illustrate
with an example.

Example 1 (TN and derivation) Fig. 1.a shows a TN M = { MS } with just
one machine. The EBNF grammar listed in Fig. 1.b is associated with M since
RS = ( ε | b )

(

a ( b | S c )
)∗

= R (MS , 0S ). Therefore the correspondence be-
tween derivations and iterated language substitutions (Lemma 1) is one-to-one.
For instance, we have

fM (S) ∋ a S c a b and f
2
M (S) ∋ a b c a b

and since a S c a b ∈ RS and b ∈ RS , there exists a derivation

S ⇒ aS c a b ⇒ a b c a b . ⊓⊔

We observe that for many TNs it is impossible to find an associated grammar that
is in BNF. This simply comes from the fact that for some machine of the TN,
defining the regular language of the machine by means of a BNF grammar may
require more than one nonterminal symbol [12].
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(a) transition net M = { MS }

0S 1S 2S 3SS →

↓

→
a

S c

b

b

a

(b) an associated EBNF grammar G : S → ( ε | b ) ( a ( b | S c ) )∗

(c) right-linearized
grammar of M

Ĝ

{

0S → a 1S | b 3S | ε 2S → c 3S

1S → b 3S | 0S 2S 3S → a 1S | ε

Fig. 1 Part (a): transition networkM with one machine MS . Part (b): an associated EBNF

grammar G with one rule. Part (c): corresponding right-linearized grammar Ĝ.

Second, we focus on a special BNF grammar type, called right-linearized (RLZ),
that precisely reproduces the structure of a TN, using as many nonterminal sym-
bols as there are states in the TN. Such grammars will be used to compare our
parsers with the standard LR(1) ones.

Since for every NFA there exists an equivalent (BNF) right-linear grammar,
which encodes the transition arcs as rules, we consider the union of all such right-
linear grammars for the machines of a given TN M.

Definition 3 (corresponding RLZ grammar) Consider a TN M. For each ma-
chine MA = ( VN ∪ Σ, QA, δA, 0A, FA ) ∈ M, the corresponding right-linearized

(RLZ) grammar is the BNF grammar ĜA =
(

Σ, QA ∪ { 0B | B ∈ VN } , PA, 0A
)

with the following rules

( qA → a rA )∈PA ⇔
(

pA
a
−→ rA

)

∈ δA where a ∈ Σ

( qA → 0B rA )∈PA ⇔
(

pA
B
−→ rA

)

∈ δA where B ∈ VN

( qA → ε )∈PA ⇔ qA ∈FA .

The right-linearized grammar that corresponds to a TN M is denoted ĜM =
(Σ, Q, P, 0S ), where

P =
⋃

MA ∈M

PA .

When no ambiguity arises, we drop the subscript M and we write Ĝ instead. ⊓⊔

Notice that in general grammar Ĝ is not right-linear, since the right part of a rule
may be in VN VN . From the assumptions on TNs in Sect. 2.1, it follows that Ĝ is
reduced. For illustration, see the RLZ grammar in Fig. 1.c.

Lemma 2 (equivalence of TN and RLZ grammar) Let M be a TN and Ĝ be

the corresponding RLZ grammar. Then it holds L (M ) = L
(

Ĝ
)

.

We omit the obvious proof by induction.
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3 From TN to Shift-Reduce Parser

This section starts with the reformulation for TNs of the basic notions that support
the standard theory of LR(1) parsers. Subsequently we present the main result:
a new algorithm that directly constructs the parser state-transition graph, to be
called ELR(1) graph, starting from a TN. On such a graph we identify the situations
that cause a parsing conflict: shift-reduce, reduce-reduce and convergence conflict.
We call ELR(1) TNs the conflict-free ones. Then, since a convergence conflict
corresponds to a new situation not present in standard parsers, we briefly contrast
the two cases. The important result (Th. 1) proves the equivalence of the ELR(1)
condition for a TN and the LR(1) condition for the corresponding right-linearized
grammar. Finally, we present and exemplify the shift-reduce parsing algorithm,
i.e., a deterministic push-down automaton controlled by the ELR(1) graph.

3.1 ELR(1) condition for TN

It is necessary to reformulate for a TN M the classical notions pertinent to the
LR(1) analysis, originally stated in [17] for a BNF grammar, assuming the reader
has some familiarity with them.

First, it is obvious that now a so called dotted rule (of a BNF grammar) should
be replaced by a machine state (of a TN), e.g., in Fig. 1.a the dotted rule S → • b

is synonymous with the machine state 0S .

Definition 4 (items and item sets) For a TNM = { MS , MA, . . . }, an ELR(1)
item is a pair of the form 〈 q, π 〉 ∈ Q×℘ (Σ ), such that π 6= ∅ and if q is the initial
state 0S of MS then it holds ⊣ ∈ π. Set π is called the look-ahead (set) of state q.

An item set I is a finite non-empty collection of items I =
{

〈 q1, π1 〉 , 〈 q2, π2 〉 ,

. . .
}

. If two (or more) items 〈 qi, πi 〉 ,
〈

qj , πj
〉

∈ I have identical states, i.e.,
qi = qj , they are usually coalesced into one item

〈

qi, πi ∪ πj
〉

with a unified
look-ahead set. ⊓⊔

We recall that in the standard approach to LR(1) analysis an item set represents
a parser state, a p-state for short.

The standard closure function from item sets to item sets [17] is next reformu-
lated for the item sets of a TN instead of a BNF grammar.

Definition 5 (closure function) Let M be a TN and I be an item set of M. Let
0A be the initial state of machine MA ∈ M. The function

closure : ℘
(

Q× ℘ (Σ )
)

→ ℘
(

Q× ℘ (Σ )
)

recursively computes the smallest set such that

closure (I) = I ∪











〈 0A, σ 〉

〈 q, π 〉 ∈ closure (I)

and
(

q
A
−→ r

)

∈ δ

and σ = First
(

L (r) · π
)











. ⊓⊔

Notice that the look-ahead σ includes π if the language L (r) is nullable.
Given a TN M, we present the new direct ELR(1) construction of the finite

state-transition function or graph ϑ of the DFA that controls the parser, the latter
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being a DPDA. Such a DFA will be referred to as ELR(1) graph, to shorten its
traditional name “recognizer of viable LR(1) prefixes”. Each state is an item set
and is called a parser state (p-state) to avoid confusion with the states of TN
machines. The construction involves three phases:

1. from the TN M, construct the ELR(1) graph;
2. check the forthcoming ELR(1) condition, which makes sure that the automa-

ton is deterministic by excluding all conflicts; there are three conflict types:
the standard shift-reduce (SR) and reduce-reduce (RR) conflicts, and the new
convergence conflict (CV);

3. if the test in (2.) is passed, construct the DPDA, i.e., the parser.

Graph construction The ELR(1) graph of a TNM is a DFA P = (V, R, ϑ, I0, R ),
with alphabet V = Σ ∪ VN . The set R contains the p-states, each of which is an
item set; all the p-states are final. The state-transition function2 is ϑ : R×V → R.
The graph is constructed by Alg. 1, starting from M, and outputting R and ϑ.

Algorithm 1: Construction of the graph P for a TN M, i.e., the p-state set
R = { I0, I1, . . . } and the transition function ϑ : R × V → R.

Input: transition network (TN)M
Output: graph P =

(

R, ϑ
)

ofM

// initial, base and closed p-states: I0, I′ and I′′

// consolidated and growing p-state sets: R and R′

// consolidated transition set: ϑ

I0 := closure
(

{ 〈 0S , { ⊣ } 〉 }
)

// create initial p-state

R′ := { I0 } // initialize p-state set

ϑ := ∅ // initialize transition set

repeat // build graph nodes & trans

R := R′ // consolidate p-state set

foreach
(

I ∈ R and X ∈ V
)

do // scan p-states & symbols

// compute the base of the (new) successor p-state

I′ := { 〈 δ (p, X), π 〉 | 〈 p, π 〉 ∈ I and δ (p, X) is defined }
if

(

I′ 6= ∅
)

then // proceed with p-state

I′′ := closure
(

I′
)

// close p-state base

R′ := R′ ∪ { I′′ } // add p-state to graph

ϑ := ϑ ∪
{

arc
(

I
X
−→ I′′

) }

// add trans to graph

// else p-state I does not have a successor for symbol X

until
(

R′ = R
)

// exit if graph unchanged

For the item sets I and I ′, and for the grammar symbol X ∈ V , if it holds

ϑ
(

I, X
)

= I ′ (we equivalently write “ arc
(

I
X
−→ I ′

)

∈ ϑ ”) we say that the

function ϑ defines a shift from I to I ′ under X. The shift is qualified as terminal

or nonterminal according to the nature of symbol X. From Alg. 1 it is clear that

it holds ϑ
(

I, X
)

= I ′ if, and only if, the TN has the arc pA
X
−→ qA for some items

〈 pA, π 〉 , 〈 qA, π 〉 ∈ I, I ′. In this case we also say that the item 〈 pA, π 〉 in the item
set I shifts under symbol X.

2 This function is analogous to the “GOTO” component of the canonical parsing table
described in the classical textbooks on compilers such as [1].
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Alg. 1 is iterative and clearly terminates. Since all the machines of the TN M

are non-reentrant (i.e., the initial state does not have ingoing arcs), see Sect. 2 and
Def. 1, every p-state I ∈ R is made of two disjoint subsets of items, respectively
called base and closure, which are defined as follows

I| base = { 〈 q, π 〉 ∈ I | state q is not initial }

I| closure = { 〈 q, π 〉 ∈ I | state q is initial } .

In Fig. 2.b we represent the base and the closure one on top of the other, separated
by a double line. Every p-state, but the initial one I0, has a non-empty base,
whereas the closure may be empty in some p-states.

ELR(1) condition Intuitively a p-state has a conflict if the parser, on finding
itself in that p-state, is unable to choose a move deterministically. First, we recall
the standard conflicts of the LR(1) parsers, since they concern the ELR(1) parsers
too, then we formalize a new conflict type that may only occur in the latter ones.

Definition 6 (shift-reduce and reduce-reduce conflicts) A p-state I has a Shift-

Reduce (SR) conflict if

∃ item 〈 q, π 〉 ∈ I such that state q is final
and ∃ arc

(

I
a
−→ I ′

)

∈ ϑ with symbol a ∈ π.

A p-state I has a Reduce-Reduce (RR) conflict if

∃ items 〈 q, π 〉 , 〈 r, ρ 〉 ∈ I, with q 6= r, such that
states q and r are final, and it holds π ∩ ρ 6= ∅.

⊓⊔

In an ELR(1) parser, if in a p-state I two (or more) items shift under the same
symbol, then determinism may be defeated. This situation is next analyzed to
pinpoint the dangerous case.

Definition 7 (convergence conflict) Let I be a p-state such that for a symbol
X ∈ V the transition function ϑ (I, X) is defined. We say that

1. the transition ϑ (I, X) is multiple (double or more) if

∃ items 〈 q, π 〉 , 〈 r, ρ 〉 ∈ I, with states q 6= r,

such that ∃ arcs
(

q
X
−→ q′

)

,
(

r
X
−→ r′

)

∈ δ,

where δ is the transition function of the TN;
2. a multiple transition is convergent if q′ = r′, i.e., the destination states coincide;
3. a convergent transition is conflicting if π ∩ ρ 6= ∅, i.e., the look-ahead sets

overlap; if so, the p-state I has a Convergence conflict (CV). ⊓⊔

One may suspect that situations other than SR, RR and CV exist, which would
introduce non-deterministic transitions in an ELR(1) parser. Yet this is not the
case: the absence of the three conflict types ensures that parsing is deterministic,
as we later prove.

Definition 8 (ELR(1) condition) A TN meets the ELR(1) condition if no p-state
contains any SR, RR or CV conflict. ⊓⊔



Fast Deterministic Parsers for Transition Networks 11

(a) transition net M = { MS } 0S 1S 2S 3S

S

↓

↓

→
a

S c

b
b

a

(b) ELR(1) graph P ofM

0S ⊣

1S ⊣

0S c

1S c

0S c

2S ⊣ 3S ⊣ c 2S c

3S ⊣ 2S ⊣ c
1S ⊣ c

0S c
3S c

P →

I0

I1 I2

I3 I4

I5

I7

I6I8I9

a
a

a

b

b

(∗)

noncon-
flicting

b

co
n
fl
ic
ti
n
g

c c

S
S

S

c

a
b

(∗∗)

conflicting

a a

a

(c) parsing trace of word “ a b a a c c ” — stack shown before each reduction

input tape with cell numbering and end-of-text ⊣ — the gap is for the null reduction

a b a a c c ⊣

1 2 3 4 5 6
stack contents after shifting a b a a

0 ⊣ ⊥ a
1 ⊣ ♯1

0 c ⊥
b

3 ⊣ ♯1

3 c ♯2
a

1 ⊣ ♯1

1 c ♯2

0 c ⊥

a

1 c ♯3

0 c ⊥

J [0] J [1] J [2] J [3] J [4]
stack contents after reducing ε ❀ S and then shifting S c

0 ⊣ ⊥ a
1 ⊣ ♯1

0 c ⊥
b

3 ⊣ ♯1

3 c ♯2
a

1 ⊣ ♯1

1 c ♯2

0 c ⊥

a
1 c ♯3

0 c ⊥
S 2 c ♯1 c 3 c ♯1

J [0] J [1] J [2] J [3] J [4] J [5] J [6]
stack contents after reducing aS c ❀ S and then shifting S c

0 ⊣ ⊥ a
1 ⊣ ♯1

0 c ⊥
b

3 ⊣ ♯1

3 c ♯2
a

1 ⊣ ♯1

1 c ♯2

0 c ⊥

S
2 ⊣ ♯1

2 c ♯2
c

3 ⊣ ♯1

3 c ♯2

J [0] J [1] J [2] J [3] J [4] J [5]
reduction a b aS c ❀ S and stack contents J [0] = { 〈 0, { ⊣ } , ⊥〉 } ⇒ parser accepts and stops

lo
o
k
-a
h
ea
d
so
lv
es

co
n
v
er
g
en

ce

Fig. 2 Parts: (a) TNM, (b) ELR(1) graph P and (c) parsing trace. In (b) the base and closure
parts of each p-state are separated by a double line, convergent transitions are represented by
double arrows and asterisks are for later reference (see Fig. 3).
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(a)
right-linearized

grammar Ĝ

{

0S → a 1S | b 3S | ε 2S → c 3S

1S → b 3S | 0S 2S 3S → a 1S | ε

(b) LR(1) graph (partial) of Ĝ

0S → • a 1S
⊣0S → • b 3S

0S → • ε = ε •

0S → a • 1S ⊣
1S → • b 3S ⊣
1S → • 0S 2S
0S → • a 1S

c0S → • b 3S
0S → • ε = ε •

1S → b • 3S ⊣
0S → b • 3S c

3S → • a 1S ⊣ c
3S → • ε = ε •

1S → b 3S • ⊣
0S → b 3S • c

The non-conflicting convergent tran-

sition I1
b

=⇒ I7 in the ELR graph
P (Fig. 2.b) corresponds to two non-
conflicting reductions in the p-state
K ′. The conflicting convergent transi-

tion I8
b

=⇒ I7 in P appears as an RR
conflict in the p-state K ′′.

3S → a • 1S ⊣ c

1S → • b 3S ⊣ c
1S → • 0S 2S
0S → • a 1S

c0S → • b 3S
0S → • ε = ε •

1S → b 3S • ⊣ c
0S → b 3S • c

1S → b • 3S ⊣ c
0S → b • 3S c

3S → • a 1S ⊣ c
3S → • ε = ε •

P̂ →

I0

The p-state I7 in the ELR graph P
(Fig. 2.b) is split into the p-state pairs
I′7, K

′ and I′′7 , K
′′, the former without

and the latter with an RR conflict.

I1

see the correspondence
with the two convergent
transitions labeled by b
and tagged (∗) and (∗∗)
in Fig. 2.b

I′7

I8

I′′7

K ′′

K ′

reduce-reduce conflict

no conflict here

a

b

(∗)

a

b

(∗∗)

3S

3S

Fig. 3 Part (a): the right-linearized grammar Ĝ for the TN M of Fig. 2.a. Part (b): the

standard LR(1) graph P̂ of Ĝ, where the items are represented by dotted rules instead of
machine states, to comply with tradition. Classification of p-states: K ′,K ′′ are sink reduction
states and all the remaining states, apart from I0, are intermediate.

We show the automaton graph and we discuss the ELR(1) condition for two ex-
amples.

Example 2 (ELR(1) condition) For the TN in Fig. 2.a, the graph P is depicted
in Fig. 2.b. None of the p-states has any SR or RR conflicts. The p-states I1, I2

and I8 have convergent transitions. The transition I1
b
−→ I7 is convergent, yet it

is not conflicting since the look-ahead sets of items 〈 1S, { ⊣ } 〉 and 〈 0S , { c } 〉

are disjoint. On the other hand, in the p-state I8 (and also in the p-state I2) the
convergent transitions are conflicting because it holds { ⊣, c } ∩ { c } 6= ∅ (and
in I2 the look-ahead sets of the two items are equal to { c }). It follows that this
TN is not ELR(1).

The presence of a non-conflicting transition and a conflicting one, both ending
in the same p-state I7, shows that a CV conflict is a property of the source p-state,
not of the destination one. ⊓⊔

Example 3 presents an ELR(1) TN with multiple but non-convergent transitions.

Example 3 (multiple transition) The TN shown in Fig. 4.a generates the determinis-
tic language { an bm | n ≥ m ≥ 0 }. The graph shown in Fig. 4.b has no conflict
of type SR or RR. The p-state I0 has multiple yet not convergent transitions to
p-state I1. Since none of the p-states has any conflicts, the TN meets the ELR(1)
condition. ⊓⊔
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(a) transition net

1S 0S 2S
↑

S

→
a

N

N

a

0N 1N 2N 3NN →

↑

→
a N b

an associated EBNF grammar: S → a∗ N N → a N b | ε

(b) ELR(1) graph P

0S ⊣
0N

1S ⊣
1N

0N b ⊣

1S ⊣

1N b ⊣

0N b ⊣

2S ⊣
2S

⊣
2N

2S ⊣

2N b ⊣

3N ⊣ 3N b ⊣

I0
I1 I2

I3 I4 I5

I6 I7

P →
a a

a

N N N

b b

(c) optimized parsing trace of word “ a a a b ”

vector stack after shifting a a a, reducing ε ❀ N and shifting b

0S ⊣ ⊥
0N ⊣ ⊥ a

1S ⊣ •
1N ⊣ •
0N b ⊣ ⊥

a 1S ⊣ •
1N ⊣ •
0N b ⊣ ⊥

a 1S ⊣ •
1N ⊣ •
0N b ⊣ ⊥

N
2S ⊣ •
2N b •

b 3N b ⊣ •

after reducing a N b ❀ N

0S ⊣ ⊥
0N ⊣ ⊥ a

1S ⊣ •
1N ⊣ •
0N b ⊣ ⊥

a

1S ⊣ •
1N ⊣ •
0N b ⊣ ⊥

N
2S ⊣ •
2N b •

accepting configuration after reducing a a N ❀ S

0S ⊣ ⊥
0N ⊣ ⊥

Fig. 4 Part (a): A TN and an associated EBNF grammar. Part (b): ELR(1) graph that
exhibits multiple non-convergent transitions to two items in the bases of p-states I1, I2, I4
and I5. Part (c): optimized parsing of “ a a a b ” using Alg. 3 (parser with vector stack).
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3.2 The equivalence of ELR and LR conditions

It may help to informally compare the standard LR(1) condition and Def. 8, to
prepare for the proof of their equivalence in Th. 1.

ELR(1) versus standard LR(1) conditions First, we explain why a convergence
conflict may not exist in a standard LR(1) parser. Then, we show that some
standard RR conflicts may turn into CV conflicts in an equivalent ELR(1) parser.

Consider a BNF grammar G and the sub-grammar consisting of a nonterminal
symbol A together with its alternative rules A → α | β | . . .. Since grammar
G is BNF, each sub-grammar thereof, viewed as a finite-state machine NA, has a
tree-shaped (acyclic) graph and satisfies the non-reentrance hypothesis (Def. 1),
yet in general it is non-deterministic, like sub-grammar A → B c | B d. Since a
nondeterminism of this type is easily disposed of in an equivalent TN (by using as
machine the DFA that recognizes B ( c | d )), for brevity we only discuss the case
that machine NA is deterministic.

Now imagine the LR(1) graph constructed from G by the standard method. A
little thought suffices to see that a p-state may not have any multiple transitions
(Def. 7), hence any convergent transitions either. Therefore, the situation causing
CV conflicts is impossible in a LR(1) graph.

To address the natural question of how CV conflicts originate in a TN, we con-
sider an example where several BNF rules are equivalent to a single TN machine,
and we show that a standard RR conflict in the BNF grammar turns into a CV
conflict. Return in Fig. 2.b to the ELR(1) graph for the TN M = { MS } of Fig.
2.a. Observe in Fig. 3.a the BNF grammar Ĝ, which is equivalent to M, and in
Fig. 3.b the standard LR(1) graph (called GOTO graph in [1]). Notice how the
CV conflict in the p-state I8 of Fig. 2.b matches the RR conflict in the p-state K”
of Fig. 3.b. However, such a correspondence between CV and RR conflicts may be
not fully understood through an example, thus it will be carefully analyzed in the
sequel.

The next central result supports the view that in some sense the ELR(1) con-
dition is the most general one to ensure that a ELR(1) parser is deterministic.

Let Ĝ be the right-linearized grammar corresponding to a given TN, and let
P̂ be its LR(1) graph. The alphabets of graphs P and P̂ slightly differ, and to
simplify the notation in the coming discussion we introduce a mapping “ ·̂ ” (not
surjective) from the input alphabet of P, i.e., from V = Σ ∪ VN , to the input
alphabet of P̂, i.e., to Σ ∪ Q with Q =

⋃

A∈VN
QA. The mapping “ ·̂ ” is defined

as: ∀ a ∈ Σ â = a and ∀A ∈ VN Â = 0A.
For the proof of the subsequent Th. 1, we analyze the correspondence between

the two graphs P and P̂, namely between their transition functions ϑ and ϑ̂, and
between their p-states, to be denoted by I and Î. It helps to compare the graphs
in Fig.s 2.b and 3.b.

We observe that since the RLZ grammar Ĝ is BNF, all the arcs of P̂ that enter
the same p-state have identical labels. But since this property does not hold for
P, a p-state of P may be split into several p-states of P̂.

It is important to notice that any non-empty rule X → Y Z of grammar
Ĝ has a rather restricted form: X ∈ Q, Y ∈ Σ ∪ { 0A | 0A ∈ Q } and Z ∈
Q \ { 0A | 0A ∈ Q }. It follows that the p-states Î of graph P̂ can be categorized
into three disjoint classes, as follows



Fast Deterministic Parsers for Transition Networks 15

initial

p-state
intermediate p-state Î sink reduction p-state Î

Î0
such that each item in Î| base
has the form pA → Y • qA

such that each item in Î

has the form pA → Y qA •

See Fig. 3.b for illustration.
For the graphs P and P̂ we define a correspondence relation between the sets

R and R̂ that excludes the sink reduction p-states.

Definition 9 (correspondent p-states) Consider the p-states I ∈ R and Î ∈ R̂.
Let item t = 〈 q, ρ 〉 ∈ I and let set T = { 〈 pi → s • r, ρi 〉 } ⊆ Î. We say that

item t = 〈 q, ρ 〉 corresponds to set T = { 〈 pi → s • r, ρi 〉 } (1)

if it holds q = r and ρ =
⋃

i

ρi

p-states I and Î are correspondent if for every item t ∈ I| base
there exists a correspondent set of items T ⊆ Î| base .

The initial p-states I0 and Î0 are correspondent as their bases are empty. ⊓⊔

Some properties of the correspondent p-states are stated in Lemma 3.

Lemma 3 (properties of the ELR(1) and LR(1) graphs) The following proper-

ties hold:

1. For every symbol s ∈ V , and for every pair of correspondent p-states I and Î, the

p-state ϑ (I, s) = I ′ is defined if, and only if, the p-state ϑ̂ (Î, ŝ) = Î ′ is defined

and is intermediate. Furthermore, the p-states I ′ and Î ′ are correspondent. The

mapping (2), defined by (1)

{

Î0
}

∪
{

Î ∈ R̂ | p-state Î is intermediate
}

→ R (2)

is total and surjective.

2. For every final but non-initial state fA ∈ Q, it holds: item 〈 fA, λ 〉 ∈ I (or more

exactly ∈ I| base) if, and only if, for some symbol s ∈ V a correspondent p-state

Î contains both the correspondent set of items { 〈 pAi
→ ŝ • fA, λi 〉 }, with λ =

⋃

i λi, and the item 〈 fA → ε •, λ 〉.
3. For every final and initial state 0A ∈ Q, with A 6= S, it holds: item 〈 0A, π 〉 ∈ I if,

and only if, a correspondent p-state Î contains the item 〈 0A → ε •, π 〉. Further-
more and similarly, if the (axiomatic) initial state 0S is also final, then the item

〈 0S , π 〉 is in the p-state I0 if, and only if, it holds: item 〈 0S → ε •, π 〉 ∈ Î0.

4. For every pair of correspondent p-states I and Î, and for every initial state 0A,
it holds item 〈 0A, ρ 〉 ∈ I| closure if, and only if, it holds: item 〈 0A → • α, ρ 〉 ∈

Î| closure for every rule 0A → α.

Proof

Claim 1. It is proved by induction on the paths of the graph.
base step Let I0 and Î0 be the initial p-states of P and P̂. The p-state I0 contains

only items with an initial state, i.e., a state of the kind 0A with A ∈ VN .
From the definition of the closure function (Def. 5) and from the standard
construction of the GOTO graph for the usual BNF grammars (see for instance
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[1]), for every item 〈 0A, ρ 〉 ∈ I0 (hence there exists a set of arcs
(

0A
si−→ pi

)

∈

δ) there is a set of items 〈 0A → • ŝi pi, ρ 〉 ∈ Î0. In addition, if state 0A is final
then p-state Î0 also includes item 〈 0A → • ε = ε •, ρ 〉.
Notice that while in the p-state I0 there is no more than one item with state
0A, p-state Î0 might include several items corresponding to such a state, one
for each arc in the TN leaving state 0A.
Then, ∀ s ∈ (Σ ∪ VN ), p-state I ′ = ϑ (I0, s) is defined if, and only if, p-
state Î ′ = ϑ̂ (Î0, ŝ) is also defined and is intermediate. Moreover, for every item

〈 p, ρ 〉 ∈ I ′| base (hence there exist an item 〈 0A, ρ 〉 ∈ I0 and an arc
(

0A
s
−→ p

)

∈

δ) there is an item as 〈 0A → ŝ • p, ρ 〉 ∈ Î ′| base , whence p-states I ′ and Î ′ are
correspondent.
The inductive hypothesis includes the following two items:

(i) for each item of type 〈 p, ρ 〉 ∈ I ′| base and for each arc of type
(

p
s
−→ q

)

∈ δ,

there is an item of type 〈 p → • ŝ q, ρ 〉 ∈ Î ′| closure ; notice that in the p-state

I ′ there is a unique item corresponding to the source state p of the TN
transition, while p-state Î ′ includes as many items as there are TN arcs,
how ever labeled, departing from state p;

(ii) for each item of type 〈 0A, ρ 〉 ∈ I ′| closure (which is included therein because

there are an item 〈 p, σ 〉 ∈ I ′ and an arc
(

p
A
−→ q

)

∈ δ) and for every arc
(

0A
s
−→ q

)

∈ δ, s ∈ Σ ∪ VN , there is an item of type 〈 0A → • ŝ q, ρ 〉 ∈

Î ′| closure .

inductive step Let I ∈ P and Î ∈ P̂ be two corresponding non-initial p-states, with
p-state Î being necessarily intermediate.
If p-state I ′ = ϑ (I, s) is defined, with symbol s ∈ Σ ∪ VN , then I ′| base includes
a set of items of type 〈 qi, ρi 〉, p-state I contains, either in its base or in its

closure part, a set of items of the type
〈

qij , ρij
〉

such that arc
(

qij
s
−→ qi

)

∈ δ,

and it holds
⋃

j ρij = ρi.

From the inductive hypothesis, p-state Î contains, either in its base or in its
closure part, a set of items of type

〈

qij → • ŝ qi, ρij
〉

, therefore, Î ′| base contains

a set of items of type
〈

qij → ŝ • qi, ρij
〉

, with
⋃

j ρij = ρi, whence p-states I ′

and Î ′ are correspondent.
Moreover, the properties described in the points (i) and (ii) of the base step
hold for p-states I ′ and Î ′ as well.
Conversely, if p-state Î ′ = ϑ̂ (Î, s) is defined, with the TN state s ∈ Q −
{ 0A | A ∈ VN } being non-initial, then p-state Î ′ is a sink reduction and
function ϑ (I, s) is undefined. Hence, Claim 1. holds true.

Claim 2. Since the mapping (2) from the initial state and the intermediate states
of P̂ to R is total (Claim 1.), and since state fA is final (Def. 3), grammar Ĝ

includes the rule fA → ε.
Claim 3. If item 〈 0A, π 〉 is in the p-state I, it is in I| closure . Thus I| base contains an

item 〈 pB , λ 〉 such that closure
(

{ 〈 pB , λ 〉 }
)

∋ 〈 0A, π 〉. Therefore, some interme-
diate p-state contains item 〈 qB → s • pB , λ 〉 in its base and item 〈 0A → ε •, π 〉
in its closure. The converse argument is analogous. The proof of the second part
of the claim is obvious by considering the definition of initial p-state.
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Claim 4. We consider the case where p-state I is not initial and state 0A ∈ I| closure
results from closure applied to an item of I| base . The other cases, where I is the
initial p-state I0 or where state 0A results from closure applied to an item of
I| closure , can be similarly dealt with. Then from the definition of graphs P and P̂,
it follows

item 〈 0A, ρ 〉 ∈ I| closure

⇐⇒ ∃ a machine MB ∈ M that contains an arc pB
A
−→ qB

⇐⇒ item 〈 pB, π 〉 ∈ I| base
⇐⇒ ∀ correspondent state Î ∃ a symbol s ∈ V and a set

{ 〈 riB → ŝ • pB , πi 〉 } ⊆ Î| base such that π =
⋃

i πi

⇐⇒ item 〈 pB → • 0A qB , π 〉 ∈ Î| closure
⇐⇒ item 〈 0A → • α, ρ 〉 ∈ Î| closure for each alternative right-hand side α

of nonterminal 0A. ⊓⊔

Theorem 1 (equivalence of ELR and LR conditions) Let M be a TN and let Ĝ

be the corresponding right-linearized grammar (RLZ). The TN M meets the ELR(1)
condition if, and only if, grammar Ĝ meets the standard LR(1) condition.

Proof

Part “if” of Th. 1 For graph P, we examine each one of the conflict types and
show that if P violates the ELR(1) condition, then graph P̂ violates the standard
LR(1) condition.

SR conflict Consider such a conflict in p-state I ∋ 〈 fB , { a, . . . } 〉, where fB
is final non-initial and ϑ (I, a) is defined. Following Lemma 3, Claims 1. and
2., there is a correspondent p-state Î such that ϑ̂ (Î, a) is defined and it holds
〈 fB → ε •, { a, . . . } 〉 ∈ Î, hence the same conflict is in P̂. A similar reasoning, by
exploiting Claims 1. and 3., applies to a conflict in p-state I ∋ 〈 0B, { a, . . . } 〉,
where 0B is final and initial, and ϑ (I, a) is defined.
RR conflict If in p-state I ⊇ { 〈 fA, { a, . . . } 〉 , 〈 fB , { a, . . . } 〉 } there is such
a conflict, where fA and fB are final non-initial, then in one or more p-states
Î ⊇ { 〈 fA → ε •, { a, . . . } 〉 , 〈 fB → ε •, { a, . . . } 〉 }, by Claim 2. there is the
same conflict. A similar reasoning applies to the cases where one final state or
both final states in the items are initial.
CV conflict Consider a convergent transition I

X
−→ I ′, such that

I ⊇ { 〈 pA, { a, . . . } 〉 , 〈 qA, { a, . . . } 〉 } δ (pA, X) = δ (qA, X) = rA

therefore I ′| base ∋ 〈 rA, { a, . . . } 〉. If both states pA and qA are non-initial, both
items are in the base of I. By Claim 1., there exist correspondent intermediate

p-states and a transition Î
X̂
−→ Î ′ with

Î ′ ⊇
{ 〈

pA → X̂ • rA, { a, . . . }
〉

,
〈

qA → X̂ • rA, { a, . . . }
〉 }

therefore the sink reduction p-state ϑ̂
(

Î ′, rA

)

has an RR conflict.

Similarly, if one of the states pA and qA is initial, say qA = 0A, then it holds
〈 qA, { a, . . . } 〉 ∈ I| closure as the initial state of machine MA is non-reentrant,
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therefore I| base contains an item t such that closure
(

{ t }
)

∋ 〈 0A, { a, . . . } 〉. Hence

there exists a p-state Î correspondent of I such that
〈

0A → • X̂ rA, { a, . . . }
〉

∈ Î| closure

whence ϑ̂
(

Î, X̂
)

= Î ′ and Î ′ ∋
〈

0A → X̂ • rA, { a, . . . }
〉

. It follows that p-state

ϑ̂
(

Î ′, rA

)

is a sink reduction and that it has an RR conflict.

Part “only-if” of Th. 1 Consider the two conflict types possible in the graph P̂.

SR conflict The conflict is in a p-state Î where 〈 fB → ε •, { a, . . . } 〉 ∈ Î holds

and ϑ̂
(

Î , a
)

is defined. By Lemma 3, Claims 1. and 2. (or 3.), the correspondent

p-state I contains item 〈 fB , { a, . . . } 〉 and the function ϑ (I, a) is defined, thus
resulting in the same conflict.
RR conflict Take a p-state Î such that

{ 〈 fA → ε •, { a, . . . } 〉 , 〈 fB → ε •, { a, . . . } 〉 } ⊆ Î| closure ,

where states fA and fB are final non-initial. By Claim 2., the correspondent p-state
I contains items 〈 fA, { a, . . . } 〉 and 〈 fB , { a, . . . } 〉, and has the same conflict.
A similar reasoning, based on Claims 2. and 3., applies if either state fA or fB is
initial.
Finally, take an RR conflict in a sink reduction p-state Î such that, for some
s ∈ V , { 〈 pA → ŝ rA •, { a, . . . } 〉 , 〈 qA → ŝ rA •, { a, . . . } 〉 } ⊆ Î. Then there

exist p-states Î ′, Î ′′ and transitions Î ′′
ŝ
−→ Î ′

rA−−→ Î such that Î ′ contains items
〈 pA → ŝ • rA, { a, . . . } 〉 and 〈 qA → ŝ • rA, { a, . . . } 〉, the correspondent p-state
I ′ contains item 〈 rA, { a, . . . } 〉, and

{ 〈 pA → • ŝ rA, { a, . . . } 〉 , 〈 qA → • ŝ rA, { a, . . . } 〉 } ⊆ Î
′′
| closure .

Since Î ′′| closure 6= ∅, p-state Î ′′ is not a sink reduction. Let I ′′ be its correspon-
dent p-state. Then it follows: if state pA is initial, by Claim 4. there is an item
〈 pA, { a, . . . } 〉 ∈ I ′′| closure ; moreover, if pA is non-initial, there exists an item

〈 tA → Z • pA, { a, . . . } 〉 ∈ Î ′′| base , hence 〈 pA, { a, . . . } 〉 ∈ I ′′. A similar reason-

ing applies to state qA, hence 〈 qA, { a, . . . } 〉 ∈ I ′′, and transition I ′′
ŝ
−→ I ′ in P is

multiple, convergent and conflicting. ⊓⊔

We address a possible criticism to the significance of Th. 1. Namely, starting
from a TN, several equivalent BNF grammars can be obtained that differ in their
implementation of the operations of the regular expressions, especially the Kleene
star. Such BNF grammars may happen to be LR(1) or not, a fact that would seem
to make somewhat arbitrary our reference to the right-linearized BNF grammar
in Th. 1.

We defend our choice on two grounds. First, since our language specification
is not by a set of REs, but by a set of DFAs, the choice of transforming a DFA
into a right-linear grammar is not only natural. In fact the other natural form
— left-linear — would exhibit conflicts in most cases as shown by Heilbrunner
[13]. Second, the same author argues that for an EBNF grammar the choice of the
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equivalent right-linearized grammar (RLZ) is preferable to any other choice, be-
cause if any other equivalent BNF grammar is LR(1), then also the right-linearized
grammar is so. To illustrate this point, we rely on an example from [13].

Example 4 (equivalent non-LR(1) BNF grammar) In Fig. 5 (top) we show a TN M
that meets the ELR(1) condition, therefore the equivalent right-linearized gram-
mar (RLZ) is LR(1) by Th. 1. On the contrary, the equivalent BNF grammar
in Fig. 5 (bottom) has an SR conflict. Notice that this BNF grammar has been
obtained by quite natural transformations from the machines of M to BNF rules,
such as the introduction of a new nonterminal B to generate the substrings “ b b∗ ”.

We leave to the reader to check that no SR conflict occurs in the right-linearized
grammar corresponding to M (Def. 3), because RLZ grammars defer the reduction
operations as late as possible. ⊓⊔

0S 1S 2S

S
↓

↓

E
s

E

3E 0E 1E 2E

E
↓ ↑

b FF

b

e

0F 1F 2F 3F

F
↓

↓ ↓

b F e

S → E sS | E E → B F | F e F → b F e | ε B → bB | b

Fig. 5 Top: A TN M (axiom S) that meets the ELR(1) condition (Def. 8). Bottom: an
equivalent BNF grammar (but not the right-linearized one) that has LR(1) conflicts.

3.3 ELR(1) parser for TN

It is well-known that for a BNF grammar the LR(1) graph specifies the state-
transition function of a deterministic pushdown automaton (DPDA), which ac-
cepts and parses the language by performing so-called shift and reduce operations.
The (pushdown) stack alphabet consists of the set of p-states and of the grammar
nonterminal and terminal alphabets.

Similarly, the ELR(1) parser operates by shifts and reductions, but with impor-
tant differences mainly due to the fact that a TN machine may contain convergent
and cyclic paths, which may cause the parser to reduce strings of unbounded
length. The other major difference is that the p-states of the ELR(1) graph can-
not be used as stack symbols of the DPDA, because more information is needed
to track all the possible alternative paths traversed by a TN machine until a re-
duction occurs (which is unique by the ELR(1) condition). Here we describe the
DPDA derived from the ELR(1) graph, first informally, then as an algorithm and
finally by an example. Complexity analysis and comparisons with the standard
LR(1) parser are in Sect. 4.1.

Recalling Def. 4 and the related ones, consider a TNM with machinesMS ,MA,
. . . , and let Q be the state set of M. The ELR(1) graph P of M represents a DFA
that has the graph p-states as its nodes and the function ϑ as its transitions. Each
p-state contains a set of items of the form 〈 qA, π 〉 ∈ Q × ℘ (Σ). We assume that
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the graph P meets the ELR(1) condition. Clearly, for any such TN M there are
finitely many different items, the number of p-states is bounded, and the number
of items in any p-state is bounded by the constant |Q |.

We need to enrich the information contained in the p-states of P in order to
determine the reduction to be performed, out of several possible paths in the graph
of a TN machine. To this end, each item is extended with an integer field, called
item identifier (iid). The iid will be used to link an item to another one at parsing
time. Such extended items are called (pushdown) stack items, and a set of stack
items is called a (pushdown) stack p-state.

Definition 10 (stack items and stack p-states) A stack item is a 3-tuple of the
form 〈 state, look-ahead, item identifier 〉

〈 q, ρ, i 〉 ∈ Q× ℘ (Σ )×
(

N ∪ { ⊥ }
)

,

where i is a value in the interval 1 ≤ i ≤ |Q | or i = ⊥ (null value).
A stack p-state J is a non-empty set of stack items. We allow the presence in a
stack p-state of two or more stack items that have the same (machine) state, such
as 〈 q, ρ1, i1 〉 and 〈 q, ρ2, i2 〉, but with i1 6= i2. Moreover, we assume that the stack
items in a stack p-state are (arbitrarily) ordered.
Let 〈 q, ρk, ik 〉 ∈ J. A mapping µ from stack items to items is next defined.

µ
(

〈 q, ρk, ik 〉
)

= 〈 q, π 〉 where π =
⋃

∀h such that
〈q, ρh, ih〉 ∈ J

ρh .

The mapping µ can be naturally extended to stack item sets (stack p-states).
Let I0 ∈ R be the initial p-state of graph P. The initial stack p-state J0 is defined
as follows

J0 = { 〈 q, π, ⊥〉 | item 〈 q, π 〉 ∈ I0 } . (3)

Clearly, it holds µ
(

J0
)

= I0. ⊓⊔

Since for any TN the set of stack p-states is clearly finite, the parser uses it as
pushdown stack alphabet. For a better readability of algorithms and examples, the
item identifiers will be marked with a sign “ ♯ ”. Thanks to the ordering imposed
on the stack items of each stack p-state, an item identifier ♯i (with i 6= ⊥) in the
topmost stack p-state points to the i-th item of the stack p-state immediately
below.

The pseudo-code of our parser is shown in Alg. 2. It is patterned as the clas-
sical shift-reduce parser [1] and we especially highlight the differences. The stack
alphabet has two element types: stack p-states and symbols over the alphabet V .
As in the classical parsers, stack p-states and symbols alternate in the stack. Stack
p-states and graph p-states are enumerated with J[r] and I(s) (r, s ≥ 0), respec-
tively, and for convenience we stipulate there is a correspondence between them
at parsing runtime: µ

(

J[r]
)

= I(r), i.e., we pose s = r. The p-states at the stack
bottom and top are denoted J[0] and J[k] (k ≥ 0), respectively.

There are three move types: terminal shift, nonterminal shift and reduction.
For terminal shift, relations (4-5) compute, from the current top stack p-state J[k],
the new stack p-state J[k + 1] to push: it holds µ

(

J[k + 1]
)

= I(k+1) and the new

stack item
〈

q′A, ρ, ♯i
〉

∈ J[k + 1] is linked to the previous one 〈 qA, ρ, ♯j 〉 located
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Algorithm 2: Pseudo-code of the ELR(1) parser for a TN M.

Input: the graph (R, ϑ ) of a TNM and a word w
Output: the ELR(1) parsing of w according toM
// current stack: J [0] a1 J [1] a2 . . . ak J [k] (k ≥ 0); J [k] top
// current symbol: a (may be a terminal or nonterminal)

// pointer to running stack item: p (used for reduction)

stack := J0 // initial stack p-state, see (3)
k := 0
a := first char of word w (or ⊣ if w = ε)

forever do // loop for parsing the word w

if
(

∃ arc
(

I(k)
a
−→ I(k+1)

)

∈ ϑ such that µ
(

J [k]
)

= I(k)

)

then

// terminal shift move: µ
(

J [k]
) a
−→ ϑ

(

µ
(

J [k]
)

, a
)

J [k + 1] :=

{

〈

q′A, ρ, ♯i
〉 arc

(

qA
a
−→ q′

A

)

∈ δ and

〈 qA, ρ, ♯j 〉 = ith item ∈ J [k]

}

∪ (4)

{

〈 0B , σ, ⊥〉 | item 〈 0B , σ 〉 ∈ I(k+1)| closure

}

(5)

push symbol a (surely 6=⊣)
push stack p-state J [k + 1]
k ++
a := next char of word w (or ⊣)

else if

(

∃ item 〈 fA, ρ, ♯i 〉 ∈ J [k] such

that fA is a final state and a ∈ ρ

)

then

// reduction move: ah+1 . . . ak ❀ A or ε ❀ A (null)
p := back pointer field ♯i in the (final) item 〈 fA, ρ, ♯i 〉
while ( p 6= ⊥ ) do // loop for popping the handle

pop stack p-state J [k]
pop symbol ak ( 6=⊣ )
k −−
p := back pointer field ♯i in the pth item ∈ J [k]

// no iterations ⇒ null reduction ⇒ no handle pop

if
(

A 6= S′
)

then

// nonterm shift move: µ
(

J [k]
) A
−→ ϑ

(

µ
(

J [k]
)

, A
)

[

execute a nonterminal shift move as of (4-5) with a = A:
push A, push J [k+ 1], k ++, yet do not read any input

else accept and stop // final reduction to axiom S′

else reject and stop // no move - word w invalid

at position i in J[k]. The same applies to nonterminal shift. For reduction, a while

loop scans, by using a running item pointer p, the chain of stack items that make
the reduction handle, starting from the final item 〈 fA, ρ, ♯i 〉 in J[k]. At every loop
iteration, the stack top p-state J[k] and its entrance symbol ak are popped (for
a null reduction nothing is popped). Finally, a nonterminal shift concludes the
reduction move.

Termination occurs in acceptance or rejection. To simplify the acceptance con-
dition, we assume that the grammar contains a unique starting rule S′ → S (more
precisely a TN machine), where nonterminal S′ is the axiom and no other rule
may contain it (as in [1]).

The ELR(1) condition makes sure that the conditions enabling a terminal shift
or a reduction are mutually exclusive, so that Alg. 2 is deterministic. We do not
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describe how our parser builds the rightmost derivation and the syntax tree of the
input word, as it essentially works like the classical one.

Fig. 6 illustrates the scheme of a shift move. Recall that the stack p-state
J[k + 1] computed by a shift move (terminal or non-) may contain two or more
stack items that have the same TN state and different item identifiers, see relations
(4-5) in Alg. 2. This happens whenever a shift move takes a convergent transition
(Def. 7)3.

The stack items are linked in a list to make a stack item chain, e.g., stack item
〈

q′A, ρ, ♯i
〉

is linked to 〈 qA, ρ, ♯j 〉 via the identifier ♯i (see also Alg. 2). Every stack
item 〈 qA, ρ, ♯j 〉 is mapped by function µ onto an item 〈 qA, π 〉 of graph P. The
stack item has the same machine state as the graph item, i.e., qA, but in general it
has a smaller look-ahead set, i.e., ρ ⊆ π, due to the possible presence of convergent
transitions in the graph; due to the same reason in general it holds π ⊆ π′. The
two look-ahead sets ρ and π coincide if at parsing time the DPDA does not take
a convergent transition.

machine MA

qA q′
A

. . .
a B

terminal shift move

ϑ
(

I(k), a
)

= I(k+1)

ELR(1) graph transition

. . .
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. . .

. . .
〈
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A
, ρ, ♯i

〉

. . .
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. . .
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J [. . .]
sym
∈ V

J [k]
sym
∈ V

J [k+ 1]

Fig. 6 Scheme of a shift move. Top: part of a machine MA and of the ELR(1) graph. Bottom:
parser stack, assuming that µ

(

J [k]
)

= I(k) and µ
(

J [k+ 1]
)

= I(k+1).

Fig. 7 shows the scheme of a (non-null) reduction move. The stack p-states
of the reduction handle are linked as in Fig. 6 and are popped one by one (see
Alg. 2). After so exposing on the stack top the initial stack p-state J[h] (for some

h < k) of the accepting path 0A
ah+1 ... ak

−−−−−−−→ fA, a nonterminal shift move on symbol
A is applied exactly as in Fig. 6, but without reading an input symbol. For a null
reduction, no handle is popped since the stack p-state J[h] (with h = k) is already
directly exposed on the stack top.

3 When applying the function µ to a stack p-state, if two items have identical (machine)
states, then they are coalesced as said in Def.s 7 and 10.
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machine MZ

qZ q′
Z

A

machine MA (h < k)

for reduction ah+1 . . . ak ❀ A
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Fig. 7 Scheme of a non-null reduction move. Top: part of machines MZ and MA, and of the
ELR(1) graph. Bottom: handle, with µ

(

J [k]
)

= I(k) and µ
(

J [h]
)

= I(h) (h < k). As shown

in Fig. 6, due to convergence in general it holds π ⊆ π′, σ ⊆ σ′ and ρ ⊆ π.

To prove the correctness of the parser algorithm it suffices to reexamine the
correspondence, established in Lemma 3, between the moves of Alg. 2 and those
of the LR(1) standard parser for the right-linearized grammar associated with the
TN. In particular, the terminal shift moves of the two parsers are in one-to-one
correspondence, while a single ELR(1) reduction move corresponds to a series of
RLZ reductions. We omit the straightforward but tedious correctness proof and
we show an example instead.

Example 5 (Ex. 1 continued) Although the graph in Fig. 2.b violates the ELR(1)
condition, for brevity we use this TN to illustrate Alg. 2, taking care to choose
an input that does not involve conflicts. Fig. 2.c shows the parse trace of word
“a b a a c c”.

The superimposed arrows are for visualization. Solid arrows represent the stack
item chains. More precisely, in the first stack all the stack item chains are repre-
sented, while in the second and third stacks only the stack item chains that lead
to the current reduction are shown. Dashed arrows associate the look-ahead and
the current input characters at reduction.

The stack items in the reduction handle are framed. The final TN states on
the stack top, which trigger a reduction move if their look-ahead matches the
current input, are encircled. To avoid cluttering, we denote the TN states without
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the subscript that identifies the machine, e.g., state 2S is written 2, and we drop
commas and angular/curly brackets in the stack item 3-tuples.

Each stack item in a stack p-state J[l] (l ≥ 0) is numbered starting with 1 from
the top. An identifier ♯i of a stack item belonging to the stack p-state J[l+1] refers
back to the i-th stack item in J[l].

The trace shows from top to bottom: a null reduction, a non-null reduction
corresponding to an acyclic path, and a non-null one corresponding to a cyclic
path, all in the graph of Fig. 2.a. The mapping µ is as follows:

– µ
(

J[3]
)

= I8: the stack p-state J[3] contains the following three stack items
〈 1S , { ⊣ } , ♯1 〉, 〈 1S, { c } , ♯2 〉 and 〈 0S, { c } , ⊥〉, where the two ones with
the TN state 1S are derived from splitting the look-ahead set of the (graph)
item 〈 1S, { ⊣, c } 〉, which comes from convergence;

– µ
(

J[2]
)

= I7: the stack p-state J[2] contains two stack items (with the TN
state 3S) derived from splitting one (graph) item (in I7).

More comments can be found in Fig. 2, parts (b) and (c). ⊓⊔

4 Complexity comparisons and related work

4.1 Complexity comparisons

First, we analyze and compare the descriptional complexity of direct and indirect
parsers. We remind that, given a transition net TN, we call indirect a parser
obtained by first transforming the TN into an equivalent BNF grammar and then
by constructing the standard LR(1) parser, and that we call direct the ELR(1)
parser constructed by our method.

Second, we analyze the computational complexity of the indirect and direct
parsers, namely their time complexity and pushdown stack size. We also present
a simple optimization in the stack symbols that makes reduction moves faster.

Third, we list and comment earlier research work related to ours.

Size of standard LR(1) graph vs ELR(1) graph We argue that the direct parser
has fewer p-states than the indirect LR(1) graph of an equivalent BNF grammar.

First, we consider a family of regular languages Ln and their one-rule EBNF
grammars S → Ln, where the star height of Ln is n ≥ 1. For simplicity, we show a
language with an alphabet size that grows with n, but other examples exist with
a bounded alphabet size. The family is

L1 = a
∗

L2 =
(

a
∗
b
)∗

L3 =
(

(

a
∗
b
)∗

c
)∗

. . .

The minimal DFA (with a non-reentrant initial state) that recognizes language Ln

has n+ 1 states, and it is isomorphic to the ELR(1) graph of rule (i.e., machine)
S → Ln. On the other hand, to convert such a grammar to BNF one needs n

nonterminal symbols (see [12] for a similar case), and the LR(1) graph of the BNF
grammar has a number of p-states lower-bounded by 2n, which almost doubles
the ELR(1) case.

Second, a typical transformation of a BNF grammar into an EBNF one pro-
duces a smaller grammar, which in turn results into a TN, the ELR(1) graph of
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which is smaller than the LR(1) graph of the original BNF grammar. We only
discuss two such chief transformations:

– Consider the transformation of a left-recursive BNF rule, such as A → A u | v,
into an iterative rule A → v u∗. Clearly, the size of the ELR(1) graph shrinks
(the case of a right-recursive rule is similar).

– If a rule is substituted by another, e.g., by replacing the two BNF rules A →
a B b and B → u | v with the rule A → a ( u | v ) b, then the number of
nonterminal symbols, i.e., of DFA machines of the TN, decreases, and so also
does the size of the ELR(1) graph.

Clearly, the repeated application of left-recursion removal and substitution yields
a TN with a smaller ELR(1) graph4.

Computational complexity of parsers We start by comparing the space com-
plexity of the direct and indirect parsers, namely the memory required for the
parser stack. It is well known that for the indirect parser the stack length is linear
in the length of the input word, and the same clearly holds for the direct case,
therefore we have to compare the exact stack sizes.

The stack of the indirect parser contains only p-states (or their names) [17]5.
Instead, the stack of the direct parser presented in Alg. 2 alternates stack p-states
and symbols over V , the latter being required for building the syntax tree when
applying a reduction move. However, it would be simple to remove this requirement
from the algorithm, by extending the alphabet of stack p-states with an extra field
of domain V . When applying a shift move µ (J[k] )

a
−→ µ ( J[k + 1] ), the symbol

a ∈ V is recorded in the extended stack p-state J[k + 1], which corresponds to
p-state I(k+1). This change equalizes the stack lengths of the direct and indirect
parsers, and though it enlarges the stack alphabet, it does not decrease the run-
time efficiency.

Next we move to time complexity. To start, we compare the number of PDA
moves (push and pop operations) performed by the direct and indirect parsers for
the same language. Tab. 1 summarizes the number of operations that implement
the shift and reduction moves of the parser for general grammars. The number
of terminal shifts is identical in both the LR(1) and ELR(1) cases. Obviously, for
any input word the overall number of nonterminal shifts is equal to the number of
reductions in each case separately, but the two numbers may be quite different in
either case.

There are many ways of obtaining a BNF grammar equivalent to a TN, and
we initially consider the right-linearized grammar (RLZ) of Sect. 2. Whenever an
ELR(1) parser performs a reduction with a (machine) path of length n ≥ 0, the
LR(1) parser of the corresponding RLZ grammar performs n non-null reductions
with a handle of length 2 for the rules as in Def. 3, plus one null reduction. Thus

4 It would be interesting to supplement the above analysis with experimental measurements
for realistic grammars. A few results are mentioned in [3], which point to a greater compactness
of the ELR(1) graphs. Just an example: for the Oracle EBNF grammar of the Java language,
the TN has 532 machine states and 599 machine transitions. The ELR(1) graph has 1, 937 p-
states and 25, 231 transitions, while the standard LR(1) graph has 2, 946 p-states and 25, 837
transitions.

5 It is well known that the terminal and nonterminal symbols, typically represented in the
stack when the LR(1) techniques are taught, are unnecessary.
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move type LR(1) parser ELR(1) parser

terminal
shift

1 push operation 1 push operation

nonterminal
shift

1 push operation 1 push operation

reduction
for a rule A→ α: |α | pop
operations

for a path 0A → . . . → fA of length
n ≥ 0, with fA final: n pop operations

Table 1 Number of DPDA operations for the LR(1) and ELR(1) parsers. The terminal and
nonterminal symbols in the stack are disregarded.

in total it performs n + 1 reductions, i.e., 2n pop operations. Consequently, the
number of nonterminal shifts is 1 for ELR(1) and n + 1 for LR(1). Therefore in
the ELR(1) case the number of push operations is reduced by an amount equal to
the sum of the lengths of the reduction paths, though their number changes only
linearly in both cases.

Optimizing ELR(1) reductions One might object that an RLZ grammar is the
worst possible case for an LR(1) parser, since a BNF grammar with longer right-
hand sides would perform fewer reductions, implying fewer nonterminal shifts. But
in such a case, the reduction for a longer right-hand rule, say A → α, performs a
unique multiple pop operation that removes in one step a number of stack items
equal to |α |. Such an implementation of reduction would make the number of pop
operations (including multiple pops) of LR(1) smaller than that of ELR(1), while
the number of push operations would remain greater or equal. Notice also that, if
a multiple pop is allowed, the LR(1) parser is slightly more general than a DPDA
because it directly operates on the stack elements below the top one.

The use of a multiple pop operation for implementing the reduction move is
also feasible and rewarding for the ELR(1) parser. Alg. 3 shows such a parser
variant, which is modeled according to Alg. 2 with the following differences. The
parser stack is implemented as a random access array (vector), with indexeing
from 0 (stack bottom) to k ≥ 0 (top). The stack items are 3-tuples, the third
field of which is a value that points back to the lowest element (i.e., the deepest
in the stack) of the stack segment (the handle) to be deleted when performing a
reduction move. The initial stack p-state J0 is (re)defined (see (3)) as follows (but
it still holds µ

(

J0
)

= I0)

J0 = { 〈 q, π, 0 〉 | item 〈 q, π 〉 ∈ I0 } . (8)

From a stack item 〈 qA, ρ, h 〉 ∈ J[k] with back pointer h (0 ≤ h ≤ k), the terminal
shift move creates a new stack p-state J[k + 1] that contains shifted stack items
with the same pointer h (6), and initial stack items with a new pointer equal to
k + 1 that refers to the current stack top (7). The same applies to nonterminal
shift. The reduction move does not include the while loop that appears in Alg. 2
for stepwise popping the reduction handle, as now the back pointer h in a final
stack item 〈 fA, ρ, h 〉 ∈ J[k] goes directly to the handle bottom and so allows to
immediately pop the whole handle. The rest of terminal and nonterminal shift, of
reduction, and of acceptance and rejection, is as in Alg. 2. In Ex. 6 we show the
operation of Alg. 3.
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Algorithm 3: Pseudo-code of the ELR(1) parser with a vector stack.

Input: the graph (R, ϑ ) of a TNM and a word w
Output: the ELR(1) parsing of w according toM
// current stack: J [0] a1 J [1] a2 . . . ak J [k] (k ≥ 0); J [k] top
// current symbol: a (may be a terminal or nonterminal)

stack := J0 // initial stack p-state, see (8)
k := 0
a := first char of word w (or ⊣ if w = ε)

forever do // loop for parsing the word w

if
(

∃ arc
(

I(k)
a
−→ I(k+1)

)

∈ ϑ such that µ
(

J [k]
)

= I(k)

)

then

// terminal shift move: µ
(

J [k]
) a
−→ ϑ

(

µ
(

J [k]
)

, a
)

J [k + 1] :=

{

〈

q′A, ρ, h
〉 arc

(

qA
a
−→ q′

A

)

∈ δ and

item 〈 qA, ρ, h 〉 ∈ J [k]

}

∪ (6)

{

〈 0B , σ, k + 1 〉 | item 〈 0B , σ 〉 ∈ I(k+1)| closure

}

(7)

push symbol a (surely 6=⊣)
push stack p-state J [k + 1]
k ++
a := next char of word w (or ⊣)

else if

(

∃ item 〈 fA, ρ, h 〉 ∈ J [k] such

that fA is a final state and a ∈ ρ

)

then

// reduction move: ah+1 . . . ak ❀ A or ε ❀ A (null)

if (h < k ) then // for popping the whole handle
multiple pop: J [k], ak , J [k− 1], ak−1, . . . , J [h+ 1], ah+1

k := h

// untaken then ⇒ null reduction ⇒ no handle pop

if
(

A 6= S′
)

then

// nonterm shift move: µ
(

J [k]
) A
−→ ϑ

(

µ
(

J [k]
)

, A
)

[

execute a nonterminal shift move as of (6-7) with a = A:
push A, push J [k+ 1], k ++, yet do not read any input

else accept and stop // final reduction to axiom S′

else reject and stop // no move - word w invalid

Example 6 (Ex. 1 continued) Reconsider the TN and ELR(1) graph of Fig. 4, parts
(a) and (b) (same as Ex. 1); the part (c) of the same figure shows the parsing of
the input word “a a a b” by using a vector stack. ⊓⊔

Alg. 3 achieves at least the same decrease in the number of pop operations as the
LR(1) implementationmentioned above, and a further decrease because the length
of the reduction paths may be unbounded. The latter case occurs frequently in
practice as the TN machines often have cyclic graphs. Notice that such a stack op-
timization does not affect the stack size. Our implementation of ELR(1) parsers for
TNs (http://github.com/FLC-project/ELRparser) incorporates this optimization
(among others).

To sum up, we have shown that the stack sizes of the direct and indirect parsers
are equal, and that the number of push and pop operations of the direct parser is
reduced.
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4.2 Related work

Many authors have proposed to extend the standard LR method to EBNF gram-
mars, each proposal purporting to improve previous attempts, but no clear-cut
optimal solution had surfaced so far. The following discussion particularly draws
from the later papers [14,16,22], which also include relevant surveys. An old-
fashioned distinction concerns the source language specification: either an EBNF
grammar, i.e., a set of rules with regular expressions as right-hand sides, or a TN.
Since REs and finite automata are easily interchangeable notations, the distinction
has lost much relevance.

Some authors imposed restrictions on the REs, for instance by limiting the
star depth to one or by forbidding common sub-expressions. Although the original
motivation to simplify the parser construction has since vanished, it is fair to say
that in practice the REs used in the language manuals are typically quite simple
for the reason of avoiding obscurity.

Others, notably [22], specify the rule right parts by DFAs, i.e., they use a TN as
we also do. Notice that the use of NFAs instead of DFAs has not been considered
presumably because the lower state complexity thus achievable would make little
difference in terms of readability, since the typical practical languages considered
have a very small state complexity. In our case, the presence of non-deterministic
machines in the TN could be easily accommodated by a little change to our parser
generation framework.

For TN specifications two approaches to parser construction exist. Approach
(A) eliminates branching paths and cyclic paths from the DFAs. In terms of gram-
mars, this is tantamount to eliminating union operations and star operations from
the grammar rules, thus obtaining a BNF grammar. To the latter, the standard
LR(1) construction is applied to obtain what we call an indirect parser, discussed
above in this section. Approach (B) directly constructs the parser. In [5] a sys-
tematic transformation from EBNF to BNF is used to obtain an ELR(1) parser
that simulates the standard Knuth’s one. It is generally agreed that approach (B)
is superior, because transforming to BNF may add inefficiency and may obscure
the semantic structure [22] of the language. Furthermore, we have seen in Sect.
4.1 that the size of the directly produced parser is smaller. The only advantage of
approach (A) is to leverage on existing parser generators.

The major difficulty (solved by Alg. 2) with approach (B) is to find the left
end of the reduction handle, since its length is variable and generally unbounded.
A list of proposed solutions is in the cited surveys. Some algorithms use a special
shift move, sometimes called stack-shift, to record the left end of the handle into
the stack, when a new computation on a machine is started. But if the initial state
is reentered, then a conflict between stack-shift and normal shift is unavoidable,
and various complicated devices have been invented to resolve the conflict. Some
authors add so called read-back states to control how deep the parser should dig
into the stack [6,19], while others use counters for the same purpose, e.g., [24],
let alone further proposed devices. Unfortunately, it was shown in [10,16] that
several proposals do not precisely characterize the grammars they apply to, and
in certain cases they may fall into unexpected errors. Motivated by the flaws of
past attempts, paper [20] offers a characterization of the LR(k) property for TNs.
Although their definition is intended to ensure that the languages “can be parsed
from left to right with a look-ahead of k symbols”, the authors admit that “the
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subject of efficient techniques for locating the left end of a handle is beyond the
scope of this paper”.

In contrast with the twisted history of the ELR(1) methods, early efforts to
develop deterministic top-down parsing algorithms for EBNF grammars have met
with remarkable success and widespread application. We do not need to discuss
them, but we just cite the main references and we explain why our work adds value
to them. Deterministic parsers operating top-down were among the first to be con-
structed by compilation pioneers, and their theory for BNF grammars was shortly
after developed under the acronym LL(k) by [18,23]. A practical method to extend
such parsers to EBNF grammars was popularized by Wirth [25] in his recursive-
descent Pascal compiler, systematized as ELL(1) method in the book [21], and
included in widely known compiler textbooks, e.g., [1]. However, in such books the
top-down deterministic parsing is presented before the shift-reduce method and
independently of it, presumably because it is simpler and more general than the
LR(1) parser available at that time, which suffered from the restriction to BNF
grammars.

On the contrary, in [8] it is shown that the classical ELL(1) parser generation
method is strictly included in our ELR(1) method, although space prevents us from
presenting details. It suffices to recall that for pure BNF grammars, the relationship
between the grammar and language families of type LR(k) and LL(k) was carefully
investigated in the past, in particular by Beatty [2]. Building on the concept of
multiple convergent transitions, which we have introduced for ELR(1) analysis,
it is possible to extend the Beatty’s characterization to the EBNF case and to
show that the ELL(1) parsing algorithm is an optimized version of the ELR(1)
algorithm under the hypotheses that the TN is free from multiple transitions.

5 Conclusion

After a long history of moderately successful attempts at producing deterministic
bottom-up parsers directly from syntax diagrams or transition networks, the new
ELR(1) condition and the naturally corresponding algorithm presented here offer
a clear and efficient solution to this practical problem. Our approach is more or
equally general as any previous proposal known to us, and is simple: it just adds
the treatment of convergent transitions to the Knuth’s definition. To sum up,
the technical difficulties were understood since long, and we have combined and
improved existing ideas into a practical and provably correct solution.

The software tool that implements our parsing method is freely available at
http://github.com/FLC-project/ELRparser.
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