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Abstract. In this paper, we present a process algebra with a minimal form

of semantics for actions given lependenciesAction dependencies are
interpreted in the Mazurkiewicz sense: independent actions should be able
to commute, or (from a different perspective) should be unordered, whereas
dependent actions are always ordered. In this approach, the process algebra
operators are used to describe tumceptualbehavioural structure of the
system, and the action dependencies determine the minimal necessary order-
ings and thereby the additionally possible parallelism within this structure.

In previous work on the semantics of specifications using Mazurkiewicz
dependencies, the main interest has been on linear time. We present in this
paper a branching time semantics, both operationally and denotationally.
For this purpose, we introduce a process algebra that incorporates, besides
some standard operators, also an operatoadtion refinement~or inter-
preting the operators in the presence of action dependencies, a new concept
of partial terminationhas to be developed. We show consistency of the
operational and denotational semantics; furthermore, we give a axiomatisa-
tion of bisimilarity, which is complete for finite terms. Some small examples
demonstrate the flexibility of this process algebra in the design of distributed
reactive systems.
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1 Introduction

Process algebras are languages for structurally building specifications out
of basic entities calledctions using composition operators like sequential
composition, choice or parallel composition. The application area of process
algebras is the specification and verification of reactive systems. Typical
representatives are CCS [49], TCSP [14,35], ACP [7] or LOTOS [11].

Actions in process algebras are usually just names for basic system ob-
servables. No further interpretation is given to them; the choice for a partic-
ular name of an action does not influence the semantics of a specification.
The parallelism or ordering of actions within a system is completely fixed
by the composition operators used in the specification. In this paper, we take
a different approach. The actions in the process algebra will carry a limited
amount of semantic information, in the form of a so-caliiegpendency re-
lation among them. Intuitively, actions are dependent if they share some
common resource on which only single access at a time is possible. Such a
resource can for instance be a variable, a database entry, a channel, a printer
or a processor. Given such a dependency relation, the additional informa-
tion about the actions can be used in the interpretation of the composition
operators. The idea is that actions which are using the same resource (are
dependent) have to be ordered (since the conflicting accesses to this resource
have to be resolved somehow), whereas independent actions never have to
be ordered and thus never have to wait for one another to proceed.

The language we introduce here allows to specify the order of execution
of system components in a rather abstract way, focussing on the conceptual
structure of the system; the dependency relation guarantees that still as much
parallelism as possible is achieved. If two interactions of the system in
principle occur in a sequential order, but there are some small independent
parts, the designer can actually specify them as sequentially composed and
still obtain an overlapping of their executions. When writing specifications,
the designer does not have to figure out all possible concurrency in order to
get the most efficient (maximally parallel), specification; he just has to fix
the dependencies.

In this setting, we also take another look at the concepttbn refine-
ment in the shape of an operator that is not present in the standard algebras,
but which has been the subject of extensive research: for instance, [3,4,
22,69,32,60,70,71]. The action refinement operator enables a designer to
decompose abstract actions that are regarded as atomic, i.e., whose execu-
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tion is modelled as an indivisible step, into more concrete behaviour that
is no longer indivisible, but rather composed of many steps. This can be
used as a tool in the top-down design of complex systems. Unfortunately
(as noted first in [16]), action refinement cannot be modelled in a standard
interleaving framework; indeed, this is the main theme of research in the
papers cited above. However, as it turns out, one of the attractive conse-
guences of a global dependency relation as considered in this paper is that it
provides sufficient additional information to allow action refinement within
an interleaving model (under some assumptions that effectively require that
the refinement of actions respects their dependencies).

The idea of action dependencies regulating orderings has been suggested
and intensively studied by Mazurkiewicz [46—48] and others (see for in-
stance [26]). The basic concept in Mazurkiewicz' work &reees which
are equivalence classes of sequences of actions, factorised by a permutation
equivalence: in a sequence, adjacent independent actions may be commuted.
System behaviour is described as a set of traces, constituting the possible
runs of the system. Thus, traces are essentidilyear timemodel for be-
haviour: the moments of choice in a behaviour are notrepresented. A process
algebraic, linear time setting with action dependencies has been developed
by Janssen, Poel and Zwiers in [39,40]. In particular, they also introduce an
operator for action refinement which takes action dependencies into account.

In the present paper, we developmnching timesemantics for a pro-
cess algebra based on action dependencies, containing most of the standard
features, such as sequential composition, parallel composition, choice and
recursion, as well as action refinement. This finalises previous work reported
in [72,63,64]. The language and basic definitions are given in Sect. 2. In
Sect. 3, we give a structural operational semantics such that, by the format
of the rules, bisimulation equivalence is a congruence. The model generated
by this semantics is an ordinary labelled transition system — which, as men-
tioned above, is surprising, since in the usual approach, this model is not
strong enough to be compositional for action refinement. The most innova-
tive feature of the operational semantics is the notiopasfial termination
that was developed to capture the interplay between action dependencies
and choice.

Next, in Sect. 4, we give a denotational counterpart, whiobivased on
an interleaving model but instead on an event-based formalism developed
in [57]. We have chosen this type of model here because it allows us to
use (variations on) standard constructions, especially for action refinement;
see, e.g., [22,69,60]. In other words, our denotational model is certainly
distinctive enough to capture all relevant behavioural effects of the operators
of our algebra, including action refinement. We use a technique from metric
semantics (see [21]) for the denotation of recursive behaviour. We then
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show that the operational and denotational semantics coincide, i.e., give
rise to equivalent (namely, bisimilar) models; therefore, the strength of the
denotational model serves as a strong argument in favour of the correctness
of the operational semantics.

As a next step, in Sect. 5 we develop an axiomatisation for bisimilarity
over our language thatis complete for the finite fragment. The main difficulty
here was to find suitable axioms for sequential composition, which of the
operators of our algebra is the one most influenced by action dependencies.
Moreover, the concept of partial termination also complicates the picture.
As for the more unusual operator for that action refinement, it turns out that
this can be captured by a quite straightforward and small set of axioms,
which in fact merely specify some distribution properties.

The paper ends with a few application examples in order to demonstrate
the practical usefulness of our approach; see Sect. 6. First, we show that
a protocol initially designed as consisting of three successive phases can
be implemented, through action refinement, in such a way that the phases
partially overlap, controlled by the appropriate action dependencies. Then,
we show that this principle can be applied more generally, by formulating
a version of theeommunications closed layel@swv proposed by Elrad and
Francez [27] and promoted (in a linear time setting) by Zwiers et al., for
instance in [39]. Finally, we also give an example from the field of data
bases, showing the decomposition of an atomic query.

2 Language

We start with the introduction of our process algebra and give a firstinformal
discussion of its semantics.

Act denotes a set of actions, ranged oveubly, ¢, . .. . The dependencies
among these entities are modelled wependency relatio C Act x Act
which is reflexive and symmetric. The inverse notionirafependencys
the complement oD: I = (Act x Act) \ D. The set of all action$
an actiona depends on is called itdependency clasand is defined as
[a]p = {b | b D a}. This notion can be extended to setof actions by
letting [A] p belJ,c 4[a] p- Similarly theindependence clags an action is
la]r = {b| b I a}, and of a set of action$A]; = (,c4lal7.

To model recursion and thus infinite behaviour of systems, a set of process
namesX is used. It is ranged over b¥, Y, Z. Each nameX € X has an
implicit associate@lphabetAx C Act. More about alphabets later.

The specification languag& consists of all term$3 generated by the fol-
lowing productions:

B:=04|a|B-B|B+B|B|,4B|B[r]| X |reX.B
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wherea € Act, A C Act, r: Act — L is a refinement function which is
the identity almost everywhere, adde X. We useB,C, ... , By, By, ...

to range oveil.. We refer to the language without refinement asftae
fragment of the language, and without recursion adithie fragment. The
finite fragment ofL is denotedL g, .

An occurrence of a variabl& in a term B is calledboundif it only
occurs in the scope of@c-operator, otherwise it isee The free variables
of B are collected itfv(B). B is calledclosedif it contains no free variables
(fv(B) = 0), otherwise itiopen Refinement functions are assumed always
to map to closed terms. Tieabstitution of a tern for a (free) variableX
in B is denotedB(C/ X).

Well-formedness. Without discussing them at this point, we list the addi-
tional restrictions imposed upon terms in the course of this paper. We call a
termwell-formedif it satisfies all of these conditions. Unless explicitly stated
otherwise, we assume all terms to be well-formed. The set of well-formed
terms is denotedl.” .

— Refinementmaps only to closed terms; ife(r(a)) = O foralla € Act.

— Refinement is stronglyp-consistent (see Definition 3.5).

— The alphabetis well-defined; in particulak( B) C .Ax for all sub-terms
recX. B (see Table 1).

— Recursion is dependently guarded (see Definition 3.7).

Notation. The family (04)4c . Stands for empty processegadlocked
onthe actions i (see below). We lad stand for0 4.; (complete deadlock),
1 for 0y (proper termination) and, ||| B; for By ||, Ba.

Instead of using the operatafc X . _, we sometimes equivalently assume
that recursive behaviour of processes is specified by means of a set of equa-
tions X; = B; (¢ in some finite index set), and when speaking of solutions
to recursion terms, we mean solutions to this set of equations.

To avoid brackets in expressions, we fix the following priorities among
the operators of the language. The rank of the operators from highest to
lowestis: Refinement, sequential composition, parallel composition, choice.

We will often need the set of actions which syntactically occur in aterm,
called thealphabet A(B) of a term. It is inductively defined in Table 1.
Note that this relies on the implicit alphabet of process names, introduced
above. The alphabet of recursive terms is only defined under the assumption
that the (calculated) alphabet of the body of the recursion is a subset of
the (implicit) alphabet of the process name used as a recursion variable.
(Note that we have restrictdd"’, the set of well-formed terms, to those for
which the alphabes well-defined.) Furthermore, we will consider syntactic
substitutionB(C/X) to be defined only ifA(C) C Ax. Itis easy to see
that thenA(B(C/ X)) C A(B).
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Table 1. Alphabet of a term

A(04) = A
A(a) := {a}, wherea € Act
A(B1 op Bz) := A(B1)UA(Bz), whereop € {+, -, |4}
A(BI[r]) == UaeA(B) A(r(a))
A(X) == Ax
A(recX.B) = Ax if A(B) C Ax

2.1 Discussion of the operators

The language covers most of the standard process algebra operators, such as
sequential composition, parallel composition, choice and recursion, and one
more rarely used operator: action refinement. These operators, however, will
not get quite the interpretation they traditionally have in process algebras.
The basic idea is toonceptuallykeep the meaning of the operators, but
use the dependency relation to determine the ordering in the occurrence
of actions more precisely; especially to find possibilities for concurrency
which go beyond the ones specified by the operators in a term. For instance,
the phases of a protocol may conceptually follow one another (and are thus
specified to occur in a sequential order) while nevertheless there can be
some slight overlap and this overlap may be derived via the independencies
of the actions in the phases. Independent actions should never have to wait
for one another to proceed, even if they are sequentially composed, while
dependent actions always have to be ordered somehow, even if composed in
parallel. Parallel composition thus never allows simultaneous execution of
dependent actions. The interpretation of all our operators has to adhere to
this basic principle. In the following, we give an informal description of the
intended semantics and describe the differences to the standard approaches.

Actions and recursion. a € Act describes a process which executes the
action a and then terminates successfully. Even betois executed, the
process is terminated for actions independert. of

Process variables and the operatarX. B are used to model infinite
behaviour of processes; the latter is interpreted by unrolling it to
B(recX. B/X). When developing the operational semantics, we will dis-
cuss recursion (and the problems it introduces in our setting) in greater
detail.

Sequential composition and terminatiorinstead of strong sequential com-
position, action dependencies give rise to a notiowedksequential com-
position, which we denote-*. The crucial point for the semantics of weak
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sequential composition is that an orderingdependenactions of the first

and second operand has to be achieved, however without introducing unnec-
essary orderings dhdependengctions. This is modelled by introducing a
special notion of termination, which we caglartial termination For stan-

dard (“strong”) sequential composition, a process can either successfully
terminate or deadlock and depending on this, a process sequentially follow-
ing it may or may not start (see Baeten and Van Glabbeek [6]). This concept
is now replaced by partial termination: a process can either be terminated
with respect to a particular action or not and depending on this, another
process sequentially following it may or may not execute this action. As an
example, let

By =a-b
By =cl|d

with dependencieg D b,c I a,c I bandd D a,d I b. B; can execute
and afterwards and is initially already terminated for all actions which are
independent oboth ¢ andb. Thus B; - B, can immediately executebut
notd.

This particular notion of termination is also reflected in the language con-
stants representing empty processes: instead of two constants for complete
termination and deadlock (lik& andes in ACP, see [7]), we need a family
of constant§04) ac 4. representing all possible partial terminations: the
index A represents the actions on which the process is deadlocked; it is
terminated only for actions € Act that are independent of alle A. As
an example for empty processes in connection with weak sequential com-
position: ifa D b then0y, - b cannot execute any action, whereas if b,
then0y,, - b can performb.

Choice. Bj+ By denotes thaeondeterministic choiceetweenB; andBs.

Our choice operator is similar to the CCS choice; however, partial termina-
tion may resolve choices. The reason for this can best be seen in connection
with a sequential composition. As an example consider the term

B=(a+b)-c,

wherea andc are dependent batandc independent. A process is terminated
foran actioru if there is one run of it which is independentofFor instance,
the terma + b is terminated fote sinceb I c. Thus, B may start withc;
however, this resolves the choice and oblig left. In fact, if b were still
possible after: then the specified order between dependent actiamlc
would be violated. Thus, partial termination, like global termination in [6,
7], may resolve choices.
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Parallel composition. The family of operator§|| , } a4c 4.+ stands for TCSP-

like parallel compositiorwith synchronisation on actions withid. In the
processB; ||, B, actions fromA may only be executed gsint events

of B; and Bs. In order to respect the action dependencies, we additionally
need some ordering of dependent actions of the first and second component.
Dependent actions of parallel components have to be executed in a nonde-
terministically chosen order, whereas independent actions can be executed
concurrently. Thus, a kind of mutual exclusion is modelled. The idea is that
a parallel composition combines two system components of which we are
not interested in a particular order of execution, but these components still
may not access the same resource at the same time. As an exarjple:

a D b, denotes a process that can exeeutndb in any order but not in
parallel.

Refinement. Action refinement [3,4,52,68,9,42,18,70,9,58] is used to
support top-down design of distributed systems. Starting with an abstract
specification, step-by-step more concrete specifications are developed by re-
placing actions by more complex processes. Syntactically, this is formulated
by means of a refinement functien Act — L describing the replacement

of actions by complex processes. We assumertfagtis unequal ta: only

for a finite number of actiona; moreover, as noted above, refinement is
only well-formed ifr(a) is closed for alk.

In contrast to standard action refinement, in our setting, the inheritance
of abstract orderings by concrete actions of the refinement is driven by
the dependencies between the latter. Therefore, the refinement of ordered
abstract actions may result in processes which partially overlap in their
execution. This leads to a much more flexible refinement concept.

Example 2.1Let B = a-bwith a D b, andr: a — a; - as with a; D as,

andb — by - by with by D by, such thatz; D by anday D by butas I by
anda; I by. The only allowed execution aB[r] by standard refinement
concepts would be;asb1bs, where the entire refinement bfhas to wait

for a to complete. With dependency-based refinement we get the following,
depicted as a partial order. The runs are all possible interleavings. As can
be seen, an overlapping executior a2b, is allowed.

al — a9

Lol

b1—>bg

There are, however, limits to the flexibility of refinement with respect to
the action dependencies. In particular, if two actions are dependent, it is
natural to expect that their refinements are as well, in an appropriate sense.
For instance, it would not be correct if in the above example, bothere



Process algebra with action dependencies 163

to be independent of both;. This and similar considerations lead to the
concept ofstrong D-consistencyf refinement functions, discussed in the
next section (Definition 3.5). Note that well-formedness also requires strong
D-consistency for all refinement functions.

Some of the ideas on the semantics of process algebra operators in the
presence of a dependency relation sketched above have already appeared in
previous work; however, always in a linear time setting. Dependency based
sequential composition first appeared in the work of Mazurkiewicz [48]
(where sequential composition is trace concatenation); in Janssen, Poel and
Zwiers [74,41,28] both weak sequential composition (called layer compo-
sition) and dependency-based refinement are defined; and in Gaifman [30]
weak sequential composition also appears, there calidatal concatena-
tion. The necessity of attaching information about partial termination also
arises in the setting of Mazurkiewicz traces, as Diekert has investigated [24,
25]: Concatenation of twinfinite traces is only possible when the alphabet
of the first trace is known.

3 Operational semantics

In this section, we present a structural operational semantics (SOS) in the
style of Plotkin [56] forL, which will allow the derivation of a labelled
transition system for every closed tefhe L. In the usual way, this will

give rise to a labelled transition system modelling the behaviour of the terms
of L.

Definition 3.1 Alabelled transition systeis a tuple(4, S, —, ¢) such that

— Ais a set oflabels

— S'is a set ofstates

— 5 C S x A x Sisatransition relation
— ¢ € Sis theinitial state

The class of all labelled transition systems will be den@f®&. Throughout
this paper, we will havel = Act U v, whereviy, = {v, | a € Act}is
a set ofpartial termination labels Transitionss -2 s’ for a € Act stand
for ordinary action occurrences, whereass, s for v, € vj4.; denotes the
partial termination o with respect ta: (¢ Act). We will henceforth omit
the componentl.

The operational semantics fbiis given by the rules in Table 2. Below we
will show that in order to obtain a well-defined transition system, we have to
restrict recursion tdependently guardegrocess variables (Definition 3.7);
furthermore, some other sensibility criteria force us to restrict refinement to
a subclass o$trongly D-consistentrefinement functions (Definition 3.5).
This reduces the language to that of well-formed ted¥4, introduced in
Sect. 2.
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Definition 3.2 (operational semantics)The operational semantics for a
term B € L/ is the transition systerits(B) = (L*/, —, B), where— is
the smallest set of transitions agreeing with the rules in Table 2.

Note that we haveot restricted the operational semantics to closed terms;
there is even an operational rule explicitly dealing with process variables.
Thisis mainly for technical convenience in dealing with recursion; see below.

Table 2. Operational semantics &f

deadlock al A
le
04 Y2y 04
action R alb R
a1 0 by bl
choice x % 7 x Yoy oy Yo, x Yoy gy Yay oy
x+yi>x/R4 z 4y Yay g’ P T4y Yoy’ 44 0
y+ax & Y+ Yay o
sequential x % R r Yy x oy %y ac{a v} R
iti 7 8
composition vy By vy Sy
parallel %3 agA r %2 oy X%y acAUVaa
composition g [y 2 2" [,y oy |,y 10
Ylaz Hyllaz
refinement % rla) by x ay g
A S Ri: - Raz
z[r] 2 y-z'[r] z[r] <25 2'[r]
variables al Ax R
X % x s
recursion y-5y aé¢{ve|al Ax} al Ax
recX.y 2 y' {recX.y/X) " recX.y Yoy recX. y 1

The main difference with standard process algebra lies in the treatment of
termination While usually a term can be either terminated or not termi-
nated, weak sequential composition needs a more general conpeytialf
termination i.e. termination with respect to certain actions. The concept
of partial termination lies at the heart of all non-standard rules of our SOS
semantics.
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— The constan0 4 stands for an empty process deadlocked on actions in
A, thus it is terminated for all actions independentdof

— An actiona € Act is terminated for all independent actiohs Act,

i.e., such that I b.

— Like ordinary complete termination used in languages with sequen-
tial composition (see for instance [6]), partial termination may resolve
choices! Note thenegative premisé the partial termination rules for
choices. Negative premises are known to be potentially troublesome (see
Groote [34] and Van Glabbeek [67]); indeed, we have to restrict recursion
to dependently guarded variables to avoid problems (see below).

— In a weak sequential composition, the second operand may start execut-
ing actions when the first operand is terminated for them. Unlike strong
sequential composition, such activities of the second operand do not
discard the first operand.

— Action refinement and recursion require a more extensive discussion;
see below.

3.1 Action refinement

As shown in Example 2.1, dependency-based action refinement allows the
concurrent execution of independent parts of the refinements of actions that
are themselves (on the abstract level) dependent and hence ordered. How-
ever, as mentioned before, the allowed overlap is subject to some limitations
due to the intuition that the action and its refinement should still describe
the same entity, and hence their dependencies with respect to other actions
should be consistent.

— Dependencies should be inherited from the abstract to the concrete level
to some degree. If two abstract actions are dependent, some dependency
should still exist after refinement: in particular, the refinemégn) of a
given actior: should not be (partially) terminated for another, dependent
actionb D a. Technically,a D b should implyr(a) .

— Independency should also be inherited. Since an abstract action does
not change during an independent activity, its refinement should also be

completely unaffected. That is,/ b should implyA(r(a)) I b.

A refinement function is called-consistentif it satisfies both of these
criteria. A similar property was defined in [39]. Note that it follows that
forall a € Act, [a]; = [A(r(a))]; andr(a) % B impliesb I A(r(a));
indeed, these two properties form a sufficient condition/Peconsistency.

! Infact, ordinary termination does not resolve choices in all process algebras, for instance
Aceto and Hennessy [3] define choice terms to be terminated only if both operands are.
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Example 3.3

—1f a D b,a; D banday I bsuchthat: a — a; + ag, thenr(a) ~%;;
hencer does not preserve the dependence: @ndb in the required
sense, meaning thatis not D-consistent.

—Ifalb,a; Ibandas D bsuchthat: a+— aj + ag, thenr(a) by B
with B = a; # r(a); hencer does not preserve the independence of
andb in the required sense, meaning thas not D-consistent.

— If r is actually aenamingfunction, that isy(a) € Act for all a € Act,
thenr is D-consistent if and only it D b <= r(a) D b for all

a,b € Act.

RuleR;; in Table 2 specifies the execution of actions fromramage: if the
abstract system can execute some actiand the refinement af can start
with some actiom, thenb is also possible for the refined system. Afterwards
the refinement of: may proceed, but also new refinements may start if
independent of the remainingrefinement. To come back to Example 2.1,
the overlapping execution of the refinementaindb is thus derivable:

(a-b)[r] 45 ag-b[r] Y ag-bo-1[r] 22 1-by-1[r] 2 1-1-1[r]

RuleR;; is straightforward, and reflects the intuition behibetonsistency:
If the abstract system is terminated w.r.t. an actioa, then the refined
system is also terminated far

Unfortunately, a complication occurs as soon as we reconsider the origi-
nal motivation behind the dependency relation. Intuitively, we would at least
expect the Mazurkiewicz property of partial commutativity to hold; that is,
if B 22 fora I b, we also expecB -2 4% (see [48]). As the follow-
ing example shows, this property can be destroyed by certain refinement
functions.

Example 3.4ConsiderB = a-bwith a D b, andr: a — a, b — by - by
such thate I b; anda D by. Note thatr is D-consistent.B[r] has the
following operational behaviour:

Blr] % 1-(1-0)[r] 25 1-by-(1-1)[r] b2 1-1-(1-1)[r]

However,B|r] b1, hencethe partial commutativity of traces does not hold.
The reason is that the only initial action Bfis a, and thereford3|r| cannot
start with an action not coming froma).

The problem demonstrated by this example can be traced to a feature of
the refinement functiom: althougha D b, there is an initial action of

r(b) for whichr(a) is terminated, or in other words (due Ibconsistency)

that is independent af. Disallowing this kind of situation is necessary and
sufficient to guarantee partial commutativity. For this purpose we strengthen
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the notion of D-consistency and require all well-formed terms to satisfied
this strengthened requirement.

Definition 3.5 (strong D-consistency)A refinement function: Act — L
is calledstrongly D-consistenitf it satisfies the following properties for all
a,b e Act:

— a D bimplies (i)r(a) ~%», and (ii)a D ¢ for all r(b) 5;
— a I bimpliesa I A(r(b)).

(The difference withD-consistency lies in the second condition.) The ne-
cessity of strong)-consistency follows from the fact that an example along
the lines of Example 3.4 can always be constructed for a refinement function
that is not stronglyD-consistent. The sufficiency, i.e., the fact that for all
alb,B %2 impliesB % 4 if all refinement functions itB are strongly
D-consistent, is a consequence of Proposition 3.16 below.

It is worth noting that the operational refinement rules are simpler by
far than the ones obtained in other approaches. For instance, we do not rely
on auxiliary operators of any kind and do not have to enhance the labels of
the transition relation, as is for instance done in [22,60, 15] for modelling
standard action refinement. Of course, this is achieved at the cost of imposing
strongD-consistency.

3.2 Recursion

The operatorecX. _ looks quite standard and at first sight one does not

expect any surprises from it. However, the situation is complicated by the
negative premise in the termination rules of the choice operBipagdRg

of Table 2). The standard operational rule for recursion is the following (with

a e A):

y(reeX. y/X) =y 1)
recX.y % oy

However, the following example shows that this is not satisfactory for the
derivation of the partial terminations:

Example 3.6AssumeAy = {a,b} andB = recX.a- X + b.

1. First consider I c andb I c. Let us consider the partiattermination
for B. Intuitively we should geB <, B. This is however not derivable
since this would involve an infinite unfolding of the recursion.

2. Now consider a different dependency relationf ¢ andb D c. Even
if we could derive thatB is terminated fore, it would not be easy to
determineB’ such thatB %, B’; it is certainly not equal td3, since
the actionb should not be possible anymore.
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3. Finally, considern D ¢ andb I c. In this case, there is no problem
deriving the expected terminatid® ¢ b, sincea- X % is already
clear froma —%»; X does not have to be tested with respect taits
termination.

The problem is essentially due to the fact that the variabla the body of

the recursive ternB is tested again in the course of deriving the transitions
of B; in combination with the negative premise Ry, this gives rise to
circular reasoning. Since the negative premise is very much inherent in our
approach, the only way to avoid problems of this kind is to restrict ourselves
to terms where this kind of circular reasoning cannot occur. A standard way
to achieve this is to replace (1) by

y %y 2
recX.y % o (recX. y/X)

(see for instance [5]). This has the advantage that the source term of the
transition is syntactically simpler than the source term of the conclusion;
since thisis already true of all other operational rules, it follows that there can
be no infinite proofs of a positive transition; hence negative transitions are
unambiguously decidable. (In terms of Groote [34], a stratification trivially
exists.)

In general, however, this alternative rule may limit the derivable tran-
sitions, since the source term of the premise now contains a free variable,
for which (usually) no transitions are derivable. For instance, ifb then
recX.(a- X +b) b a-1 can be derived using (1) but not using (2). In order
to avoid this effect, one simultaneously restricts recursiqquardedterms.

In general, a free variable of term is called guarded if it only occurs in so-
calledsleeping positiongsee Vaandrager [66]), where a sleeping position
of a given operator is one which is not tested by the rules of the operational
semantics. The effect is that, at least for the the initial transitions of the term,
it makes no difference what is substituted for a guarded variable.

Unfortunately, no operator of our language has a proper sleeping posi-
tion. In particular, the second position of a weak sequential composition is
not a sleeping position, since it is tested by RBlg For that reasonX
cannot be considered guarded in the sub-ternX of B in Example 3.6
and ofrecX. (a- X +b) % a-1 above. It follows that the usual notion of
guardedness is not directly applicable. Our solution is to define an alterna-
tive notion ofdependent guardedness combination with Rulé&R ;3 which
actually defines some (termination) transitions for free process variables.
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Definition 3.7 (dependent guardednesd)etB € L.

— X is called dependently guarded i if every free occurrence ok
is within the operandB; of a subtermB; - By of B such thatB; Y,
impliesa I A(Bz).

— B is called dependently guarded if for all subtermsX. C of B, X is
dependently guarded i@i'.

Note that in the conditioB; s, it is possible that{ e fu(B1); hence

the definition relies on the fact that the operational semantics is defined
for open terms. For instance] is dependently guarded i - X) - X iff

[a]; = [Ax]1.

Dependent guardedness may alternatively be characterised inductively
on the structure of terms, such thatis dependently guarded in all termss
(except forB = X) if it is dependently guarded in all operands®f and
moreover,X is also dependently guarded By - B, if X is dependently
guarded inB; andB; e, impliesa I A(By).

In principle, this solves the problems associated with recursion. How-
ever, (2) has the annoying consequencawaysunfolding recursive terms,
even to derive termination transitions of completely independent actions.
It therefore generates non-finite-state models even for quite harmless pro-
cesses; e.g., iflx = {a} anda I bthen

recX.a-X %y a-recX.a-X s a-a-recX.a-X %y ...

This effect is avoided by disallowing (2) faf;-transitions witha I Ay,
and adding a rule stating thatcX. B Y, recX. B for such transitions:
RulesR14 andR5 of Table 2, respectively.

3.3 Properties of the operational semantics

We first clarify the relation between the alphabet of a term and its operational
semantics: alk-transitions belong to the alphabet, which, moreover, can
only grow smaller during execution (Clause ¥):transitions reduce the
alphabet of a term to (at most) the actions independemt6lause 2); and
every term isv,-terminated for every: that is completely independent of

its alphabet, without being affected in any way (Clause 3). The proof is a
straightforward induction on the structure Bf here omitted.

Proposition 3.8 (alphabet)Let B € L%/,

1. If B % B, thenA(B')U {a} C A(B);
2. If B Yoy B’ thenA(B') C A(B) N [a];.
3. B e, Bifandonly ifa I A(B).
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The following proposition provides evidence that the notion of dependent
guardedness is in some sense correct. The notion of correctness is the afore-
mentioned property that a dependently guarded variable is unable to influ-
ence the initial transition of a term. The proposition captures the relation
between syntactic substitution, operational semantics and dependent guard-
edness; again, it crucially relies on the operational semantics of open terms.

Proposition 3.9 (substitution)Let B, C' € L* with A(C) C Ay.

1. If B % B’ thenB(C/X) % B'(C/X).
2. If B(C/X) % B’ and X is dependently guarded iB, then B’ =
B"{(C/X) for someB” such thatB -2, B".

The proof can be found in Appendix A. As an added bonus, dependent
guardedness of in B guarantees that = B has a unique solution (up to
bisimulation); see Theorem 3.15 below.

Diamond closure. In the presence of a dependency relatiorc Act x
Act, itis often required that transition systems satisfy sdimenond closure
properties (see [26]); e.g., for all] b:

1. Ifs % " b 5" thens % s)) 2 s” for somes);
2. If s & s ands % 5", thens’ % s ands” % s{j for somes.

Our operational semantics satisfies neither of the above properties; the first,
however, can be recaptured as soon as we interpret the transition system
modulo bisimulation (see below).

Example 3.10

1. ConsideB = al[|bandr: a — aj - az, b — by - be, where alla-actions
are independent of altactions.B|r| displays the following operational
behaviour:

Blr] 4 az - (1| b)[r] 2% a1-by- (1] 1)]r]
Blr] 2% by~ (all 1)[r] 4 b2 -az- (1 ][ 1)[r]

Although the (independent) actioms andb; can indeed be executed
in either order, as required by the first diamond closure property, the
resulting end states are not the same —even though they are bisimilar,
as we will see below.

2. The second diamond closure property is circumvented quite easily by
specifying a choice between independentactionsilb, thenB = a+b
is awell-formedterm such th& % 1andB % 1,butl % andl 2.
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Partial termination. Diamond closure applies to non-termination transi-
tions; partial termination has its own logic. First of all, it should not come
as a surprise that termination is deterministic: although choices may be re-
solved in the course of a termination transition, there is amlg wayin
which they can be resolved.

On the other hand, due to the fact that termination may resolve choices,
it is not necessarily true that a terBhthat is partially terminated for either
a or b can also terminate fdyotha andb in succession.

Example 3.11Assumeq I b and letB = a + b. It follows that B e, b
andB ~%s a, henceB can terminate foeither a or b. However,B Yo, Y,
doesnot hold, henceB cannot terminate fdootha andb.

If, however, aterm can still display a certain activity after partial termination,
then that activity and the termination could as well be reversed; that is, there
is a partial commutation in the sense tiat e, % B’ implies B % Yo,
B'. If « itself is actually also a termination transition, then of course the
commutation is total.

The properties discussed above are formalised in the following propo-
sition. The proof is a straightforward induction on the term structure, here

omitted.
Proposition 3.12 (termination)Let B € L*/,

1. If B Y2y B’ andB Y2, B” thenB' = B".
2. If B Yay 9 B’ thenB -% Ya, B’

3.4 Bisimulation

Transition systems as a semantic model for process terms are usually too
informative: they distinguish processes that one would normally consider as
being equal, such as, for instanee; X.a - X andrecX.a-a - X. Hence, as

a second step an equivalence notion is introduced which additionally equates
some processes with distinct transition systems. The standard equivalence
notion for transition systems Esimulation[54].

Definition 3.13 (bisimulation) LetT; = (S;, —, ), @ = 1,2, be labelled
transition systemd’; and75; arebisimilar(7; ~ T5) ifthere exists arelation
p C S x Sy such that(c1,12) € p and wheneve(sy, s2) is in p, then for
alae A

1. 57 % s} implies3s), : s3 % s, and(s], s}) € p and

2. s9 % s implies3s) : s1 2 s and(s), s) € p.

As usual, two terms are called bisimilar if their corresponding transition
systems are.
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Congruence. An immediate question arising whenever a language’s be-
havioural model is to be interpreted up to some equivalence relation is
whether the semantics of the language remains well-defined; in other words,
whether the equivalence isangruencevith respect to the operators of the
language. FOL*/ and~, we have

Theorem 3.14 (congruence of bisimulationBisimulation is a congru-
ence for all operators oEL*/ (including recursion).

The proof can be found in Appendix A (Page 210). For all operators except
recursion, the proof relies on the so-callB&0OS formaof [10]; to prove
congruence of recursion, thg-totechnique used in [49] can be applied,
since our rules contain no look-ahead (see [61]).

Inparticular, the result that bisimulation is a congruence for (dependency-
based) refinement is interesting, since the fact that it doelsold for stan-
dard refinement (see [16]) has been the starting point of almost all papers
on action refinement cited before. Again, of course, this fact comes at the
price of restricting action refinement to strongBrconsistent refinement
functions.

The congruence result also implies that in principle it is possible to
develop an equational proof system for bisimulation dvéf. In Sect. 5 we
indeed develop such a (sound and complete) proof system.

Unique fixpoints. Using the congruence result, we can now also establish
that, in L*/, recursion yields unique fixpoints up to bisimilarity. This is
formulated in the following theorem. Apart from being interesting in its
own right, this result is important in the proof of correspondence of the
operational and denotational semantics, in the next section.

Theorem 3.15 (unique fixpoints)if B € L with fo(B) C {X7}, then
recX. B is the unique solution ok = B in L*/ modulo~.

The proof can be found in Appendix A (Page 210). Itis important to note that
the proof does not use the concrete definitiol.8f but only the properties
established in Proposition 3.9 and Theorem 3.14. Hence the theorem remains
valid if we extend the language in such a way that these properties are not
violated. This fact is used in the proof of correspondence of the operational
and denotational semantics, in the next section.

Diamond closure revisited. Finally, is is noteworthy thaL.*/ satisfies a
weaker form of the first diamond closure property discussed above. Let us
call atransition systempartially commutative up to bisimulatiohwhenever

a I bands -% s s there exists somé&’ such thats % % s” ands’ ~ s.

Proposition 3.16 (partial commutativity) For all B ¢ L%, its(B) is
partially commutative up to bisimulation.
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This will follow directly from the denotational characterisation in the next
section (Theorem 4.22). Note that partial commutativity up to bisimulationis
strictly stronger than partial trace commutativity in the sense of Example 3.4.

4 Denotational semantics

In this section, we develop a denotational semanticdfér. In a sense,

this semantics will be a “soundness check” for the operational semantics:
in contrast to common wisdom, operationally we have characterised action
refinement in the rather poor model of standard labelled transition systems
(albeit with the additional assumption about global action dependencies).
The basis for the denotational semantics, on the other hand, will be a very
rich event-based modehnd the constructions defined for the operators of
L* are variations on known constructions on, for instance, prime event
structures [43], stable event structures [73] and families of posets [60]. We
then give a mapping from the denotational to the operational model showing
the consistency of the two (up to bisimulation); this shows that the poor
model is yet rich enough to capture the usual semantics of action refinement.
(Note that, in contrast to the usual case, our denotational semantics is not
strictly more abstract than the operational.)

Unfortunately, due to the action dependencies and the corresponding
special features of weak sequential composition and refinement, none of
the existing event-based models mentioned above is immediately suitable.
Instead, we use an extension of the family-of-posets model. We assume a
universeLuvt of eventsranged over byi, e, which are used to model the
occurrences of actions. We also use a special elemegnEtut; we denote
Evt, = Evt U {x}. We requireEwvt to be closed under pairing in the sense
that Evt, x Evt, C Evt. The events are implicitly labelled; that is, there is
a global labelling functiod: Evt — Act, which satisfies

(1) if ey =%
t(e1, e2) = {5(62) otherwise.

We extend the dependency relatibnC Act x Act to Evt by writingd D e
iff £(d) D ¢(e).

Definition 4.1 (system runs)A system ruris a tuplep=(E,< T') where

— FE C Ewt is afinite set of events.

— < C E x FEis areflexive, cycle-free causal ordering of the events, such
thatDN(E x E) = <U>,i.e., events are ordered iff they are dependent.
(It follows that< is not necessarily transitive.) We sometimes uge
denote the irreflexive sub-relation gf

— T C Act is a set of actions with respect to which the rutgaminated
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Intuitively, the elements df’ are independent of all actions in the “future”

of this run, i.e., those that the system yet has to do when it reaches the
state modelled by the current run. We often usg <, and7), to denote

the components of a system rpni.e.,p = (E,, <p,T,). We also use

A, = ((E,) to denote the set actions occurringirT he class of all system
runs is denoted.

In the terminology of event structures, the system runs correspond to
configurations, where the causal ordering of the events is included “locally”
in each configuration. This makes for a richer model than most other event-
based models (see [58] for a discussion); we will see below that this richness
is actually necessary to model some of the featurds‘6f The termination
sets provide additional information used to model the partial termination
properties: a system rumis terminated w.r.t. an actioa iff a € T,. A
useful intuition is thatl}, is independent of all the actions that are yet to
occur.

We use the following additional notations for system runs:

er = (0,0,T)
(e,T) = ({e}, (e,e), T)
(e) = (e, 0)

plE=(E,NE <,N(ExE),T, forEC Eut
p\E=p|(E,\E) forE C Eut
p—a=p\E,

pUT =(E,, <,,T,UT) forT C Act

pNT =(Ey,<,,T,NT) forT C Act

p\T =(Ep,<,, T, \T) forT C Act

We also define prefix relationover system runs. If a system ruiis a prefix

of ¢, this means that the latter provides more information about the system
behaviour (the events that may occur and the corresponding termination
properties) than the former.

Definition 4.2 (system run prefix) A system rum is said to be grefix of
another system rug, denoted < g, if the following conditions hold:

- E, C E,, i.e., fewer events have occurredthan ing;

- <, = <,N(Ey x E,), i.e., the ordering of the events is the same in
andg, and moreover, alK -predecessors of eventsprare also inp.

- T, € T;\[Aq—p]p; 1.€.,anactionis terminated iponly if itis terminated
in ¢ and independent of all actions occurring betweesndyq.

System runs are sometimes depicted in the flgrifi, where
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— Fis a graphical representation of the first two components of the run,
in the form of event nodes connected by arrows indicating the direct
orderings between events (and not those that can be derived due to cycle-
freedom and ordering of dependent events).

— T is the termination set; if’ = () it is sometimes omitted.

We often assumelct x N C Ewt with ¢(a,i) = a in such figures and
use the shorthand notatiéa for (a,i) and“a for ((a, i), (a,j)), *a for
((a,1),*) and* a for (x, (a, §)); if an example includes only one occurrence
of each action we sometimes also uset C FEwt. (Hence, for instance,

ig|l' = (a,T) and[ig] = (‘a).)

Example 4.3AssumeAct = {a,b,c,d} witha D b D ¢ D d (and all other
actions independent).

1 —>2b
_ systemrung: * A l{a, ¢} andb 0, ).

3c—4d d
1 1 —>2b 1 1 —)2[)
- Prefixes;, "\, [{a} =|.“7 “Ha.cyand @ | 0 =<| “TF Va,e).
3c—52b 3e—4d c—=d 3e—4d

(Note that the termination sets of the runs on the left hand sidearke
maximalfor these relations to hold.)
— Generallyp <pU Aandey < pforallp € PandA C Act.

The structuréP, <) has some interesting order-theoretic properties, which,
however, play no further role in this paper: itis a consistently complete prime
algebraic domain, with (as the last item of the above example shgves)

a bottom element.

Definition 4.4 (denotational models)A system models a nonempty set
P C P, such thap < ¢ € P impliesp € P; i.e., P is prefix closed.

We useEp = (J,cp E) to denote the set of events used7im and M

to denote the set of system models. System models are interpreted up to
isomorphism; a functiow: Ep — Eg is an isomorphism betweéh and

Q (denotedp: P = Q or simplyP = Q if ¢ is irrelevant) if it preserves
labelling ¢(¢(e)) = {(e) for all e € Ep) and it is a bijection such that

Q = ¢(P) = {o(p) | p € P}, whereg(p) is the result of renaming the
events ofp according tog in the natural way. The following sub-sections
present the constructions & used to model the operatorsbf” .

Example 4.5Let Act = {a,b,c,d} anda D b D ¢ D d as in Example 4.3,
The following graph represents a system model. Since there is only one
instance of every action, we have omitted event annotations. The arrows
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between system runs represent the prefix ordering.
eq —afd} —la—b{d} = [a—b[{c, d}
S /! S

e
gg — (@) — [a—=bl) — [a—bl{c}
NN
@D — |0
N\ hV

a
@} — | i)
(As we will see below, this models the behavioutefb - 0,+ ¢ - 0,).) Note
thatf@{d} 2 {c, d}.

Note that the non-emptiness and prefix closure of system runs together imply
thatey € P forall P € M.

4.1 Constructions

We first introduce and discuss the model constructions used to implement
the operators oL/, and afterwards establish their formal properties, such
as the fact that all constructions stay wittifi, and are well-defined with
respect to isomorphism.

Deadlock constants. Deadlock is modelled by empty runs whose termi-
nation set is independent of the deadlock alphabet; i.e., to ndodek use
the set of aler € P whereT I A. Note that ifp < e withT' I A, then

p = e, With T}, C T, hencel}, I A; thus,P is a valid system model.

Action constants. To model a single action denotationally, we need a
single event labelled by that action; no proper causal ordering (except for
the reflexivee < e) is possible. There are two types of runs: the empty ones,
where nothing has happened yet, and the complete ones, where the action
has occurred. In the former, the termination sets are independentirof

the latter, the termination sets are arbitrary. This gives rige to P, U P,
whereP; equals the model df,, (see above) ani; consists of all system
runs(e, T') for a given event € Euvt with /(e) = a andT' C Act arbitrary.

Choice. The construction for choice is entirely analogous to the usual one
in event-based modelling: It consists of a simple union of the operands, with
the proviso that the events used in those operands must be disjoint. That is,
we define

P1+Pa=P1UPy if Ep, N Ep, =0.

Note that the disjointness side condition can always be fulfilled by choosing
appropriate isomorphic representatives.
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Parallel composition. The model construction for parallel composition ba-
sically consists of combining all pairs of runs from the operands by gluing
them together at the events labelled by synchronising actions, whenever this
yields a valid system run. To accomplish the gluing together, we use the
following construction on event sefs,, Es C Fut:

Bl B2 = {(e,%) € By x {x} | {(e) & A}
U{(x,e) € {*} x Bz | L(e) ¢ A}
U {(61,62) € F1 x Ey | €(61) = 5(62) S A}

In comparison with the standard case (i.e., without action dependencies),
the construction is complicated slightly by two things: all dependent events
in the synchronised run have to be ordered, even if they stem from differ-
ent operands and are unsynchronised; and the termination sets have to be
computed. W.r.t. the first complication, consider the following example:

Example 4.6AssumeAct = {a,b, c} with ¢ D {a,b}. The synchronisa-
1 2
tion of the system rungz_> “ and[4q—5.—54]on the actioru (omitting

o _ 14, 14, %5, 26,
termination sets) yields one of the runs and
3*b—>*5c—>26a 3*b

(whereij denotes the paifi, 7)).

Fori = 1,2letm;: Evt — Eut be the partial function defined by(d) = e;
if d = (e1,e2) ande; # . The parallel composition of system models is
then defined as follows:

731 ||A P2 = {q eP | Elpl € Plv P2 € PQ: Eq g Epl HA Ep27
<p; = {(mi(d), mi(e)) | d <4 e} fori=1,2,
Ty =1Tp, :sz}

Note that, given two system rups € P; for i = 1,2, if there exists any

valid synchronisation op; andp, at all, it is unambiguous which events

of p; synchronise with which gf,, due to the fact that identically labelled
events are dependent and thus ordered in pbp#ndp,; but it is not always
pre-determined how the non-synchronising events with dependent labels are
ordered ing. See also Example 4.6.

Weak sequential compositionA run of a system obtained by sequential
composition consists of a run of the first operand, followed by a run of
the second, where the “followed by” is modulo the dependency relation.
Moreover, we cannot combine arbitrary pairs of runs: rather, the alphabet of
the second run should be part of the termination set of the first. This gives
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rise to the following construction, where again (as for choice) we require
Ep, NEp, = 0

Pi1-Po={q| Ip1 € P1,p2 € Pa: Ay, C T,
<g=<p U((Bpy X Epy) ND)U <y,
Tq = Tp1 msz}

Refinement. Denotationally, refinement consists of a system m@tiel be
refined and afunctioR : Act — M thatmaps each actionto another system
model. In accordance with the notion of stroRigconsistency on syntactic
refinement functions (Definition 3.5), we also impose a requirement on the
functionR:

Definition 4.7 (denotational D-consistency)A semantic refinement func-
tion R: Act — M is called denotationallyD-consistentf for all a,b €
Act:

— a D bimplies (i)ep ¢ R(a) and (i) a D £(e) for all (e) € R(b);

— a I bimpliesA, I bandpUb € R(a) forall p € R(a).

We only consider denotationalli?-consistentR. The runs of the refined
system are obtained by taking a nuof P, and refining each evedtof p by
some non-empty rum(d) of R(a), wherea is the label ofl. Thus, we each
time use a so-calleditnessfunctionw: £, — M that selects nonempty
runs from the refinement functioR.

PRl ={q| IpeP:Vde E,: Jw(d) € R((d)) \er:
Eq={(d,e)ld € Eye € By}
Sq = {((dl, 61), (dg, 62))‘d1 <p dg, el D eo Or
dy = da, e1 <y(a,) €2}
Ty =Ty "Nacp, Twa}

The condition thatv only selects non-empty runs is there to ensure that
we can by and large reconstryctandw from eachq € P[R] (with the
exception of the termination sets).

Note that, due to denotation@l-consistency ofR, the images ofw
respect the causal ordering of eventgiif d £, d’ thend I d’ and hence
the labels ofw(d) andw(d’) are independent and, moreover, the labels of
w(d’) can be added to the termination setqf?). (This is a compatibility
property similar to the one used above for weak sequential composition.)

Example 4.8AssumeAct = {a, a1, a2, b,b1,be, ¢, c1,co} and let the inde-
pendencies be given by, I {bs,co}, aa I {b1,b2,c1} and

{b,b1,b2} I {c,c1,co}. Take the system rup = /*b Act and refine
a—=:C

according to

w: a[@1—az]Act bb—>Act ¢ [C1—C2lAct
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b1 —bo
This results in the rung = alZmQ Act. The prefix
cl§cz
b1—by
al\ {b1, b2} Of ¢, on the other hand, is obtained by refinjngbove
C1

according to
w: CL'—){bl,bQ,Cl} b'—>ACt Cb—>{a1,b,b1,b2} .

Recursion. As usual, the semantics of a recursive terenX. B is the
fixpoint of a function overf: M — M, where f is derived fromB —
essentially,f is the semantic counterpart of substituting a termXoin

B. We will use the theory of metric spaces to show that this fixpoint is
uniguely defined; moreover, any solutionofip to isomorphismi.e., such
that f(P) = P, is also isomorphic to the fixpoint of.

Even if the semantics of recursion will be showndatisfythis fix-
point property, it is not how welefinethe semantics. For the definition of
[recX. B], instead, we take the limit (i.e., the union) of the semantic models
of a sequence of approximar(t8’; );cn defined by

Bt = B(BY/X) .

We will see that the aforementiongdis monotonic such thetB% "] =
f([B%]) foralli € N;since[ B ] = {er | T I Ax}isthe smallestelement
of the sub-space d¥I in which the fixpoint of f must lie, it follows that
Uien[B%] is indeed a fixpoint off. In Sect. 4.3 we provide the necessary
theory.

4.2 Well-definedness

We defined a number of constructions above, without considering whether
M is closed under them, i.e., whether the structures thus constructed are
again system models (in the sense of Definition 4.4). In particular, one has
to check that prefix closure is preserved. The following proposition states

that this is indeed the case.

Proposition 4.9 M is closed under the constructions defined above.

The proof can be found in Appendix A (Page 211). A noteworthy pointis that
the denotationaD-consistency of the refinement functions (Definition 4.7)
is essential in the proof.
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Table 3. Denotational semantics for closed termd.sf

[04] ={er | T I A}
[a] = [0.]U{{e,T) | T C Act} wherea = {(e)
[B1 + Bz] = w([B1]) + e2([Bz])
[Bill4 B2] = [Bi] || 4 [B2]
[B1- Bs] = w([B1]) - 2([B2])
[B[r]] = [Blla— [r(a)] | a € Act]
[recX. B] = U,cn[Bk] whereB% = 04, , By = B(By/X)

Afurther resultis that the constructions are well-defined modulo isomor-
phism. This is immediate from the definitions, since any bijective renaming
of the events of the operands can easily be turned into a bijective renaming
of the events of the constructed model. This is formulated in the following
proposition, the proof of which is straightforward and hence omitted.

Proposition 4.10 The above constructions ovBf are well-defined up to

[a

With the help of the injections;: Evt — Ewvt defined by.;(e) = (e, %)
andua(e) = (x,e) for all e € Ewvt, we can now define a denotatioriel-
semantics for closed termsbf/, in the form of a functiof—] : L/ — M.
Itis given in Table 3.

The immediate question is if the denotational semantics is well-defined;
in particular, if every refinement function constructed in Table 3 is indeed
denotationallyD-consistent. This turns out to be indeed the case.

Proposition 4.11 [B] € M for all B € LY.

In the course of the proof — which is worked out in full in Appendix A
(from Page 213) — the following property is also shown to hold:

Proposition 4.12 If r: Act — L*f is stronglyD-consistent, then the func-
tion Act — M defined byu — [r(a)] for all a € Act is denotationally
D-consistent.

Thisin turn relies on a certain relation between operational and denotational
concepts, established by the following proposition.

Proposition 4.13 For all closedB € L*/, the following holds:

1. a I A(B)impliesa I A, andpUa € [B] forall p € [B].
2. B e iff ¢, € [B].
3. B &4 iff (e) € [B] with{(e) = a.
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Somewhat unexpectedly, the inverse implications of Propositions
4.13.1and (hence) 4.12 dothold. This is due to the fact that, in some cases,
there are actions which are semantically independent of a system model but
not syntactically independent of a term giving rise to that model. As an ex-
ample, consider the ter® = a + 0, wherea I b: we have[B] = [a],
showing thaD, does not contribute anything to the behaviour of this term
and hencé I A, andpUb € [B] forall p € [B]; yetb D A(B).

4.3 Recursion as a unique fixpoint

Table 3 contains a definition for the denotational semantics of recursive
terms; however, we have yet to demonstrate that this semantics is reason-
able, inthe sense thatit satisfies the criteria usually imposed upon the concept
of recursion. In this subsection, we show that the set of madesctually

forms a metric space and recursive terms correspond to unique fixpoints of
contractions oveM. We only deal with simple, non-nested recursion, i.e.,
termsrec X. B in which B itself is finite; the general case is a standard gen-
eralisation that is notationally much more complex but presents no essential
novelties.

Denotationally, the semantics of a well-formed recursive term
recX. B (where B € Lg, and fv(B) C {X} due to the restriction to
simple recursion) is expected to solve the equafios- B, interpreted in
M modulo=. That s, a solution of this equation is a system mddel M
such tha® = [B](P), where[B](—): M — M s a function derived from
B by extending the definitions in Table 3 with a parameter:

[04](P) ={er | T I A}

[al(P) = [0a] U {{e, T) | T C Act}
[Br + B2](P) = u([Bil(P)) + wa([Ba] (P))
[B:1 HA Bol(P) = [B1](P) [l 4 [B21(P)
[B1- Bol(P) = ti([B1](P)) - e2([B2](P))
[BIrll(P) = [BI(P)la = [r(a)] | a € Act]
XiP)=P .

(Recall that refinement functions in well-formed terms map to closed terms
only, hencdr(a)] is well-defined.) This effectively defines a semantic coun-
terpart to syntactic substitution.

Proposition 4.14 For all B € L%”fl andC € L* such thatfv(B) C {X},
Cisclosed and4d(C) C Ay, [B(C/X)] = [B](C])-

We first show thafB] (—) itself has a unique fixpoint, which equétsc X . B];
this is certainly a solution oK = B. We then show that aiP solving the
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equation up to isomorphism, i.e., such thaf(P) = P, are isomorphic to
[recX. B].

Global termination. In order to obtain unique fixpoints, we have to be
more precise about the desired termination properties. In the operational
semantics (Proposition 3.8), all terms are globally terminated with respect
to actions that are independent of the term’s alphabet. This is a property
that we also want the denotational semantics to reflect, and without which
fixpoints arenot unique, as the following example shows.

Example 4.15Consider the functiorf = [a- X](—) (i.e.,f: P — t1([a])
-12('P) for all P), and consider the following two models:

P={@",T)|neN,TIa}
Q= {(a™,0) | n € N}

(where(a™, T') denotes a system run consistingu@fonsecutive occurrences

of the actior: and termination séf). Itis not difficult to see thaP = f(P)
andQ = f(Q); yetP # Q. According to Table 3[recX. a- X] = P, and
indeed we consider this the “appropriate” semantics; it can be depicted by

€la); — @[a]f - [G]I — [a][ I

Qisnotterminatedforany I a,i.e.,e, ¢ Q;thiscontradictsthe operational
intuition that a term should always be terminated for all actions independent
of its alphabet.

The desired property is captured by the following definition:

Definition 4.16 (global termination) Let? € M andT C Act. P is
called globally terminatedor T"if 7" I A, andp U T € P forall p € P.

The class of all models globally terminated will be denotedM 1. Note

thatM, C My if T D T'. Forinstance, in the above examplés globally

terminated forfa];, whereagQ is not. In the semantics defined by Table 3,

all B € L/ are globally terminated fotd(B)];; that is,[B] € M 4(B)],

for all closedB € L*/. (This follows from Proposition 4.17 below.)
Accordingly, we will in fact interpref B] (—) as gpartial functionM —

M, defined only onP € M| 4,,,; or alternatively as a (total) function

M4y, — M4y, The following proposition (proof omitted) implies

that this interpretation is valid.

Proposition 4.17 If B € L}z”ji withfv(B) C {X},then[B](P) € M4(p)],
forall P € M4,
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It follows that any closed recursive terracX. B € L* (which satisfies
A(B) C Ax, see Table 1) gives rise to a functipB](—): My — My
with T' = [Ax];. We now show thafrecX. B] as defined in Table 3 is
the unique fixpoint of B](—) in My — even if it is not unique ifM, as
Example 4.15 shows.

A complete metric space.In order to achieve this, we use the theory of
metric spaces; cf. [21] for an exposition of the basic theory. First we turn
M into a complete metric space, where the distance between two models
is determined by the largest depth up to which they coincide. For arbitrary
p € P, the depth op is determined by its longest,-chain, as follows:

depth(p) = max {n | 3(e;)1<i<n C Ep: V1 <i < n:e; <peiq1}

Furthermore, for arbitrarfp € M andn € N, the “prefix” of P up todepth
n is defined by

Ptn = {p € P | depth(p) < n}
This gives rise to the following distance functi6n M x M — R:

(S(P, Q) — 27sup{n+1|73Tn:QTn} ]

The “+1” in the supremum is there to ensure thaPif0 = 910 (meaning
that the termination properties f and Q coincide) thenj(P, Q) < 1.
Sincesup ) = 0 andsup N = oo, it follows that§(P, Q) = 1 iff (ep €
P) & (er € Q) for someT C Act, andd(P, Q) = 0iff P = Q.

The above definitions of and depth are standard — for event-based
models, very similar ones can be found in [43] — and so is the (proof of
the) following theorem.

Theorem 4.18 For all T' C Act, (Mr, §) is a complete metric space.

In fact, the limit P of a Cauchy sequencgP;); in (M, ) is given by
Uien ﬂjzi P;. In general, due to the properties of complete metric spaces,
any contracting functiorf : My — My has a unique fixpoint (see [21]).
We now prove that functions of the forfilB](—) are contracting ifX is
dependently guarded iB. (Note that this is not true for arbitray; as an
extreme casd,X](—) is clearly not contracting.)

Proposition 4.19 Let B € L;’?{ with fu(B) C {X}.
1. [B](—) is non-increasing;
2. If X is dependently guarded iR, then[B](—) is contracting.

The proof can be found in Appendix A (Page 216). This gives rise to the
following theorem.
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Fig. 1. Amodel ofa- (b-0, + c- 0p), WwhereAct = {a,b,c,d} anda Db D c D d

Theorem 4.20 If B € L* with fu(B) C X, andX is dependently guarded
in B, then[recX. B] is the unique solution of = B modulo=in M4,

Note that this not only states th& = [B](P) impliesP = [recX. B]
= P, but also tha®® = [B](P) impliesP = [recX. B]. The proof can be
found in Appendix A (Page 218).

4.4 Transitions

To show the correspondence between operational and denotational seman-

tics, we turn each system system mo@éhto an Act U v4;-labelled tran-

sition system(P,—,¢y); i.e., the states of the transition system are given

by the system runs. A similar construction can be found in, e.g., [65]
Intuitively, in P there is aru-labelled transition from each run @f to

any run of which it is a prefix differing only by a singtelabelled event;

furthermore, there is &,-labelled transition between any two system runs

pandp U a. Formally,—> is the smallest relation such that for ale P:

—p\e plfeEmaxE and/(e) I Tj;
—p—>pUalpra€73

Note thatife € max E, andl(e) I T, thenp\e < p,andhencg\e € P.For
instance, Fig. 1 represents the system model of Example 4.5 as a transition
system.

An immediate observation is that system model isomorphism implies
bisimilarity. (The bisimulation relation is given Hyp, ¢(p))|p € P} where
¢:P=Q.)
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Proposition 4.21 If P = Q, then(P,—,¢p) ~ (Q,—, g).

One of the main results of this paper is the following theorem, which states
the correspondence between operational and denotational semantics.

Theorem 4.22 For all closedB € LY/, B ~ its([B]).

The proof of this theorem proceeds by induction on the structurB.of

For the refinement operator, the correspondence crucially relies on strong

D-consistency of refinement functions (Definition 3.5) and its denotational

counterpart (see Definition 4.7 and Proposition 4.12). For the case of recur-

sion, we use the uniqueness of fixpoints modulstated in Theorem 3.15:

essentially, because the denotational semantidseoX. B] yields a so-

lution of X = B, it must be bisimilar torecX. B. However, a technical

problem in this argument is that we have proved Theorem 3.15 on the syn-

tactical level (if twotermsare solutions o’ = B, then they are bisimilar)

and so it is not directly applicable to system models [jkecX. B]. To

circumvent this, for the purpose of proving Theorem 4.22 we introduce ad-

ditional constantgp for everyP? € M to L*/. As remarked in Sect. 3.4,

the proof of Theorem 3.15 is not invalidated if we extdndh this way.
Moreover, the proof actually uses a different (bisimilar) representation

for the operational semantics of system models. Namely, instead of turning

each individual system mod#l into a transition system of which the runs

(the elements oP) are the states, we turn tistassof system modelsM,

into a transition system of which tisystem modelghe elements dM) are

the states. Full details of the proof, including this alternative representation,

are worked out in Appendix A (from Page 220).

5 Axiomatisation

Next we will develop an axiomatisation of bisimilarity. We give a finite equa-
tional theoryT such that for all closed termB;, B, of the finite language

f
L}%’n,

T+ By = Byifand only if By ~ Bo,

that is, T will be sound for bisimilarity inl.* and complete for bisimilarity
in L% Within T, the rules for equational reasoning (reflexivity, symmetry,
transitivity, substitution and instantiation) can be used to deduce equality of
terms from given equations.

5.1 Auxiliary operators

As might be expected, the unusual behaviour of weak sequential compo-
sition forces some modifications to the standard axioms for bisimilarity.
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The axiomatisation of ACP [8] for instance contains a rule for the right-
distributivity of sequential composition over choicg: + y)z = zz +

yz (where juxtaposition is sequential composition). For weak sequential
composition, however, this is not valid: for instancegaifl ¢ I b, then
(a+b)-¢c & (a+b)-1 which can still do bothw and b; however, if
a-c+b-c-S B,theneithetB = a-1 or B = b-1, neither of which can

do botha andb. It follows that(a +b) -c £ a-c+b-c.

Our axiomatisation is inspired by Aceto, Bloom and Vaandrager [2], who
developed a general method for deriving complete axiomatisations for strong
bisimilarity directly from GSOS rules. Their work is not directly applicable
to our system in its current form (even for the part without recursion), but we
closely follow their ideas. The problem for the applicability lies in the fact
that although the recursion-free language can only describe finite behaviour,
still in a technical sense it allows infinite computations to be specified: for
instance, ifa I bthenb Y&, b 4, ... This means that the technique of
[2] fails to induce a normal form.

Nevertheless, a complete axiomatisation does exist. As usual, it requires
the addition of auxiliary operators o; they are collected in Table 4. The
language including all auxiliary operators is denolet, and the well-
formed sub-languagk™ . In particular,recX. B is only well-formed if
A(B) C Ax; for that purposeA(B) must at least be defined, implying
that B may contain no occurrences of the residue operatgra.

Left merge and communication merge| , is the standarteft mergefrom

ACP, adapted to our notion of synchronisation and extended to deal with
termination.| , is the relevant version of theommunication mergerhe

idea is thatB || , C captures part of the behaviour 8f|| , C, namely the
cases where the first action that occurs comes from the left hand operand,
B, and does not have to synchronige| , C, on the other hand, captures
the part where the first action must arise from a synchronisation, i.e., must
be an element ol and performed simultaneously by and C. Parallel
composition can then be split up according to the following axiom:

rllay=zlqy+tyllazt+aiyy .

Left and right sequential and residueWe use operatorsand-, calledleft
sequentiabndright sequentialwhich serve a similar purpose with respect
to sequential composition as left and communication merge with respect
to synchronisation. That ig3«C captures the part aB - C' where the first
action to occur must come frof, whereas3»C specifies that it must come
from C, in which caseB must terminate for that action. Both operators are
right-associative. Sequential composition can then be split up as follows:

Ty =x¢y+ T2y .
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Table 4. Operational semantics of auxiliary operators

left merge T %1 ag¢gA x oy gy Yay o

16
quyﬁx/H‘Ay/

17
IllAyiw'HAy

communication merge % =’ y %y ac€ A x Yoy gl oy Yay o
a, ../ / Rig v ’ 7 Rio
a
oy l,y Tlay -,y

left sequential N T Yoy gy ay g

- — , 2o 21

Ty & x' - Yy €Ty a, x/(-y'
right sequential x Yay g oy oy z Yay gy Yay g

22 23
sy &'y xry Yoy g’y

residue x ay g By g
71:{24
zla By "
deadlock ey 3’ a €Al

da(x) Y25 da(a’)

Note that, unlike parallel composition, sequential composition is not sym-
metrical, and hence left and right sequential cannot be covered by a single
operator. Left sequential in fact coincides wibtion prefixwhen the first
operand is a single action. Action prefix plays its usual role as one of the
basic operators of normal forms (see [2]). For right sequential, on the other
hand, the situation is more complicated.

The following distributivity and associativity properties are
straightforward to establish:

(x4 y)ez =xez +yez
x>y +2) = a2y + a2

(zey)ez = ze(y-2)
w2 (yez) = (22y)ez

Disregarding deadlock for the moment, the important remaining
problem for the axiom system is to deal with terms of the fdBsu, i.e.,

right sequential with a single action as its right hand operand. Intuitively,
this specifies that must occur first, followed by the part @ that is left
after terminating for; or, if B does not terminate far at all, B+« is dead-
locked. Unfortunately, however, there is no easy way to capture this with the
operators discussed so far; for instancé i§ a choice, say betweds, and
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Table 5. Alphabet and partial termination setbf except residue

B A(B) T(B)
04 A [A]r
a {a} [a]1

By + B A(B1)UA(B2) T(B1)UT(B2)
Bio B> -A(Bl) U A(BQ) T(Bl) N T(BQ) if o€ {HA7 uAv |Av R ')}

0a(B1) AUA(By) [A]r N T(B1)
Bilr]  U.ecas,) Alr(a)) T(B1)
X Ax [Ax]r
recX. By Ax T(B1)

B,, thenB-»a cannot be rewritten without a rather extensive case distinction
to determine whetheB; and B, terminate or do not terminate far (As
we saw above, weak sequential composition does not right-distribute over
choice; it is precisely the right sequential that is the problem in this regard.)
We solve this problem by introducing, into our axiom system, two further
auxiliary notions that precisely capture the partial termination relation. First,
Table 4 defines gesidueoperator:B | a denotes the residue of the tetn
after it has terminated far, or a deadlocked term B cannot terminate for
a. Second, Table 5 defines a partial functipn L™ — 24¢t that returns
the set of actions for which a term, which may itself not contain the residue
operator, is partially terminated. In addition, Table 5 extends the fungtion
returning the alphabet of a term (Table 1)Itd, again with the exception
of the residue operator.
Note that there is a relation betwegitB) and.A(B), in that[A(B)]; C
T (B) for all B, expressing that a term is certainly terminated for all com-
pletely independent actions. The following proposition states the crucial
property of the partial termination set and the residue operator.

Proposition 5.1 Let B € L™ without residue operator and € Act. a €
T (B) if and only if B %, B’ for someB’, in which caseB’ ~ B | a.

Forced deadlock. Inthe above discussion, we have ignored the termination
and deadlock properties of terms. Because of the special nature of partial
termination, this is another area that deserves careful attention. For instance,
even for completely deadlocked terms (that are unable to perform an action
themselves), the alphabet of a term alone is not sufficient to determine its
termination properties: one can easily find non-bisimilar deadlocked terms
with the same alphabet. Thus, axioms like- 0 4, = x are in general not
sound.
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Example 5.2Let B = 0y, 53 +0¢ .y andC' = 0y, ) +0y, y Withd 1 {a, b}
andd D c. It follows that B and C' are both deadlocked, witd(B) =
A(C) = {a,b, c}. HoweverB Y4, whereas’ Y henceB  C.

What we need is some finer method, which also takes choices into account.
For this, we introduce a further auxiliary operator, calteshdlock(also
defined in Table 4). The deadlock operator serves a purpose similar to the
encapsulation operator of ACP [8]; however, the use of the index set is
different. In generalj 4 transforms a ternB into a deadlocked term (i.e.,
da(B) 4 for all a € Act) with the same termination behaviour &s
except that4 is added to the alphabet. The following proposition (proof
omitted) formalises this property:

Proposition 5.3 If B € L+ is deadlocked (i.eVa € Act: B %), then
d4(B) ~ 04 - B.

Using this forced deadlock operator, we can used4(z) = x in place of
the unsound: + 0 4(,) = .

Properties of the extended languageWe useL*/* to denote the subset
of L for which the same well-formedness conditions hold adfér (see
Sect. 2)L*/* enjoys many of the properties we proved in Sect. 3ff.

In particular, the following hold:

— The properties of the alphabet are preserved; that is, Proposition 3.8 can
be extended frorL® to L/,

— The properties of partial termination are preserved; that is, Proposi-
tion 3.12 can be extended frob”/ to L/ .

— The congruence property of bisimulation is preserved; that is, Theo-
rem 3.14 can be extended frabt/ to L*/*. The same argument as
before can be used (see the proof of Theorem 3.14, Page 210), except
for the case of the residue operator, of which the operationalRgle
uses look-ahead in the premise. Since this falls outside the GSOS format,
for this case we have to revert to the ntyxt/ntyft format proposed in [34].
The congruence argument for the recursion operator, too, is invalid in the
presence of look-ahead (see [61]); however, the situation is saved since
(as mentioned above) the well-formedness of recursive terms implies the
absence of the residue operator inside recursion.

5.2 The equational theory

The set of all relevant axioms is collected in Table 6. Note that several
axioms contain side conditions referring to the alphabet or the termination
set of terms; such axioms are therefore only applicable in the absence of the
residue operator.
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Table 6. The equational theory

04 =04 if [A]; = [A"]; C1 (x +y)ez = (ze2z) + (y¢z) LS1
r+y=y+z C2 (zey)ez =z« (y - 2) LS2
z+(y+z)=(@x+y)+=2 C3 Os«x =da(x) LS3
r+r=2x C4 2>y + 2) = T3y + 22 RS1
z4+d0a(z)=2x C5 x> (yez) = (xry)¢z RS2
v =9 tullactolay P | w0a=aceda)+ b
(z+y) laz=(xlls2)+ (yl,z) LMI1 if a € T(z) RS3
a<@ | g\ 10y ¥ = a¢(@ [ 4\ 10y V) LM2| z+a =0,y (x) ifa ¢ T(x) RS4
a¢T a0y Y =010} (@ [l asqay ¥)  LM3| 2204 =da(z) RS5
04/ | 4x=0a(x) LM4| (z+y)la=zla+yla RDI1
Tl Y=yl CM1|b¢x L a = be(z | a)
(z+y)lgz=x| 24yl = CM2 if a € T(bex) RD2
at® | 4 g0y 04y = a¢( |4 0y y)  CM3| bexla=0 ifa¢ T(bex) RD3
at® | 450y U¢Y = 0100} (@ | 4 g0y ¥) 04la=04 if a I A RD4
ifa#b CM4| 0ala=0 if a D A RD5
a< | 4\ (0} ¥ = 0{a} (@ [ 4\ {0} ¥) CM5| 54(04/) = 0454 D1
04 |42 =0a(2) CM6| da(a) = 04040} D2
l.z=z S1 da(zoy)=da(z)odaly)
z-1=x S2 whereo € {+,«} D3
(z-y)-z=x-(y-2) S3 afr] =r(a) RF1
zy=z|,y if A(z) I A(y) S4 04[r] =04 RF2
Ty = ey + T3y S5 (z1 0 z2)[r] = x[r] © y[r]
whereo € {+,-,«} RF3

In addition to those already discussed at the introduction of the auxiliary
operators, Table 6 includes several more axioms concerning sequential com-
position. For instance, S1-S3 express that sequential composition imposes
a monoid structure on the language, witlas a neutral element; this is as
expected and coincides with the standard axioms for ACP (see [7]). Another
interesting axiom is S4, which expresses that for two terms whose alphabet
is independent, sequential composition and (synchronisation free) parallel
composition have the same effect.

The following theorem states the soundness of the axioms. It implies
that we may use the equational thedrgenerated by Table 6 together with
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the usual equational proof rules to derive bisimilarity of termk#*. The
proof can be found in Appendix A (Page 226).

Theorem 5.4 (soundnessJhe axioms of Table 6 are sound w.r.t. bisimi-
larity.

Our axiom system is alsmmpletei.e., rich enough to derive all bisimilari-

ties of finite terms. We prove this in the usual way, by reducing all terms to a
small core language, which in this case consists of action prefix, choice and
termination constants, and showing completeness for this core language. We
denote the core language by (for tree language); it is generated by the
following grammar:

B:=04|a«B|B+B .
Completeness of the core language comes down to the following property.
Proposition 5.5 For all By, By € L, By ~ By impliesT F B; = Bs.

The proof, the full details of which can be found in Appendix A (Page 230),
uses a sum normal form for terms bf. Using D1-D3, it is not difficult

to show that for allB € Ly, T F d4.:(B) = 04.; hence with the help of
C5 one can deducB + 0 = B. Therefore, C2—C5 together imply that we
may use the standard notation for suing, ; B; (wherel is finite) denotes
the choice between alB;, which equalsB,, if I = {n} and0if I = 0. It
follows that each ternB € L, can be written in the form

B=3%icrai«Bi+ 3 ;c;04;
whereB; € L; for all i € I. The proof of Proposition 5.5 proceeds by
induction on thedepthof tree terms in sum form, which is defined by
depth (ZielaieBi + ey oAj) — max {1 + depth(B;) | i € I}
(wheremax () is assumed to equé). As an intermediate step in the proof
of Proposition 5.5, we first prove a special case for deadlock constants:
Lemmab5.6LetBeL;. If B+0y4 ~ B,thenT+ B+ 04 = B.

Using this, one can show that for arbitraBy, By € L;, By ~ By implies
T+ By + By = By (by induction ondepth (B + Bs)). By symmetry, this
implies Proposition 5.5.

Normalisation. The second part of the completeness result consists of
showing that every term @' can be rewritten (using the equational theory
T) to a term of the core language. This is a consequence of the following
proposition.
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Proposition 5.7 Let By, Bs € Ly, and letr: Act — L; be stronglyD-
consistent.

1. TFa=a<l.

2. TE By -By = C forsomeC € L;.
3. T+ By ||4 B2 = C for someC € L.
4. TF By[r] = C for someC € L.

In order to prove this, we first have to establish similar results for the (other)
auxiliary operators:

Lemma 5.8 Let B € L, be arbitrary.

1. TFda(B) = C for someC € L; with depth(C) = 0.
2. TF Bl a= C forsomeC € L; with depth(C') < depth(B).
3. T+ Bsa = C for someC € L; with depth(C) < 1+ depth(B).

The proof of Lemma 5.8 and Proposition 5.7 can be found in Appendix A
(Page 230). The main completeness result is now straightforward to prove.

Theorem 5.9 (completenessor all By, B, € L*, B; ~ B, implies
T+ By = Bs.

Proof. According to Proposition 5.7, there are terd$, B, € L, such
thatT + B; = By andT - By = B). Since all axioms ofl are sound
(Theorem 5.4), it follows thaB] ~ B}; henceT - B} = B}, according to
Proposition 5.5. Combining these equalities, we obfain B; = B,. O

6 Applications

We discuss some small examples from the fields of protocols and data-bases
to illustrate the applicability of our approach, especially the usefulness of
weak sequential composition and action refinement, and the interaction of
sequential composition with choice. First, we show that the data transfer
and release phases of a toy protocol can be specified sequentially and never-
theless be allowed a potential overlap, due to the fact that the release is not
instantaneous and data packets may still be underway. Then, we reconstruct
thecommunication closed layepsinciple from [27] (advocated in [41]) in

our setting and apply it to another toy version of a data transfer protocol.
Finally, we show how to refine a data base update action without blocking
simultaneous requests — an example which was inspired by [13].

6.1 Connection release

We consider a small protocol for connection-oriented data transfer between
two parties. The example is inspired by Goltz andt£[33]. The proto-
col consists of three phasesnnection establishmerdata transferand
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e Arreqg dreg i req g

N dindg e :

rind 4
=

. ) = dind
= rind .

rind 4

renf g Nrenf g

(3)

Fig. 2. Possible interactions of data and release phase

connection releasaHere we concern ourselves only with the interaction be-
tween the data transfer and release phases, respectively specified by terms
Data and Rel. On the top level, the specification is given by

Prot = Data - Rel .

This reflects the idea that there is a natural ordering, based on the fact
that after connection release no data can be transferred any more. However,
because of the typically distributed nature of protocol systems, itis in general
very difficult to rule out that there are still packets underway when the
connection release is initiated; hence some actions from the data phase
may take place only after the release phase has started (but not after it has
finished). In a traditional process algebra, such an overlap would contradict
the specified sequential ordering of the two phases.

In order to keep the formalisation within bounds, let us assume that data
is only transferred from party to party 3, and the transfer of one data item
consists of two actionsjreq , and dind g for data requestanddata indi-
cationtaking place atd and B, respectively. Data transfer is unconfirmed.

As a further simplification, we model just one possible data transfer. The
release phase can be initiated by eithear B by arelease requestreq 4 or
rreq g, Which is indicated at the other end byedease indicationind g or
rind 4, and confirmed by eelease confirmenf 4 or renf 5. This behaviour

can be specified by the following terms:

Data =1+ dreq 4 - dindp
Rel = rreq - rindp - renf , + rreqg - rind 4 - renf g .

The four possible global scenarios for the behaviour of this system are
depicted in Fig. 2, in the form of message sequence charts. Note that in
scenario (4), the data indicatiafind g can take place before or after the
release requesteq z; however, after a release confirm, no data can arrive
any more.

Consider the dependencies between the actions. The local actions of each
party are dependent with the exceptiondofid 5 andrreq ; the idea here



194 A. Rensink, H. Wehrheim

is that partyB cannot know if there is an incoming data indication or not,
and hence this cannot influence whether or Bowill request release. In
addition, each indication should be dependent on the corresponding request,
and the confirmation on the indication.

Now we can analyse the behaviour of this protocol. Its first transition is
either a data request (b4) or a release request (byor B). If it is a data
request then

Prot = Data - Rel -4, 1. dindg - Rel

which corresponds to scenario (2) or (4) of Fig. 2. Which of these two is
chosen depends on who initiates the release. Despite the syntactic structure
of the specification, itis not necessarily the casedlvaf 5 be the next action

to occur. In fact, bothreq , andrreqz are already enabled iind g - Rel,

and sodind p can be delayed for several steps:

dindpg - Rel "By dindp -1 - rind 4 -
renf g FM4Ay dindp-1-1-renfg .
At this stage, finally, the data indication must take place, followed by the
release confirmation.
On the other hand, if the first action &fot is the release request from

B, then (becaus®ata —E5 Data) the choice in the data phase is not
resolved by this: we get

Prot "By Data-1-rinda-renfg

corresponding to scenario (3) or (4) in Fig. 2. The next action will decide
between these scenarios: it is eitlerg 4 or rind 4, the latter of whicldoes
decide the choice ibata:

Data - rind 4 - renf 5 704y 1.1 - renf

Note that the absence of right-distributivity of choice over (weak) sequential
composition is important here. If we distribuie! over the choice iData,
we obtain the alternative protocol

Prot’ = Rel + dreq 4 - dindp - Rel .

This specifies a different protocol: iRrot’, an initial rreq z-action auto-
matically resolves the choice and implies that no data transfer takes place,
and thusdreq , may be refused afterwards:

Prot’ ™5, 1. rind 4 - renf 5 .

Aninitial rreq g-action inProt on the other hand leaves two possibilities for
the future behaviour: either the release request is immediately indicated by
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party A or party A may still send new data which then has to be accepted by
B. To further illustrate this difference, we use the axiomatisation to rewrite
Prot into a form which makes this visible:

Prot = rreq 4 - rindp - renf »4 0]
+ dreq 4 - dindp - rreq 4 - rind g - renf 4 (i)
+rreqp - (rind 4 - renf g + dreq 4 - dindp - rind 4 - renf ) - (i)

We show only part of the derivation of this equality. We start by proving that
all weak sequential composition operatorsHnot can be replaced by left
sequential. For this, we show that in generab = a<b if « D b. First note
that

RS4 D2 D1
ar*b =" dpy(a) = Ogqpy = 61ay(0gpy)
LS3 D2 D3
= 044y ¢0gp) = Jp(a)«dp(b) = dp(acd) .
This implies
a-b2 aeb+ asb = ach + dp(a<d) L g .

Generalising this to weak sequential compositions with more than two com-
ponents, we can rewritBrot to Data’ - Rel’ where

Data’ = 1+ dreq 4¢dindp
Rel’ = rreq g« (rind gerenf 4) + rreq g« (rind a<renf g)

This is now the starting point for showing the equality advocated above.

Data’ - Rel' = Data’«Rel’ + Data’s Rel’ (SH)
Data'«Rel’ = 1« Rel’ + (dreq g« dind g)«Rel’ (LS1)
= 6g(Rel") + dreq 4« (dind g - Rel’) (LS3, LS2)

The first component of the choice will later be absorbed by the rest of the
term with the help of axiom C5, the second component is already nearly
part (ii) of our target term. Thus we now only look at the other part of our
current term:Data’» Rel’.

Data’» Rel’ = Data’»(rreq 4¢rind gerenf 4)

+ Data’+(rreqgerind a<renf g) (RS1)
= (Data'srreq ) «rind gerenf 4
+ (Data'srreqg)«rind a<renf g (RS2)

(+)
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The interesting part is nowx), it describes the behaviour of the protocol
after an initialrreq 5. Thus we only take a further look at this part.

(x) = (rrque(Data’ Lrreqg) + (5{,nrqu}(Data'))

«rind g«renf g (RS3)

Data' | rreqg = 1 | rreqg + (dreq 4« dind ) | rreqp (RD1)
=1+ dreq «(dindp | rreqpg) (RD2, RD4)

=1+ dreq «dindp<(1 | rreqp) (RD2)

Usingl|rreqp = 1 (RD4) andiy, e, .} (Data’) = 0yreq,, (D1-3, C5, LS3)
we obtain

() = (rreqp«(1 + dreg s« dind g) + Orreq,, )
«rind g¢renf g

= (TT’qu(-(]_ + drquedz'ndB))erindAercnfB
(LS3, D1-3, C5)

This can then be rewritten to part (iii) of our target term, which described
the behaviour ofProt afterrreqg.

Although the operational semantics is the simplest and most tractable, it is
also interesting to see for once the denotational model for a small specifica-
tion like Prot. Leaving out the event identities and termination sets for the
sake of simplicity, the following graph depicts the system runfrobi],
ordered by prefix:

TT€q A Treq 4 renf 4
—
rind g rind g
/!
dreq 4 —7req 4 dreq 4 —TTeq 4
N .
dindp dindg—rindp
/ / / - N
dreg 4 req A dreq 4 —Treq 4 —renf 4
€ — -dreq Al — —
dind g rreqp  dindp dind g—rind g
pY N\ / pY 4
. dreq 4 . dreq g —rind A . dreq s rind
"B Treqd g rreqg  dindp
N\
rind A rind A dreq 4—rind 4
ﬁ.
Teq B TTeq B renf g rreqg dindp—renf g

It should be noted that this example did not rely on action refinement. It
would be interesting to initially regard the data and release phékgs,
and Rel, as single actions, sequentially compose®int, and afterwards,
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in the next design step, refine them into their respective definitions above,
using

r:  Data— 1+ dreqy - dindp
Rel > rreq 4 - rindpg - renf o + mreqg - rind A - renf g .

However, this is unfortunately not compatible with the requirement of strong
D-consistency we have imposed on refinement functions (see Sect. 3.1):
clearly Data D Rel and therefore it should be the case thatta D a for

any initial actiona of Rel; yet Data is (partially) terminated for the initial
actionrreq  of Rel, sinceRel 8, and Data "B

6.2 Communication closed layers

An algebraic law that has been quite successfully applied in a linear time
setting is thecommunication closed layetaw (CCL), originally due to
Elrad and Francez [27] and advocated for instance by Zwiers et al. in [39,
74,28], also working with action dependencies. In our setting, CCL can be
formulated as follows (with some side conditions, which we omit for the
time being):

By, C1 By Ch

- ’ HAlLJAQ ’ . (3)
By || 4, C2 By Cy

CCL is used to facilitate the development of distributed system by enabling a
transformationaldesign: initially, the system or algorithms can be specified
as a number of sequential phasesayers(which is probably close to the
designers’ conception of the system), each of which consists of a number
of cooperating distributed entities; CCL then allows this specification to be
transformed into a behaviourally equivalent parallel composition. In Eq. (3),
the individual layers are given by the ter[B$HAi C; on the left hand side:
the B; and(; are the distributed entities within the layer, which cooperate
through their communication ovet; and through their respective action
dependencies. On the right hand side, we see that alBjfsge composed
sequentially into one component of a parallel composition, and so are the
C;.

The two views are equivalent only if the entities fratifferentlayers
cannot interfere. This is the requirementagimmunication closedneds
our setting, it is expressed by the following conditions (forigH j):

— different entities of different layers are mutually independent, i.e., the
actions inA(B;) are independent of those #y(C));
— different layers do not synchronise; i.el(B;) N A; = A(C;)NA; = 0.
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Communication closedness is necessary for (3) to hold. Recallthdt
Ay <= Vay € Ay1,as € As. a1 I as; then the formal statement of CCL
is as follows.

Theorem 6.1 If B;,C; € L and A; C Act for i = 1,2 such that for all
L F ]

- A(B;) I A(Cj), and

- .A(Bl) N Aj = A(Cl) N Aj =

then (3) holds up to strong bisimilarity.

This theorem thus generalises the results of Zwiers et al. [39,74,28] to a
branching time setting. The proof is again in Appendix A (Page 232). The
theorem can easily be generalised to arbitrarily many layers:

Corollary 6.2 If B;,C; € Land A; C Act for 1 < ¢ < n such that for all
i F ]

- A(B;) I A(Cj), and

- .A(Bl) N Aj = A(CZ) N Aj =1

then the following holds up to strong bisimilarity:

Bi|l4, C1 By G

: =1 ¢ | lau-uva,
Bn ”Ancn Bn Cn

Proof. By induction onn. The case for = 1 is trivial, and the case for
n = 2was proved in Theorem 6.1. Now consider the case up-ta@ proven
(n > 2); then

B 1
Bl HAl Cl HAlLJ“'UAn—l ;
: = Bn1 Cn1
Bn HAn Cn '
Bn ||An Cn
Bl Cl
= : HAlU"'UAn
B, Ch

where the first equality holds by the induction hypothesis, and the second
by Theorem 6.1. O
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Application. We now show an application of CCL. Consider a data phase
consisting ofr > 1 data transfers, each initially specified by a single action
data,. The initial specification of the entire data phase is

Data = datay - ... - data, .

The data; are dependent actions; i.@gta; D data; forall1 <i,j <n.
In a first design step, the actions are refined as follows:

r: data; — prod,; - dreq; - dind; - cons; (1 <i<mn) .

Here,prod; is an action of the sending party whighoducestheith data,

the dreq; anddind; are data requests and indications as in Sect. 6.1, which
convey the data over the medium from the sending to the receiving party, and
cons; is an action of the receiving party whidonsumeshe ith data. We
assume that produce and consume actions are independent of each other, and
so are all requests and indications of different layers. Moreover, production
and data indication, as well as data request and consumption, which take
place at different parties, are independent as well. Summarisirig,the
reflexive and symmetric closure of the relation generated by

prod; D prod;,, prod; D dreq; dreq; D dind;

dind; D cons; cons; D cons;y1.

Note that the refinement functioris stronglyD-consistent. The behaviour

of the refined data phase, specified Byta[r], is not strictly sequential:

due to the independencies, the production and data sending of one transfer
can overlap with the data consumption of previous transfers. For instance,
if n =2then

Data[r] 2221 (dreq, - dind - consy) - datas]r]

(
(dind; - consy) - datas[r]
Proday (dindy - consy) - (dregy - dinds - conss) - 1[r]

(dind; - consy) - (dindsy - conssy) - 1[r]
after which the data indication for all send data has to take place and finally
the data are consumed in the order of production. The denotational model
of Data[r] consists of a single maximal run and its prefixes, depicted in

Fig. data3. The dashed lines indicate the refinements of the individual data
transfer actions.

Now we want to transform the refined specification into one which is com-
posed “vertically”, that is, in which the roles of the sending and receiving
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\ \
\ \
prod, e prod, B prod,,
\ \
\ \
\ \
\ \
\ \
dreq; ———= dreq, ——=--- dreq,,
\ \
\ \
\ \
\ \
. \ . \ .
dind; ——= dindy ——= - dind
\ \
\ \
\ \
\ \
\ \
consy  —— = COnsy ———= --- consy,
\ \
\ \
layerl layer2 layer n

Fig. 3. Data transfer phase consistingrofayers

parties and that of the channel are distinguished. First we transform the
individual data transfers. Let be a new refinement function given by
r': data; — ((prod; - dreq;) ||| (dind; - cons;)) dreq, dina; (dreg; - dind;)
x (1 <i<mn).
For clarity, we introduce auxiliary name&nd; = prod, - dreq;, Rec; =

dind; - cons;, Chan; = dreq; - dind; and A; = {dreq;, dind;}; this allows
us to write

r': data; — (Send; || Rec;) HAi Chan; (1<i<mn) .

r(data;) can be rewritten ta’(data;) using the proof system developed

in Sect. 5, using especially the expansion axioms for parallel composition
(P, LM1-5 and CM1-6) and the axioms for choice (C1-5). It follows that
r(data;) ~ r'(data;) forall 1 < i < n; since bisimulation is a congruence
for refinement (Theorem 3.14), we may conclude

Data|r] ~ Datalr'] .
Repeatedly using Axiom RF3 with= - and RF1, we obtain

(Sendy || Recy) || 4, Chany
Data[r'] ~ :
(Sendy, ||| Recyn) || o, Chany,
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Baseg \L 1 Baseg
qry, @’@ upd, qry, qry,
upd., < upd,
qarys upd, qarys qrys
2 enf

Fig. 4. Specification and desired implementation of a 2-state data base

The phase$Send; ||| Rec;) || 4, Chan; are communication closed: for all

L7 g

— A(Send; ||
A(Chanj);

— A(Data;) N Aj = 0.

Hence the conditions of Corollary 6.2 are fulfilled, implying

Rec;) = {prod;, dreq;, dind;, cons;} I {dreq;, dind;} =

(Send ||| Recy) Chan;
Datal[r'] ~ : 4 :
(Send,, ||| Recy,) Chan,
whereA = |, ,,, 4i. The left hand side can in turn be subjected to CCL,
sinceA(Send;) I A(Rec;) forall i # j; hence we have
Sendy Recy Chany
Datal[r] ~ : [ I [
Send,, Rec,, Chan,,

The right hand side has clearly recognisable subterms describing the be-
haviour of sender, receiver and channel, and can therefore be mapped di-
rectly on an implementation architecture.

6.3 Data base access

Finally, we apply our theory to a small example inspired by Brinksma,
Jonsson and Orava [13]. This example shows that dependency-based spec-
ification and action refinement allows a design strategy where sequentially
specified abstract actions can be implemented in an overlapping fashion,
when this is consistent with their mutual dependencies. This is a clear ad-
vantage over standard action refinement.
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The example concerns a distributed data base that can be queried and
updated. We assume that the data base has only two possible states, which
we denote 1 and 2. Querying is done using actigns for i = 1,2, where
the indexi models the return value; updating is done using actiafy for
1 = 1,2, where the index denotes the new state of the data base. The data
base specification is modelled by the transition sysigize s in Fig. 4.

The problem considered in [13]is to change the interface of the data base,
so that updating consists not of a single action but of two successive stages, in
which the update irequestedusingreq; for i = 1, 2) andconfirmedusing
enf), respectively. Moreover, it is required that in the meantime (between
request and confirmation), querying the data base should still be possible.
This behaviour is modelled bBase; in Fig. 4.

In our approach, this implementation can be obtained algebraically
through an application of the refinement operator, with refinement function

r: upd; — req;;enf (i =1,2).

The overlap betweegry, andcnf is obtained by setting the dependencies
appropriately:gry;, D req; but gry; I cnf. Note thatr is strongly D-
consistent. LetD; stand for the term describing the behaviour of the data
base in state (wherei = 1, 2); i.e.,

Dy = gry,-D1 + upd-D1 + updy-Do
Do = qryy-Da + updy-Da + updy-Dy .

The specification and implementation shown in Fig. 4 are then obtained
modulo bisimulation as the semantics of

Baseg = D1

Baser = Baseg|r] .
More precisely, the operational behaviour Bése; is depicted (modulo
Axiom S1 of Table 6, which states that¢ = ¢ for arbitraryt) by the left
hand transition system in Fig. 5. The right hand system of Fig. 5 shows the

case wherery, D cnf instead, in which case the next query must wait for
the second phase of the updating to finish.

7 Conclusion
7.1 Summary

We briefly summarise the main achievements of this work. We have defined
a process algebra with a built-in notionagpendencgmong actions, thus
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D7 [r] enf - Dy[r]
\V enf

qry. qary, qaryy

reg,

qarys @‘\‘f]

' cn, : . enf
enf - Da[r] Do|r] enf - Dor] Do|[r]

qrys qarys

Fig. 5. Refinement oBases with gry, I cnf (left) andgry, D cnf (right)

giving a rudimentary form of semantics to the otherwise uninterpreted ac-
tions. Dependencies influence the ordering among the actions in a process,
and thereby the interpretation of the operators. In particular the combina-
tion of action refinement with dependencies turns out to be an interesting
concept, which — as demonstrated in the previous section — can be useful in
the hierarchical design of specifications.

For this process algebra we developed semantics using several consis-
tent approaches: an interleaving operational semantics, a causality based
denotational semantics and an axiomatisation with respect to bisimulation
equivalence. These semantics on the one hand provide us with different ways
of representing and verifying properties about processes and on the other
hand were used to validate their correctness against each other. All three are
branching timesemantics, which faithfully reflect the moments of choice.
The precise modelling of branching points was achieved by introducing a
new concept opartial termination with the noteworthy feature that it may
resolve choices. This feature, which is a natural consequence of the concept
of dependencies, nevertheless complicates the semantics quite a bit.

The (toy) examples in the previous section showed how the theory can
in principle be applied in system design, for instance of telecommunication
protocols or database access. The theory can however also be useful to
give precise semantics to other specification methods. An example of this is
[31] in which a formal semantics to Message Sequence Charts (MSCs) — a
standardised language for specifying message passing systems —by means of
a process algebra with action dependencies is given. Interestingly, Message
Sequence Charts also allow to specify global choices, thus precisely the
conceptof partial termination developed here is needed for their semantics. A
semantics for Interworkings also relying on our weak sequential composition
can be found in [44], and similar for High-level-MSCs in [45].

To get rid of these complications and still have a consistent and intu-
itively correct semantics, one could restrict oneselfdcal choices, i.e.,
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occurrences of the operater + t2 where the dependencies Gf and
are the same. (This is advocated in Huhn [36,37], in the dual setting of
localities rather than dependencies.) On the other hand, it is precisely this
effect of the resolution of choice by partial termination that has allowed the
straightforward modelling of certain features of MSCs in [31,44,45].

7.2 Extensions

Invisible actions. Our process algebra does not incorporate a notion of
invisible action. While neither the (CCS-like) choice nor the synchronisa-
tion introduce invisible actions, as soon as one adds an operatudfog,
invisible actions come into play. The question then arises of how to set the
dependencies. In principle, there are at least three possibilities for this:

— The invisible action is dependent on all visible actions;

— The invisible action is independent of all visible actions;

— There is gamily of invisible actions, indexed with sufficient information
to reconstruct the dependencies of the original (hidden) action.

Since hiding should not alter the ordering of actions within a process, the
third possibility seems the only feasible one.

Data. Several extensions to process algebras with data exist; the best know
example is LOTOS (see [11] for an introduction or [38] for the full standard).

It should be possible to smoothly integrate data into our process algebra.
However, while so far action dependencies are a priori given, in a setting with
data (actions reading or writing variables) dependencies havederbed

since then actions already have a semantics. A simple method could make
all actions dependent that access the same resources (e.g. the same set of
variables). Similar methods for computing dependencies can be found in the
work on partial order reductions, which also rely on a notion of dependency
leading to commutation of independent actions (see [55] for an overview).
For example, the model-checking tool SPIN contains a partial-order package
which automatically computes independencies.

7.3 Related work

We briefly recapitulate related work. The approach closest to ours is the
one of Janssen, Poel and Zwiers [39,40], who study a process algebra with
similar operators and dependencies in a linear time setting. Their process
algebra contains both a sort of weak sequential composition (called layered
composition) and a dependency-based refinement. While we study three
branching time semantics in this paper, they just define a denotational linear
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time semantics. Nevertheless, their work already shows the usefulness of
dependencies, and in particular, of a dependency-based action refinement, in
the design of distributed systems. Other approaches to design by refinement
allowing an overlap of refinements of sequential actions, but not based on
dependencies, can be found in [23,59, 62]. A dependency-based sequential
composition (in a linear time setting) can also be found in [30] (therein
called D-local concatenation).

Furthermore, the notion of dependency is (of course) central in the huge
amount of work around Mazurkiewicz traces (for a recent overview see
[26]), which we cannot fully discuss here. In particular, however, in this
context a notion of termination similar to ours has been proposed in [25].

A process algebra with a notion ¢dcation which naturally induces
dependencies can be foundin[36, 37], together with a suitable logic to reason
about such specifications. (This is not to be confused with the location-based
approach to semantics investigated in for instance [12,1]: there, locations
play an entirely different role, where they are derived from the process terms
rather than a priori associated with actions.)

AcknowledgementsMany thanks to Michel Reniers for pointing us to an unsound axiom
in the earlier version [63], and especially to Walter Vogler for many insightful comments,
including a flaw in an earlier version of Theorem 6.1.
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A Proofs of the results
A.1 Proofs of Section 3

Proposition 3.9 AssumeB, C € L% such that4(C) C Ax.

1. If B 2 B',thenB(C/X) % B'(C/X).
2. If B(C/X) % B’ and X is dependently guarded iB, then B’ =
B"(C/X) for someB” such thatB %, B".

Proof. By induction on the structure oB. Clause 1 is immediate and
omitted. For Clause 2, The interesting caseBis= B; - Bo. Dependent
guardedness aB implies thatX is dependently guarded i;, and either
X is dependently guarded i8; or B; 2, impliesa I A(B>). Consider
the possible transitions @.

—a =a, B1{(C/X) % BjandB' = B} - By(C/X). By the induction
hypothesis, it follows thaB] = B (C'/X) such thatB, -% B/; hence
B" = B - By fulfils the proof obligations.

—a = a, Bi(C/X) 2 B} and B»(C/X) % B such thatB’ =
B} - BS. The induction hypothesis implies th& 2, and Proposi-
tion 3.8 impliess € A(B2(C/X)) C A(Bz); itfollows thatX is depen-
dently guarded iB;. By the induction hypothesis, thelt; = B/ (C'/X)
for i = 1,2 such thatB; Y, BY and B, % BY. It follows that
B" = BY - BY fulfils the proof obligations.

— a = v, andB;(C/X) e Blfori = 1,2.If X is dependently guarded
in By, then the proof proceeds as in the previous case. Otherwise, by the
induction hypothesis it follows that
By = BY(C/X) such thatB; =, B!. Due to dependent guarded-
ness, it follows that. I A(B2); hence according to Proposition 3.8.3,
B!, = B3(C/X). We may conclude thas” = BY - By fulfils the proof
obligations. O

Congruence. We use the GSOS format of [10] to show that bisimulationis a
congruence (that bisimilar processes can be considered equal in all contexts)
for the languagd..
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Definition A.1 (GSOS rules)Suppose thakt is a signature. AGSOS rule
p over X is arule of the form

{X; Y Vi [1<i<njeM} {X;l|1<i<nkeN}
op(X1,...,Xn) S CX,Y]

where all the variables are distincap is an operation symbol from with
arity n, andC[X, Y] is a X-context which may contain only tfi& andY;;
as free variables. Note that the index skfsand N; may be empty for any
giveni.

The GSOS format allows for both positive and negative premises in the rules
of the operational semantics. According to this definition, all our rules are in
GSOS-format, except (as usual) for the recursion Rilg which contains

a “substitution harness” (in the terminology of [29]) that is not accounted
for in GSOS. The refinement operator in this setting is interpreted as an
(n + 1)-ary operator, where equals the number of actions for whiglis

not the identity —which is finite since we assumed refinement functions to
be the identity almost everywhere. This interpretation becomes clearer if
we write outr as an explicit list of substitution8; /aq, . . . , B, /a,, where
{ai,...,an} ={a € Act | r(a) # a} andB; = r(a;) forall 1 <i < n.

The corresponding operational rules then become:

x5 aé¢{a,...,an}

x[yl/ala"' 7yn/an] 1'1"/[3/1/@17"' ,?/n/an]

a
vy oy by 1<i<n
b /

33[3/1/611,--- 7yn/an] — Y $/[y1/a1,~~- 7yn/an]

Theorem 3.14 Bisimulation is a congruence for all operators b/ (in-
cluding recursion).

Proof. For all operators except recursion this follows from the fact that
all operational rules (Table 2) are GSOS rules. To prove congruence of
recursion, theup-totechnique used in [49] can be applied, since our rules
contain no look-ahead (see [61])0

Theorem 3.15If B € L/ with fu(B) C {X}, thenrecX. B is the unique
solution ofX = B in L* modulo~.

Proof. The fact thatecX. B solvesX = B modulo~ is straightforward to
establish. The proof of uniqueness is along the lines set out in Milner [49].
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AssumeC' ~ B(C/X) for someC that is a syntactic representation of a
transition system to which Proposition 3.9 applies. Consider the relation

p={(D1,D2)|3D € LY : fu(D) C {X}, Dy ~ D(recX. B/X), Dy
~ D(C/X)}.

We prove thap is a bisimulation relation. It follows (takingg = X in the
definition of p) thatrecX. B ~ C.

— AssumeD; % D). Due torecX. B ~ B(recX.B/X), the con-
gruence of~ (Theorem 3.14) and the properties of syntactic substi-
tution, it follows thatD; ~ D(B/X)(recX. B/X). It follows that
D(B/X)(recX. B/X) % D' ~ Dj. SinceX is dependently guarded
in B itis dependently guarded iP(B/X); hence (by Proposition 3.9)
D' = D"(recX. B/X) for someD"” such thatD(B/X) % D" and
henceD(B(C/X)/X) = D(B/X){(C/X) % D"{(C/X).
SinceB(C/X) ~ C, itfollows (by Theorem 3.14) thdD, ~ D(C/X)
~ D(B(C/X)/X); henceDy % D), ~ D"(C/X). We may conclude
(D1, Dj) € p.

— The reverse direction is analogous

A.2 Proofs of Section 4

Proposition 4.9 M is closed under the denotational constructions for choice,
parallel composition, sequential composition, refinement and recursion.

Proof. The important thing is to prove prefix-closure of the constructed
models.

Choice. Straightforward.

Parallel composition. Assumg < ¢ € P; || 4 P2, whereg is constructed
fromp; € P;fori =1,2. LetE] = mi(Ey) andp, = (p; | E]) N Ty;
sinceE! is clearly<,,-left-closed (otherwisé,, would not be<,-left-
closed) and

Tp; — Tq/ g Tq \ [Aq—q’}D g Tpi \ [Api—P;]D

it follows thatp; < p; and hence), € P; for i = 1,2. Moreover, the
synchronisation of/, andp), gives rise tay’ € Py || , Pa.

Sequential composition. Assume= ¢ € P; - P,, Wwheregq is constructed
fromp; € P;fori =1,2. Let
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Since £, N Ey is <,,-left-closed due to the fact thdf, is <,-left-
closed, andl;; N [A,,_y]p = 0, it follows thatp, < p; and hence
p; € Pifori =1,2. Foralld € E, _, ande € E,, it follows that
d £4 e and hencel I e; henceAp/2 C T}, Now the composition of
andp), gives rise ta;’ € P; - Po; in particular, due to

Tq’ - Tq \ [Aq—q’]D = (Tm \ [Am—q’]D) N (sz \ [Ap2—q’]D)
it follows that
Tp’1 N Tp’2 = (Tp, \ [Am—q’]D) NTp, NTy =Ty .

Refinement. Assum¢g =< ¢ € P[R], whereq is constructed fronp € P
andw: E, — M. LetE' = m;(E,), and let

pP=pIE)NT, .
Moreover, for alld € E' let E/, = {e | (d,e) € Ey} and
w'(d) = (w(d) | Eg) \ [Aw@pe]D -

For an arbitraryl” € E,\ E’ anda D ¢(d"), consider” € minw(d");
then(e”) < w(d"), hence (due to prefix closur&)”’) € R(¢(d")). De-
notationalD-consistency (Definition 4.7) then impliesD ¢(¢”). Due
to (d”,€") € E,_y with £(e”) = £(d", ") it follows that [A,_,/|p C
[A,—¢]p and hence

Ty = T,NTy € TN (T4 \ [Ag—¢lp) S Tp\ [Ap—plD

This impliesp’ < p and hence’ € P.
Moreover, for alld € E,, it follows by construction (since thg ,-left-
closure of £, implies that alsa) is <, -left-closed) thatw'(d) =
w(d); hencew'(d) € R(4(d)).
Finally, it is straightforward to see that the refinement’adccording to
w' gives rise tay’; hencey’ € P[R].

Recursion. The union of an arbitrary set of system models is easily seen to
yield a system model again (in fact, this is the same argument as for the
choice operator). O

Well-definedness of the denotational semantitsorder to prove Propo-
sition 4.11, the semantic refinement function constructed in Table 3 must
be shown to be denotationally-consistent in the sense of Definition 4.7.
Since the construction of the refinement function itself uses the denotational
semantics, albeit on subterms, well-definedness can only be established by
induction on the term structure. For this purpose we define two auxiliary
sets of terms:
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— Levd isthe set of closed well-formed terms for whigh] is well-defined.
— L4 js the largest subset &/ such that for allB € Lde":
— If Bis closed therfB] is well-defined;
— C € L% for all syntactical subterms' of B;
- B(C/X) € L for all X € fo(B) andC € L¥? with A(C) C
Ax.

Proving Proposition 4.11 then comes down to showing the following:
LemmaA.2 L = LW/

The proof proceeds by induction on the structure of term& . The

only really interesting case is that of refinement, where induction carries
through as a consequence of the following correspondence between strong
and denotationab-consistency:

Lemma A.3 If r: Act — L9 is stronglyD-consistent, then the function
Act — M defined bya — [r(a)] for all a € Act is denotationallyD-
consistent.

Note that this ismplied byProposition 4.12 sinck%" C L*; however,

in the presence of Lemma A.2 the two statements are equivalent. The cor-
respondence in turn relies on a certain relation between operational and
denotational concepts, established by the following lemma (which stands in
the same relation to Proposition 4.13 as Lemma A.3 to Proposition 4.12).

Lemma A.4 For all closedB € Lé", the following holds:

1. a I A(B)impliesa I A, andpUa € [B] forall p € [B].
2. B Y iff ¢, € [B].
3. B 4 iff (e) € [B] with{(e) = a.

Proof. In principle, this proof is also by induction on the term structure (of
terms inL%"). However, to cope with recursion we need to strengthen the
proof obligation so that it also applies to open terms, i.e., to arbitBary
L%, For this purpose, we use an obvious generalisaticsinhmltaneous
substitution: ifo: fu(B) — L¢“¢ is compatiblein the sense that(X) is
closed andA(o(X)) = Ax for all X € fv(B), thenB(o) denotes the
substitution of allX € fv(B) by theirimagesr(X).

Let B € L%", and leto: fu(B) — L°¢ be an arbitrary compatible
substitution function. By definition d.%*" it follows that[B(c)] is well-
defined. We prove the following by induction on the structuré3of

1. a I A(B)impliesa I A, andpU a € [B(o)] forall p € [B(0)].

2. Ifall X are dependently guarded B thenB(c) -, iff ¢, € [B(o)].

3. Ifall X are dependently guarded B\ thenB(o) % iff (¢) € [B(0)]
with £(e) = a.
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The interesting cases are weak sequential composition and recursion.

— AssumeB = Bj - By. Note that (by definition of dependent guarded-

ness) allX € fv(B) are dependently guardedi. Ifall X € fv(B)are

also dependently guarded By then the required properties follow eas-

ily by the induction hypothesis. Now assume sahes not dependently
guarded inBs. Using Proposition 3.9 and the fact thétis dependently
guarded inB, one can then derive that for all B (o) ~ay implies
al A(B3).

1. Immediate from the induction hypothesis and the construction of
all p € [B(o)] from ¢; € [B;(o)], noting thata I A(B) implies
a I A(B;)forbothi =1,2,a I A, iff a I A, for bothi = 1,2,
andp U a € [B(0)] iff ¢; Ua € [B;{o)] for bothi = 1, 2.

2. If B(o) Yy then B;(c) Yy for i = 1,2. For B, this implies
eq € [B1(0)] by the induction hypothesis; furthermore] A(B>),
implying e, € [B2(0)] by Clause 1. By construction, it follows that
eq € [B(0)].

If e, € [B(0)] thene, € B;(o) for bothi = 1,2. The induction
hypothesis fo3; implies By () ~e; hencea I A(B>). By Propo-
sition 3.8 this impliesB, (o) s, henceB (o) .

3. If B(o) % then eitherB; (o) %, implying (e) € [Bi(o)] with
{(e) = a and hencde) € [B(0)], or By(o) e and By(o) %.
However, B (¢) ~a, impliesa I A(B;), which by Proposition 3.8
contradictsBa (o) 2.

If (¢) € [B(o)] with ¢(e) = a then either(e) € [Bi(0)], or
eq € [Bi(o)] and(e) € [Bi(o)]. In the former case, the induction
hypothesis fo3; implies B1 (o) -2; in the latter case the induction
hypothesis implie®; (¢) Y2, and hence I A(Bs); this contradicts
(e) € [B2(o)] by Clause 1.

— AssumeB = recX. C. Note thatB (o) = recX. (C(o)) (taking into

accounttha¥X ¢ fv(B)and hence does not substitute anything far)

andB(o)% = C(a%) foralli > 0, wheresy, = o U{X — B(o)’x'}.

By definition of L™ it follows thatC' € L%"; moreover, by induction

oni (starting with the base case observation that= 04, € Levd) it

follows that allo%, map intoL°“?; in particular, allB% € L°v?. Also
note that all free variables @f (including X') are dependently guarded.

1. Assumea I A(B); by definition, this impliess I A(C). If p €
[B(o)] thenp € [B{o)%] for somei; hence eithep € L (if i = 0)
orp € [C{a%)] (if i > 0). In the former cased, = () and hence
a I A,, and moreoverp Ua € L (C [B(o)]) by definition of L;
in the latter case (by the induction hypothesis 9ra I A, and
pUa € Clo%) (C [Bo]).
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2. If B(o) Y then (byRy4 andRys5 in Table 2) eithera I A(B)
or C{o) Y. In the first case (by Clause &), € [B{o)]; in the
second case (by Proposition 3.9@Jo) (0.4, /X) 2 and hence
(by the induction hypothesis far') ¢, € [C(0)(04,/X)]. Since
C(0)(0.4y/X) = B(o)k this impliese, € [B(0)].
If ¢, € [B(o)] thene, € [B(o)%] for somei N If i = 0 then
[B(c)%] = Landhence I A(B),implying B(c) - by Proposi-
tion 3.8. OtherwiséB( >j,( = C(o'.) and hence (by the induction hy-
pothesis o) C(c’) ;. Butthenalso (by Proposition 3.9. 2 since
X is dependently guarded W(0)) Clo) Yay, |mpIy|ng Blo) Yay
3. If B(o) % then (byR14 andR ;5 in Table 2)C(o) ;. This |mpI|es
(by Proposition 3.9.18(c) (0.4, /X) % and hence (by the induc-
tion hypothesis for”) (e) € [C(0)(0.4, /X)] with {(e) = a. Since
C(0){(0Ax/X) = B(o)\ itfollows that(e) € [B{o)].
I < ) € [B{o)] with £(e) = a then(e) € [B{o)%] for somei € N.
= 0 is ruled out since theB(s)s, = 0.4, ; henceB(o)i =
( o%), implying (by the induction hypothesis forC)
< )(B(o)'x1/X) 2. But then also (by Proposition 392 smce
is dependently guarded ifi(c)) C(o) -2, implying B(c) ~Ya,
D

Proof of Lemma A.3.This is now immediate, since Lemma A.4 gives the
necessary correspondence between the syntactic concepts in Definition 3.5
and the semantic counterparts in Definition 4.7

Proof of Lemma A.2This is now easily proved by induction on the struc-
ture of termsB € L*/. In particular, the case for refinement follows from
LemmaA.3. O

With these auxiliary results established, the main results are immediate.
Proposition 4.11 [B] € M for all B € L*/.
Proof. Immediate from Lemma A.2. O

Proposition 4.12 If r: Act — L*f is stronglyD-consistent, then the func-
tion Act — M defined byu — [r(a)] for all a € Act is denotationally
D-consistent.

Proof. Immediate from Lemma A.3 and Lemma A.20
Proposition 4.13 For all closedB € L%/, the following holds:

1. a I A(B)impliesa I A, andpUa € [B] forall p € [B].
2. B Yo iff ¢, € [B].
3. B 4 iff (e) € [B] with{(e) =

Proof. Immediate from Lemma A.4 and Lemma A.20
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Unique fixpoint solutions.In order to prove Proposition 4.19 (which ex-
presses that our semantics gives rise to contracting functions in the com-
plete metric space of denotational models), we need the following auxiliary
lemma, which strengthens Proposition 4.13.2. The proofis a straightforward
induction on the term structure, here omitted.

Lemma A5 If B € Ly with fo(B) C {X}, thenB %, iff =, € [B](P)
for arbitrary P € M| 4, -

A technical property of the functions constructed by the denotational se-
mantics is that for alB € L*/, [ B](—) is monotonic w.r.tC. This follows
immediately from the fact that all constructionsdhused in the definition
above are defined pointwise on the system runs.

LemmaA.6 Let?,Q € M andB € L* with fu(B) C {X}.If P C Q,
then[B](P) C [B](Q).

Again, the proof is omitted. We now come to the contraction property.
Proposition 4.19 Let B Lgfb with fu(B) C {X}.

1. [B](—) is non-increasing;

2. If X is dependently guarded iR, then[B](—) is contracting.

Proof. Let f = [B](—). We prove that for allP, Q € M and alln € N,
the following holds:

1. If Ptn C Q, thenf(P)tn C £(Q);
2. If X is dependently guarded iR, then f(P)10 C f(Q), and if also
Ptn C Q,thenf(P)t(n+1) C f(Q).
Together with the (symmetrical) inverse properties, this implies the clauses
of the lemma. For instance, item 1 implies

sup{n+1[f(P)tn=f(Q)tn}>sup{n+1|Ptn =0} ,

and hencé(f(P), f(Q)) < §(P, Q); and similar for clause 2 (where the
contraction constant i).

1. By induction on the structure @. We only sketch the proof. The cases
whereB = 04 or B = a are trivial, since therf is a constant function.
The caseswhe® = B¢ B, forabinary operatos € {+, || ,, - } areall
proved in a similar fashion: one shows that for a gifer M, everyq €
f(P)is constructed from; € [B;](P) such thatdepth(q) > depth(p;)
fori = 1,2; hencef (P)tn C [B1](P)tneo[Bz](P)tn (where the latter
¢ is the semantic counterpart of the operatotdn By the induction
hypothesis, it follows thaPtn C Q implies[B;](P)tn C [B;](Q) for
i = 1, 2, which by the above argument and the fact that all operators are
monotonic w.r.tC (Lemma A.6) impliesf (P)tn C f(Q).

Analogous arguments apply in the cases where: C[r]. Finally, the
case wherd3 = X is trivial, since thery is the identity function.
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2. Again by induction on the structure &f. Except in the case where the
top-level operator o3 is sequential compositior is guarded iff its
operands are guarded; hence the proof is entirely analogous to the one
sketched for clause 1.

AssumeB = Bj - Bo, and letf; = [B;](—) fori = 1,2. X is guarded
in Biff X is guarded inB; andeither X is guarded inB; (in which case
the proof is again analogous to the one for clauser1; %, implies
a I A(B2). We concentrate on the latter case.

According to the definition of weak sequential compositioMin(see
above), an arbitrary system rync f(P) is constructed ag = p; - po

wherep; € v;(fi(P)) for i = 1,2 such that4,,, C T,,, and

pb1-p2 = <Ep1 UEpza Spl U ((Epl X EPQ) N D) U SPQ’Tpl m,T]32> .

LetP, Q € M4,, be arbitrary. We first provg(P)10 C f(Q).If ¢ €
f(P)10theng = er, andp; = e7,, , implying (due tol, C 7;,) g = p1
and hence; € ¢1(f1(P)10). By the induction hypothesis, therefore,
q € 11(fi1(Q)). As a consequence, € f1(Q) for all a € T}, implying
(by Lemma A.5)B; 2, and hence: I A(By). Due tows(f2(Q)) €
M 4(B,)), itfollowsthater, € 12(f2(Q)),implyingg = q-c1, € f(Q).
Now assume that, moreove?n C Qtn. We provef(P)1(n + 1) C
f(Q). Letq € f(P)T(n + 1) be arbitrary; assume = p; - p» where
pi = Lz(fz('P)) fori = 1,2.

— If depth(p2) = 0 thendepth(p1) = depth(q) < n + 1, implying
(by the induction hypothesig) € ¢;(fi(Q)) fori = 1,2 and hence
q € f(Q):

— Now assumedepth(pz) > 0, and lete € E,, be arbitrary with
a = {(e). By constructiona € T,,. If moreoverA, I a then
£. = p1 and hence, € f1(P); by Lemma A.5 this implies3; %,
and hence: I A(Bs), which contradictgs € 2(f2(P)). We may
conclude thatl <, e for somed € E,, .

It follows that every maximak ,-chain starts with an event from
p1, and hencelepth(p2) < depth(q) — 1 < n. On the other hand,
depth(p1) < depth(q) < n + 1 is immediate. By the induction
hypothesis, it follows thap; € «;(fi(Q)) for i« = 1,2 and hence

g€ f(Q). O
For the proof of Theorem 4.20 we need an auxiliary lemma — which
strengthens Proposition 4.10, where it was stated that that all constructions

we have considered ovBif are well-defined up to isomorphism. Recall that
Evt — Evt denotes the space pértial functions overEut.

LemmaA.7 For all B € Lj“{ﬁ with fo(B) C {X}, there is a functional
transformerlp : (Evt — Evt) — (Evt — Ewt) such that
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1. ¢1 C ¢o implies¥p(¢1) C Up(p2);
2. ¢: P = Qimplies¥p(): [B](P) = [B](Q)

Proof. If ¢;: Evt — Evt fori = 1,2, then(¢; x ¢2): Evt — Eut is
defined by(ey, e2) — (¢1(e1), d2(e2)). g is defined inductively on the
structure ofB, as follows:

WOA (¢) =0
Po(@) =A{(e, )}
w31<>32 (¢) = wBl (Cb) X sz (¢) foro e {+7 ||A> }

The properties 1. and 2. of the lemma are now straightforward to prove by
induction on the structure d8. 0O

Theorem 4.20 If B € L* with fu(B) C X, andX is dependently guarded
in B, then[recX. B] is the unique solution of = B modulo=in M4,

Proof. First we prove thafrecX. B] is indeed a solution ok = B, by
showing thatitis the (unique) fixpoint of the functipB] (—) : My — My,
withT' = [Ax];. Above, we observed that the linfitof an arbitrary Cauchy
sequencéP;); in (M, d) can be constructed according to

P=JNOP -

iEN j>i

In particular, this holds fof[ B](P)); obtained by applyin§B](—) i times

to an arbitrary starting poir® € M (which is a Cauchy sequence because
[B](—) is contracting, see Proposition 4.19); and in even more particular, it
also holds for([B%]);, which equals the above sequence if we choose the
starting pointLy = [0.4, ]. The special feature of this starting point is that
Ly CPforall P € My, and hencdB%] = L C [B%]. Consequently,

it can be proved by induction ol using the monotonicity of B] w.r.t. C
(Lemma A.6) tha{By] C [B4'] for all i € N. This, in turn, implies that
the limit of this sequence can be constructed more simply by

Bl (Lx) = J[Bk] = [recX. B] .

i€N ieN
Now we prove that all solutions oX = B modulo isomorphism are iso-
morphic to[recX. B]. A system modeP € My is a solution ofX = B
modulo isomorphism iffP = [B](P), i.e., if P = ¢([B](P)) for some
bijective ¢: Fvt — FEwvt, meaning thatP is a fixpoint of the function
¢[B](—): My — My defined byQ — ¢([B](Q)) for all @ € Mr.
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¢[B](—) is contracting sincgB](—) is; therefore, its fixpoinP is unique
and can be constructed in a similar wayjas: X . B]:

P =J©IBD (Lr) .

Now consider the following sequence of bijections: Evt — Ewvt for
all i € N, where¥p is the isomorphism transformer whose existence was
shown in Lemma A.7 above:

w0 =
W = goup(y) .

By Lemma A.7, it follows that)': [B](Lr) = (¢[B])!(Lr) andw® C
¢t forall i € N. It follows thaty: [recX. B] = P wherey = J, oy ¢
O

Correspondence of operational and denotational semantiest the pur-
pose of proving the correspondence result Theorem 4.22 we introduce ad-
ditional constantsp to L*/ for everyP? € M, with alphabet given by

A(tp) ={ac Act |[VpeP:al Ap,pUa c P},
operational semantics generated by
P P
tp 2 tpr
and denotational semantics determined by
[tp] =P .

Itis immediately clear thalts(P) ~ lts(tp); moreover, for alb I A(Tp),
tp Yay tp iff tp = tpr. Asremarkedin Sect. 3.4, the proof of Theorem 3.15
is not invalidated if we extendl in this way.

Furthermore, for the correspondence result we will use an alternative repre-
sentation of the operational semantics of system models, in which the states
are system mode{B € M. The intuition behind this alternative representa-
tion is that fromP, ana-labelled transition may occur if there is a (causally)
minimal a-labelled event in one of the system rungtthe resulting target
model consists of all system runs which had that event in a causally mini-
mal position, minus the event itself. & -labelled transition may occur if

the model contains an empty system run that is partially terminatedg for
the resulting model consists of all runs that are partially terminated. for
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To formalise this, we introduce the concept ofeanainder if p € P
thenP — p corresponds to the “difference” betwe@nandp, i.e., what is
left of P afterp has been done. Formally:

P—p={q—p|p=2(qUT,) P} .

It is not difficult to see thatP? — p is a system model whenevere P.
Moreover, the following property holds for al< (¢ U T},) € P:

P—(quTy,)=(P—-p)—(¢—p) - 4)

Now — C M x (Act U va.t) x M is defined as the smallest relation such
that:

— P U P (e)if () € P;
— P Yoy P _g,ife, €P.

It follows that we can define a mappidg: M — LTS, as follows:
lts(P) = (M, =, P) .

The following proposition states that the two methods for defining transitions
on the denotational model give rise to bisimilar interpretations.

Proposition A.8 Forall P € M, lts(P) ~ (P, —,eq).

Proof. Letp = {(P —p,p) | p € P}. We prove thap is a bisimulation
relation. Let(P — p, p) € p be arbitrary.
— Assume(P —p) % P
—If @« = athenP’ = (P — p) — (e) such that(e) € (P — p) and
{(e) = a. It follows that(e) = p’ — p wherep < (p' UT,) € P. Let
p" =p UT,; thene € max E,», a I T,» andp = p” \ e and hence
p % p”. Moreover,P’ = (P —p) — (p' —p) = P — p” according
to (4) and hencéP’, p") € p.
— If a = v thene, € P — pandP’ = (P — p) — &,. It follows that
e, = p'—pwherep < (p'UT,) € P.Letp” = p'UT,;thenp” = pUa
and hence %, p". Moreover,P' = (P —p) — (p/ —p) =P —p"
according to (4) and hendé”’, p") € p.
— Assumep & p'.
— If o = a then there is am € max F,, such that(e) = a I T, and
p=7p \e Letp” =p' \ T,; hencep’ = p” UT,. It follows that
P’ —p=(e)andp <X p’ € P; hencep” —p € P — p, implying
(P—p) % (P—p)— (p" —p) =P —yp (the last equation by (4)).
Since(P — p/,p’) € p, we are done.
— If o = v; thenp’ = pUa. Letp” = (p\ T,) Ua; hencey = p" UT,,.
It follows thatp” — p = ¢, andp < p’ € P; hencep” —p € P — p,
implying (P —p) 2, (P —p) — (p" —p) = P —p’ (the last equation
by (4)). Since(P — p',p’) € p, we are done. O
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It should be noted that, although the two transition systems are bisimilar,
they are in no way isomorphic: the former distinguishes many states that are
identified in the latter. These distinctions are sometimes based on informa-
tion that is irrelevant; for instancg0 4] interpreted as a transition system
has as many states as there are system runs, to the nunifewbtren

is the number of actions independent4ifall of these states, however, are
bisimilar, and indeed are identified in the latter interpretation (where there
is just a single statgp 4] itself).

Theorem 4.22 For all closedB € LY, B ~ Its([B]).

Proof. In the sequel, we writ€’ ~ P rather thanlts(C) ~ lts(P). The
theorem is proved by a nested induction on the recursion depth, i.e., the
number of nested recursion operatorgifouter induction) and the structure

of B (inner induction). The outer induction hypothesis is that the theorem
holds whenever the recursion depthiis smaller thari (starting at = 0,
where the statement is vacuously true).

Auxiliary constants. AssumeB = tp for someP € M. As we saw above,
B ~ [B] by construction.

Deadlock constants. AssumeB = 04 for someA C Act. Thenp =

{(B,[B])} isabisimulation relation, and hente~ [B]. We prove only the

second (reverse) simulation property; the proof of the first one is analogous.
Assume[B] % P. SinceEjg) = 0, it follows thata = v; for some

a € Act; by construction of04], it follows thatA I « andP = [B]. By

the operational semanticB, Y2, 04; moreover 04, P) € p.

Single actions. AssumeB = b for someb € Act. We prove that

p= {(B, [[B]]), (OActa [[OAct]])}

is a bisimulation relation; this implie® ~ [B]. We only prove reverse
simulation of the first pair; the other simulation direction is analogous, and
the second pair was covered by the previous case.

— Assume[B] -4 P. By construction of| B], it follows thata = b and
P = [04¢]. This is matched by3 2 B’ with B’ = 0 4.

— Now assumdB] s P. By construction of B], it follows thata I b
and hencé® = [B]. This is matched b3 Y% B’ with B’ = B = b.

Choice. AssumeB = B;j + Bs, whereB; ~ [B;] for i = 1,2 (inner
induction hypothesis). We show that

p=1{(C1 + C2,11(P1) + 12(P2)) | C1 ~ P1,Ca ~ Pa}
u{(C,P)|C~P}
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is a bisimulation relation; this implie® ~ [B]. We prove only reverse
simulation of the first component; the other simulation direction is analo-
gous, and the other pairs are bisimilar by assumptionCLet C; + C5 and

P = 11(P1) + t2(P2).

— AssumeP % P’. Lete € Ep be the event that occurred; thep(e) €
Ep, for (exclusively)i = 1 ori = 2. Assumei = 1; the other case is
symmetrical. There € min E), for p € P iff m1(e) € min £, (,, for
m1(p) € P;. It follows thatP; 24 P whereP’ = +;(P1). By the inner
induction hypothesis¢; -2 C] such thatC] ~ P; = P’, implying
(C1,P") € p; and by the operational semanti€s,-%, C1.

— AssumeP Y, P'. It follows thatP’ = P| U P} where fori = 1,2,
Pl ={p|lpUac€ ;(P1),al A,}. ItfollowsthatP, € Miff ¢y € P/
iff €{a} € P;.

If eqqy € P; for bothi = 1,2 then79Z ay ,(P!), implying (by the
inner induction hypothesis) that; C!suchthat’] ~ m;(P!); hence
(C1 4+ Chy 1 (mi(Py)) + LQ(WQ(PQ))) (C1 + 02,7?’) € p. Moreover,
by the operational semantics 2, C/ + C5.

Otherwise, assumg, gé P;fori=1 (the case = 21is symmetrlcal)
It follows that.; (Py) 2 andiy(Py) s P', implying Py —H and
Ps —> m1(P’), hence by the inner induction hypothesis, . and
Cy Y2y C% such thatCh ~ m1(P') = P'; hence(C}, P') € p. By the
operational semantics, finallg, 2, CY.

Parallel composition. The parallel composition of system models can be
characterised alternatively & || , P> = [U{p1 ||, p2 € Plp1 € P1,p2 €
P2} where

b1 ”A b2 = {q ‘ Eq - (Epl HA EPQ)a
<p = [(mi(d), mi(e)) | d <q €} fori=1,2,
Ty =Ty = Pz}

AssumeB = B ||, Bs, whereB; ~ [B;] for i = 1,2 (inner induction
hypothesis). We prove that

p={(C1]laC2PrllaP2) | Cr ~P1,Ca ~ Pa}

is a bisimulation relation; this implie® ~ [B]. We prove only reverse
simulation; the other simulation direction is analogous.Cet C || 4 C>
andP = P1 HA Po.

— AssumeP % P’'. Assume(ei,e2) € Ep is thea-labelled event that
occurred. According to the above alternative characterisatiar® with
(e1,e2) € min Ey iff ¢ € p1 || , p2 With p; € P; and eithee; € min E,,
ore; =xfori=1,2.
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If a ¢ A then (by construction of,,, || 4, E},) eithere; = % or ey = .
Assume the latter; the other case is symmetrical. It follows that

{a\ (er,e2) [ g €pillap2} = (p1\e1) [lap2

henceP’ = Pi ||, P> whereP] = {p\ei|p € Pi,e1 € minE,}.
HenceP; - Py, implying (by the inner induction hypothesi€) -%
Cf such thatC| ~ Pi; hence(C] ||, C2,P’) € p. By the operational
semantics, it follows tha®’ < C1 || ; Co.

Otherwisee; # * # eq, and hence

{a\(er,e2) [ g€ pillape} = (p1\e1)ll4 (P2 \e2) -

It follows thatP’ = P || , P, whereP! = {p\ e;|p € P;,e € min E,, }.
HencepP; 2 P!, implying (by the inner induction hypothesis) -, C!
such thatC] ~ P/; hence(C] ||, C5,P') € p. By the operational
semantics, it follows tha®’ 2 C1 ||, C5.

— AssumeP Yo, P’ If ¢ € py | 4 p2 Wherep; € [B;] fori = 1,2, then
qUa € Panda I A, iff p;Ua € P;anda I A, fori =1,2. It follows
thatP’ = P ||, Py whereP! = {p|pUa e P;,al A,}.

Due toe(,; € P we know thate,y; € P; and henceP; =5 P/ for
i = 1,2; hence (by the inner induction hypothesi$) ¥2s C! such that
C! ~ P! fori = 1,2; hence(C] ||, C5,P') € p. By the operational
semantics, it follows that’ 2, C/ ||, C.

Sequential compositionThe sequential composition of system models is
given alternatively byP; - P> = {p1-p2|p1 € P1,p2 € Po, Ap, C Ty, }
where

b1-p2 = <Ep1 UEpza §p1 U ((Ep1 X Epz) N D) U SPQ’TPI ﬁT]02> .

AssumeB = B;- By, whereB; ~ [B;] for i = 1,2 (inner induction
hypothesis). We prove that

p=A{(C1-Cq,t1(P1)-12(P2)) | C1 ~ P1,Ca ~ Pa}

is a bisimulation relation; this implie® ~ [B]. We prove only reverse
simulation; the other simulation direction is analogous. Cet C, - Cy
andP = L1(771) . LQ(PQ).

— AssumeP %4 P’. Assume: € Ep is thea-labelled event that occurred.
It follows thate = (d,*) or e = (x,d); furthermore,q € P with
e € min E, iff ¢ = p1 - po Wherep; € (;(P;) fori = 1,2with A, C T},
and eithefe € min £, (if e = (d,*)) ora I A,, ande € min E,, (if
e = (x,d)).
In the former case, it follows that\ e = (p; \ e) - p2; henceP’ =
t1(Py) - t2(P2)withP; = {p\ e | p € P1),e € min E, }. ButtherP; %
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P;, implying (by the inner induction hypothesi€) -, C| with C} ~
P1; hence(C] - Ca,P;) € p. By the operational semantics, therefore,
C % C1-Co.
In the latter case, it follows that \ e = p;1-(p2 \ €); henceP’ =
Pi-Pywith P = {p|pUaecPi,al A} andP) = {p\ elp €
Py, e € min E, }. But thenP; ~2; P; andP, % P,, implying (by the
inner induction hypothesig); e Cf andCy % C with C! ~ P/;
hence(Cy - C4, P') € p. By the operational semantics, therefate, %,
Cr-Ch.

— AssumeP Y%, P’. The proof is analogous to that fof-transitions of
parallel compositions (see above).

Refinement. The refinement of system models is given alternatively by
PIR] = {w(p) | p € P,w is anR-witness forp}

where anR-witness forp is a functionw: £, — M such thatw(d) €

R(4(d)) andw(d) # er for all d € E, and A4 € T,y Whenever
d £, d'. The refinement of a system rynaccording to a witness is

defined by

w(p) = ({(d,e) | d € Ep,e € Eyq)},
{((d1, 1), (d2,€2)) | d1 <pda,e1 D ez Ordy =dz, e1 <yqy) €2},
Tm N ﬂeeEpl Tw(e)> :
AssumeB = By [r]; duetowell-formedness @, r is stronglyD-consistent.

LetR: a — [r(a)] foralla € Act. AssumeB; ~ [B] andr(a) ~ R(a)
for all « € Act (inner induction hypothesis). We prove that= | J; p; with

po = {(C1[r], P1[R]) | C1 ~ P1}
pi+1 = {(C2-C1,(d x P2)-P1) | Co ~ P2, (C1,P1) € piyd & m(Ep,)}
is a bisimulation relation; this implie® ~ [B]. We prove only reverse
simulation of pairs ipg; the other simulation direction is analogous, and the

proof for p; with ¢ > 0 is analogous to that for weak sequential composition.
LetC = Cy[r] andP = Pi[R].

— AssumeP -4 P’. Assume(d, e) is thea-labelled event responsible for
this. We havey € P with (d, e) € min E; iff ¢ = w(p) for p € P’ and
w anR-witness orp with d € min £, ande € min E,,4) (Where the
“only if” is due to Proposition 4.12). It follows that

g\ (d,e) = (dx (w(d)\e)) w'(p\d)

wherew’ = w | (E, \ d). Note thatw’ is indeed arR-witness orp \ d.
Moreover, sincel’ £, dforall d’ € p\ d, it follows that

Awp\d) = Uaer,, , Aw (@) € Tw@)e
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and hencel x (w(d) \ e) andw’(p \ d) satisfy the termination criterion
for the weak sequential composition of system runs.bLet/(d); then
P’ = (d x Py) - P{[R] where

Pi={p\d|p€Pi,d€minE,}
Py={p\e|peR(b),ecmnkEp} .

Thus,P; b P} andR(b) % P, implying (by the inner induction
hypothesis)C; % €4 andr(b) % C% such thatC} ~ P} andC} ~
P}, hence(C% - Ci[r],P') € p1. By the operational semantics, then,
Clr] & ¢4 - C1r].

— AssumeP e, P’. Due to Proposition 4.12, it follows that I Aw(p)
andw(p) U a € P[R] for somep € P’ and R-witnessw on p iff
al A,andpUa € P. It follows that P’ = P;[R]| whereP] =
{plalAy,pUacP'}. ThenP; Y P, implying (by the inner in-
duction hypothesig); Y@, ¢/ suchthat’} ~ P}, and hencéC![r], P');
the operational semantics imply %, C'[r].

Recursion. AssumeB = recX. Bi. By the outer induction hypothesis, it
follows that B1 (C/X) ~ [B1(C/X)] = [B1]([C]) for arbitrary closed
C € Lg, (since then the recursion depth Bf (C/X) is one smaller than
that of B). In particular, this also holdS' = t;, implying (since[t[p]] =
[B] is a fixpoint of[B1](—)) that

Bi(tpy/X) ~ [B:)([B]) = [B] ~ {1m ;
in otherwordst[[Bﬂ is a solution ofX = B modulo~. Due to Theorem 3.15,
therefore B ~ t[p ~ [B]. O

It still remains to prove a proposition of the previous section, which is a
corollary of Theorem 4.22.

Proposition 3.16 For all B € LY, its(B) is partially commutative up to
bisimulation.

Proof. We prove thatM, s, P) is partially commutative; i.e., P % 2 P’
with a T bthenP 2 % P’ Theorem 4.22 then implies thathf 2, %, B’
with a I bthenB %% B” with B’ ~ P’ ~ B”,

P %45 P'witha I bimplies(d) € P and(e) € P—(d) with £(d) = a
and/(e) = b, andP’ = (P — (d)) — (e). From{e) € P — (d) anda I b

it follows thatp = || € P; hence(d) = p — (e), (¢) = p — (d) € P and
(d) € P — (e). Furthermore, due to (4) we have
P'=(P—(d)~(e)=P—p=(P—{e)—d) .

This concludes the proof.O
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A.3 Proofs of Section 5

Theorem 5.4 The axioms of Table 6 are sound w.r.t. bisimilarity.

Proof. We show only the soundness of some of the most interesting axioms:
C5, S4, RS3, RS4, RD1, RD2 and RF1-RF3. The cases of RS3 and RS4,
resp. RF1 and RF2, are proved in reverse order, since the proof of the former
depends on the latter.

C5 We show that the following is a bisimulation relation:
R={(B+0a(B),B) | BEeLY*+}un~

We show only left-to-right simulation. Assunig¢ + 64 (B) -2 B’.

— If « = a,thenB & B’and(B’,B’) € R.

— If o = v, theneithe3 Y, B’anda ¢ [A]; (i.e. the choice is resolved),
in which casg B/, B') € R; or B 2, B" anda € [A];, in which case
B = B"+6,(B")and(B', B") € R.

S4 The following is a bisimulation relation:
R ={(B1-B2,B1 ||y B2) | A(B1) I A(B2)} .

We show only left-to-right simulation of proper (i.e., non-termination) tran-
sitions. AssumeB; - By % B’; there are two cases.

— By % BjsuchthatB’ = Bj - By. Itfollows thatB; ||, Bo % B ||y B2
such thai B} - Bs, B} ||; B2) € R.

— By % B} and By % B such thatB’ = Bj - B} Due to Proposi-
tion 3.8, it follows thata € A(B2), and hencer I A(B;); again by
Proposition 3.8, it follows tha3} = B;. FurthermoreB [|; By %
Bi ||y Bj suchthaiB; - B), By ||y By) € R.

RS4 The following is a bisimulation relation:
R ={(B»a,0,(B)) | a ¢ T(B)}

We show only left-to-right simulation. Assunt#;, B) € R andB; -2
By;itfollows that By = B»a, Bs = 6,(B) anda ¢ T (B). Proposition 5.1
implies thate ¢ Act; hencex = v;, such that I b.

We may derive thaBB| = B’s>a whereB %, B’, andBy %, B! =
q(B'). Proposition 5.1 implie® . ;thusB’ ., due to Proposition 3.12
and hence ¢ 7 (B’) due to Proposition 5.1. We may conclud#/, B}) €
R.
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RS3 The following is a bisimulation relationp tobisimilarity (see [50]):
R ={(B»a,a¢«(Bla)+6,(B))|aeT(B)}U~

We show only left-to-right simulation. Assunié;, Bs) € R and By -2
Bj{; henceB; = Bsa andBy = a«(B | a) + §,(B) such thau € T(B).

— If @ € Act, thena = a andB} = B’-1, whereB Y&, B’. Due to
Proposition 5.1B' ~ B | a. It follows thatBs % B) = 1-(B | a).
Using S1-S2, we obtai®] ~ B and hencéB}, BS) € R.

—fa= /b, thena I bandB, = B'sa, whereB %, B'.If B | a &, B”
thenB Ya, %, B (by RuleRy4 of Table 4) and hence (according to
Proposition 3.12)8" Y, B”. According to Proposmon 5.1, it follows
thata € T(B') andB” ~ B’ | a. It follows thatB, %, B), = a«B" +

5, (B"), and (since bisimilarity is a congruence for left sequential and

choice)Eﬁé ~ Bl = a«(B' ] a) 4+ 04(B’) with (B}, BY) € R.

If Bla % then (according to Proposition 3.18} % ; hence (accord-
ing to Proposition 5.1y ¢ 7(B’). It follows thatBy %, B) = 6,(B’),
henceB/ ~ B! due to RS4; we may conclud®], B}) € R.

RD1 The following is a bisimulation relation:
R={(B+C)la,Bla+Cla)|B,CecLYt}u~

We show only left-to-right simulation. LeB; = (B+ C) L a andBy =
Bla+C|a,and assumé; % B}; henceB + C %, B! & Bl We
distinguish the following cases:

— B Y2, BY andC .. It follows that B | a % B} andC | a 2»;
hence32 SN B’ with (B}, B}) € R.

- B *H andC' Ya, B” Symmetrical to the previous case.

- B Y, B/ andC —> C’ with BY = B’ + (. Ifeithera = bora = v,
with B’ ., or ¢’ 2%, then eitherB’ ¢, Bj and hence3 i a4 B,
orC" B’ and henceCi a % Bi:in elther caseps —> B and
(B, B)) € R Otherwisen = v, with B’ B" andC’ %, C” such
that B, = B” + C"; then alsoB | a %, B” andC' | a %, 4 C", again
implying By % Bjand(B}, Bj) € R.

RD2 We show that the following is a bisimulation relation:
R ={(b¢Bla,b¢(Bla))|albacT(B)}U~

Let By = beBia and By = b¢«(B | a) witha I banda € T( ), and
assumeB; % Bj. Due to Proposition 5.1, it follows tha@ 2, B’ such
that B’ ~ BiaandbeB/ o BY.
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—If a € Actthena = b, B} = 1-B' andBy % B, = 1-(B | a).
Using S1, we can deduce th@{ ~ B); hence(B}, BS) € R.

— If a = v, thenb I candB’ ~% B” such thatB] = b«B”. Moreover,
Bla ¢ B"and hence3, % b«B" = Bj. Since(B}, B,) € R, we
are done.

RF2 Immediate, by the termination rule for refinement.

RF1 The following is a bisimulation relation:
R ={(alr],r(a))} U~ .

We prove only left-to-right simulation. Assumer| % B’. If a = b, it
follows thatr(a) % C’andB’ = C’ - 1[r]; henceB’ ~ C’ by S2 and RF2.
On the other hand, ik = v; thenB’ = a[r]. Sincea I b, by D-consistency
of r it follows that A(r(a)) I b, hencer(a) ~%; r(a) by Proposition 3.8.

RF3 We only show the case of= -. The case of = « after a single step
evolves to this case; = + is straightforward. Let

Ro = {((B1-Ba)[r], Bi[r]- Ba[r]) | By, Bz € LY/}
Ris1 ={(Bo-Bi1,By- By) | By € LY (B, By) € Ri} .

We prove thaR = | J,.y R; is is a bisimulation relationp tobisimilarity
(see [50]). We show left-to-right simulation of proper (i.e., non-termination)
transitions for arbitrary B, C') € R, by induction oni. First let(B,C) €

Ro, and assumé % B’. There are two cases to consider.

— By % B} andr(b) % B} such thatB’ = B} - (B} - By)[r]. We can
then deriveC' -4 C" = (B, - B}[r]) - B2[r]; by S3, it follows thaiC" ~
C" = Bj,- (B][r] - Bz2[r]) with (B",C") € R'.

- B % B, B, % Bjandr(b) % Bj such thatB’ = Bj-
(B, - B,)[r]. We can then derive’ ;= B![r]- (B}, By[r]); by S3
and S4 (using the fact thatl A(B}) according to Proposition 3.8, and
henceA(r(b)) I A(B}) due toD-consistency of-, with A(B) C
A(r(b)) due to Proposition 3.8), it follows that’ ~ C” = B-
(Bi[r]- B2[r]) with (B',C") € R'.

Now let(B,C) € R;+1, and assum® -4, B’. Again, there are two cases

to consider.

— By % BjandB’ = By, - By. It follows thatC' % C" = By, - By such
that(B’, C,) € Riy1.

— By~ B!, B % B}, andB’ = B),- B). By induction, B, £~ B
suchthat{ B}, BY) € R;say(B}, B;) € R;. Itfollows thatC 4 C’ =
Bj, - By with C' ~ C" = B|,- Bf and(B',C") € Rj11. O
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Completeness fok;. In order to prove completeness of the equational
theory for L;, we need a number of auxiliary results. First of all, note
that Proposition 3.12 generalises to sequences of termination transitions:
if B, ... *an, B'thenB %1, ... o, B/ for arbitrary permutations
by---b, Ofay - - - ay,. Therefore, we may unambiguously denote

B4, B iff T={a,...,a,} and B 1, ... Yon, B/

Using this notation, we can state the first auxiliary result, which expresses
that deadlock constants add no options to a given behaviour if that behaviour
is itself terminated for all actions independent of the deadlock alphabet.

LemmaA.9 B+ 04 ~ Biff B T, foraIITCﬁn [A]r.

Proof. The “only if” is due to the fact that i “Z. for someT’ Cg, [A]r
thenB and B + 04 would obviously have dlfferent termination properties,
hence they could not be bisimilar. As for the “if”, we prove that the following
is a bisimulation relation:

R ={(B+04,B) | VT Cpo [Alr: B} U~

We show left-to-right simulation. AssumB + 04 -% B'. If a € Act
ora = v, with @ D A, it follows that B % B’, hence we are done.
Otherwisen = v, witha I A, and henceB’ B" + 04 with B Ya, B”.
For arbitraryl’ C, [A]r we haveB rute}, and henceB” YL it follows
that(B” + 04,B") e R. O

Now we show thatL, ; = L;”, i.e., if B € L; then the equational theory
allows us to rewritey4(B) to a termL; (namely, to a sum of deadlock
constants).

Lemma A.10 Forall B € L;, T = 04(B) = >_,c; 04ua, for some finite
nonempty family; C Act fori € I.

The proof is straightforward (by induction on the structurédfand hence
omitted. As a consequence, the proof system can discard termination con-
stants from choice terms if they do not contribute to the behaviour.

Lemmab5.6 LetBeL;. If B+0y4 ~ B,thenT+ B+ 04 = B.

Proof. In fact, we show thaB + 04 ~ B impliesT - §4(B) = 04; this
gives rise to the required result due to C5. The proof proceeds by induction
on the structure oBB. Note that, by Lemma A.9B + 04 ~ B implies

~, forall T Cgp, [Alr.

— B =0y4.Thena I A for arbitrarya € Act implies04 —%, and hence
B Yy, thusa I A'. It follows that[A U A’]; = [A];; hence we can
derive

THOI4(04) =0454 =04 .
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— B = B;+Bs,. Itfollowsthatfor eithei = 10ri = 2, B; ~Zs for allfinite
T C [A]y; for otherwise,B; T, and By 2., for someTy, Ty Chp
[A]7, which contradictsB TUTy,  Hence (due to Lemma A.9; +
04 ~ B;fori =1o0ri=2.W.l.o.g.assumé= 1; sinceT + §4(B2) =
Zjej 04ua; by Lemma A.10, using the induction hypothesis we can
derive

TF6(B1+ B2) =6a(B1) +6a(B2) = 04+ (3 ;e 0au4;) =04

usingT F 04 + 0404, =04+ 04,(04) =04 foralli € I.

— B = a«B;. Thenb I Aimplies04 % and henceB %, thusb I a.
It follows that [A U {a}]; = [A];. Moreover,B; T for all finite
T C [A];, and hence (due to Lemma A.®) + 04 ~ B;. Using the
induction hypothesis foB;, we can derive

TH6a(B) =da(a)eda(B1) = 04u(a1¢04
= 040fa}(04) = 040(q) = 04 .
This concludes the proof.O

We are now ready to (re-)state and prove completeness;fdRecall that
B = dier@i¢Bi 4+ >;c;04; implies depth(B) =
max {1 + depth(B;) | i € T}.

Proposition 5.5 For all By, By € Ly, By ~ By impliesT F+ B; = Bs.
Proof. Let By, By € L; with B; ~ Bs be given by

Bl:zielai"Bi"’_ZjeJOAj BQ:ZkeKak"Bk_’—ZZGLOAL .

We showT + By = By by induction onmax {depth(By), depth(B2)}. The
proof consists of showing thdt+ B; + By = By and thus (by symmetry)
T+ By + By = Bjy; the required result immediately follows.

First we show thal I~ a;«B; + By = By foralli € I. Due toB; ~ By
andB; % 1- B, it follows that B, 24 B!, such thatl - B; ~ B}; hence
a; = apandB) = 1- By forsomek € K. ItfollowsthatB; ~ By andhence
(by the induction hypothesig) - B; = By, implying T & a;«B; = ap« By
and hencq + a;«B; + By = Bs.

Now we show thall - 04, + B, = By for all j € J. Clearly, B; 25
and henceB, T, for all finite T C [A;];; by Lemma A.9 this implies
By +04, ~ By. Lemma 5.6 then implie$ - By + 04, = By. O

In order to prove normalisation di*/ to L;, we first need to know that
similar properties hold for the auxiliary operators.

Lemma 5.8 Let B € L, be arbitrary.
1. T+ 04(B) = C for someC' € L; with depth(C) = 0.
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2. TH Bla=CforsomeC € L; with depth(C') < depth(B).
3. TF Bsa = C forsomeC € L, with depth(C') < 1+ depth(B).

Proof.

1. Immediate from Lemma A.10.

2. Proved by structural induction aB, using Axioms RD1-RD4 (where
T (x) in the side condition of RD2 and RD3 is defined since its argument
B; does not contain residue operators).

3. Proved using the previous clause 2 and RS3-RS4 (wheérg in the
side condition of RS3 and RS4 is defined, since its arguBatdes not
contain residue operators).

The normalisation property itself:

Proposition 5.7 Let By, By € Ly, and letr: Act — L; be stronglyD-
consistent.

1. THa=a<l.

2. TE By -By = C forsomeC € L;.
3. T+ By ||4 B2 = C for someC € L.
4. TF By[r] = C for someC € L.

Proof.
1. First note that using D1-D3 and LS3, we can derive
T+ dg(ael) = dg(a)«dp(1) = Ogy¢1 = dy0y(1) = 0q = dg(a) .
Using S2, S5, RS5 and C5, we then have
Tra=a-1=a«l+a>1=a«l+y(a) =a<l+ jp(acl) =a<l .

2. LetL, s denote the fragment &f* consisting oL, plus the’ 4-operators;
then according to Lemma A.10, any termlof; can be rewritten to a
term of L;. We now prove thal + By - By = C for someC' € L, 5, by
induction ondepth(B1 )+ depth(Bs); thisimplies the required property.
Let

Bl:zig[ai"Bi"i_ZjeJOAj BQ:ZkeKak"Bk"i_ZleLoAz .

By S5, LS1-LS3, RS1-RS2 and RS5, it follows that By - By = C’
with
C'= 3 icraie(Bi-Ba) + 3 c 104, (B2)
+> (Birap)«Br+ Y 64,(B1)

keK leL
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Lemma 5.8.3 states that for eakhe K, T - By+a;, = By, for some
By i, € Ly with depth(By i) < 1+ depth(B1); say

Bik =2 ier, @ik Bik + 2 jeg, 04,

wheredepth(B; 1) < depth(B) for all k € K andi € I;. It follows
that

T |— (B1+ak)<—Bk = Zielk ai,ke(Bi,k . Bk) + ZjEJk 5Aj,k (Bk)

for all k € K. By replacing the subterms @’ accordingly, we get
TFC" = C" with C" € L. Since for all subtermg§; - Cy of C”,
C4,Cy € Ly anddepth(Ch) + depth(Cy) < depth(Bi) + depth(Bz),
it follows by induction that these subterms can be rewritten to terms in
L, . Itfollows thatT - C” = C for someC' € L, 5; hence we are done.

3. Analogous to the previous clause.

4. Assumer = C1/ay, ... ,Cp/a, With C; € Ly forall 1 < i < n. The
proof proceeds by induction on the structurefThe interesting case
is B = a«B’; then

T+ (a<B')[r] = a[r]«B'[r] = r(a)<B'[r] .
By the induction hypothesisl + B’[r] = C’ for someC’ € L. If
a # a;foralll <i <mn,thenr(a) = a; henceT + r(a)«B'[r] = a<C’
wherea«C’ € L, and we are done.
Otherwise assume= a; and assume’; = 3, ; b« Dj+> ;. x 04,;
then
TEr(a)eB[r] =32,c;05¢(Dj - C") + Xyee 04, (C")

which (latter) term can be rewritten to a term bf due to Proposi-
tion 5.7.1 and Clause 3 abovelO

A.4 Proofs of Section 6

Theorem 6.1 If B;,C; € L and A; C Act for i = 1,2 such that for all
i# ]

- A(B;) I A(Cj), and

- .A(Bl) N Aj = .A(Cz) N Aj =0

then (3) holds up to strong bisimilarity.

Proof. We prove the theorem via the operational semantics. We show that
the following is a bisimulation relation:

R = {((B1lla, C1)-(B2|la, C2), (B1-B2) [l 4,04, (C1-C2))
| .A(Bl) I A(Cj),A(Bz) N Aj = A(CZ) N Aj = @}
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We use the following abbreviations in our prodf; = B; || 4 C;fori = 1,2,
D :D1~D2,B :Bl-BQ,C:CI-Cg andE = B HAluAg C.

AssumeD % D'. There are two cases to consider= v, or o = a.
The first is the easier one: B 2, D' thenB; 2 B! andC; -2, C!
for i = 1,2 such thatD’ = (B] |4, C1) (B} |4, C5). ThenE e,
(B}~ BY) |l 4,0, (C} - C4) and (D', E') € R.

Now assumer = a € Act. There are again various cases to consider.

— The actiona comes from the first layerD; % D) such thatD’ =
D} - Ds. The following cases have to be considered:

- By % By witha ¢ Ay andD; = B |4, C1. Then (by Proposi-
tion 3.8.1)a € A(B;) and hence by communication closedness
Ajy. Thereforel? 2 (B} - Ba) || 4,4, (C1-C2) and(D', E') € R.

- C1 4% C]witha ¢ A;. Analogous to the previous case.

- B % ByandC; % Cianda € Ay andD] = Bj|| 4, C1. Itfollows
thattl % E' = (B} - Ba) || 4,04, (C1-C2) and(D', E') € R.

— The more interesting case is when the actioctomes from the second
layer: D; 2y D' and Dy % D), such thatD’ = D' - D). First note
that it follows thatB; &, Bj andC; Y2, Cf with D} = B{ |4, C}.
For the D,-transition, we have the cases
— By % B, witha ¢ Ay andDy = B, | 4, C2. It follows (by Proposi-

tion 3.8.1) that: € A(B2) and hence by communication closedness,
a ¢ A; anda I A(Ch); thus (by Proposition 3.8.3)7 = C;. Hence
E 4 E' = (B Bj) ||4,u4, (C1-C2) and(D', E') € R.

— Cy % Cl with a ¢ As. Analogous to the previous case.

— By 4 BjandCy % () such that € Az andDy = By || 4, Cs. It
follows thatE) % E' = (B} - By) || 4,04, (C1-C3) and(D', E') €
R.

Now assumeF % E’. The case thatr = v, is essentially the same as
before. Now considet = a.

- B % B'witha ¢ A1 UAjysuchthat’ = B'[| , 4, C- We again have
to consider two cases:

— By % Bj such thatB’ = B} -Bs. ThenD % D' = (B ||,
01) . (BQ HA2 CQ) and(D’, E/) e R.

— By Y&, B! andB, % B} such thatB’ = B - Bj. Due toa €
A(B3) (see Proposition 3.8.1), by communication closedness we
again getu I A(C1), hence (due to Proposition 3.83) %, C1;
thusD % D" = (B || 4, C1) - (Bj | 4, C2) and(D', E') € R.

- C % C"witha ¢ A; U Ay. Analogous to the previous case.
- B % B'andC % (' with a € Ay U As. We recognise two further
cases:
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— a € A;. Itfollows thata ¢ A(B32) U.A(Cs); henceB; -% Bj such
that B" = B} - B, andCy % Cf such thatC = C] - Cy, implying
D% D' = (B |, C1) (B 4, o) and (D, ) € R.

— a € Ay. It follows thata ¢ A(Bp) U A(Cy); henceB; &, B
and B, % Bj such thatB’ = B} - B}, andC; Y, C} andCy %
Cy such thatC’ = C7 - Cj. It follows thatD 2% D' = (B || 4,
C)- (By I, C3) and(D/, E') € R. O



