
Acta Informatica 38, 155–234 (2001)

c© Springer-Verlag 2001

Process algebra with action dependencies

Arend Rensink1, Heike Wehrheim2

1 Department of Computer Science, University of Twente, The Netherlands
(e-mail: rensink@cs.utwente.nl)

2 Abteilung Semantik, Fachbereich Informatik, Universität Oldenburg, Postfach 2503,
26111 Oldenburg, Germany (e-mail: wehrheim@informatik.uni-oldenburg.de)

Received: 19 November 1998 / 18 July 2001

Abstract. In this paper, we present a process algebra with a minimal form
of semantics for actions given bydependencies. Action dependencies are
interpreted in the Mazurkiewicz sense: independent actions should be able
to commute, or (from a different perspective) should be unordered, whereas
dependent actions are always ordered. In this approach, the process algebra
operators are used to describe theconceptualbehavioural structure of the
system, and the action dependencies determine theminimal necessary order-
ings and thereby the additionally possible parallelism within this structure.

In previous work on the semantics of specifications using Mazurkiewicz
dependencies, the main interest has been on linear time. We present in this
paper a branching time semantics, both operationally and denotationally.
For this purpose, we introduce a process algebra that incorporates, besides
some standard operators, also an operator foraction refinement. For inter-
preting the operators in the presence of action dependencies, a new concept
of partial terminationhas to be developed. We show consistency of the
operational and denotational semantics; furthermore, we give a axiomatisa-
tion of bisimilarity, which is complete for finite terms. Some small examples
demonstrate the flexibility of this process algebra in the design of distributed
reactive systems.

Contents

1 Introduction . 156
2 Language . 158
3 Operational semantics. 163
4 Denotational semantics. 173

156 A. Rensink, H. Wehrheim

5 Axiomatisation . 185
6 Applications . 192
7 Conclusion. 202
A Proofs of the results. 209

1 Introduction

Process algebras are languages for structurally building specifications out
of basic entities calledactions, using composition operators like sequential
composition, choice or parallel composition. The application area of process
algebras is the specification and verification of reactive systems. Typical
representatives are CCS [49], TCSP [14,35], ACP [7] or LOTOS [11].

Actions in process algebras are usually just names for basic system ob-
servables. No further interpretation is given to them; the choice for a partic-
ular name of an action does not influence the semantics of a specification.
The parallelism or ordering of actions within a system is completely fixed
by the composition operators used in the specification. In this paper, we take
a different approach. The actions in the process algebra will carry a limited
amount of semantic information, in the form of a so-calleddependency re-
lation among them. Intuitively, actions are dependent if they share some
common resource on which only single access at a time is possible. Such a
resource can for instance be a variable, a database entry, a channel, a printer
or a processor. Given such a dependency relation, the additional informa-
tion about the actions can be used in the interpretation of the composition
operators. The idea is that actions which are using the same resource (are
dependent) have to be ordered (since the conflicting accesses to this resource
have to be resolved somehow), whereas independent actions never have to
be ordered and thus never have to wait for one another to proceed.

The language we introduce here allows to specify the order of execution
of system components in a rather abstract way, focussing on the conceptual
structure of the system; the dependency relation guarantees that still asmuch
parallelism as possible is achieved. If two interactions of the system in
principle occur in a sequential order, but there are some small independent
parts, the designer can actually specify them as sequentially composed and
still obtain an overlapping of their executions. When writing specifications,
the designer does not have to figure out all possible concurrency in order to
get the most efficient (maximally parallel), specification; he just has to fix
the dependencies.

In this setting, we also take another look at the concept ofaction refine-
ment, in the shape of an operator that is not present in the standard algebras,
but which has been the subject of extensive research: for instance, [3,4,
22,69,32,60,70,71]. The action refinement operator enables a designer to
decompose abstract actions that are regarded as atomic, i.e., whose execu-

Process algebra with action dependencies 157

tion is modelled as an indivisible step, into more concrete behaviour that
is no longer indivisible, but rather composed of many steps. This can be
used as a tool in the top-down design of complex systems. Unfortunately
(as noted first in [16]), action refinement cannot be modelled in a standard
interleaving framework; indeed, this is the main theme of research in the
papers cited above. However, as it turns out, one of the attractive conse-
quences of a global dependency relation as considered in this paper is that it
provides sufficient additional information to allow action refinement within
an interleaving model (under some assumptions that effectively require that
the refinement of actions respects their dependencies).

The idea of action dependencies regulating orderings has been suggested
and intensively studied by Mazurkiewicz [46–48] and others (see for in-
stance [26]). The basic concept in Mazurkiewicz’ work aretraces, which
are equivalence classes of sequences of actions, factorised by a permutation
equivalence: in a sequence, adjacent independent actionsmay be commuted.
System behaviour is described as a set of traces, constituting the possible
runs of the system. Thus, traces are essentially alinear timemodel for be-
haviour: themoments of choice in a behaviour are not represented. Aprocess
algebraic, linear time setting with action dependencies has been developed
by Janssen, Poel and Zwiers in [39,40]. In particular, they also introduce an
operator for action refinementwhich takesactiondependencies into account.

In the present paper, we develop abranching timesemantics for a pro-
cess algebra based on action dependencies, containing most of the standard
features, such as sequential composition, parallel composition, choice and
recursion, aswell as action refinement. This finalises previouswork reported
in [72,63,64]. The language and basic definitions are given in Sect. 2. In
Sect. 3, we give a structural operational semantics such that, by the format
of the rules, bisimulation equivalence is a congruence. Themodel generated
by this semantics is an ordinary labelled transition system – which, as men-
tioned above, is surprising, since in the usual approach, this model is not
strong enough to be compositional for action refinement. The most innova-
tive feature of the operational semantics is the notion ofpartial termination
that was developed to capture the interplay between action dependencies
and choice.

Next, inSect. 4,wegive adenotational counterpart, which isnotbasedon
an interleaving model but instead on an event-based formalism developed
in [57]. We have chosen this type of model here because it allows us to
use (variations on) standard constructions, especially for action refinement;
see, e.g., [22,69,60]. In other words, our denotational model is certainly
distinctive enough to capture all relevant behavioural effects of the operators
of our algebra, including action refinement. We use a technique frommetric
semantics (see [21]) for the denotation of recursive behaviour. We then

158 A. Rensink, H. Wehrheim

show that the operational and denotational semantics coincide, i.e., give
rise to equivalent (namely, bisimilar) models; therefore, the strength of the
denotational model serves as a strong argument in favour of the correctness
of the operational semantics.

As a next step, in Sect. 5 we develop an axiomatisation for bisimilarity
over our language that is complete for the finite fragment. Themaindifficulty
here was to find suitable axioms for sequential composition, which of the
operators of our algebra is the one most influenced by action dependencies.
Moreover, the concept of partial termination also complicates the picture.
As for the more unusual operator for that action refinement, it turns out that
this can be captured by a quite straightforward and small set of axioms,
which in fact merely specify some distribution properties.

The paper ends with a few application examples in order to demonstrate
the practical usefulness of our approach; see Sect. 6. First, we show that
a protocol initially designed as consisting of three successive phases can
be implemented, through action refinement, in such a way that the phases
partially overlap, controlled by the appropriate action dependencies. Then,
we show that this principle can be applied more generally, by formulating
a version of thecommunications closed layerslaw proposed by Elrad and
Francez [27] and promoted (in a linear time setting) by Zwiers et al., for
instance in [39]. Finally, we also give an example from the field of data
bases, showing the decomposition of an atomic query.

2 Language

Westart with the introduction of our process algebra and give a first informal
discussion of its semantics.

Act denotes a set of actions, ranged over bya, b, c, The dependencies
among these entities aremodelled by adependency relationD ⊆ Act×Act
which is reflexive and symmetric. The inverse notion ofindependencyis
the complement ofD: I = (Act × Act) \ D. The set of all actionsb
an actiona depends on is called itsdependency classand is defined as
[a]D = {b | b D a}. This notion can be extended to setsA of actions by
letting [A]D be

⋃
a∈A[a]D. Similarly theindependence classof an action is

[a]I = {b | b I a}, and of a set of actions,[A]I =
⋂
a∈A[a]I .

Tomodel recursionand thus infinitebehaviourof systems,asetofprocess
namesX is used. It is ranged over byX,Y, Z. Each nameX ∈ X has an
implicit associatedalphabetAX ⊆ Act . More about alphabets later.

Thespecification languageL consists of all termsB generated by the fol-
lowing productions:

B ::= 0A | a | B ·B | B + B | B ||A B | B[r] | X | recX. B

Process algebra with action dependencies 159

wherea ∈ Act, A ⊆ Act, r : Act → L is a refinement function which is
the identity almost everywhere, andX ∈ X. We useB,C, . . . , B1, B2, . . .
to range overL. We refer to the language without refinement as theflat
fragment of the language, and without recursion as thefinite fragment. The
finite fragment ofL is denotedLfin .

An occurrence of a variableX in a termB is calledbound if it only
occurs in the scope of arec-operator, otherwise it isfree. The free variables
ofB are collected infv(B).B is calledclosedif it contains no free variables
(fv(B) = ∅), otherwise it isopen. Refinement functions are assumed always
to map to closed terms. Thesubstitution of a termC for a (free) variableX
in B is denotedB〈C/X〉.
Well-formedness.Without discussing them at this point, we list the addi-
tional restrictions imposed upon terms in the course of this paper. We call a
termwell-formedif it satisfiesall of theseconditions.Unlessexplicitly stated
otherwise, we assume all terms to be well-formed. The set of well-formed
terms is denotedLwf .

– Refinementmaps only to closed terms; i.e.,fv(r(a)) = ∅ for all a ∈ Act .
– Refinement is stronglyD-consistent (see Definition 3.5).
– Thealphabet iswell-defined; in particular,A(B) ⊆ AX for all sub-terms

recX. B (see Table 1).
– Recursion is dependently guarded (see Definition 3.7).

Notation. The family(0A)A⊆Act stands for empty processes,deadlocked
on the actions inA (see below).We let0 stand for0Act (complete deadlock),
1 for 0∅ (proper termination) andB1 |||B2 for B1 ||∅ B2.

Instead of using the operatorrecX. , we sometimes equivalently assume
that recursive behaviour of processes is specified by means of a set of equa-
tionsXi = Bi (i in some finite index set), and when speaking of solutions
to recursion terms, we mean solutions to this set of equations.

To avoid brackets in expressions, we fix the following priorities among
the operators of the language. The rank of the operators from highest to
lowest is: Refinement, sequential composition, parallel composition, choice.

We will often need the set of actions which syntactically occur in a term,
called thealphabetA(B) of a term. It is inductively defined in Table 1.
Note that this relies on the implicit alphabet of process names, introduced
above. The alphabet of recursive terms is only defined under the assumption
that the (calculated) alphabet of the body of the recursion is a subset of
the (implicit) alphabet of the process name used as a recursion variable.
(Note that we have restrictedLwf , the set of well-formed terms, to those for
which the alphabetiswell-defined.) Furthermore, wewill consider syntactic
substitutionB〈C/X〉 to be defined only ifA(C) ⊆ AX . It is easy to see
that thenA(B〈C/X〉) ⊆ A(B).

160 A. Rensink, H. Wehrheim

Table 1.Alphabet of a term

A(0A) := A

A(a) := {a}, wherea ∈ Act

A(B1 op B2) := A(B1) ∪ A(B2), whereop ∈ {+, · , ||A}
A(B[r]) :=

⋃
a∈A(B) A(r(a))

A(X) := AX

A(recX. B) := AX if A(B) ⊆ AX

2.1 Discussion of the operators

The language covers most of the standard process algebra operators, such as
sequential composition, parallel composition, choice and recursion, and one
more rarely used operator: action refinement. These operators, however, will
not get quite the interpretation they traditionally have in process algebras.
The basic idea is toconceptuallykeep the meaning of the operators, but
use the dependency relation to determine the ordering in the occurrence
of actions more precisely; especially to find possibilities for concurrency
which go beyond the ones specified by the operators in a term. For instance,
the phases of a protocol may conceptually follow one another (and are thus
specified to occur in a sequential order) while nevertheless there can be
some slight overlap and this overlap may be derived via the independencies
of the actions in the phases. Independent actions should never have to wait
for one another to proceed, even if they are sequentially composed, while
dependent actions always have to be ordered somehow, even if composed in
parallel. Parallel composition thus never allows simultaneous execution of
dependent actions. The interpretation of all our operators has to adhere to
this basic principle. In the following, we give an informal description of the
intended semantics and describe the differences to the standard approaches.

Actions and recursion. a ∈ Act describes a process which executes the
action a and then terminates successfully. Even beforea is executed, the
process is terminated for actions independent ofa.

Process variables and the operatorrecX. B are used to model infinite
behaviour of processes; the latter is interpreted by unrolling it to
B〈recX. B/X〉. When developing the operational semantics, we will dis-
cuss recursion (and the problems it introduces in our setting) in greater
detail.

Sequential compositionand termination.Insteadof strongsequential com-
position, action dependencies give rise to a notion ofweaksequential com-
position, which we denote “· ”. The crucial point for the semantics of weak

Process algebra with action dependencies 161

sequential composition is that an ordering ofdependentactions of the first
and second operand has to be achieved, however without introducing unnec-
essary orderings ofindependentactions. This is modelled by introducing a
special notion of termination, which we callpartial termination. For stan-
dard (“strong”) sequential composition, a process can either successfully
terminate or deadlock and depending on this, a process sequentially follow-
ing it may or may not start (see Baeten and Van Glabbeek [6]). This concept
is now replaced by partial termination: a process can either be terminated
with respect to a particular action or not and depending on this, another
process sequentially following it may or may not execute this action. As an
example, let

B1 = a · b
B2 = c ||| d

with dependenciesa D b, c I a, c I b andd D a, d I b. B1 can executea
and afterwardsb and is initially already terminated for all actions which are
independent ofbotha andb. ThusB1 ·B2 can immediately executec but
notd.

This particular notion of termination is also reflected in the language con-
stants representing empty processes: instead of two constants for complete
termination and deadlock (likeδ andε in ACP, see [7]), we need a family
of constants(0A)A⊆Act representing all possible partial terminations: the
indexA represents the actions on which the process is deadlocked; it is
terminated only for actionsb ∈ Act that are independent of alla ∈ A. As
an example for empty processes in connection with weak sequential com-
position: ifa D b then0{a} · b cannot execute any action, whereas ifa I b,
then0{a} · b can performb.

Choice. B1+B2 denotes thenondeterministic choicebetweenB1 andB2.
Our choice operator is similar to the CCS choice; however, partial termina-
tion may resolve choices. The reason for this can best be seen in connection
with a sequential composition. As an example consider the term

B = (a + b) · c,

whereaandcare dependent butbandc independent. A process is terminated
for an actiona if there is one run of it which is independent ofa. For instance,
the terma + b is terminated forc sinceb I c. Thus,B may start withc;
however, this resolves the choice and onlyb is left. In fact, if b were still
possible afterc then the specified order between dependent actionsa andc
would be violated. Thus, partial termination, like global termination in [6,
7], may resolve choices.

162 A. Rensink, H. Wehrheim

Parallel composition. The familyofoperators{||A}A⊆Act stands forTCSP-
like parallel compositionwith synchronisation on actions withinA. In the
processB1 ||A B2, actions fromA may only be executed asjoint events
of B1 andB2. In order to respect the action dependencies, we additionally
need some ordering of dependent actions of the first and second component.
Dependent actions of parallel components have to be executed in a nonde-
terministically chosen order, whereas independent actions can be executed
concurrently. Thus, a kind of mutual exclusion is modelled. The idea is that
a parallel composition combines two system components of which we are
not interested in a particular order of execution, but these components still
may not access the same resource at the same time. As an example:a ||| b,
a D b, denotes a process that can executea andb in any order but not in
parallel.

Refinement. Action refinement [3,4,52,68,9,42,18,70,9,58] is used to
support top-down design of distributed systems. Starting with an abstract
specification, step-by-stepmore concrete specifications are developed by re-
placing actions bymore complex processes. Syntactically, this is formulated
by means of a refinement functionr : Act → L describing the replacement
of actions by complex processes. We assume thatr(a) is unequal toa only
for a finite number of actionsa; moreover, as noted above, refinement is
only well-formed ifr(a) is closed for alla.

In contrast to standard action refinement, in our setting, the inheritance
of abstract orderings by concrete actions of the refinement is driven by
the dependencies between the latter. Therefore, the refinement of ordered
abstract actions may result in processes which partially overlap in their
execution. This leads to a much more flexible refinement concept.

Example 2.1LetB = a · b with a D b, andr : a �→ a1 · a2 with a1 D a2,
andb �→ b1 · b2 with b1 D b2, such thata1 D b1 anda2 D b2 but a2 I b1
anda1 I b2. The only allowed execution ofB[r] by standard refinement
concepts would bea1a2b1b2, where the entire refinement ofb has to wait
for a to complete. With dependency-based refinement we get the following,
depicted as a partial order. The runs are all possible interleavings. As can
be seen, an overlapping executiona1b1a2b2 is allowed.

a1 → a2
↓ ↓
b1 → b2

There are, however, limits to the flexibility of refinement with respect to
the action dependencies. In particular, if two actions are dependent, it is
natural to expect that their refinements are as well, in an appropriate sense.
For instance, it would not be correct if in the above example, bothbi were

Process algebra with action dependencies 163

to be independent of bothaj . This and similar considerations lead to the
concept ofstrongD-consistencyof refinement functions, discussed in the
next section (Definition 3.5). Note that well-formedness also requires strong
D-consistency for all refinement functions.

Some of the ideas on the semantics of process algebra operators in the
presence of a dependency relation sketched above have already appeared in
previous work; however, always in a linear time setting. Dependency based
sequential composition first appeared in the work of Mazurkiewicz [48]
(where sequential composition is trace concatenation); in Janssen, Poel and
Zwiers [74,41,28] both weak sequential composition (called layer compo-
sition) and dependency-based refinement are defined; and in Gaifman [30]
weak sequential composition also appears, there calledD-local concatena-
tion. The necessity of attaching information about partial termination also
arises in the setting of Mazurkiewicz traces, as Diekert has investigated [24,
25]: Concatenation of twoinfinite traces is only possible when the alphabet
of the first trace is known.

3 Operational semantics

In this section, we present a structural operational semantics (SOS) in the
style of Plotkin [56] forL, which will allow the derivation of a labelled
transition system for every closed termB ∈ L. In the usual way, this will
give rise to a labelled transition systemmodelling the behaviour of the terms
of L.

Definition 3.1 A labelled transition systemis a tuple〈Λ, S,−→, ι〉 such that
– Λ is a set oflabels;
– S is a set ofstates;
– −→ ⊆ S × Λ× S is a transition relation;
– ι ∈ S is theinitial state.

Theclass of all labelled transition systemswill be denotedLTS. Throughout
this paper, we will haveΛ = Act ∪�Act , where�Act = {�a | a ∈ Act} is
a set ofpartial termination labels. Transitionss −a→ s′ for a ∈ Act stand
for ordinary action occurrences, whereass −�a−→ s′ for�a ∈ �Act denotes the
partial termination ofs with respect toa (∈ Act). We will henceforth omit
the componentΛ.

Theoperational semantics forL is givenby the rules inTable2.Belowwe
will show that in order to obtain a well-defined transition system, we have to
restrict recursion todependently guardedprocess variables (Definition 3.7);
furthermore, some other sensibility criteria force us to restrict refinement to
a subclass ofstronglyD-consistentrefinement functions (Definition 3.5).
This reduces the language to that of well-formed terms,Lwf , introduced in
Sect. 2.

164 A. Rensink, H. Wehrheim

Definition 3.2 (operational semantics)The operational semantics for a
termB ∈ Lwf is the transition systemlts(B) = 〈Lwf ,−→, B〉, where−→ is
the smallest set of transitions agreeing with the rules in Table 2.

Note that we havenot restricted the operational semantics to closed terms;
there is even an operational rule explicitly dealing with process variables.
This ismainly for technical convenience indealingwith recursion; seebelow.

Table 2.Operational semantics ofL

deadlock a I A

0A −�a−→ 0A

R1

action

a −a→ 1
R2

a I b

b −�a−→ b
R3

choice x −a→ x′

x + y −a→ x′

y + x −a→ x′
R4

x −�a−→ x′ y −�a−�
x + y −�a−→ x′

y + x −�a−→ x′
R5

x −�a−→ x′ y −�a−→ y′

x + y −�a−→ x′ + y′ R6

sequential
composition

x −a→ x′

x · y −a→ x′ · y R7
x −�a−→ x′ y −α→ y′ α ∈ {a, �a}

x · y −α→ x′ · y′ R8

parallel
composition

x −a→ x′ a /∈ A

x ||A y −a→ x′ ||A y
y ||A x −a→ y ||A x′

R9
x −α→ x′ y −α→ y′ α ∈ A ∪ �Act

x ||A y −α→ x′ ||A y′ R10

refinement x −a→ x′ r(a) −b→ y

x[r] −b→ y · x′[r]
R11

x −�a−→ x′

x[r] −�a−→ x′[r]
R12

variables a I AX

X −�a−→ X
R13

recursion y −α→ y′ α /∈ {�a | a I AX}
recX. y −α→ y′〈recX. y/X〉 R14

a I AX

recX. y −�a−→ recX. y
R15

The main difference with standard process algebra lies in the treatment of
termination. While usually a term can be either terminated or not termi-
nated, weak sequential composition needs amore general concept ofpartial
termination, i.e. termination with respect to certain actions. The concept
of partial termination lies at the heart of all non-standard rules of our SOS
semantics.

Process algebra with action dependencies 165

– The constant0A stands for an empty process deadlocked on actions in
A, thus it is terminated for all actions independent ofA.

– An actiona ∈ Act is terminated for all independent actionsb ∈ Act ,
i.e., such thata I b.

– Like ordinary complete termination used in languages with sequen-
tial composition (see for instance [6]), partial termination may resolve
choices.1 Note thenegative premisein the partial termination rules for
choices. Negative premises are known to be potentially troublesome (see
Groote [34] andVanGlabbeek [67]); indeed,wehave to restrict recursion
to dependently guarded variables to avoid problems (see below).

– In a weak sequential composition, the second operand may start execut-
ing actions when the first operand is terminated for them. Unlike strong
sequential composition, such activities of the second operand do not
discard the first operand.

– Action refinement and recursion require a more extensive discussion;
see below.

3.1 Action refinement

As shown in Example 2.1, dependency-based action refinement allows the
concurrent execution of independent parts of the refinements of actions that
are themselves (on the abstract level) dependent and hence ordered. How-
ever, asmentioned before, the allowed overlap is subject to some limitations
due to the intuition that the action and its refinement should still describe
the same entity, and hence their dependencies with respect to other actions
should be consistent.

– Dependencies should be inherited from the abstract to the concrete level
to some degree. If two abstract actions are dependent, some dependency
should still exist after refinement: in particular, the refinementr(a) of a
given actiona should not be (partially) terminated for another, dependent
actionb D a. Technically,a D b should implyr(a) −�b−�.

– Independency should also be inherited. Since an abstract action does
not change during an independent activity, its refinement should also be
completely unaffected. That is,a I b should implyA(r(a)) I b.

A refinement function is calledD-consistentif it satisfies both of these
criteria. A similar property was defined in [39]. Note that it follows that
for all a ∈ Act , [a]I = [A(r(a))]I andr(a) −�b−→ B implies b I A(r(a));
indeed, these two properties form a sufficient condition forD-consistency.

1 In fact, ordinary termination does not resolve choices in all process algebras, for instance
Aceto and Hennessy [3] define choice terms to be terminated only if both operands are.

166 A. Rensink, H. Wehrheim

Example 3.3

– If a D b, a1 D b anda2 I b such thatr : a �→ a1 + a2, thenr(a) −�b−→;
hencer does not preserve the dependence ofa and b in the required
sense, meaning thatr is notD-consistent.

– If a I b, a1 I b anda2 D b such thatr : a �→ a1 + a2, thenr(a) −�b−→ B
with B = a1 �= r(a); hencer does not preserve the independence ofa
andb in the required sense, meaning thatr is notD-consistent.

– If r is actually arenamingfunction, that is,r(a) ∈ Act for all a ∈ Act ,
thenr is D-consistent if and only ifa D b ⇐⇒ r(a) D b for all
a, b ∈ Act .

RuleR11 in Table 2 specifies the execution of actions fromanr-image: if the
abstract system can execute some actiona and the refinement ofa can start
with some actionb, thenb is also possible for the refined system. Afterwards
the refinement ofa may proceed, but also new refinements may start if
independent of the remaininga-refinement. To come back to Example 2.1,
the overlapping execution of the refinement ofa andb is thus derivable:

(a · b)[r] −a1−→ a2 · b[r] −b1−→ a2 · b2 ·1[r] −a2−→ 1 · b2 ·1[r] −b2−→ 1 ·1 ·1[r]

RuleR12 is straightforward, and reflects the intuition behindD-consistency:
If the abstract systemx is terminated w.r.t. an actiona, then the refined
system is also terminated fora.

Unfortunately, a complication occurs as soon as we reconsider the origi-
nal motivation behind the dependency relation. Intuitively, wewould at least
expect the Mazurkiewicz property of partial commutativity to hold; that is,
if B −a→−b→ for a I b, we also expectB −b→−a→ (see [48]). As the follow-
ing example shows, this property can be destroyed by certain refinement
functions.

Example 3.4ConsiderB = a · b with a D b, andr : a �→ a, b �→ b1 · b2
such thata I b1 anda D b2. Note thatr is D-consistent.B[r] has the
following operational behaviour:

B[r] −a→ 1 · (1 · b)[r] −b1−→ 1 · b2 · (1 ·1)[r] −b2−→ 1 ·1 · (1 ·1)[r]

However,B[r] −b1−�; hence the partial commutativity of traces does not hold.
The reason is that the only initial action ofB isa, and thereforeB[r] cannot
start with an action not coming fromr(a).

The problem demonstrated by this example can be traced to a feature of
the refinement functionr: althougha D b, there is an initial action of
r(b) for whichr(a) is terminated, or in other words (due toD-consistency)
that is independent ofa. Disallowing this kind of situation is necessary and
sufficient to guarantee partial commutativity. For this purposewe strengthen

Process algebra with action dependencies 167

the notion ofD-consistency and require all well-formed terms to satisfied
this strengthened requirement.

Definition 3.5 (strongD-consistency)A refinement functionr : Act → L
is calledstronglyD-consistentif it satisfies the following properties for all
a, b ∈ Act :

– a D b implies (i)r(a) −�b−�, and (ii) a D c for all r(b) −c→;
– a I b impliesa I A(r(b)).

(The difference withD-consistency lies in the second condition.) The ne-
cessity of strongD-consistency follows from the fact that an example along
the lines of Example 3.4 can always be constructed for a refinement function
that is not stronglyD-consistent. The sufficiency, i.e., the fact that for all
a I b,B −a→−b→ impliesB −b→−a→ if all refinement functions inB are strongly
D-consistent, is a consequence of Proposition 3.16 below.

It is worth noting that the operational refinement rules are simpler by
far than the ones obtained in other approaches. For instance, we do not rely
on auxiliary operators of any kind and do not have to enhance the labels of
the transition relation, as is for instance done in [22,60,15] for modelling
standardaction refinement.Of course, this is achievedat the cost of imposing
strongD-consistency.

3.2 Recursion

The operatorrecX. looks quite standard and at first sight one does not
expect any surprises from it. However, the situation is complicated by the
negative premise in the termination rules of the choice operator (R5 andR6
of Table 2). The standard operational rule for recursion is the following (with
α ∈ Λ):

y〈recX. y/X〉 −α→ y′

recX. y −α→ y′
(1)

However, the following example shows that this is not satisfactory for the
derivation of the partial terminations:

Example 3.6AssumeAX = {a, b} andB = recX. a ·X + b.

1. First considera I c andb I c. Let us consider the partialc-termination
forB. Intuitively we should getB −�c−→ B. This is however not derivable
since this would involve an infinite unfolding of the recursion.

2. Now consider a different dependency relation:a I c andb D c. Even
if we could derive thatB is terminated forc, it would not be easy to
determineB′ such thatB −�c−→ B′; it is certainly not equal toB, since
the actionb should not be possible anymore.

168 A. Rensink, H. Wehrheim

3. Finally, considera D c and b I c. In this case, there is no problem
deriving the expected terminationB −�c−→ b, sincea ·X −�c−� is already
clear froma −�c−�; X does not have to be tested with respect to itsa-
termination.

The problem is essentially due to the fact that the variableX in the body of
the recursive termB is tested again in the course of deriving the transitions
of B; in combination with the negative premise inR5, this gives rise to
circular reasoning. Since the negative premise is very much inherent in our
approach, the only way to avoid problems of this kind is to restrict ourselves
to terms where this kind of circular reasoning cannot occur. A standard way
to achieve this is to replace (1) by

y −α→ y′

recX. y −α→ y′〈recX. y/X〉
(2)

(see for instance [5]). This has the advantage that the source term of the
transition is syntactically simpler than the source term of the conclusion;
since this is already trueof all other operational rules, it follows that there can
be no infinite proofs of a positive transition; hence negative transitions are
unambiguously decidable. (In terms of Groote [34], a stratification trivially
exists.)

In general, however, this alternative rule may limit the derivable tran-
sitions, since the source term of the premise now contains a free variable,
for which (usually) no transitions are derivable. For instance, ifa I b then
recX.(a ·X+b) −b→ a ·1 can be derived using (1) but not using (2). In order
to avoid this effect, one simultaneously restricts recursion toguardedterms.
In general, a free variable of term is called guarded if it only occurs in so-
calledsleeping positions(see Vaandrager [66]), where a sleeping position
of a given operator is one which is not tested by the rules of the operational
semantics. The effect is that, at least for the the initial transitions of the term,
it makes no difference what is substituted for a guarded variable.

Unfortunately, no operator of our language has a proper sleeping posi-
tion. In particular, the second position of a weak sequential composition is
not a sleeping position, since it is tested by RuleR8. For that reason,X
cannot be considered guarded in the sub-terma ·X of B in Example 3.6
and ofrecX. (a ·X + b) −b→ a ·1 above. It follows that the usual notion of
guardedness is not directly applicable. Our solution is to define an alterna-
tive notion ofdependent guardedness, in combination with RuleR13 which
actually defines some (termination) transitions for free process variables.

Process algebra with action dependencies 169

Definition 3.7 (dependent guardedness)LetB ∈ L.

– X is called dependently guarded inB if every free occurrence ofX
is within the operandB2 of a subtermB1 ·B2 of B such thatB1 −�a−→
impliesa I A(B2).

– B is called dependently guarded if for all subtermsrecX. C ofB,X is
dependently guarded inC.

Note that in the conditionB1 −�a−→, it is possible thatX ∈ fv(B1); hence
the definition relies on the fact that the operational semantics is defined
for open terms. For instance,X is dependently guarded in(a ·X) ·X iff
[a]I = [AX]I .

Dependent guardedness may alternatively be characterised inductively
on the structure of terms, such thatX is dependently guarded in all termsB
(except forB = X) if it is dependently guarded in all operands ofB; and
moreover,X is also dependently guarded inB1 ·B2 if X is dependently
guarded inB1 andB1 −�a−→ impliesa I A(B2).

In principle, this solves the problems associated with recursion. How-
ever, (2) has the annoying consequence ofalwaysunfolding recursive terms,
even to derive termination transitions of completely independent actions.
It therefore generates non-finite-state models even for quite harmless pro-
cesses; e.g., ifAX = {a} anda I b then

recX. a ·X −�b−→ a · recX. a ·X −�b−→ a · a · recX. a ·X −�b−→ · · ·
This effect is avoided by disallowing (2) for�a-transitions witha I AX ,
and adding a rule stating thatrecX. B −�a−→ recX. B for such transitions:
RulesR14 andR15 of Table 2, respectively.

3.3 Properties of the operational semantics

Wefirst clarify the relation between the alphabet of a termand its operational
semantics: alla-transitions belong to the alphabet, which, moreover, can
only grow smaller during execution (Clause 1);�a-transitions reduce the
alphabet of a term to (at most) the actions independent ofa (Clause 2); and
every term is�a-terminated for everya that is completely independent of
its alphabet, without being affected in any way (Clause 3). The proof is a
straightforward induction on the structure ofB, here omitted.

Proposition 3.8 (alphabet)LetB ∈ Lwf .

1. IfB −a→ B′, thenA(B′) ∪ {a} ⊆ A(B);
2. IfB −�a−→ B′, thenA(B′) ⊆ A(B) ∩ [a]I .
3. B −�a−→ B if and only ifa I A(B).

170 A. Rensink, H. Wehrheim

The following proposition provides evidence that the notion of dependent
guardedness is in some sense correct. The notion of correctness is the afore-
mentioned property that a dependently guarded variable is unable to influ-
ence the initial transition of a term. The proposition captures the relation
between syntactic substitution, operational semantics and dependent guard-
edness; again, it crucially relies on the operational semantics of open terms.

Proposition 3.9 (substitution)LetB,C ∈ Lwf withA(C) ⊆ AX .
1. IfB −α→ B′, thenB〈C/X〉 −α→ B′〈C/X〉.
2. If B〈C/X〉 −α→ B′ andX is dependently guarded inB, thenB′ =

B′′〈C/X〉 for someB′′ such thatB −α→ B′′.

The proof can be found in Appendix A. As an added bonus, dependent
guardedness ofX inB guarantees thatX = B has a unique solution (up to
bisimulation); see Theorem 3.15 below.

Diamond closure. In the presence of a dependency relationD ⊆ Act ×
Act , it is often required that transition systems satisfy somediamond closure
properties (see [26]); e.g., for alla I b:

1. If s −a→ s′ −b→ s′′, thens −b→ s′
0 −a→ s′′ for somes′

0;
2. If s −a→ s′ ands −b→ s′′, thens′ −b→ s′′

0 ands
′′ −a→ s′′

0 for somes
′′
0.

Our operational semantics satisfies neither of the above properties; the first,
however, can be recaptured as soon as we interpret the transition system
modulo bisimulation (see below).

Example 3.10

1. ConsiderB = a ||| b andr : a �→ a1 · a2, b �→ b1 · b2, where alla-actions
are independent of allb-actions.B[r] displays the following operational
behaviour:

B[r] −a1−→ a2 · (1 ||| b)[r] −b1−→ a1 · b2 · (1 ||| 1)[r]
B[r] −b1−→ b2 · (a ||| 1)[r] −a1−→ b2 · a2 · (1 ||| 1)[r]

Although the (independent) actionsa1 andb1 can indeed be executed
in either order, as required by the first diamond closure property, the
resulting end states are not the same —even though they are bisimilar,
as we will see below.

2. The second diamond closure property is circumvented quite easily by
specifyingachoicebetween independent actions: Ifa I b, thenB = a+b

is awell-formed termsuch thatB −a→ 1andB −b→ 1, but1 −a� and1 −b�.

Process algebra with action dependencies 171

Partial termination. Diamond closure applies to non-termination transi-
tions; partial termination has its own logic. First of all, it should not come
as a surprise that termination is deterministic: although choices may be re-
solved in the course of a termination transition, there is onlyone wayin
which they can be resolved.

On the other hand, due to the fact that termination may resolve choices,
it is not necessarily true that a termB that is partially terminated for either
a or b can also terminate forbotha andb in succession.

Example 3.11Assumea I b and letB = a + b. It follows thatB −�a−→ b
andB −�b−→ a, henceB can terminate foreithera or b. However,B −�a−→−�b−→
doesnot hold, henceB cannot terminate forbotha andb.

If, however, a termcan still display a certain activity after partial termination,
then that activity and the termination could as well be reversed; that is, there
is a partial commutation in the sense thatB −�a−→−α→ B′ impliesB −α→−�a−→
B′. If α itself is actually also a termination transition, then of course the
commutation is total.

The properties discussed above are formalised in the following propo-
sition. The proof is a straightforward induction on the term structure, here
omitted.

Proposition 3.12 (termination)LetB ∈ Lwf .

1. IfB −�a−→ B′ andB −�a−→ B′′, thenB′ = B′′.
2. IfB −�a−→−α→ B′, thenB −α→−�a−→ B′.

3.4 Bisimulation

Transition systems as a semantic model for process terms are usually too
informative: they distinguish processes that one would normally consider as
being equal, such as, for instance,recX.a ·X andrecX.a · a ·X. Hence, as
a second step anequivalence notion is introducedwhich additionally equates
some processes with distinct transition systems. The standard equivalence
notion for transition systems isbisimulation[54].

Definition 3.13 (bisimulation) LetTi = 〈Si,−→, ιi〉, i = 1, 2, be labelled
transition systems.T1 andT2 arebisimilar(T1 ∼ T2) if thereexists a relation
ρ ⊆ S1 × S2 such that(ι1, ι2) ∈ ρ and whenever(s1, s2) is in ρ, then for
all α ∈ Λ

1. s1 −α→ s′
1 implies∃s′

2 : s2 −α→ s′
2 and(s′

1, s
′
2) ∈ ρ and

2. s2 −α→ s′
2 implies∃s′

1 : s1 −α→ s′
1 and(s′

1, s
′
2) ∈ ρ.

As usual, two terms are called bisimilar if their corresponding transition
systems are.

172 A. Rensink, H. Wehrheim

Congruence. An immediate question arising whenever a language’s be-
havioural model is to be interpreted up to some equivalence relation is
whether the semantics of the language remains well-defined; in other words,
whether the equivalence is acongruencewith respect to the operators of the
language. ForLwf and∼, we have
Theorem 3.14 (congruence of bisimulation)Bisimulation is a congru-
ence for all operators ofLwf (including recursion).

The proof can be found in Appendix A (Page 210). For all operators except
recursion, the proof relies on the so-calledGSOS formatof [10]; to prove
congruence of recursion, theup-to technique used in [49] can be applied,
since our rules contain no look-ahead (see [61]).

Inparticular, the result thatbisimulation isacongruence for (dependency-
based) refinement is interesting, since the fact that it doesnothold for stan-
dard refinement (see [16]) has been the starting point of almost all papers
on action refinement cited before. Again, of course, this fact comes at the
price of restricting action refinement to stronglyD-consistent refinement
functions.

The congruence result also implies that in principle it is possible to
develop an equational proof system for bisimulation overLwf . In Sect. 5 we
indeed develop such a (sound and complete) proof system.

Unique fixpoints. Using the congruence result, we can now also establish
that, inLwf , recursion yields unique fixpoints up to bisimilarity. This is
formulated in the following theorem. Apart from being interesting in its
own right, this result is important in the proof of correspondence of the
operational and denotational semantics, in the next section.

Theorem 3.15 (unique fixpoints)If B ∈ Lwf with fv(B) ⊆ {X}, then
recX. B is the unique solution ofX = B in Lwf modulo∼.
Theproof can be found inAppendix A (Page 210). It is important to note that
the proof does not use the concrete definition ofLwf but only the properties
established inProposition3.9andTheorem3.14.Hence the theorem remains
valid if we extend the language in such a way that these properties are not
violated. This fact is used in the proof of correspondence of the operational
and denotational semantics, in the next section.

Diamond closure revisited. Finally, is is noteworthy thatLwf satisfies a
weaker form of the first diamond closure property discussed above. Let us
call a transition systempartially commutative up to bisimulationif whenever
a I b ands −a→−b→ s′ there exists somes′′ such thats −b→−a→ s′′ ands′ ∼ s′′.

Proposition 3.16 (partial commutativity) For all B ∈ Lwf , lts(B) is
partially commutative up to bisimulation.

Process algebra with action dependencies 173

This will follow directly from the denotational characterisation in the next
section (Theorem4.22).Note that partial commutativity up tobisimulation is
strictly stronger thanpartial trace commutativity in the senseofExample 3.4.

4 Denotational semantics

In this section, we develop a denotational semantics forLwf . In a sense,
this semantics will be a “soundness check” for the operational semantics:
in contrast to common wisdom, operationally we have characterised action
refinement in the rather poor model of standard labelled transition systems
(albeit with the additional assumption about global action dependencies).
The basis for the denotational semantics, on the other hand, will be a very
rich event-based model; and the constructions defined for the operators of
Lwf are variations on known constructions on, for instance, prime event
structures [43], stable event structures [73] and families of posets [60]. We
then give amapping from the denotational to the operational model showing
the consistency of the two (up to bisimulation); this shows that the poor
model is yet rich enough to capture the usual semantics of action refinement.
(Note that, in contrast to the usual case, our denotational semantics is not
strictly more abstract than the operational.)

Unfortunately, due to the action dependencies and the corresponding
special features of weak sequential composition and refinement, none of
the existing event-based models mentioned above is immediately suitable.
Instead, we use an extension of the family-of-posets model. We assume a
universeEvt of events, ranged over byd, e, which are used to model the
occurrences of actions. We also use a special element∗ /∈ Evt ; we denote
Evt∗ = Evt ∪ {∗}. We requireEvt to be closed under pairing in the sense
thatEvt∗ ×Evt∗ ⊆ Evt . The events are implicitly labelled; that is, there is
a global labelling function� : Evt → Act , which satisfies

�(e1, e2) =
{
�(e1) if e2 = ∗
�(e2) otherwise.

We extend the dependency relationD ⊆ Act×Act toEvt by writingd D e
iff �(d) D �(e).

Definition 4.1 (system runs)A system runis a tuplep=〈E,≤, T 〉 where
– E ⊆ Evt is a finite set of events.
– ≤ ⊆ E ×E is a reflexive, cycle-free causal ordering of the events, such
thatD∩(E×E) = ≤∪≥, i.e., events are ordered iff they are dependent.
(It follows that≤ is not necessarily transitive.) We sometimes use< to
denote the irreflexive sub-relation of≤.

– T ⊆ Act is a set of actions with respect to which the run isterminated.

174 A. Rensink, H. Wehrheim

Intuitively, the elements ofT are independent of all actions in the “future”
of this run, i.e., those that the system yet has to do when it reaches the
state modelled by the current run. We often useEp, ≤p andTp to denote
the components of a system runp; i.e., p = 〈Ep,≤p, Tp〉. We also use
Ap = �(Ep) to denote the set actions occurring inp. The class of all system
runs is denotedP.

In the terminology of event structures, the system runs correspond to
configurations, where the causal ordering of the events is included “locally”
in each configuration. This makes for a richer model than most other event-
basedmodels (see [58] for a discussion); wewill see below that this richness
is actually necessary to model some of the features ofLwf . The termination
sets provide additional information used to model the partial termination
properties: a system runp is terminated w.r.t. an actiona iff a ∈ Tp. A
useful intuition is thatTp is independent of all the actions that are yet to
occur.

We use the following additional notations for system runs:

εT = 〈∅, ∅, T 〉
〈e, T 〉 = 〈{e}, (e, e), T 〉
〈e〉 = 〈e, ∅〉

p � E = 〈Ep ∩ E,≤p ∩ (E × E), Tp〉 for E ⊆ Evt
p \ E = p � (Ep \ E) for E ⊆ Evt
p− q = p \ Eq
p ∪ T = 〈Ep,≤p, Tp ∪ T 〉 for T ⊆ Act
p ∩ T = 〈Ep,≤p, Tp ∩ T 〉 for T ⊆ Act
p \ T = 〈Ep,≤p, Tp \ T 〉 for T ⊆ Act

Wealso define aprefix relationover system runs. If a system runp is a prefix
of q, this means that the latter provides more information about the system
behaviour (the events that may occur and the corresponding termination
properties) than the former.

Definition 4.2 (system run prefix)A system runp is said to be aprefixof
another system runq, denotedp � q, if the following conditions hold:

– Ep ⊆ Eq, i.e., fewer events have occurred inp than inq;
– ≤p = ≤q ∩ (Eq × Ep), i.e., the ordering of the events is the same inp
andq, and moreover, all≤q-predecessors of events inp are also inp.

– Tp ⊆ Tq\[Aq−p]D; i.e., anaction is terminated inponly if it is terminated
in q and independent of all actions occurring betweenp andq.

System runs are sometimes depicted in the formF T , where

Process algebra with action dependencies 175

– F is a graphical representation of the first two components of the run,
in the form of event nodes connected by arrows indicating the direct
orderings between events (and not those that can be derived due to cycle-
freedom and ordering of dependent events).

– T is the termination set; ifT = ∅ it is sometimes omitted.
We often assumeAct × N ⊆ Evt with �(a, i) = a in such figures and
use the shorthand notationia for (a, i) and ija for ((a, i), (a, j)), i∗a for
((a, i), ∗) and∗ja for (∗, (a, j)); if an example includes only one occurrence
of each action we sometimes also useAct ⊆ Evt . (Hence, for instance,
iaT = 〈ia, T 〉 and ia = 〈ia〉.)

Example 4.3AssumeAct = {a, b, c, d}with a D b D c D d (and all other
actions independent).

– System runs:
1a→2b↗
3c→4d

{a, c} and b→b→a
d

{b, c}.

– Prefixes:
1a↘
3c→2b

{a} �
1a→2b↗
3c→4d

{a, c} and
1a
3c→4d

∅ �
1a→2b↗
3c→4d

{a, c}.

(Note that the termination sets of the runs on the left hand side of� are
maximalfor these relations to hold.)

– Generally,p � p ∪A andε∅ � p for all p ∈ P andA ⊆ Act .

The structure〈P,�〉 has some interesting order-theoretic properties, which,
however, play no further role in this paper: it is a consistently complete prime
algebraic domain, with (as the last item of the above example shows)ε∅ as
a bottom element.

Definition 4.4 (denotational models)A system modelis a nonempty set
P ⊆ P, such thatp � q ∈ P impliesp ∈ P; i.e.,P is prefix closed.
We useEP =

⋃
p∈P Ep to denote the set of events used inP, andM

to denote the set of system models. System models are interpreted up to
isomorphism; a functionφ : EP → EQ is an isomorphism betweenP and
Q (denotedφ : P ∼= Q or simplyP ∼= Q if φ is irrelevant) if it preserves
labelling (�(φ(e)) = �(e) for all e ∈ EP) and it is a bijection such that
Q = φ(P) = {φ(p) | p ∈ P}, whereφ(p) is the result of renaming the
events ofp according toφ in the natural way. The following sub-sections
present the constructions onM used to model the operators ofLwf .

Example 4.5LetAct = {a, b, c, d} anda D b D c D d as in Example 4.3.
The following graph represents a system model. Since there is only one
instance of every action, we have omitted event annotations. The arrows

176 A. Rensink, H. Wehrheim

between system runs represent the prefix ordering.

εd → a {d} → a→b {d} → a→b {c, d}
↗ ↗ ↗ ↗

ε∅ → a ∅ → a→b ∅ → a→b {c}
↘ ↘

c ∅ → a
c ∅↘ ↘
c {d} → a

c {d}
(Aswewill see below, thismodels the behaviour ofa · (b ·0a+c ·0b).) Note
that a {d} �� a

c {c, d}.
Note that the non-emptiness andprefix closure of system runs together imply
thatε∅ ∈ P for all P ∈M.

4.1 Constructions

We first introduce and discuss the model constructions used to implement
the operators ofLwf , and afterwards establish their formal properties, such
as the fact that all constructions stay withinM, and are well-defined with
respect to isomorphism.

Deadlock constants. Deadlock is modelled by empty runs whose termi-
nation set is independent of the deadlock alphabet; i.e., to model0A we use
the set of allεT ∈ P whereT I A. Note that ifp � εT with T I A, then
p = εTp with Tp ⊆ T , henceTp I A; thus,P is a valid system model.

Action constants. To model a single actiona denotationally, we need a
single evente labelled by that action; no proper causal ordering (except for
the reflexivee ≤ e) is possible. There are two types of runs: the empty ones,
where nothing has happened yet, and the complete ones, where the action
has occurred. In the former, the termination sets are independent ofa; in
the latter, the termination sets are arbitrary. This gives rise toP = P1 ∪ P2
whereP1 equals themodel of0{a} (see above) andP2 consists of all system
runs〈e, T 〉 for a given evente ∈ Evt with �(e) = a andT ⊆ Act arbitrary.

Choice. The construction for choice is entirely analogous to the usual one
in event-basedmodelling: It consists of a simple union of the operands, with
the proviso that the events used in those operands must be disjoint. That is,
we define

P1 + P2 = P1 ∪ P2 if EP1 ∩ EP2 = ∅.
Note that the disjointness side condition can always be fulfilled by choosing
appropriate isomorphic representatives.

Process algebra with action dependencies 177

Parallel composition. Themodel construction for parallel composition ba-
sically consists of combining all pairs of runs from the operands by gluing
them together at the events labelled by synchronising actions, whenever this
yields a valid system run. To accomplish the gluing together, we use the
following construction on event setsE1, E2 ⊆ Evt :

E1 ||A E2 = {(e, ∗) ∈ E1 × {∗} | �(e) /∈ A}
∪ {(∗, e) ∈ {∗} × E2 | �(e) /∈ A}
∪ {(e1, e2) ∈ E1 × E2 | �(e1) = �(e2) ∈ A}

In comparison with the standard case (i.e., without action dependencies),
the construction is complicated slightly by two things: all dependent events
in the synchronised run have to be ordered, even if they stem from differ-
ent operands and are unsynchronised; and the termination sets have to be
computed. W.r.t. the first complication, consider the following example:

Example 4.6AssumeAct = {a, b, c} with c D {a, b}. The synchronisa-

tion of the system runs
1a→2a
3b

and 4a→5c→6a on the actiona (omitting

termination sets) yields one of the runs
14a↘
3∗b→∗5c→26a

and
14a→∗5c→26a↘

3∗b
(whereij denotes the pair(i, j)).

Fori = 1, 2 letπi : Evt ⇀ Evt be the partial function defined byπi(d) = ei
if d = (e1, e2) andei �= ∗. The parallel composition of system models is
then defined as follows:

P1 ||A P2 = {q ∈ P | ∃p1 ∈ P1, p2 ∈ P2 : Eq ⊆ Ep1 ||A Ep2 ,
<pi = {(πi(d), πi(e)) | d <q e} for i = 1, 2,
Tq = Tp1 = Tp2}

Note that, given two system runspi ∈ Pi for i = 1, 2, if there exists any
valid synchronisation ofp1 andp2 at all, it is unambiguous which events
of p1 synchronise with which ofp2, due to the fact that identically labelled
events are dependent and thus ordered in bothp1 andp2; but it is not always
pre-determined how the non-synchronising events with dependent labels are
ordered inq. See also Example 4.6.

Weak sequential composition.A run of a system obtained by sequential
composition consists of a run of the first operand, followed by a run of
the second, where the “followed by” is modulo the dependency relation.
Moreover, we cannot combine arbitrary pairs of runs: rather, the alphabet of
the second run should be part of the termination set of the first. This gives

178 A. Rensink, H. Wehrheim

rise to the following construction, where again (as for choice) we require
EP1 ∩ EP2 = ∅:

P1 · P2 = {q | ∃p1 ∈ P1, p2 ∈ P2 : Ap2 ⊆ Tp1 ,
≤q = ≤p1 ∪ ((Ep1 × Ep2) ∩D) ∪ ≤p2 ,
Tq = Tp1 ∩ Tp2}

Refinement. Denotationally, refinement consists of a systemmodelP to be
refinedanda functionR : Act →M thatmapseachaction toanother system
model. In accordance with the notion of strongD-consistency on syntactic
refinement functions (Definition 3.5), we also impose a requirement on the
functionR:
Definition 4.7 (denotationalD-consistency)A semantic refinement func-
tion R : Act → M is calleddenotationallyD-consistentif for all a, b ∈
Act :
– a D b implies (i)εb /∈ R(a) and (ii) a D �(e) for all 〈e〉 ∈ R(b);
– a I b impliesAp I b andp ∪ b ∈ R(a) for all p ∈ R(a).

We only consider denotationallyD-consistentR. The runs of the refined
system are obtained by taking a runp ofP, and refining each eventd of p by
some non-empty runw(d) ofR(a), wherea is the label ofd. Thus, we each
time use a so-calledwitnessfunctionw : Ep → M that selects nonempty
runs from the refinement functionR.

P[R] = {q | ∃p ∈ P : ∀d ∈ Ep : ∃w(d) ∈ R(�(d)) \ εT :
Eq =

{
(d, e)|d ∈ Ep, e ∈ Ew(d)

}
,

≤q = {((d1, e1), (d2, e2))|d1 <p d2, e1 D e2 or
d1 = d2, e1 <w(d1) e2},
Tq = Tp ∩

⋂
d∈Ep

Tw(d)}
The condition thatw only selects non-empty runs is there to ensure that
we can by and large reconstructp andw from eachq ∈ P[R] (with the
exception of the termination sets).

Note that, due to denotationalD-consistency ofR, the images ofw
respect the causal ordering of events inp: if d �p d′ thend I d′ and hence
the labels ofw(d) andw(d′) are independent and, moreover, the labels of
w(d′) can be added to the termination set ofw(d). (This is a compatibility
property similar to the one used above for weak sequential composition.)

Example 4.8AssumeAct = {a, a1, a2, b, b1, b2, c, c1, c2} and let the inde-
pendencies be given bya1 I {b2, c2}, a2 I {b1, b2, c1} and

{b, b1, b2} I {c, c1, c2}. Take the system runp =
b↗

a→c
Act and refine

according to

w : a �→ a1→a2 Act b �→ b1→b2 Act c �→ c1→c2 Act

Process algebra with action dependencies 179

This results in the run q =

b1→b2
↗

a1→a2↘ ↘
c1→c2

Act . The prefix

b1→b2↗
a1↘

c1

{b1, b2} of q, on the other hand, is obtained by refiningp above

according to

w : a �→ a1 {b1, b2, c1} b �→ b1→b2 Act c �→ c1 {a1, b, b1, b2} .

Recursion. As usual, the semantics of a recursive termrecX. B is the
fixpoint of a function overf : M → M, wheref is derived fromB —
essentially,f is the semantic counterpart of substituting a term forX in
B. We will use the theory of metric spaces to show that this fixpoint is
uniquely defined; moreover, any solution off up to isomorphism, i.e., such
thatf(P) ∼= P, is also isomorphic to the fixpoint off .

Even if the semantics of recursion will be shown tosatisfy this fix-
point property, it is not how wedefinethe semantics. For the definition of
[[recX.B]], instead, we take the limit (i.e., the union) of the semantic models
of a sequence of approximants(BiX)i∈N defined by

B0
X = 0AX

Bi+1
X = B〈BiX/X〉 .

We will see that the aforementionedf is monotonic such that[[Bi+1
X]] =

f([[BiX]]) for all i ∈ N; since[[B0
X]] = {εT | T I AX} is the smallest element

of the sub-space ofM in which the fixpoint off must lie, it follows that⋃
i∈N

[[BiX]] is indeed a fixpoint off . In Sect. 4.3 we provide the necessary
theory.

4.2 Well-definedness

We defined a number of constructions above, without considering whether
M is closed under them, i.e., whether the structures thus constructed are
again system models (in the sense of Definition 4.4). In particular, one has
to check that prefix closure is preserved. The following proposition states
that this is indeed the case.

Proposition 4.9 M is closed under the constructions defined above.

Theproof canbe found inAppendixA (Page211). Anoteworthy point is that
the denotationalD-consistency of the refinement functions (Definition 4.7)
is essential in the proof.

180 A. Rensink, H. Wehrheim

Table 3.Denotational semantics for closed terms ofLwf

[[0A]] = {εT | T I A}
[[a]] = [[0a]] ∪ {〈e, T 〉 | T ⊆ Act} wherea = �(e)

[[B1 + B2]] = ι1([[B1]]) + ι2([[B2]])

[[B1 ||A B2]] = [[B1]] ||A [[B2]]

[[B1 · B2]] = ι1([[B1]]) · ι2([[B2]])

[[B[r]]] = [[B]][a �→ [[r(a)]] | a ∈ Act]

[[recX. B]] =
⋃

i∈N
[[Bi

X]] whereB0
X = 0AX , Bi+1

X = B〈Bi
X/X〉

A further result is that the constructions arewell-definedmodulo isomor-
phism. This is immediate from the definitions, since any bijective renaming
of the events of the operands can easily be turned into a bijective renaming
of the events of the constructed model. This is formulated in the following
proposition, the proof of which is straightforward and hence omitted.

Proposition 4.10 The above constructions overM are well-defined up to
∼=.
With the help of the injectionsιi : Evt → Evt defined byι1(e) = (e, ∗)
andι2(e) = (∗, e) for all e ∈ Evt , we can now define a denotationalM-
semantics for closed termsofLwf , in the formof a function[[−]] : Lwf →M.
It is given in Table 3.

The immediate question is if the denotational semantics is well-defined;
in particular, if every refinement function constructed in Table 3 is indeed
denotationallyD-consistent. This turns out to be indeed the case.

Proposition 4.11 [[B]] ∈M for all B ∈ Lwf .

In the course of the proof — which is worked out in full in Appendix A
(from Page 213) — the following property is also shown to hold:

Proposition 4.12 If r : Act → Lwf is stronglyD-consistent, then the func-
tion Act → M defined bya �→ [[r(a)]] for all a ∈ Act is denotationally
D-consistent.

This in turn relies on a certain relation between operational and denotational
concepts, established by the following proposition.

Proposition 4.13 For all closedB ∈ Lwf , the following holds:

1. a I A(B) impliesa I Ap andp ∪ a ∈ [[B]] for all p ∈ [[B]].
2. B −�a−→ iff εa ∈ [[B]].
3. B −a→ iff 〈e〉 ∈ [[B]] with �(e) = a.

Process algebra with action dependencies 181

Somewhat unexpectedly, the inverse implications of Propositions
4.13.1and (hence) 4.12donothold. This is due to the fact that, in somecases,
there are actions which are semantically independent of a systemmodel but
not syntactically independent of a term giving rise to that model. As an ex-
ample, consider the termB = a + 0b wherea I b: we have[[B]] ∼= [[a]],
showing that0b does not contribute anything to the behaviour of this term
and henceb I Ap andp ∪ b ∈ [[B]] for all p ∈ [[B]]; yet b D A(B).

4.3 Recursion as a unique fixpoint

Table 3 contains a definition for the denotational semantics of recursive
terms; however, we have yet to demonstrate that this semantics is reason-
able, in thesense that it satisfies thecriteriausually imposedupon theconcept
of recursion. In this subsection, we show that the set of modelsM actually
forms a metric space and recursive terms correspond to unique fixpoints of
contractions overM. We only deal with simple, non-nested recursion, i.e.,
termsrecX.B in whichB itself is finite; the general case is a standard gen-
eralisation that is notationally muchmore complex but presents no essential
novelties.

Denotationally, the semantics of a well-formed recursive term
recX. B (whereB ∈ Lfin and fv(B) ⊆ {X} due to the restriction to
simple recursion) is expected to solve the equationX = B, interpreted in
Mmodulo∼=. That is, a solution of this equation is a systemmodelP ∈M
such thatP ∼= [[B]](P), where[[B]](−) : M→M is a function derived from
B by extending the definitions in Table 3 with a parameter:

[[0A]](P) = {εT | T I A}
[[a]](P) = [[0a]] ∪ {〈e, T 〉 | T ⊆ Act}

[[B1 + B2]](P) = ι1([[B1]](P)) + ι2([[B2]](P))
[[B1 ||A B2]](P) = [[B1]](P) ||A [[B2]](P)

[[B1 ·B2]](P) = ι1([[B1]](P)) · ι2([[B2]](P))
[[B[r]]](P) = [[B]](P)[a �→ [[r(a)]] | a ∈ Act]

[[X]](P) = P .

(Recall that refinement functions in well-formed terms map to closed terms
only, hence[[r(a)]] is well-defined.) This effectively defines a semantic coun-
terpart to syntactic substitution.

Proposition 4.14 For all B ∈ Lwf
fin andC ∈ Lwf such thatfv(B) ⊆ {X},

C is closed andA(C) ⊆ AX , [[B〈C/X〉]] = [[B]]([[C]]).

Wefirst show that[[B]](−) itself hasauniquefixpoint,whichequals[[recX.B]];
this is certainly a solution ofX = B. We then show that allP solving the

182 A. Rensink, H. Wehrheim

equation up to isomorphism, i.e., such that[[B]](P) ∼= P, are isomorphic to
[[recX. B]].

Global termination. In order to obtain unique fixpoints, we have to be
more precise about the desired termination properties. In the operational
semantics (Proposition 3.8), all terms are globally terminated with respect
to actions that are independent of the term’s alphabet. This is a property
that we also want the denotational semantics to reflect, and without which
fixpoints arenot unique, as the following example shows.

Example 4.15Consider the functionf = [[a ·X]](−) (i.e.,f : P �→ ι1([[a]])
· ι2(P) for all P), and consider the following two models:

P = {〈an, T 〉 | n ∈ N, T I a}
Q = {〈an, ∅〉 | n ∈ N}

(where〈an, T 〉denotesa system runconsistingofn consecutiveoccurrences
of the actiona and termination setT). It is not difficult to see thatP ∼= f(P)
andQ ∼= f(Q); yetP �∼= Q. According to Table 3,[[recX. a ·X]] = P, and
indeed we consider this the “appropriate” semantics; it can be depicted by

ε[a]I → a [a]I → a→a [a]I → a→a→a [a]I → · · ·

Q is not terminated for anyb I a, i.e.,εb /∈ Q; this contradicts theoperational
intuition that a term should always be terminated for all actions independent
of its alphabet.

The desired property is captured by the following definition:

Definition 4.16 (global termination) Let P ∈ M and T ⊆ Act . P is
calledglobally terminatedfor T if T I Ap andp ∪ T ∈ P for all p ∈ P.
The class of all models globally terminated forT will be denotedMT . Note
thatMT ⊆MT ′ if T ⊇ T ′. For instance, in the above exampleP is globally
terminated for[a]I , whereasQ is not. In the semantics defined by Table 3,
all B ∈ Lwf are globally terminated for[A(B)]I ; that is,[[B]] ∈ M[A(B)]I
for all closedB ∈ Lwf . (This follows from Proposition 4.17 below.)

Accordingly, we will in fact interpret[[B]](−) as apartial functionM→
M, defined only onP ∈ M[AX]I ; or alternatively as a (total) function
M[AX]I → M[A(B)]I . The following proposition (proof omitted) implies
that this interpretation is valid.

Proposition 4.17 IfB ∈ Lwf
fin withfv(B) ⊆ {X}, then[[B]](P) ∈M[A(B)]I

for all P ∈M[AX]I .

Process algebra with action dependencies 183

It follows that any closed recursive termrecX. B ∈ Lwf (which satisfies
A(B) ⊆ AX , see Table 1) gives rise to a function[[B]](−) : MT → MT

with T = [AX]I . We now show that[[recX. B]] as defined in Table 3 is
the unique fixpoint of[[B]](−) in MT — even if it is not unique inM, as
Example 4.15 shows.

A complete metric space.In order to achieve this, we use the theory of
metric spaces; cf. [21] for an exposition of the basic theory. First we turn
MT into a complete metric space, where the distance between two models
is determined by the largest depth up to which they coincide. For arbitrary
p ∈ P, the depth ofp is determined by its longest<p-chain, as follows:

depth(p) = max {n | ∃(ei)1≤i≤n ⊆ Ep : ∀1 ≤ i < n : ei <p ei+1}
Furthermore, for arbitraryP ∈M andn ∈ N, the “prefix” ofP up todepth
n is defined by

P↑n = {p ∈ P | depth(p) ≤ n}
This gives rise to the following distance functionδ : M×M→ R:

δ(P,Q) = 2− sup{n+1|P↑n=Q↑n} .

The “+1” in the supremum is there to ensure that ifP↑0 = Q↑0 (meaning
that the termination properties ofP andQ coincide) thenδ(P,Q) < 1.
Sincesup ∅ = 0 andsup N = ∞, it follows thatδ(P,Q) = 1 iff (εT ∈
P) �⇔ (εT ∈ Q) for someT ⊆ Act , andδ(P,Q) = 0 iff P = Q.

The above definitions ofδ anddepth are standard — for event-based
models, very similar ones can be found in [43] — and so is the (proof of
the) following theorem.

Theorem 4.18 For all T ⊆ Act , 〈MT , δ〉 is a complete metric space.
In fact, the limit P of a Cauchy sequence(Pi)i in 〈M, δ〉 is given by⋃
i∈N

⋂
j≥i Pi. In general, due to the properties of complete metric spaces,

any contracting functionf : MT → MT has a unique fixpoint (see [21]).
We now prove that functions of the form[[B]](−) are contracting ifX is
dependently guarded inB. (Note that this is not true for arbitraryB; as an
extreme case,[[X]](−) is clearly not contracting.)

Proposition 4.19 LetB ∈ Lwf
fin with fv(B) ⊆ {X}.

1. [[B]](−) is non-increasing;
2. IfX is dependently guarded inB, then[[B]](−) is contracting.

The proof can be found in Appendix A (Page 216). This gives rise to the
following theorem.

184 A. Rensink, H. Wehrheim

Fig. 1.A model ofa · (b ·0a + c ·0b), whereAct = {a, b, c, d} anda D b D c D d

Theorem 4.20 IfB ∈ Lwf with fv(B) ⊆ X, andX is dependently guarded
inB, then[[recX.B]] is the unique solution ofX = Bmodulo∼= inM[AX]I .

Note that this not only states thatP = [[B]](P) impliesP = [[recX. B]]
= P, but also thatP ∼= [[B]](P) impliesP ∼= [[recX. B]]. The proof can be
found in Appendix A (Page 218).

4.4 Transitions

To show the correspondence between operational and denotational seman-
tics, we turn each system system modelP into anAct ∪�Act -labelled tran-
sition system〈P,−→, ε∅〉; i.e., the states of the transition system are given
by the system runs. A similar construction can be found in, e.g., [65]

Intuitively, in P there is ana-labelled transition from each run ofP to
any run of which it is a prefix differing only by a singlea-labelled event;
furthermore, there is a�a-labelled transition between any two system runs
p andp ∪ a. Formally,−→ is the smallest relation such that for allp ∈ P:
– p \ e −�(e)−−→ p if e ∈ maxEp and�(e) I Tp;
– p −�a−→ p ∪ a if p ∪ a ∈ P.
Note that ife ∈ maxEp and�(e) I Tp thenp\e � p, andhencep\e ∈ P. For
instance, Fig. 1 represents the system model of Example 4.5 as a transition
system.

An immediate observation is that system model isomorphism implies
bisimilarity. (The bisimulation relation is given by{(p, φ(p))|p ∈ P}where
φ : P ∼= Q.)

Process algebra with action dependencies 185

Proposition 4.21 If P ∼= Q, then〈P,−→, ε∅〉 ∼ 〈Q,−→, ε∅〉.
One of the main results of this paper is the following theorem, which states
the correspondence between operational and denotational semantics.

Theorem 4.22 For all closedB ∈ Lwf ,B ∼ lts([[B]]).

The proof of this theorem proceeds by induction on the structure ofB.
For the refinement operator, the correspondence crucially relies on strong
D-consistency of refinement functions (Definition 3.5) and its denotational
counterpart (see Definition 4.7 and Proposition 4.12). For the case of recur-
sion, we use the uniqueness of fixpoints modulo∼, stated in Theorem 3.15:
essentially, because the denotational semantics of[[recX. B]] yields a so-
lution of X = B, it must be bisimilar torecX. B. However, a technical
problem in this argument is that we have proved Theorem 3.15 on the syn-
tactical level (if twotermsare solutions ofX = B, then they are bisimilar)
and so it is not directly applicable to system models like[[recX. B]]. To
circumvent this, for the purpose of proving Theorem 4.22 we introduce ad-
ditional constantstP for everyP ∈ M to Lwf . As remarked in Sect. 3.4,
the proof of Theorem 3.15 is not invalidated if we extendL in this way.

Moreover, the proof actually uses a different (bisimilar) representation
for the operational semantics of system models. Namely, instead of turning
each individual system modelP into a transition system of which the runs
(the elements ofP) are the states, we turn theclassof system models,M,
into a transition system of which thesystemmodels(the elements ofM) are
the states. Full details of the proof, including this alternative representation,
are worked out in Appendix A (from Page 220).

5 Axiomatisation

Nextwewill developanaxiomatisation of bisimilarity.Wegive a finite equa-
tional theoryT such that for all closed termsB1, B2 of the finite language
Lwf

fin ,

T & B1 = B2 if and only ifB1 ∼ B2,

that is,Twill be sound for bisimilarity inLwf and complete for bisimilarity
in Lwf

fin . Within T, the rules for equational reasoning (reflexivity, symmetry,
transitivity, substitution and instantiation) can be used to deduce equality of
terms from given equations.

5.1 Auxiliary operators

As might be expected, the unusual behaviour of weak sequential compo-
sition forces some modifications to the standard axioms for bisimilarity.

186 A. Rensink, H. Wehrheim

The axiomatisation of ACP [8] for instance contains a rule for the right-
distributivity of sequential composition over choice:(x + y)z = xz +
yz (where juxtaposition is sequential composition). For weak sequential
composition, however, this is not valid: for instance, ifa I c I b, then
(a + b) · c −c→ (a + b) ·1 which can still do botha and b; however, if
a · c + b · c −c→ B, then eitherB = a ·1 orB = b ·1, neither of which can
do botha andb. It follows that(a + b) · c �∼ a · c + b · c.

Our axiomatisation is inspired byAceto, BloomandVaandrager [2], who
developedageneralmethod for derivingcompleteaxiomatisations for strong
bisimilarity directly from GSOS rules. Their work is not directly applicable
to our system in its current form (even for the part without recursion), but we
closely follow their ideas. The problem for the applicability lies in the fact
that although the recursion-free language can only describe finite behaviour,
still in a technical sense it allows infinite computations to be specified: for
instance, ifa I b thenb −�a−→ b −�a−→ · · · . This means that the technique of
[2] fails to induce a normal form.

Nevertheless, a complete axiomatisation does exist. As usual, it requires
the addition of auxiliary operators toL; they are collected in Table 4. The
language including all auxiliary operators is denotedL+, and the well-
formed sub-languageLwf +. In particular,recX. B is only well-formed if
A(B) ⊆ AX ; for that purpose,A(B) must at least be defined, implying
thatB may contain no occurrences of the residue operator,B ↓ a.

Left merge and communication merge.''A is the standardleft mergefrom
ACP, adapted to our notion of synchronisation and extended to deal with
termination.|A is the relevant version of thecommunication merge. The
idea is thatB ''A C captures part of the behaviour ofB ||A C, namely the
cases where the first action that occurs comes from the left hand operand,
B, and does not have to synchronise.B |A C, on the other hand, captures
the part where the first action must arise from a synchronisation, i.e., must
be an element ofA and performed simultaneously byB andC. Parallel
composition can then be split up according to the following axiom:

x ||A y = x ''A y + y ''A x + x |A y .

Left and right sequential and residue.We use operators� and�, calledleft
sequentialandright sequential, which serve a similar purpose with respect
to sequential composition as left and communication merge with respect
to synchronisation. That is,B�C captures the part ofB ·C where the first
action to occurmust come fromB, whereasB�C specifies that it must come
fromC, in which caseB must terminate for that action. Both operators are
right-associative. Sequential composition can then be split up as follows:

x · y = x�y + x�y .

Process algebra with action dependencies 187

Table 4.Operational semantics of auxiliary operators

left merge x −a→ x′ a /∈ A

x ��A y −a→ x′ ||A y
R16

x −�a−→ x′ y −�a−→ y′

x ��A y −�a−→ x′ ��A y′ R17

communication mergex −a→ x′ y −a→ y′ a ∈ A

x |A y −a→ x′ ||A y′ R18
x −�a−→ x′ y −�a−→ y′

x |A y −�a−→ x′ |A y′ R19

left sequential x −a→ x′

x�y −a→ x′ · y R20
x −�a−→ x′ y −�a−→ y′

x�y −�a−→ x′�y′ R21

right sequential x −�a−→ x′ y −a→ y′

x�y −a→ x′ · y′ R22
x −�a−→ x′ y −�a−→ y′

x�y −�a−→ x′�y′ R23

residue x −�a−→ x′ −β→ x′′

x ↓ a −β→ x′′ R24

deadlock x −�a−→ x′ a ∈ [A]I

δA(x) −�a−→ δA(x′)
R25

Note that, unlike parallel composition, sequential composition is not sym-
metrical, and hence left and right sequential cannot be covered by a single
operator. Left sequential in fact coincides withaction prefixwhen the first
operand is a single action. Action prefix plays its usual role as one of the
basic operators of normal forms (see [2]). For right sequential, on the other
hand, the situation is more complicated.

The following distributivity and associativity properties are
straightforward to establish:

(x + y)�z = x�z + y�z
x�(y + z) = x�y + x�z

(x�y)�z = x�(y · z)
x�(y�z) = (x�y)�z

Disregarding deadlock for the moment, the important remaining
problem for the axiom system is to deal with terms of the formB�a, i.e.,
right sequential with a single action as its right hand operand. Intuitively,
this specifies thata must occur first, followed by the part ofB that is left
after terminating fora; or, if B does not terminate fora at all,B�a is dead-
locked. Unfortunately, however, there is no easy way to capture this with the
operators discussed so far; for instance, ifB is a choice, say betweenB1 and

188 A. Rensink, H. Wehrheim

Table 5.Alphabet and partial termination set ofL+ except residue

B A(B) T (B)

0A A [A]I

a {a} [a]I

B1 + B2 A(B1) ∪ A(B2) T (B1) ∪ T (B2)

B1 � B2 A(B1) ∪ A(B2) T (B1) ∩ T (B2) if � ∈ {||A, ��A, |A, ·, �, �}
δA(B1) A ∪ A(B1) [A]I ∩ T (B1)

B1[r]
⋃

a∈A(B1) A(r(a)) T (B1)

X AX [AX]I

recX. B1 AX T (B1)

B2, thenB�a cannot be rewritten without a rather extensive case distinction
to determine whetherB1 andB2 terminate or do not terminate fora. (As
we saw above, weak sequential composition does not right-distribute over
choice; it is precisely the right sequential that is the problem in this regard.)

We solve this problemby introducing, into our axiomsystem, two further
auxiliary notions that precisely capture the partial termination relation. First,
Table 4 defines aresidueoperator:B ↓ a denotes the residue of the termB
after it has terminated fora, or a deadlocked term ifB cannot terminate for
a. Second, Table 5 defines a partial functionT : L+ ⇀ 2Act that returns
the set of actions for which a term, which may itself not contain the residue
operator, is partially terminated. In addition, Table 5 extends the functionA
returning the alphabet of a term (Table 1) toL+, again with the exception
of the residue operator.

Note that there is a relation betweenT (B) andA(B), in that[A(B)]I ⊆
T (B) for all B, expressing that a term is certainly terminated for all com-
pletely independent actions. The following proposition states the crucial
property of the partial termination set and the residue operator.

Proposition 5.1 LetB ∈ L+ without residue operator anda ∈ Act . a ∈
T (B) if and only ifB −�a−→ B′ for someB′, in which caseB′ ∼ B ↓ a.
Forced deadlock. In the above discussion, we have ignored the termination
and deadlock properties of terms. Because of the special nature of partial
termination, this is another area that deserves careful attention. For instance,
even for completely deadlocked terms (that are unable to perform an action
themselves), the alphabet of a term alone is not sufficient to determine its
termination properties: one can easily find non-bisimilar deadlocked terms
with the same alphabet. Thus, axioms likex+0A(x) = x are in general not
sound.

Process algebra with action dependencies 189

Example 5.2LetB = 0{a,b}+0{b,c} andC = 0{a,c}+0{b,c}withd I {a, b}
andd D c. It follows thatB andC are both deadlocked, withA(B) =
A(C) = {a, b, c}. HoweverB −�d−→ whereasC −�d−�; henceB �∼ C.

What we need is some finer method, which also takes choices into account.
For this, we introduce a further auxiliary operator, calleddeadlock(also
defined in Table 4). The deadlock operator serves a purpose similar to the
encapsulation operator of ACP [8]; however, the use of the index set is
different. In general,δA transforms a termB into a deadlocked term (i.e.,
δA(B) −a� for all a ∈ Act) with the same termination behaviour asB,
except thatA is added to the alphabet. The following proposition (proof
omitted) formalises this property:

Proposition 5.3 If B ∈ L+ is deadlocked (i.e.∀a ∈ Act : B −a�), then
δA(B) ∼ 0A ·B.
Using this forced deadlock operator, we can usex+ δA(x) = x in place of
the unsoundx + 0A(x) = x.

Properties of the extended language.We useLwf + to denote the subset
of L+ for which the same well-formedness conditions hold as forLwf (see
Sect. 2).Lwf + enjoys many of the properties we proved in Sect. 3 forLwf .
In particular, the following hold:

– The properties of the alphabet are preserved; that is, Proposition 3.8 can
be extended fromLwf toLwf +.

– The properties of partial termination are preserved; that is, Proposi-
tion 3.12 can be extended fromLwf toLwf +.

– The congruence property of bisimulation is preserved; that is, Theo-
rem 3.14 can be extended fromLwf to Lwf +. The same argument as
before can be used (see the proof of Theorem 3.14, Page 210), except
for the case of the residue operator, of which the operational ruleR24
uses look-ahead in the premise. Since this falls outside theGSOS format,
for this case we have to revert to the ntyxt/ntyft format proposed in [34].
The congruence argument for the recursion operator, too, is invalid in the
presence of look-ahead (see [61]); however, the situation is saved since
(asmentioned above) the well-formedness of recursive terms implies the
absence of the residue operator inside recursion.

5.2 The equational theory

The set of all relevant axioms is collected in Table 6. Note that several
axioms contain side conditions referring to the alphabet or the termination
set of terms; such axioms are therefore only applicable in the absence of the
residue operator.

190 A. Rensink, H. Wehrheim

Table 6.The equational theoryT

0A = 0A′ if [A]I = [A′]I C1

x + y = y + x C2

x + (y + z) = (x + y) + z C3

x + x = x C4

x + δA(x) = x C5

x ||A y = x ��A y + y ��A x + x |A y P

(x + y) ��A z = (x ��A z) + (y ��A z) LM1

a�x ��A\{a} y = a�(x ||A\{a} y) LM2

a�x ��A∪{a} y = δ{a}(x ||A∪{a} y) LM3

0A′ ��A x = δA′(x) LM4

x |A y = y |A x CM1

(x + y) |A z = x |A z + y |A z CM2

a�x |A∪{a} a�y = a�(x ||A∪{a} y) CM3

a�x |A∪{a} b�y = δ{a,b}(x ||A∪{a} y)

if a �= b CM4

a�x |A\{a} y = δ{a}(x ||A\{a} y) CM5

0A′ |A x = δA′(x) CM6

1 · x = x S1

x ·1 = x S2

(x · y) · z = x · (y · z) S3

x · y = x ||∅ y if A(x) I A(y) S4

x · y = x�y + x�y S5

(x + y)�z = (x�z) + (y�z) LS1

(x�y)�z = x�(y · z) LS2

0A�x = δA(x) LS3

x�(y + z) = x�y + x�z RS1

x�(y�z) = (x�y)�z RS2

x�a = a�(x ↓ a) + δ{a}(x)

if a ∈ T (x) RS3

x�a = δ{a}(x) if a /∈ T (x) RS4

x�0A = δA(x) RS5

(x + y) ↓ a = x ↓ a + y ↓ a RD1

b�x ↓ a = b�(x ↓ a)

if a ∈ T (b�x) RD2

b�x ↓ a = 0 if a /∈ T (b�x) RD3

0A ↓ a = 0A if a I A RD4

0A ↓ a = 0 if a D A RD5

δA(0A′) = 0A∪A′ D1

δA(a) = 0A∪{a} D2

δA(x � y) = δA(x) � δA(y)

where� ∈ {+, �} D3

a[r] = r(a) RF1

0A[r] = 0A RF2

(x1 � x2)[r] = x[r] � y[r]

where� ∈ {+, ·, �} RF3

In addition to those already discussed at the introduction of the auxiliary
operators, Table 6 includes severalmore axioms concerning sequential com-
position. For instance, S1–S3 express that sequential composition imposes
a monoid structure on the language, with1 as a neutral element; this is as
expected and coincides with the standard axioms for ACP (see [7]). Another
interesting axiom is S4, which expresses that for two terms whose alphabet
is independent, sequential composition and (synchronisation free) parallel
composition have the same effect.

The following theorem states the soundness of the axioms. It implies
that we may use the equational theoryT generated by Table 6 together with

Process algebra with action dependencies 191

the usual equational proof rules to derive bisimilarity of terms inLwf +. The
proof can be found in Appendix A (Page 226).

Theorem 5.4 (soundness)The axioms of Table 6 are sound w.r.t. bisimi-
larity.

Our axiom system is alsocomplete, i.e., rich enough to derive all bisimilari-
ties of finite terms.We prove this in the usual way, by reducing all terms to a
small core language, which in this case consists of action prefix, choice and
termination constants, and showing completeness for this core language.We
denote the core language byLt (for tree language); it is generated by the
following grammar:

B ::= 0A | a�B | B + B .

Completeness of the core language comes down to the following property.

Proposition 5.5 For all B1, B2 ∈ Lt,B1 ∼ B2 impliesT & B1 = B2.

The proof, the full details of which can be found in Appendix A (Page 230),
uses a sum normal form for terms ofLt. Using D1–D3, it is not difficult
to show that for allB ∈ Lt, T & δAct(B) = 0Act ; hence with the help of
C5 one can deduceB + 0 = B. Therefore, C2–C5 together imply that we
may use the standard notation for sums:

∑
i∈I Bi (whereI is finite) denotes

the choice between allBi, which equalsBn if I = {n} and0 if I = ∅. It
follows that each termB ∈ Lt can be written in the form

B =
∑
i∈I ai�Bi +

∑
j∈J 0Aj ,

whereBi ∈ Lt for all i ∈ I. The proof of Proposition 5.5 proceeds by
induction on thedepthof tree terms in sum form, which is defined by

depth
(∑

i∈I ai�Bi +
∑
j∈J 0Aj

)
= max {1 + depth(Bi) | i ∈ I}

(wheremax ∅ is assumed to equal0). As an intermediate step in the proof
of Proposition 5.5, we first prove a special case for deadlock constants:

Lemma 5.6 LetB ∈ Lt. If B + 0A ∼ B, thenT & B + 0A = B.

Using this, one can show that for arbitraryB1, B2 ∈ Lt, B1 ∼ B2 implies
T & B1 +B2 = B2 (by induction ondepth(B1 +B2)). By symmetry, this
implies Proposition 5.5.

Normalisation. The second part of the completeness result consists of
showing that every term ofLwf can be rewritten (using the equational theory
T) to a term of the core language. This is a consequence of the following
proposition.

192 A. Rensink, H. Wehrheim

Proposition 5.7 Let B1, B2 ∈ Lt, and letr : Act → Lt be stronglyD-
consistent.

1. T & a = a�1.
2. T & B1 ·B2 = C for someC ∈ Lt.
3. T & B1 ||A B2 = C for someC ∈ Lt.
4. T & B1[r] = C for someC ∈ Lt.

In order to prove this, we first have to establish similar results for the (other)
auxiliary operators:

Lemma 5.8 LetB ∈ Lt be arbitrary.

1. T & δA(B) = C for someC ∈ Lt with depth(C) = 0.
2. T & B ↓ a = C for someC ∈ Lt with depth(C) ≤ depth(B).
3. T & B�a = C for someC ∈ Lt with depth(C) ≤ 1 + depth(B).

The proof of Lemma 5.8 and Proposition 5.7 can be found in Appendix A
(Page 230). The main completeness result is now straightforward to prove.

Theorem 5.9 (completeness)For all B1, B2 ∈ Lwf , B1 ∼ B2 implies
T & B1 = B2.

Proof. According to Proposition 5.7, there are termsB′
1, B

′
2 ∈ Lt such

thatT & B1 = B′
1 andT & B2 = B′

2. Since all axioms ofT are sound
(Theorem 5.4), it follows thatB′

1 ∼ B′
2; henceT & B′

1 = B′
2 according to

Proposition 5.5. Combining these equalities, we obtainT & B1 = B2.)*

6 Applications

Wediscuss some small examples from the fields of protocols and data-bases
to illustrate the applicability of our approach, especially the usefulness of
weak sequential composition and action refinement, and the interaction of
sequential composition with choice. First, we show that the data transfer
and release phases of a toy protocol can be specified sequentially and never-
theless be allowed a potential overlap, due to the fact that the release is not
instantaneous and data packets may still be underway. Then, we reconstruct
thecommunication closed layersprinciple from [27] (advocated in [41]) in
our setting and apply it to another toy version of a data transfer protocol.
Finally, we show how to refine a data base update action without blocking
simultaneous requests – an example which was inspired by [13].

6.1 Connection release

We consider a small protocol for connection-oriented data transfer between
two parties. The example is inspired by Goltz and Götz [33]. The proto-
col consists of three phases:connection establishment, data transferand

Process algebra with action dependencies 193

Fig. 2.Possible interactions of data and release phase

connection release. Here we concern ourselves only with the interaction be-
tween the data transfer and release phases, respectively specified by terms
Data andRel . On the top level, the specification is given by

Prot = Data ·Rel .

This reflects the idea that there is a natural ordering, based on the fact
that after connection release no data can be transferred any more. However,
becauseof the typically distributednatureof protocol systems, it is in general
very difficult to rule out that there are still packets underway when the
connection release is initiated; hence some actions from the data phase
may take place only after the release phase has started (but not after it has
finished). In a traditional process algebra, such an overlap would contradict
the specified sequential ordering of the two phases.

In order to keep the formalisation within bounds, let us assume that data
is only transferred from partyA to partyB, and the transfer of one data item
consists of two actions,dreqA anddindB for data requestanddata indi-
cation taking place atA andB, respectively. Data transfer is unconfirmed.
As a further simplification, we model just one possible data transfer. The
release phase can be initiated by eitherA orB by arelease requestrreqA or
rreqB, which is indicated at the other end by arelease indicationrindB or
rindA, and confirmed by arelease confirmrcnf A or rcnf B. This behaviour
can be specified by the following terms:

Data = 1 + dreqA · dindB
Rel = rreqA · rindB · rcnf A + rreqB · rindA · rcnf B .

The four possible global scenarios for the behaviour of this system are
depicted in Fig. 2, in the form of message sequence charts. Note that in
scenario (4), the data indicationdindB can take place before or after the
release requestrreqB; however, after a release confirm, no data can arrive
any more.

Consider the dependencies between the actions. The local actions of each
party are dependent with the exception ofdindB andrreqB; the idea here

194 A. Rensink, H. Wehrheim

is that partyB cannot know if there is an incoming data indication or not,
and hence this cannot influence whether or notB will request release. In
addition, each indication should be dependent on the corresponding request,
and the confirmation on the indication.

Now we can analyse the behaviour of this protocol. Its first transition is
either a data request (byA) or a release request (byA orB). If it is a data
request then

Prot = Data ·Rel −dreqA−−−→ 1 · dindB ·Rel

which corresponds to scenario (2) or (4) of Fig. 2. Which of these two is
chosen depends on who initiates the release. Despite the syntactic structure
of the specification, it is not necessarily the case thatdindB be thenext action
to occur. In fact, bothrreqA andrreqB are already enabled indindB ·Rel ,
and sodindB can be delayed for several steps:

dindB ·Rel −rreqB−−−→ dindB ·1 · rindA ·
rcnf B −rindA−−−→ dindB ·1 ·1 · rcnf B .

At this stage, finally, the data indication must take place, followed by the
release confirmation.

On the other hand, if the first action ofProt is the release request from
B, then (becauseData −�rreqB−−−→ Data) the choice in the data phase is not
resolved by this: we get

Prot −rreqB−−−→ Data ·1 · rindA · rcnf B ,

corresponding to scenario (3) or (4) in Fig. 2. The next action will decide
between these scenarios: it is eitherdreqA or rindA, the latter of whichdoes
decide the choice inData:

Data · rindA · rcnf B −rindA−−−→ 1 ·1 · rcnf B .

Note that the absence of right-distributivity of choice over (weak) sequential
composition is important here. If we distributeRel over the choice inData,
we obtain the alternative protocol

Prot ′ = Rel + dreqA · dindB ·Rel .

This specifies a different protocol: inProt ′, an initial rreqB-action auto-
matically resolves the choice and implies that no data transfer takes place,
and thusdreqA may be refused afterwards:

Prot ′ −rreqB−−−→ 1 · rindA · rcnf B .

An initial rreqB-action inProt on the other hand leaves two possibilities for
the future behaviour: either the release request is immediately indicated by

Process algebra with action dependencies 195

partyA or partyAmay still send new data which then has to be accepted by
B. To further illustrate this difference, we use the axiomatisation to rewrite
Prot into a form which makes this visible:

Prot = rreqA · rindB · rcnf A (i)

+ dreqA · dindB · rreqA · rindB · rcnf A (ii)

+ rreqB · (rindA · rcnf B + dreqA · dindB · rindA · rcnf B) (iii)

We show only part of the derivation of this equality. We start by proving that
all weak sequential composition operators inProt can be replaced by left
sequential. For this, we show that in generala · b = a�b if a D b. First note
that

a�b RS4= δ{b}(a)
D2= 0{a,b}

D1= δ{a}(0{b})
LS3= 0{a}�0{b}

D2= δ∅(a)�δ∅(b)
D3= δ∅(a�b) .

This implies

a · b S5= a�b + a�b = a�b + δ∅(a�b)
C5= a�b .

Generalising this to weak sequential compositions with more than two com-
ponents, we can rewriteProt toData′ ·Rel′ where

Data ′ = 1 + dreqA�dindB
Rel ′ = rreqA�(rindB�rcnf A) + rreqB�(rindA�rcnf B)

This is now the starting point for showing the equality advocated above.

Data ′ ·Rel ′ = Data ′�Rel ′ + Data ′�Rel ′ (S5)

Data ′�Rel ′ = 1�Rel ′ + (dreqA�dindB)�Rel ′ (LS1)

= δ∅(Rel ′) + dreqA�(dindB ·Rel ′) (LS3, LS2)

The first component of the choice will later be absorbed by the rest of the
term with the help of axiom C5, the second component is already nearly
part (ii) of our target term. Thus we now only look at the other part of our
current term:Data′�Rel′.

Data ′�Rel ′ = Data ′�(rreqA�rindB�rcnf A)
+ Data ′�(rreqB�rindA�rcnf B) (RS1)

= (Data ′�rreqA)�rindB�rcnf A
+ (Data ′�rreqB)�rindA�rcnf B (RS2)

(∗)

196 A. Rensink, H. Wehrheim

The interesting part is now (∗), it describes the behaviour of the protocol
after an initialrreqB. Thus we only take a further look at this part.

(∗) =
(
rreqB�(Data ′ ↓ rreqB) + δ{rreqB}(Data ′)

)
�rindA�rcnf B (RS3)

Data′ ↓ rreqB = 1 ↓ rreqB + (dreqA�dindB) ↓ rreqB (RD1)

= 1 + dreqA�(dindB ↓ rreqB) (RD2, RD4)

= 1 + dreqA�dindB�(1 ↓ rreqB) (RD2)

Using1↓rreqB = 1 (RD4) andδ{rreqB}(Data′) = 0rreqB
(D1–3, C5, LS3)

we obtain

(∗) =
(
rreqB�(1 + dreqA�dindB) + 0rreqB

)
�rindA�rcnf B

=
(
rreqB�(1 + dreqA�dindB)

)
�rindA�rcnf B

(LS3, D1–3, C5)

This can then be rewritten to part (iii) of our target term, which described
the behaviour ofProt afterrreqB.

Although the operational semantics is the simplest and most tractable, it is
also interesting to see for once the denotational model for a small specifica-
tion likeProt . Leaving out the event identities and termination sets for the
sake of simplicity, the following graph depicts the system runs of[[Prot]],
ordered by prefix:

rreqA↘
rindB

→
rreqA rcnf A↘ ↗

rindB
↗

rreqA dreqA→rreqA →
dreqA →rreqA↓
dindB

→
dreqA →rreqA↓ ↓
dindB→rindB

↗ ↗ ↗ ↘
ε → dreqA →

dreqA↘
dindB

→
dreqA↘
rreqB dindB

dreqA →rreqA →rcnf A↓ ↓ ↗
dindB→rindB

↘ ↘ ↗ ↘
rreqB → dreqA

rreqB
→ dreqA→rindA↗

rreqB

→
dreqA→rindA↗↘
rreqB dindB

↘ ↘
rindA↗

rreqB

→
rindA↗ ↘

rreqB rcnf B

dreqA→rindA↗↘ ↘
rreqB dindB→rcnf B

It should be noted that this example did not rely on action refinement. It
would be interesting to initially regard the data and release phases,Data
andRel , as single actions, sequentially composed inProt , and afterwards,

Process algebra with action dependencies 197

in the next design step, refine them into their respective definitions above,
using

r : Data �→ 1 + dreqA · dindB
Rel �→ rreqA · rindB · rcnf A + rreqB · rindA · rcnf B .

However, this is unfortunately not compatiblewith the requirement of strong
D-consistency we have imposed on refinement functions (see Sect. 3.1):
clearlyData D Rel and therefore it should be the case thatData D a for
any initial actiona of Rel ; yetData is (partially) terminated for the initial
actionrreqB of Rel , sinceRel −rreqB−−−→ andData −�rreqB−−−→.

6.2 Communication closed layers

An algebraic law that has been quite successfully applied in a linear time
setting is thecommunication closed layerslaw (CCL), originally due to
Elrad and Francez [27] and advocated for instance by Zwiers et al. in [39,
74,28], also working with action dependencies. In our setting, CCL can be
formulated as follows (with some side conditions, which we omit for the
time being):

B1 ||A1
C1

·
B2 ||A2

C2

 =

B1
·
B2

 ||A1∪A2

C1
·
C2

 . (3)

CCL is used to facilitate the development of distributed systemby enabling a
transformationaldesign: initially, the system or algorithms can be specified
as a number of sequential phases orlayers(which is probably close to the
designers’ conception of the system), each of which consists of a number
of cooperating distributed entities; CCL then allows this specification to be
transformed into a behaviourally equivalent parallel composition. In Eq. (3),
the individual layers are given by the termsBi ||Ai

Ci on the left hand side:
theBi andCi are the distributed entities within the layer, which cooperate
through their communication overAi and through their respective action
dependencies. On the right hand side, we see that all theBi are composed
sequentially into one component of a parallel composition, and so are the
Ci.

The two views are equivalent only if the entities fromdifferent layers
cannot interfere. This is the requirement ofcommunication closedness; in
our setting, it is expressed by the following conditions (for alli �= j):

– different entities of different layers are mutually independent, i.e., the
actions inA(Bi) are independent of those inA(Cj);

– different layers do not synchronise; i.e.,A(Bi)∩Aj = A(Ci)∩Aj = ∅.

198 A. Rensink, H. Wehrheim

Communication closedness is necessary for (3) to hold. Recall thatA1 I
A2 ⇐⇒ ∀a1 ∈ A1, a2 ∈ A2. a1 I a2; then the formal statement of CCL
is as follows.

Theorem 6.1 If Bi, Ci ∈ L andAi ⊆ Act for i = 1, 2 such that for all
i �= j

– A(Bi) I A(Cj), and
– A(Bi) ∩Aj = A(Ci) ∩Aj = ∅
then (3) holds up to strong bisimilarity.

This theorem thus generalises the results of Zwiers et al. [39,74,28] to a
branching time setting. The proof is again in Appendix A (Page 232). The
theorem can easily be generalised to arbitrarily many layers:

Corollary 6.2 If Bi, Ci ∈ L andAi ⊆ Act for 1 ≤ i ≤ n such that for all
i �= j

– A(Bi) I A(Cj), and
– A(Bi) ∩Aj = A(Ci) ∩Aj = ∅
then the following holds up to strong bisimilarity:

B1 ||A1
C1

...
Bn ||An

Cn

 =

B1
...

Bn

 ||A1∪···∪An

C1
...
Cn

 .

Proof. By induction onn. The case forn = 1 is trivial, and the case for
n = 2was proved in Theorem 6.1. Now consider the case up ton−1 proven
(n > 2); then

B1 ||A1

C1
...

Bn ||An
Cn

 =

B1
...

Bn−1

 ||A1∪···∪An−1

C1
...

Cn−1

·
Bn ||An

Cn

=

B1
...

Bn

 ||A1∪···∪An

C1
...
Cn

where the first equality holds by the induction hypothesis, and the second
by Theorem 6.1.)*

Process algebra with action dependencies 199

Application. We now show an application of CCL. Consider a data phase
consisting ofn ≥ 1 data transfers, each initially specified by a single action
datan. The initial specification of the entire data phase is

Data = data1 · . . . · datan .

Thedatai are dependent actions; i.e.,datai D dataj for all 1 ≤ i, j ≤ n.
In a first design step, the actions are refined as follows:

r : datai �→ prod i · dreq i · dind i · cons i (1 ≤ i ≤ n) .

Here,prod i is an action of the sending party whichproducesthe ith data,
thedreq i anddind i are data requests and indications as in Sect. 6.1, which
convey the data over themedium from the sending to the receiving party, and
cons i is an action of the receiving party whichconsumesthe ith data. We
assume that produce and consumeactions are independent of each other, and
so are all requests and indications of different layers. Moreover, production
and data indication, as well as data request and consumption, which take
place at different parties, are independent as well. Summarising,D is the
reflexive and symmetric closure of the relation generated by

prod i D prod i+1 prod i D dreq i dreq i D dind i
dind i D cons i cons i D cons i+1.

Note that the refinement functionr is stronglyD-consistent. The behaviour
of the refined data phase, specified byData[r], is not strictly sequential:
due to the independencies, the production and data sending of one transfer
can overlap with the data consumption of previous transfers. For instance,
if n = 2 then

Data[r] −prod1−−−→ (dreq1 · dind1 · cons1) · data2[r]

−dreq1−−−→ (dind1 · cons1) · data2[r]

−prod2−−−→ (dind1 · cons1) · (dreq2 · dind2 · cons2) ·1[r]

−dreq2−−−→ (dind1 · cons1) · (dind2 · cons2) ·1[r]

after which the data indication for all send data has to take place and finally
the data are consumed in the order of production. The denotational model
of Data[r] consists of a single maximal run and its prefixes, depicted in
Fig. data3. The dashed lines indicate the refinements of the individual data
transfer actions.

Now we want to transform the refined specification into one which is com-
posed “vertically”, that is, in which the roles of the sending and receiving

200 A. Rensink, H. Wehrheim

prod
1

� � �prod
2

prod
n

dreq
1

dind 1

cons1

dreq
2

dind2

cons2 � � � consn

� � � dindn

� � � dreq
n

layer2 layer nlayer1

Fig. 3.Data transfer phase consisting ofn layers

parties and that of the channel are distinguished. First we transform the
individual data transfers. Letr′ be a new refinement function given by

r′ : datai �→ ((prod i · dreq i) ||| (dind i · cons i)) ||dreqi,dindi
(dreq i · dind i)

× (1 ≤ i ≤ n).

For clarity, we introduce auxiliary namesSend i = prod i · dreq i, Reci =
dind i · cons i, Chani = dreq i · dind i andAi = {dreq i, dind i}; this allows
us to write

r′ : datai �→ (Send i ||| Reci) ||Ai
Chani (1 ≤ i ≤ n) .

r(datai) can be rewritten tor′(datai) using the proof system developed
in Sect. 5, using especially the expansion axioms for parallel composition
(P, LM1–5 and CM1–6) and the axioms for choice (C1–5). It follows that
r(datai) ∼ r′(datai) for all 1 ≤ i ≤ n; since bisimulation is a congruence
for refinement (Theorem 3.14), we may conclude

Data[r] ∼ Data[r′] .

Repeatedly using Axiom RF3 with+ = · and RF1, we obtain

Data[r′] ∼

(Send1 ||| Rec1) ||A1
Chan1

...
(Sendn ||| Recn) ||An

Chann

 .

Process algebra with action dependencies 201

1

2

qry
1

qry
2

qry
2

qry
1

qry
2

qry
1

req
2

req
1

cnf

cnf

req
1

req
2

BaseS BaseI

upd
2

upd
1

upd
2

upd
1

Fig. 4.Specification and desired implementation of a 2-state data base

The phases(Send i ||| Reci) ||Ai
Chani are communication closed: for all

i �= j,

– A(Send i ||| Reci) = {prod i, dreq i, dind i, cons i} I {dreqj , dind j}=
A(Chanj);

– A(Datai) ∩Aj = ∅.
Hence the conditions of Corollary 6.2 are fulfilled, implying

Data[r′] ∼

(Send1 ||| Rec1)
...

(Sendn ||| Recn)

 ||A

Chan1
...

Chann

whereA =
⋃

1≤i≤nAi. The left hand side can in turn be subjected to CCL,
sinceA(Send i) I A(Recj) for all i �= j; hence we have

Data[r] ∼

Send1
...

Sendn

 |||

Rec1
...

Recn

 ||A

Chan1
...

Chann

 .

The right hand side has clearly recognisable subterms describing the be-
haviour of sender, receiver and channel, and can therefore be mapped di-
rectly on an implementation architecture.

6.3 Data base access

Finally, we apply our theory to a small example inspired by Brinksma,
Jonsson and Orava [13]. This example shows that dependency-based spec-
ification and action refinement allows a design strategy where sequentially
specified abstract actions can be implemented in an overlapping fashion,
when this is consistent with their mutual dependencies. This is a clear ad-
vantage over standard action refinement.

202 A. Rensink, H. Wehrheim

The example concerns a distributed data base that can be queried and
updated. We assume that the data base has only two possible states, which
we denote 1 and 2. Querying is done using actionsqry i for i = 1, 2, where
the indexi models the return value; updating is done using actionupd i for
i = 1, 2, where the index denotes the new state of the data base. The data
base specification is modelled by the transition systemBaseS in Fig. 4.

Theproblemconsidered in [13] is to change the interface of the data base,
so that updating consists not of a single actionbut of twosuccessive stages, in
which the update isrequested(usingreq i for i = 1, 2) andconfirmed(using
cnf), respectively. Moreover, it is required that in the meantime (between
request and confirmation), querying the data base should still be possible.
This behaviour is modelled byBaseI in Fig. 4.

In our approach, this implementation can be obtained algebraically
through an application of the refinement operator, with refinement function

r : upd i �→ req i; cnf (i = 1, 2).

The overlap betweenqry i andcnf is obtained by setting the dependencies
appropriately:qry i D reqj but qry i I cnf . Note thatr is stronglyD-
consistent. LetDi stand for the term describing the behaviour of the data
base in statei (wherei = 1, 2); i.e.,

D1 = qry1·D1 + upd1·D1 + upd2·D2

D2 = qry2·D2 + upd2·D2 + upd1·D1 .

The specification and implementation shown in Fig. 4 are then obtained
modulo bisimulation as the semantics of

BaseS = D1

BaseI = BaseS [r] .

More precisely, the operational behaviour ofBaseI is depicted (modulo
Axiom S1 of Table 6, which states that1 · t = t for arbitraryt) by the left
hand transition system in Fig. 5. The right hand system of Fig. 5 shows the
case whereqry i D cnf instead, in which case the next query must wait for
the second phase of the updating to finish.

7 Conclusion

7.1 Summary

We briefly summarise the main achievements of this work. We have defined
a process algebra with a built-in notion ofdependencyamong actions, thus

Process algebra with action dependencies 203

qry
2

qry
1

qry
2

qry
1

req
2

req
1

cnf

cnf

req
1

req
2

qry
2

qry
1

cnf

cnf

req
2

req
1req

2

req
1

D2[r]

cnf �D1[r]D1[r]

cnf �D2[r]

D1[r] cnf �D1[r]

D2[r]cnf �D2[r]

Fig. 5.Refinement ofBaseS with qry i I cnf (left) andqry i D cnf (right)

giving a rudimentary form of semantics to the otherwise uninterpreted ac-
tions. Dependencies influence the ordering among the actions in a process,
and thereby the interpretation of the operators. In particular the combina-
tion of action refinement with dependencies turns out to be an interesting
concept, which – as demonstrated in the previous section – can be useful in
the hierarchical design of specifications.

For this process algebra we developed semantics using several consis-
tent approaches: an interleaving operational semantics, a causality based
denotational semantics and an axiomatisation with respect to bisimulation
equivalence. These semantics on the onehandprovide uswith differentways
of representing and verifying properties about processes and on the other
hand were used to validate their correctness against each other. All three are
branching timesemantics, which faithfully reflect the moments of choice.
The precise modelling of branching points was achieved by introducing a
new concept ofpartial termination, with the noteworthy feature that it may
resolve choices. This feature, which is a natural consequence of the concept
of dependencies, nevertheless complicates the semantics quite a bit.

The (toy) examples in the previous section showed how the theory can
in principle be applied in system design, for instance of telecommunication
protocols or database access. The theory can however also be useful to
give precise semantics to other specification methods. An example of this is
[31] in which a formal semantics to Message Sequence Charts (MSCs) – a
standardised language for specifyingmessagepassingsystems–bymeansof
a process algebra with action dependencies is given. Interestingly, Message
Sequence Charts also allow to specify global choices, thus precisely the
conceptof partial terminationdevelopedhere isneeded for their semantics.A
semantics for Interworkingsalso relyingonourweaksequential composition
can be found in [44], and similar for High-level-MSCs in [45].

To get rid of these complications and still have a consistent and intu-
itively correct semantics, one could restrict oneself tolocal choices, i.e.,

204 A. Rensink, H. Wehrheim

occurrences of the operatort1 + t2 where the dependencies oft1 and t2
are the same. (This is advocated in Huhn [36,37], in the dual setting of
localities rather than dependencies.) On the other hand, it is precisely this
effect of the resolution of choice by partial termination that has allowed the
straightforward modelling of certain features of MSCs in [31,44,45].

7.2 Extensions

Invisible actions. Our process algebra does not incorporate a notion of
invisible action. While neither the (CCS-like) choice nor the synchronisa-
tion introduce invisible actions, as soon as one adds an operator forhiding,
invisible actions come into play. The question then arises of how to set the
dependencies. In principle, there are at least three possibilities for this:

– The invisible action is dependent on all visible actions;
– The invisible action is independent of all visible actions;
– There is afamilyof invisible actions, indexedwith sufficient information
to reconstruct the dependencies of the original (hidden) action.

Since hiding should not alter the ordering of actions within a process, the
third possibility seems the only feasible one.

Data. Several extensions to process algebraswith data exist; the best know
example is LOTOS (see [11] for an introduction or [38] for the full standard).
It should be possible to smoothly integrate data into our process algebra.
However,while so far actiondependenciesareapriori given, in a settingwith
data (actions reading or writing variables) dependencies have to bederived
since then actions already have a semantics. A simple method could make
all actions dependent that access the same resources (e.g. the same set of
variables). Similar methods for computing dependencies can be found in the
work on partial order reductions, which also rely on a notion of dependency
leading to commutation of independent actions (see [55] for an overview).
For example, themodel-checking tool SPINcontains apartial-order package
which automatically computes independencies.

7.3 Related work

We briefly recapitulate related work. The approach closest to ours is the
one of Janssen, Poel and Zwiers [39,40], who study a process algebra with
similar operators and dependencies in a linear time setting. Their process
algebra contains both a sort of weak sequential composition (called layered
composition) and a dependency-based refinement. While we study three
branching time semantics in this paper, they just define a denotational linear

Process algebra with action dependencies 205

time semantics. Nevertheless, their work already shows the usefulness of
dependencies, and in particular, of a dependency-based action refinement, in
the design of distributed systems. Other approaches to design by refinement
allowing an overlap of refinements of sequential actions, but not based on
dependencies, can be found in [23,59,62]. A dependency-based sequential
composition (in a linear time setting) can also be found in [30] (therein
calledD-local concatenation).

Furthermore, the notion of dependency is (of course) central in the huge
amount of work around Mazurkiewicz traces (for a recent overview see
[26]), which we cannot fully discuss here. In particular, however, in this
context a notion of termination similar to ours has been proposed in [25].

A process algebra with a notion oflocation which naturally induces
dependenciescanbe found in [36,37], togetherwithasuitable logic to reason
about such specifications. (This is not to be confusedwith the location-based
approach to semantics investigated in for instance [12,1]: there, locations
play an entirely different role, where they are derived from the process terms
rather than a priori associated with actions.)

Acknowledgements.Many thanks to Michel Reniers for pointing us to an unsound axiom
in the earlier version [63], and especially to Walter Vogler for many insightful comments,
including a flaw in an earlier version of Theorem 6.1.

References

1. Luca Aceto. A static view of localities. Formal Aspects of Computing, 6:201–222,
1994

2. Luca Aceto, Bard Bloom, Frits W. Vaandrager. Turning SOS rules into equations.
Information and Computation, 111(1):1–52, May 1994. LICS ’92 Special Issue

3. Luca Aceto, Matthew C. B. Hennessy. Towards action-refinement in process algebras.
Information and Computation, 103:204–269, 1993

4. Luca Aceto, Matthew C. B. Hennessy. Adding action refinement to a finite process
algebra. Information and Computation, 115:179–247, 1994

5. Eric Badouel, Philippe Darondeau. On guarded recursion. Theoretical Computer Sci-
ence, 82:403–408, 1991

6. Jos C. M. Baeten, Rob J. van Glabbeek. Abstraction and empty process in process
algebra. Fundamenta Informaticae, XII:221–242, 1989

7. Jos C. M. Baeten, W. P. Weijland. Process Algebra. Cambridge: Cambridge University
Press, 1990

8. Jan A. Bergstra, Jan Willem Klop. Algebra of communicating processes with abstrac-
tion. Theoretical Computer Science, 37(1):77–121, 1985

9. Eike Best, Raymond Devillers, Javier Esparza. General refinement and recursion oper-
ators for the Petri box calculus. In: P. Enjalbert, A. Finkel, K. W. Wagner (eds.) STACS
93, Vol. 665 of Lecture Notes in Computer Science, pp. 130–140. Berlin Heidelberg
New York: Springer 1993

10. Bard Bloom, Sorin Istrail, Albert R. Meyer. Bisimulation can’t be traced. Journal of
the ACM, 42(1):232–268, January 1995

206 A. Rensink, H. Wehrheim

11. Tommaso Bolognesi, Ed Brinksma. Introduction to the ISO specification language
LOTOS. Computer Networks and ISDN Systems, 14:25–59, 1987

12. Ǵerard Boudol, Ilaria Castellani, Matthew C. B. Hennessy, Astrid Kiehn. A theory of
processes with localities. Formal Aspects of Computing, 6:165–200, 1994

13. Ed Brinksma, Bengt Jonsson, Fredrik Orava. Refining interfaces of communicating
systems. In: Samson Abramsky, T. S. E. Maibaum (eds.) TAPSOFT ’91, Volume 2,
Vol. 494 of Lecture Notes in Computer Science, pp. 297–312. Berlin Heidelberg New
York: Springer 1991

14. Stephen D. Brookes, C. A. R. Hoare, A. W. Roscoe. A theory of communicating
sequential processes. Journal of the ACM, 31(3):560–599, July 1984

15. Nadia Busi, Rob J. van Glabbeek, Roberto Gorrieri. Axiomatising ST bisimulation
equivalence. In: Olderog [53], pp. 169–188. Amsterdam: North-Holland 1994

16. L. Castellano, G. DeMichelis, L. Pomello. Concurrency vs. interleaving: An instructive
example. Bull. Eur. Ass. Theoret. Comput. Sci., 31:12–15, 1987

17. W. R. Cleaveland, editor. Concur ’92, Vol. 630 of Lecture Notes in Computer Science.
Berlin Heidelberg New York: Springer 1992

18. Philippe Darondeau, Pierpaolo Degano. Refinement of actions in event structures and
causal trees. Theoretical Computer Science, 118:21–48, 1993

19. J. W. de Bakker, W.-P. de Roever, Grzegorz Rozenberg (eds.) Linear Time, Branching
Time and Partial Order in Logics and Models for Concurrency, Vol. 354 of Lecture
Notes in Computer Science. Berlin Heidelberg New York: Springer 1989

20. J. W. de Bakker, W.-P. de Roever, Grzegorz Rozenberg (eds.) Semantics: Foundations
and Applications, Vol. 666 of Lecture Notes in Computer Science. Berlin Heidelberg
New York: Springer 1992

21. J. W. de Bakker, J. I. Zucker. Processes and the denotational semantics of concurrency.
Information and Computation, 54:70–120, 1982

22. Pierpaolo Degano, Roberto Gorrieri. A causal operational semantics of action refine-
ment. Information and Computation, 122:97–119, 1995

23. Pierpaolo Degano, Roberto Gorrieri, G. Rosolini. A categorical view of process refine-
ment. In: de Bakker et al. [20], pp. 138–153

24. Volker Diekert. On the concatenation of infinite traces. Theoretical Computer Science,
113:35–54, 1993

25. Volker Diekert, Paul Gastin. A domain for concurrent termination: A generalization
of Mazurkiewicz traces. In: Z. F̈ulöp and F. Ǵecseg (eds.) Automata, Languages and
Programming, Vol. 944 of Lecture Notes in Computer Science, pp. 15–26. Berlin Hei-
delberg New York: Springer 1995

26. Volker Diekert, Grzegorz Rozenberg (eds.) The Book of Traces. World Scientific, 1995
27. T.Elrad,N.Francez. Decompositionof distributedprograms into communication closed

layers. Science of Computer Programming, 2, 1982
28. MaartenFokkinga,MannesPoel, JobZwiers. Modular completeness for communication

closed layers. In: E. Best (ed.) Concur ’93, Vol. 715 of Lecture Notes in Computer
Science, pp. 50–65. Berlin Heidelberg New York: Springer 1993

29. WanFokkink, Chris Verhoef. A conservative look at operational semanticswith variable
binding. Information and Computation, 146(1):24–54, 1998

30. HaimGaifman.Modelingconcurrency inpartial ordersandnonlinear transitionsystems.
In: de Bakker et al. [19], pp. 467–488

31. Thomas Gehrke, Michaela Huhn, Arend Rensink, Heike Wehrheim. An algebraic se-
mantics for message sequence chart documents. In: S. Budkowski, A. Cavalli, E. Najm
(eds.) Formal Description Techniques and Protocol Specification, Testing and Verifica-
tion. Chapman-Hall, 1998. Full report version: Hildesheimer Informatik-Bericht 5/98

Process algebra with action dependencies 207

32. Ursula Goltz, Roberto Gorrieri, Arend Rensink. Comparing syntactic and semantic
action refinement. Information and Computation, 125(2):118–143, March 1996

33. Ursula Goltz, Norbert G̈otz. Modelling a simple communication protocol in a language
with action refinement. Draft version, 1991

34. Jan Friso Groote. Transition system specifications with negative premises. Theoretical
Computer Science, 118:263–299, 1993

35. C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985
36. Michaela Huhn. Action refinement and property inheritance in systems of sequential

agents. In: Montanari, Sassone [51], pp. 639–654
37. Michaela Huhn. On the Hierarchical Design of Distributed Systems. PhD thesis,

University of Hildesheim, 1997
38. ISO. Information processing systems – open systems interconnection – LOTOS – a

formal description technique based on the temporal ordering of observational behaviour.
International Standard 8807, ISO, Geneva, February 1989. 1st Edition

39. Wil Janssen, Mannes Poel, Job Zwiers. Action systems and action refinement in the
development of parallel systems. In: J. C. M. Baeten, J. F. Groote (eds.) Concur ’91,
Vol. 527 of Lecture Notes in Computer Science, pages 298–316. Berlin Heidelberg New
York: Springer 1991

40. Wil Janssen, Job Zwiers. From sequential layers to distributed processes. In: Principles
of Distributed Computing, pp. 215–227. ACM, 1992

41. Wil Janssen, Job Zwiers. Protocol design by layered decomposition: A compositional
approach. In: Formal Techniques in Real-Time and Fault-Tolerant Systems, Vol. 571
of Lecture Notes in Computer Science, Berlin Heidelberg New York: Sringer 1992

42. Lalita Jategaonkar, Albert R. Meyer. Testing equivalences for Petri nets with action
refinement. In: Cleaveland [17], pp. 17–31. s.o Springer 1992

43. Rita Loogen,UrsulaGoltz. Modelling nondeterministic concurrent processeswith event
structures. Fundamenta Informaticae, XIV:39–73, 1991

44. S. Mauw, M. A. Reniers. Refinements in interworkings. In: Montanari, Sassone [51],
pp. 671–686. s.o. Springer 1996

45. S. Mauw, M. A. Reniers. High-level Message Sequence Charts. In: SDL’ 97: Time for
Testing – SDL, MSC and Trends. Amsterdam: North-Holland 1997

46. Antoni Mazurkiewicz. Concurrent program schemes and their interpretations. DAIMI
Report PB–78, Aarhus University, 1977

47. Antoni Mazurkiewicz. Traces, histories, graphs: instances of a processmonoid. Lecutre
Notes in Computer Science, 176:115–133, 1984

48. Antoni Mazurkiewicz. Basic notions of trace theory. In: de Bakker et al. [19], pp.
285–363, s.o. Springer 1989

49. RobinMilner. Communication andConcurrency. EnglewoodCliffs, N.J.: Prentice-Hall
1989

50. Robin Milner, Davide Sangiorgi. The problem of “weak bisimulation up to”. In:
Cleaveland [17], pp. 32–46. s.o. Springer 1992

51. Ugo Montanari, Vladimiro Sassone (eds.) Concur ’96: Concurrency Theory, Vol. 1119
of Lecture Notes in Computer Science. Berlin Heidelberg New York: Springer 1996

52. Mogens Nielsen, Uffe Engberg, Kim Guldstrand Larsen. Fully abstract models for a
process languagewith refinement. In: deBakker et al. [19], pages 523–549. s.o. Springer
1989

53. E.-R. Olderog (ed.) Programming Concepts, Methods and Calculi, Vol. A–56 of IFIP
Transactions. IFIP, North-Holland Publishing Company, 1994

54. D. Park. Concurrency and automata on infinite sequences. In: P. Deussen (ed.) Proceed-
ings 5th GI Conference, Vol. 104 of Lecture Notes in Computer Science, pp. 167–183.
Berlin Heidelberg New York: Springer 1981

208 A. Rensink, H. Wehrheim

55. Doron A. Peled, Vaughan R. Pratt, Gerard J. Holzmann (eds.) Partial Order Methods
in Verification, Vol. 29 of DIMACS series. American Mathematical Society, 1997

56. Gordon D. Plotkin. A structural approach to operational semantics. Technical Report
DAIMI FN-19, Aarhus University, 1981

57. Arend Rensink. Posets for configurations! In: Cleaveland [17], pages 269–285. s.o.
Springer 1992

58. Arend Rensink. Models and Methods for Action Refinement. PhD thesis, University
of Twente, Enschede, Netherlands, August 1993

59. Arend Rensink. Methodological aspects of action refinement. In: Olderog [53], pp.
227–246. Amsterdam: North-Holland 1994

60. Arend Rensink. An event-based SOS for a language with refinement. In: Jörg Desel
(ed.) Structures in Concurrency Theory, Workshops in Computing, pp. 294–309. Berlin
Heidelberg New York: Springer 1995

61. Arend Rensink. Bisimilarity of open terms. Information and Computation,
156(1/2):345–385, January 2000

62. Arend Rensink, Roberto Gorrieri. Vertical implementation. Information and Compu-
tation, 2000. To appear. Extended version of “Vertical Bisimulation” (TAPSOFT ’97).
Full report version: Hildesheimer Informatik-Bericht 9/98, University of Hildesheim

63. Arend Rensink, Heike Wehrheim. Weak sequential composition in process algebras.
In: Bengt Jonsson, Joachim Parrow (eds.) Concur ’94: Concurrency Theory, Vol. 836
of Lecture Notes in Computer Science, pp. 226–241. Berlin Heidelberg New York:
Springer 1994

64. Arend Rensink, Heike Wehrheim. Dependency-based action refinement. In: I. Prı́vara,
P. Ruzicka (eds.) Mathematical Foundations of Computer Science 1997, Vol. 1295
of Lecture Notes in Computer Science, pp. 468–477. Berlin Heidelberg New York:
Springer 1997

65. VladimiroSassone,MogensNielsen,GlynnWinskel. Models for concurrency: Towards
a classification. Theoretical Computer Science, 170:297–348, 1996

66. Frits W. Vaandrager. Expressiveness results for process algebras. In: de Bakker et al.
[20], pp. 609–638. Report version: Centrum voor Wiskunde en Informatica, Report
CS–R9301

67. Rob J. van Glabbeek. The meaning of negative premises in transition system speci-
fications II. In: F. Meyer auf der Heide, B. Monien (eds.) Automata, Languages and
Programming, Vol. 1099 of Lecture Notes in Computer Science, pp. 502–513. Berlin
Heidelberg New York: Springer 1996. Full report version: STAN-CS-TN-95-16, De-
partment of Computer Science, Stanford University

68. Rob J. vanGlabbeek, UrsulaGoltz. Refinement of actions in causality basedmodels. In:
J. W. de Bakker, W.-P. de Roever, Grzegorz Rozenberg (eds.) Stepwise Refinement of
Distributed Systems – Models, Formalisms, Correctness, Vol. 430 of Lecture Notes in
Computer Science, pp. 267–300. Berlin Heidelberg New York: Springer 1990. Report
version: Arbeitspapiere der GMD 428

69. Rob J. van Glabbeek, Ursula Goltz. Refinement of actions and equivalence notions for
concurrent systems. Hildesheimer Informatik-Bericht 6/96, University of Hildesheim,
1998. To appear in Acta Informatica

70. Walter Vogler. Failures semantics based on interval semiwords is a congruence for
refinement. Distributed Computing, 4:139–162, 1991

71. Walter Vogler. Bisimulation and action refinement. Theoretical Computer Science,
114:173–200, 1993

72. Heike Wehrheim. Parametric action refinement. In: Olderog [53], pp. 247–266. Full
report version: Hildesheimer Informatik-Berichte 18/93, Institut für Informatik, Uni-
versity of Hildesheim, Nov. 1993

Process algebra with action dependencies 209

73. Glynn Winskel. An introduction to event structures. In: de Bakker et al. [19], pp.
364–397. Springer 1989

74. Job Zwiers. Layering and action refinement for timed systems. In: J. W. de Bakker,
C. Huizing, W.-P. de Roever, G. Rozenberg (eds.) Real-Time: Theory in Practice, Vol.
600 of LectureNotes in Computer Science. Berlin HeidelbergNewYork: Springer 1991

A Proofs of the results

A.1 Proofs of Section 3

Proposition 3.9 AssumeB,C ∈ Lwf such thatA(C) ⊆ AX .
1. IfB −α→ B′, thenB〈C/X〉 −α→ B′〈C/X〉.
2. If B〈C/X〉 −α→ B′ andX is dependently guarded inB, thenB′ =

B′′〈C/X〉 for someB′′ such thatB −α→ B′′.

Proof. By induction on the structure ofB. Clause 1 is immediate and
omitted. For Clause 2, The interesting case isB = B1 ·B2. Dependent
guardedness ofB implies thatX is dependently guarded inB1, and either
X is dependently guarded inB2 or B1 −�a−→ impliesa I A(B2). Consider
the possible transitions ofB.

– α = a, B1〈C/X〉 −a→ B′
1 andB

′ = B′
1 ·B2〈C/X〉. By the induction

hypothesis, it follows thatB′
1 = B′′

1 〈C/X〉 such thatB1 −α→ B′
1; hence

B′′ = B′′
1 ·B2 fulfils the proof obligations.

– α = a, B1〈C/X〉 −�a−→ B′
1 andB2〈C/X〉 −a→ B′

2 such thatB′ =
B′

1 ·B′
2. The induction hypothesis implies thatB1 −�a−→, and Proposi-

tion 3.8 impliesa ∈ A(B2〈C/X〉) ⊆ A(B2); it follows thatX is depen-
dentlyguarded inB2.By the inductionhypothesis, then,B′

i = B′′
i 〈C/X〉

for i = 1, 2 such thatB1 −�a−→ B′′
1 andB2 −a→ B′′

2 . It follows that
B′′ = B′′

1 ·B′′
2 fulfils the proof obligations.

– α = �a andBi〈C/X〉 −�a−→ B′
i for i = 1, 2. If X is dependently guarded

inB2, then the proof proceeds as in the previous case. Otherwise, by the
induction hypothesis it follows that
B′

1 = B′′
1 〈C/X〉 such thatB1 −�a−→ B′′

1 . Due to dependent guarded-
ness, it follows thata I A(B2); hence according to Proposition 3.8.3,
B′

2 = B2〈C/X〉. We may conclude thatB′′ = B′′
1 ·B2 fulfils the proof

obligations.)*

Congruence.Weuse theGSOS format of [10] to show that bisimulation is a
congruence (that bisimilar processes can be considered equal in all contexts)
for the languageL.

210 A. Rensink, H. Wehrheim

Definition A.1 (GSOS rules)Suppose thatΣ is a signature. AGSOS rule
ρ overΣ is a rule of the form

{Xi −aij−→ Yij | 1 ≤ i ≤ n, j ∈Mi} {Xi −bik−�| 1 ≤ i ≤ n, k ∈ Ni}
op(X1, . . . , Xn) −c→ C[X,Y]

where all the variables are distinct,op is an operation symbol fromΣ with
arity n, andC[X,Y] is aΣ-context which may contain only theXi andYij
as free variables. Note that the index setsMi andNi may be empty for any
giveni.

TheGSOS format allows for both positive and negative premises in the rules
of the operational semantics. According to this definition, all our rules are in
GSOS-format, except (as usual) for the recursion ruleR14, which contains
a “substitution harness” (in the terminology of [29]) that is not accounted
for in GSOS. The refinement operator in this setting is interpreted as an
(n + 1)-ary operator, wheren equals the number of actions for whichr is
not the identity —which is finite since we assumed refinement functions to
be the identity almost everywhere. This interpretation becomes clearer if
we write outr as an explicit list of substitutionsB1/a1, . . . , Bn/an, where
{a1, . . . , an} = {a ∈ Act | r(a) �= a} andBi = r(ai) for all 1 ≤ i ≤ n.
The corresponding operational rules then become:

x −a→ x′ a /∈ {a1, . . . , an}
x[y1/a1, . . . , yn/an] −a→ 1 ·x′[y1/a1, . . . , yn/an]

x −ai−→ x′ yi −b→ y′ 1 ≤ i ≤ n

x[y1/a1, . . . , yn/an] −b→ y′ ·x′[y1/a1, . . . , yn/an]

Theorem 3.14Bisimulation is a congruence for all operators ofLwf (in-
cluding recursion).

Proof. For all operators except recursion this follows from the fact that
all operational rules (Table 2) are GSOS rules. To prove congruence of
recursion, theup-to technique used in [49] can be applied, since our rules
contain no look-ahead (see [61]).)*
Theorem 3.15 If B ∈ Lwf with fv(B) ⊆ {X}, thenrecX.B is the unique
solution ofX = B in Lwf modulo∼.
Proof. The fact thatrecX.B solvesX = B modulo∼ is straightforward to
establish. The proof of uniqueness is along the lines set out in Milner [49].

Process algebra with action dependencies 211

AssumeC ∼ B〈C/X〉 for someC that is a syntactic representation of a
transition system to which Proposition 3.9 applies. Consider the relation

ρ = {(D1, D2)|∃D ∈ Lwf : fv(D) ⊆ {X}, D1 ∼ D〈recX. B/X〉, D2

∼ D〈C/X〉}.
We prove thatρ is a bisimulation relation. It follows (takingD = X in the
definition ofρ) thatrecX. B ∼ C.

– AssumeD1 −α→ D′
1. Due to recX. B ∼ B〈recX. B/X〉, the con-

gruence of∼ (Theorem 3.14) and the properties of syntactic substi-
tution, it follows thatD1 ∼ D〈B/X〉〈recX. B/X〉. It follows that
D〈B/X〉〈recX. B/X〉 −α→ D′ ∼ D′

1. SinceX is dependently guarded
in B it is dependently guarded inD〈B/X〉; hence (by Proposition 3.9)
D′ = D′′〈recX. B/X〉 for someD′′ such thatD〈B/X〉 −α→ D′′ and
henceD〈B〈C/X〉/X〉 = D〈B/X〉〈C/X〉 −α→ D′′〈C/X〉.
SinceB〈C/X〉 ∼ C, it follows (by Theorem 3.14) thatD2 ∼ D〈C/X〉
∼ D〈B〈C/X〉/X〉; henceD2 −α→ D′

2 ∼ D′′〈C/X〉. We may conclude
(D′

1, D
′
2) ∈ ρ.

– The reverse direction is analogous.)*

A.2 Proofs of Section 4

Proposition 4.9 M is closedunder thedenotational constructions for choice,
parallel composition, sequential composition, refinement and recursion.

Proof. The important thing is to prove prefix-closure of the constructed
models.

Choice. Straightforward.
Parallel composition. Assumeq′ � q ∈ P1 ||A P2, whereq is constructed

from pi ∈ Pi for i = 1, 2. LetE′
i = πi(Eq′) andp′

i = (pi � E′
i) ∩ Tq′ ;

sinceE′
i is clearly≤pi-left-closed (otherwiseEq′ would not be≤q-left-

closed) and

Tp′i = Tq′ ⊆ Tq \ [Aq−q′]D ⊆ Tpi \ [Api−p′i]D
it follows thatp′

i � pi and hencep′
i ∈ Pi for i = 1, 2. Moreover, the

synchronisation ofp′
1 andp

′
2 gives rise toq

′ ∈ P1 ||A P2.
Sequential composition. Assumeq′ � q ∈ P1 · P2, whereq is constructed

from pi ∈ Pi for i = 1, 2. Let

p′
1 = (p1 � Eq′) \ [Ap1−q′]D

p′
2 = (p2 � Eq′) ∩ Tq′ .

212 A. Rensink, H. Wehrheim

SinceEpi ∩ Eq′ is ≤pi-left-closed due to the fact thatEq′ is ≤q-left-
closed, andTq′ ∩ [Ap2−q′]D = ∅, it follows that p′

i � pi and hence
p′
i ∈ Pi for i = 1, 2. For all d ∈ Ep1−q′ ande ∈ Ep′2 , it follows that

d �≤q e and henced I e; henceAp′2 ⊆ Tp′1 . Now the composition ofp′
1

andp′
2 gives rise toq

′ ∈ P1 · P2; in particular, due to

Tq′ ⊆ Tq \ [Aq−q′]D = (Tp1 \ [Ap1−q′]D) ∩ (Tp2 \ [Ap2−q′]D)

it follows that

Tp′1 ∩ Tp′2 = (Tp1 \ [Ap1−q′]D) ∩ Tp2 ∩ Tq′ = Tq′ .

Refinement. Assumeq′ � q ∈ P[R], whereq is constructed fromp ∈ P
andw : Ep →M. LetE′ = π1(Eq′), and let

p′ = (p � E′) ∩ Tq′ .

Moreover, for alld ∈ E′ letE′
d = {e | (d, e) ∈ Eq′} and

w′(d) = (w(d) � E′
d) \ [Aw(d)\E′

d
]D .

For an arbitraryd′′ ∈ Ep \E′ anda D �(d′′), considere′′ ∈ minw(d′′);
then〈e′′〉 � w(d′′), hence (due to prefix closure)〈e′′〉 ∈ R(�(d′′)). De-
notationalD-consistency (Definition 4.7) then impliesa D �(e′′). Due
to (d′′, e′′) ∈ Eq−q′ with �(e′′) = �(d′′, e′′) it follows that [Ap−p′]D ⊆
[Aq−q′]D and hence

Tp′ = Tp ∩ Tq′ ⊆ Tp ∩ (Tq \ [Aq−q′]D) ⊆ Tp \ [Ap−p′]D
This impliesp′ � p and hencep′ ∈ P.
Moreover, for alld ∈ Ep′ it follows by construction (since the≤q-left-
closure ofEq′ implies that alsoE′

d is ≤w(d)-left-closed) thatw
′(d) �

w(d); hencew′(d) ∈ R(�(d)).
Finally, it is straightforward to see that the refinement ofp′ according to
w′ gives rise toq′; henceq′ ∈ P[R].

Recursion. The union of an arbitrary set of system models is easily seen to
yield a system model again (in fact, this is the same argument as for the
choice operator).)*

Well-definedness of the denotational semantics.In order to prove Propo-
sition 4.11, the semantic refinement function constructed in Table 3 must
be shown to be denotationallyD-consistent in the sense of Definition 4.7.
Since the construction of the refinement function itself uses the denotational
semantics, albeit on subterms, well-definedness can only be established by
induction on the term structure. For this purpose we define two auxiliary
sets of terms:

Process algebra with action dependencies 213

– Lcwd is the set of closedwell-formed terms forwhich[[−]] iswell-defined.
– Lden is the largest subset ofLwf such that for allB ∈ Lden :

– If B is closed then[[B]] is well-defined;
– C ∈ Lden for all syntactical subtermsC of B;
– B〈C/X〉 ∈ Lden for all X ∈ fv(B) andC ∈ Lcwd with A(C) ⊆
AX .

Proving Proposition 4.11 then comes down to showing the following:

Lemma A.2 Lden = Lwf

The proof proceeds by induction on the structure of terms inLwf . The
only really interesting case is that of refinement, where induction carries
through as a consequence of the following correspondence between strong
and denotationalD-consistency:

Lemma A.3 If r : Act → Lden is stronglyD-consistent, then the function
Act → M defined bya �→ [[r(a)]] for all a ∈ Act is denotationallyD-
consistent.

Note that this isimplied byProposition 4.12 sinceLden ⊆ Lwf ; however,
in the presence of Lemma A.2 the two statements are equivalent. The cor-
respondence in turn relies on a certain relation between operational and
denotational concepts, established by the following lemma (which stands in
the same relation to Proposition 4.13 as Lemma A.3 to Proposition 4.12).

Lemma A.4 For all closedB ∈ Lden , the following holds:

1. a I A(B) impliesa I Ap andp ∪ a ∈ [[B]] for all p ∈ [[B]].
2. B −�a−→ iff εa ∈ [[B]].
3. B −a→ iff 〈e〉 ∈ [[B]] with �(e) = a.

Proof. In principle, this proof is also by induction on the term structure (of
terms inLden). However, to cope with recursion we need to strengthen the
proof obligation so that it also applies to open terms, i.e., to arbitraryB ∈
Lden . For this purpose, we use an obvious generalisation tosimultaneous
substitution: ifσ : fv(B) → Lcwd is compatiblein the sense thatσ(X) is
closed andA(σ(X)) = AX for all X ∈ fv(B), thenB〈σ〉 denotes the
substitution of allX ∈ fv(B) by their imagesσ(X).

Let B ∈ Lden , and letσ : fv(B) → Lcwd be an arbitrary compatible
substitution function. By definition ofLden it follows that [[B〈σ〉]] is well-
defined. We prove the following by induction on the structure ofB:

1. a I A(B) impliesa I Ap andp ∪ a ∈ [[B〈σ〉]] for all p ∈ [[B〈σ〉]].
2. If all X are dependently guarded inB, thenB〈σ〉 −�a−→ iff εa ∈ [[B〈σ〉]].
3. If all X are dependently guarded inB, thenB〈σ〉 −a→ iff 〈e〉 ∈ [[B〈σ〉]]

with �(e) = a.

214 A. Rensink, H. Wehrheim

The interesting cases are weak sequential composition and recursion.

– AssumeB = B1 ·B2. Note that (by definition of dependent guarded-
ness) allX ∈ fv(B)are dependently guarded inB1. If allX ∈ fv(B)are
also dependently guarded inB2 then the required properties follow eas-
ily by the induction hypothesis. Now assume someX isnotdependently
guarded inB2. Using Proposition 3.9 and the fact thatX is dependently
guarded inB, one can then derive that for alla, B1〈σ〉 −�a−→ implies
a I A(B2).
1. Immediate from the induction hypothesis and the construction of

all p ∈ [[B〈σ〉]] from qi ∈ [[Bi〈σ〉]], noting thata I A(B) implies
a I A(Bi) for both i = 1, 2, a I Ap iff a I Aqi for both i = 1, 2,
andp ∪ a ∈ [[B〈σ〉]] iff qi ∪ a ∈ [[Bi〈σ〉]] for bothi = 1, 2.

2. If B〈σ〉 −�a−→ thenBi〈σ〉 −�a−→ for i = 1, 2. For B1 this implies
εa ∈ [[B1〈σ〉]] by the induction hypothesis; furthermore,a I A(B2),
implying εa ∈ [[B2〈σ〉]] by Clause 1. By construction, it follows that
εa ∈ [[B〈σ〉]].
If εa ∈ [[B〈σ〉]] thenεa ∈ Bi〈σ〉 for both i = 1, 2. The induction
hypothesis forB1 impliesB1〈σ〉 −�a−→; hencea I A(B2). By Propo-
sition 3.8 this impliesB2〈σ〉 −�a−→, henceB〈σ〉 −�a−→.

3. If B〈σ〉 −a→ then eitherB1〈σ〉 −a→, implying 〈e〉 ∈ [[B1〈σ〉]] with
�(e) = a and hence〈e〉 ∈ [[B〈σ〉]], or B1〈σ〉 −�a−→ andB2〈σ〉 −a→.
However,B1〈σ〉 −�a−→ impliesa I A(B2), which by Proposition 3.8
contradictsB2〈σ〉 −a→.
If 〈e〉 ∈ [[B〈σ〉]] with �(e) = a then either〈e〉 ∈ [[B1〈σ〉]], or
εa ∈ [[B1〈σ〉]] and〈e〉 ∈ [[B1〈σ〉]]. In the former case, the induction
hypothesis forB1 impliesB1〈σ〉 −a→; in the latter case the induction
hypothesis impliesB1〈σ〉 −�a−→ and hencea I A(B2); this contradicts
〈e〉 ∈ [[B2〈σ〉]] by Clause 1.

– AssumeB = recX. C. Note thatB〈σ〉 = recX. (C〈σ〉) (taking into
account thatX /∈ fv(B) and henceσ does not substitute anything forX)
andB〈σ〉iX = C〈σiX〉 for all i > 0, whereσiX = σ ∪ {X �→ B〈σ〉i−1

X }.
By definition ofLden it follows thatC ∈ Lden ; moreover, by induction
on i (starting with the base case observation thatB0

X = 0AX
∈ Lcwd) it

follows that allσiX map intoLcwd ; in particular, allBiX ∈ Lcwd . Also
note that all free variables ofC (includingX) are dependently guarded.
1. Assumea I A(B); by definition, this impliesa I A(C). If p ∈

[[B〈σ〉]] thenp ∈ [[B〈σ〉iX]] for somei; hence eitherp ∈ ⊥ (if i = 0)
or p ∈ [[C〈σiX〉]] (if i > 0). In the former case,Ap = ∅ and hence
a I Ap, and moreover,p ∪ a ∈ ⊥ (⊆ [[B〈σ〉]]) by definition of⊥;
in the latter case (by the induction hypothesis forC) a I Ap and
p ∪ a ∈ C〈σiX〉 (⊆ [[Bσ]]).

Process algebra with action dependencies 215

2. If B〈σ〉 −�a−→ then (byR14 andR15 in Table 2) eithera I A(B)
or C〈σ〉 −�a−→. In the first case (by Clause 1)εa ∈ [[B〈σ〉]]; in the
second case (by Proposition 3.9.1)C〈σ〉〈0AX

/X〉 −�a−→ and hence
(by the induction hypothesis forC) εa ∈ [[C〈σ〉〈0AX

/X〉]]. Since
C〈σ〉〈0AX

/X〉 = B〈σ〉1X this impliesεa ∈ [[B〈σ〉]].
If εa ∈ [[B〈σ〉]] thenεa ∈ [[B〈σ〉iX]] for somei ∈ N. If i = 0 then
[[B〈σ〉iX]] = ⊥ and hencea I A(B), implyingB〈σ〉 −�a−→ by Proposi-
tion3.8.OtherwiseB〈σ〉iX = C〈σiX〉andhence (by the inductionhy-
pothesis onC)C〈σiX〉 −�a−→. But then also (byProposition 3.9.2, since
X is dependently guarded inC〈σ〉) C〈σ〉 −�a−→, implyingB〈σ〉 −�a−→.

3. If B〈σ〉 −a→ then (byR14 andR15 in Table 2)C〈σ〉 −a→. This implies
(by Proposition 3.9.1)C〈σ〉〈0AX

/X〉 −a→ and hence (by the induc-
tion hypothesis forC) 〈e〉 ∈ [[C〈σ〉〈0AX

/X〉]] with �(e) = a. Since
C〈σ〉〈0AX/X〉 = B〈σ〉1X it follows that〈e〉 ∈ [[B〈σ〉]].
If 〈e〉 ∈ [[B〈σ〉]] with �(e) = a then〈e〉 ∈ [[B〈σ〉iX]] for somei ∈ N.
i = 0 is ruled out since thenB〈σ〉iX = 0AX

; henceB〈σ〉iX =
C〈σiX〉, implying (by the induction hypothesis forC)
C〈σ〉〈B〈σ〉i−1

X /X〉 −a→. But then also (by Proposition 3.9.2, since
X is dependently guarded inC〈σ〉) C〈σ〉 −a→, implyingB〈σ〉 −�a−→.
)*

Proof of Lemma A.3.This is now immediate, since Lemma A.4 gives the
necessary correspondence between the syntactic concepts in Definition 3.5
and the semantic counterparts in Definition 4.7.)*
Proof of Lemma A.2.This is now easily proved by induction on the struc-
ture of termsB ∈ Lwf . In particular, the case for refinement follows from
Lemma A.3.)*
With these auxiliary results established, the main results are immediate.

Proposition 4.11 [[B]] ∈M for all B ∈ Lwf .

Proof. Immediate from Lemma A.2.)*
Proposition 4.12 If r : Act → Lwf is stronglyD-consistent, then the func-
tion Act → M defined bya �→ [[r(a)]] for all a ∈ Act is denotationally
D-consistent.

Proof. Immediate from Lemma A.3 and Lemma A.2.)*
Proposition 4.13 For all closedB ∈ Lwf , the following holds:

1. a I A(B) impliesa I Ap andp ∪ a ∈ [[B]] for all p ∈ [[B]].
2. B −�a−→ iff εa ∈ [[B]].
3. B −a→ iff 〈e〉 ∈ [[B]] with �(e) = a.

Proof. Immediate from Lemma A.4 and Lemma A.2.)*

216 A. Rensink, H. Wehrheim

Unique fixpoint solutions.In order to prove Proposition 4.19 (which ex-
presses that our semantics gives rise to contracting functions in the com-
plete metric space of denotational models), we need the following auxiliary
lemma,which strengthensProposition 4.13.2. The proof is a straightforward
induction on the term structure, here omitted.

Lemma A.5 If B ∈ Lwf
fin with fv(B) ⊆ {X}, thenB −�a−→ iff εa ∈ [[B]](P)

for arbitrary P ∈M[AX]I .

A technical property of the functions constructed by the denotational se-
mantics is that for allB ∈ Lwf , [[B]](−) is monotonic w.r.t.⊆. This follows
immediately from the fact that all constructions onM used in the definition
above are defined pointwise on the system runs.

Lemma A.6 LetP,Q ∈M andB ∈ Lwf with fv(B) ⊆ {X}. If P ⊆ Q,
then[[B]](P) ⊆ [[B]](Q).

Again, the proof is omitted. We now come to the contraction property.

Proposition 4.19 LetB ∈ Lwf
fin with fv(B) ⊆ {X}.

1. [[B]](−) is non-increasing;
2. IfX is dependently guarded inB, then[[B]](−) is contracting.
Proof. Let f = [[B]](−). We prove that for allP,Q ∈ M and alln ∈ N,
the following holds:

1. If P↑n ⊆ Q, thenf(P)↑n ⊆ f(Q);
2. If X is dependently guarded inB, thenf(P)↑0 ⊆ f(Q), and if also
P↑n ⊆ Q, thenf(P)↑(n + 1) ⊆ f(Q).

Together with the (symmetrical) inverse properties, this implies the clauses
of the lemma. For instance, item 1 implies

sup {n + 1 | f(P)↑n = f(Q)↑n} ≥ sup {n + 1 | P↑n = Q↑n} ,

and henceδ(f(P), f(Q)) ≤ δ(P,Q); and similar for clause 2 (where the
contraction constant is12).

1. By induction on the structure ofB. We only sketch the proof. The cases
whereB = 0A orB = a are trivial, since thenf is a constant function.
ThecaseswhereB = B1+B2 for abinaryoperator+ ∈ {+, ||A, · }areall
proved in a similar fashion: one shows that for a givenP ∈M, everyq ∈
f(P) is constructed frompi ∈ [[Bi]](P) such thatdepth(q) ≥ depth(pi)
for i = 1, 2; hencef(P)↑n ⊆ [[B1]](P)↑n+ [[B2]](P)↑n (where the latter
+ is the semantic counterpart of the operator inB). By the induction
hypothesis, it follows thatP↑n ⊆ Q implies[[Bi]](P)↑n ⊆ [[Bi]](Q) for
i = 1, 2, which by the above argument and the fact that all operators are
monotonic w.r.t.⊆ (Lemma A.6) impliesf(P)↑n ⊆ f(Q).
Analogous arguments apply in the cases whereB = C[r]. Finally, the
case whereB = X is trivial, since thenf is the identity function.

Process algebra with action dependencies 217

2. Again by induction on the structure ofB. Except in the case where the
top-level operator ofB is sequential composition,B is guarded iff its
operands are guarded; hence the proof is entirely analogous to the one
sketched for clause 1.
AssumeB = B1 ·B2, and letfi = [[Bi]](−) for i = 1, 2.X is guarded
inB iff X is guarded inB1 andeitherX is guarded inB2 (in which case
the proof is again analogous to the one for clause 1)or B1 −�a−→ implies
a I A(B2). We concentrate on the latter case.
According to the definition of weak sequential composition inM (see
above), an arbitrary system runq ∈ f(P) is constructed asq = p1 · p2
wherepi ∈ ιi(fi(P)) for i = 1, 2 such thatAp2 ⊆ Tp1 and

p1 · p2 = 〈Ep1 ∪ Ep2 ,≤p1 ∪ ((Ep1 × Ep2) ∩D) ∪ ≤p2 , Tp1 ∩ Tp2〉 .

LetP,Q ∈M[AX]I be arbitrary. We first provef(P)↑0 ⊆ f(Q). If q ∈
f(P)↑0 thenq = εTq andp1 = εTp1

, implying (due toTq ⊆ Tp1) q � p1
and henceq ∈ ι1(f1(P)↑0). By the induction hypothesis, therefore,
q ∈ ι1(f1(Q)). As a consequence,εa ∈ f1(Q) for all a ∈ Tq, implying
(by Lemma A.5)B1 −�a−→ and hencea I A(B2). Due toι2(f2(Q)) ∈
M[A(B2)]I it follows thatεTq ∈ ι2(f2(Q)), implyingq = q · εTq ∈ f(Q).
Now assume that, moreover,P↑n ⊆ Q↑n. We provef(P)↑(n + 1) ⊆
f(Q). Let q ∈ f(P)↑(n + 1) be arbitrary; assumeq = p1 · p2 where
pi = ιi(fi(P)) for i = 1, 2.
– If depth(p2) = 0 thendepth(p1) = depth(q) ≤ n + 1, implying
(by the induction hypothesis)pi ∈ ιi(fi(Q)) for i = 1, 2 and hence
q ∈ f(Q).

– Now assumedepth(p2) > 0, and lete ∈ Ep2 be arbitrary with
a = �(e). By constructiona ∈ Tp1 . If moreoverAp1 I a then
εa � p1 and henceεa ∈ f1(P); by Lemma A.5 this impliesB1 −�a−→
and hencea I A(B2), which contradictsp2 ∈ ι2(f2(P)). We may
conclude thatd <q e for somed ∈ Ep1 .
It follows that every maximal<q-chain starts with an event from
p1, and hencedepth(p2) ≤ depth(q) − 1 ≤ n. On the other hand,
depth(p1) ≤ depth(q) ≤ n + 1 is immediate. By the induction
hypothesis, it follows thatpi ∈ ιi(fi(Q)) for i = 1, 2 and hence
q ∈ f(Q).)*

For the proof of Theorem 4.20 we need an auxiliary lemma — which
strengthens Proposition 4.10, where it was stated that that all constructions
we have considered overM are well-defined up to isomorphism. Recall that
Evt ⇀ Evt denotes the space ofpartial functions overEvt .

Lemma A.7 For all B ∈ Lwf
fin with fv(B) ⊆ {X}, there is a functional

transformerΨB : (Evt ⇀ Evt) ⇀ (Evt ⇀ Evt) such that

218 A. Rensink, H. Wehrheim

1. φ1 ⊆ φ2 impliesΨB(φ1) ⊆ ΨB(φ2);
2. φ : P ∼= Q impliesΨB(φ) : [[B]](P) ∼= [[B]](Q).

Proof. If φi : Evt ⇀ Evt for i = 1, 2, then(φ1 × φ2) : Evt ⇀ Evt is
defined by(e1, e2) �→ (φ1(e1), φ2(e2)). ΦB is defined inductively on the
structure ofB, as follows:

Ψ0A(φ) = ∅
Ψa(φ) = {(e, e)}

ΨB1�B2(φ) = ΨB1(φ)× ΨB2(φ) for + ∈ {+, ||A, · }
ΨB[r] = ΨB(φ)× idEvt

ΨX(φ) = φ

The properties 1. and 2. of the lemma are now straightforward to prove by
induction on the structure ofB.)*
Theorem 4.20 IfB ∈ Lwf with fv(B) ⊆ X, andX is dependently guarded
inB, then[[recX.B]] is the unique solution ofX = Bmodulo∼= inM[AX]I .

Proof. First we prove that[[recX. B]] is indeed a solution ofX = B, by
showing that it is the (unique) fixpoint of the function[[B]](−) : MT →MT ,
withT = [AX]I . Above,weobserved that the limitP of anarbitraryCauchy
sequence(Pi)i in 〈M, δ〉 can be constructed according to

P =
⋃
i∈N

⋂
j≥i
Pi .

In particular, this holds for([[B]]i(P))i obtained by applying[[B]](−) i times
to an arbitrary starting pointP ∈MT (which is a Cauchy sequence because
[[B]](−) is contracting, see Proposition 4.19); and in even more particular, it
also holds for([[BiX]])i, which equals the above sequence if we choose the
starting point⊥T = [[0AX

]]. The special feature of this starting point is that
⊥T ⊆ P for all P ∈MT , and hence[[B0

X]] = ⊥T ⊆ [[B1
X]]. Consequently,

it can be proved by induction oni, using the monotonicity of[[B]] w.r.t.⊆
(Lemma A.6) that[[BiX]] ⊆ [[Bi+1

X]] for all i ∈ N. This, in turn, implies that
the limit of this sequence can be constructed more simply by⋃

i∈N

[[B]]i(⊥X) =
⋃
i∈N

[[BiX]] = [[recX. B]] .

Now we prove that all solutions ofX = B modulo isomorphism are iso-
morphic to[[recX. B]]. A system modelP ∈ MT is a solution ofX = B
modulo isomorphism iffP ∼= [[B]](P), i.e., if P = φ([[B]](P)) for some
bijective φ : Evt → Evt , meaning thatP is a fixpoint of the function
φ[[B]](−) : MT → MT defined byQ �→ φ([[B]](Q)) for all Q ∈ MT .

Process algebra with action dependencies 219

φ[[B]](−) is contracting since[[B]](−) is; therefore, its fixpointP is unique
and can be constructed in a similar way as[[recX. B]]:

P =
⋃
i∈N

(φ[[B]])i(⊥T) .

Now consider the following sequence of bijectionsψi : Evt → Evt for
all i ∈ N, whereΨB is the isomorphism transformer whose existence was
shown in Lemma A.7 above:

ψ0 = ∅
ψi+1 = φ ◦ ΨB(ψi) .

By Lemma A.7, it follows thatψi : [[B]](⊥T) ∼= (φ[[B]])i(⊥T) andψi ⊆
ψi+1 for all i ∈ N. It follows thatψ : [[recX. B]] ∼= P whereψ =

⋃
i∈N

ψi.
)*

Correspondence of operational and denotational semantics.For the pur-
pose of proving the correspondence result Theorem 4.22 we introduce ad-
ditional constantstP toLwf for everyP ∈M, with alphabet given by

A(tP) = {a ∈ Act | ∀p ∈ P : a I Ap, p ∪ a ∈ P} ,

operational semantics generated by

P −α→ P ′

tP −α→ tP ′

and denotational semantics determined by

[[tP]] = P .

It is immediately clear thatlts(P) ∼ lts(tP); moreover, for alla I A(TP),
tP −�a−→ tP ′ iff tP = tP ′ . As remarked inSect. 3.4, the proof of Theorem3.15
is not invalidated if we extendL in this way.

Furthermore, for the correspondence result we will use an alternative repre-
sentation of the operational semantics of systemmodels, in which the states
are systemmodelsP ∈M. The intuition behind this alternative representa-
tion is that fromP, ana-labelled transition may occur if there is a (causally)
minimala-labelled event in one of the system runs ofP; the resulting target
model consists of all system runs which had that event in a causally mini-
mal position, minus the event itself. A�a-labelled transition may occur if
the model contains an empty system run that is partially terminated fora;
the resulting model consists of all runs that are partially terminated fora.

220 A. Rensink, H. Wehrheim

To formalise this, we introduce the concept of aremainder: if p ∈ P
thenP − p corresponds to the “difference” betweenP andp, i.e., what is
left of P afterp has been done. Formally:

P − p = {q − p | p � (q ∪ Tp) ∈ P} .

It is not difficult to see thatP − p is a system model wheneverp ∈ P.
Moreover, the following property holds for allp � (q ∪ Tp) ∈ P:

P − (q ∪ Tp) = (P − p)− (q − p) . (4)

Now−→ ⊆M× (Act ∪�Act)×M is defined as the smallest relation such
that:

– P −�(e)−−→ P − 〈e〉 if 〈e〉 ∈ P;
– P −�a−→ P − εa if εa ∈ P.
It follows that we can define a mappinglts : M→ LTS, as follows:

lts(P) = 〈M,−→,P〉 .

The followingpropositionstates that the twomethods for defining transitions
on the denotational model give rise to bisimilar interpretations.

Proposition A.8 For all P ∈M, lts(P) ∼ 〈P,−→, ε∅〉.
Proof. Let ρ = {(P − p, p) | p ∈ P}. We prove thatρ is a bisimulation
relation. Let(P − p, p) ∈ ρ be arbitrary.

– Assume(P − p) −α→ P ′.
– If α = a thenP ′ = (P − p) − 〈e〉 such that〈e〉 ∈ (P − p) and
�(e) = a. It follows that〈e〉 = p′ − p wherep � (p′ ∪ Tp) ∈ P. Let
p′′ = p′ ∪ Tp; thene ∈ maxEp′′ , a I Tp′′ andp = p′′ \ e and hence
p −a→ p′′. Moreover,P ′ = (P − p) − (p′ − p) = P − p′′ according
to (4) and hence(P ′, p′′) ∈ ρ.

– If α = �a thenεa ∈ P − p andP ′ = (P − p) − εa. It follows that
εa = p′−pwherep � (p′∪Tp) ∈ P. Letp′′ = p′∪Tp; thenp′′ = p∪a
and hencep −�a−→ p′′. Moreover,P ′ = (P − p)− (p′ − p) = P − p′′
according to (4) and hence(P ′, p′′) ∈ ρ.

– Assumep −α→ p′.
– If α = a then there is ane ∈ maxEp′ such that�(e) = a I Tp and
p = p′ \ e. Let p′′ = p′ \ Tp; hencep′ = p′′ ∪ Tp. It follows that
p′′ − p = 〈e〉 andp � p′ ∈ P; hencep′′ − p ∈ P − p, implying
(P − p) −a→ (P − p)− (p′′ − p) = P − p′ (the last equation by (4)).
Since(P − p′, p′) ∈ ρ, we are done.

– If α = �a thenp′ = p∪a. Letp′′ = (p\Tp)∪a; hencep′ = p′′∪Tp.
It follows thatp′′ − p = εa andp � p′ ∈ P; hencep′′ − p ∈ P − p,
implying (P−p) −�a−→ (P−p)−(p′′−p) = P−p′ (the last equation
by (4)). Since(P − p′, p′) ∈ ρ, we are done.)*

Process algebra with action dependencies 221

It should be noted that, although the two transition systems are bisimilar,
they are in no way isomorphic: the former distinguishesmany states that are
identified in the latter. These distinctions are sometimes based on informa-
tion that is irrelevant; for instance,[[0A]] interpreted as a transition system
has as many states as there are system runs, to the number of2n wheren
is the number of actions independent ofA; all of these states, however, are
bisimilar, and indeed are identified in the latter interpretation (where there
is just a single state,[[0A]] itself).

Theorem 4.22 For all closedB ∈ Lwf ,B ∼ lts([[B]]).

Proof. In the sequel, we writeC ∼ P rather thanlts(C) ∼ lts(P). The
theorem is proved by a nested induction on the recursion depth, i.e., the
number of nested recursionoperators inB (outer induction) and the structure
of B (inner induction). The outer induction hypothesis is that the theorem
holds whenever the recursion depth ofB is smaller thani (starting ati = 0,
where the statement is vacuously true).

Auxiliary constants.AssumeB = tP for someP ∈M. As we saw above,
B ∼ [[B]] by construction.

Deadlock constants.AssumeB = 0A for someA ⊆ Act . Thenρ =
{(B, [[B]])} is abisimulation relation, andhenceB ∼ [[B]].Weproveonly the
second (reverse) simulation property; the proof of the first one is analogous.

Assume[[B]] −α→ P. SinceE[[B]] = ∅, it follows thatα = �a for some
a ∈ Act ; by construction of[[0A]], it follows thatA I a andP = [[B]]. By
the operational semantics,B −�a−→ 0A; moreover,(0A,P) ∈ ρ.

Single actions.AssumeB = b for someb ∈ Act . We prove that

ρ = {(B, [[B]]), (0Act , [[0Act]])}
is a bisimulation relation; this impliesB ∼ [[B]]. We only prove reverse
simulation of the first pair; the other simulation direction is analogous, and
the second pair was covered by the previous case.

– Assume[[B]] −a→ P. By construction of[[B]], it follows thata = b and
P = [[0Act]]. This is matched byB −a→ B′ with B′ = 0Act .

– Now assume[[B]] −�a−→ P. By construction of[[B]], it follows thata I b
and henceP = [[B]]. This is matched byB −�a−→ B′ with B′ = B = b.

Choice. AssumeB = B1 + B2, whereBi ∼ [[Bi]] for i = 1, 2 (inner
induction hypothesis). We show that

ρ = {(C1 + C2, ι1(P1) + ι2(P2)) | C1 ∼ P1, C2 ∼ P2}
∪ {(C,P) | C ∼ P}

222 A. Rensink, H. Wehrheim

is a bisimulation relation; this impliesB ∼ [[B]]. We prove only reverse
simulation of the first component; the other simulation direction is analo-
gous, and the other pairs are bisimilar by assumption. LetC = C1 +C2 and
P = ι1(P1) + ι2(P2).

– AssumeP −a→ P ′. Let e ∈ EP be the event that occurred; thenπi(e) ∈
EPi for (exclusively)i = 1 or i = 2. Assumei = 1; the other case is
symmetrical. Thene ∈ minEp for p ∈ P iff π1(e) ∈ minEπ1(p) for
π1(p) ∈ P1. It follows thatP1 −a→ P ′

1 whereP ′ = ι1(P ′
1). By the inner

induction hypothesis,C1 −a→ C ′
1 such thatC ′

1 ∼ P ′
1
∼= P ′, implying

(C ′
1,P ′) ∈ ρ; and by the operational semantics,C −a→ C ′

1.
– AssumeP −�a−→ P ′. It follows thatP ′ = P ′

1 ∪ P ′
2 where fori = 1, 2,

P ′
i = {p | p ∪ a ∈ ιi(P1), a I Ap}. It follows thatP ′

i ∈ M iff ε∅ ∈ P ′
i

iff ε{a} ∈ Pi.
If ε{a} ∈ Pi for both i = 1, 2 thenPi −�a−→ πi(P ′

i), implying (by the
inner induction hypothesis) thatCi −�a−→ C ′

i such thatC
′
i ∼ πi(P ′

i); hence
(C ′

1 + C ′
2, ι1(π1(P ′

1)) + ι2(π2(P ′
2))) = (C ′

1 + C ′
2,P ′) ∈ ρ. Moreover,

by the operational semanticsC −�a−→ C ′
1 + C ′

2.
Otherwise, assumeε{a} /∈ Pi for i = 1 (the casei = 2 is symmetrical).
It follows that ι1(P1) −�a−� andι2(P2) −�a−→ P ′, implying P1 −�a−� and
P2 −�a−→ π1(P ′), hence by the inner induction hypothesis,C1 −�a−� and
C2 −�a−→ C ′

2 such thatC ′
2 ∼ π1(P ′) ∼= P ′; hence(C ′

2,P ′) ∈ ρ. By the
operational semantics, finally,C −�a−→ C ′

2.

Parallel composition. The parallel composition of system models can be
characterised alternatively asP1 ||A P2 =

⋃{p1 ||A p2 ∈ P|p1 ∈ P1, p2 ∈
P2} where

p1 ||A p2 = {q | Eq ⊆ (Ep1 ||A Ep2),
<pi = {(πi(d), πi(e)) | d <q e} for i = 1, 2,
Tq = Tp1 = Tp2}

AssumeB = B1 ||A B2, whereBi ∼ [[Bi]] for i = 1, 2 (inner induction
hypothesis). We prove that

ρ = {(C1 ||A C2,P1 ||A P2) | C1 ∼ P1, C2 ∼ P2}
is a bisimulation relation; this impliesB ∼ [[B]]. We prove only reverse
simulation; the other simulation direction is analogous. LetC = C1 ||A C2
andP = P1 ||A P2.

– AssumeP −a→ P ′. Assume(e1, e2) ∈ EP is thea-labelled event that
occurred.According to theabovealternativecharacterisation,q ∈ P with
(e1, e2) ∈ minEq iff q ∈ p1 ||A p2 with pi ∈ Pi and eitherei ∈ minEpi
or ei = ∗ for i = 1, 2.

Process algebra with action dependencies 223

If a /∈ A then (by construction ofEp1 ||A Ep2) eithere1 = ∗ or e2 = ∗.
Assume the latter; the other case is symmetrical. It follows that

{q \ (e1, e2) | q ∈ p1 ||A p2} = (p1 \ e1) ||A p2

henceP ′ = P ′
1 ||A P2 whereP ′

1 = {p \ e1 | p ∈ P1, e1 ∈ minEp}.
HenceP1 −a→ P ′

1, implying (by the inner induction hypothesis)C1 −a→
C ′

1 such thatC ′
1 ∼ P ′

1; hence(C
′
1 ||A C2,P ′) ∈ ρ. By the operational

semantics, it follows thatC −a→ C ′
1 ||A C2.

Otherwisee1 �= ∗ �= e2, and hence

{q \ (e1, e2) | q ∈ p1 ||A p2} = (p1 \ e1) ||A (p2 \ e2) .

It follows thatP ′ = P ′
1 ||AP ′

2 whereP ′
i = {p \ ei|p ∈ Pi, e ∈ minEp}.

HencePi −a→ P ′
i, implying (by the inner induction hypothesis)Ci −a→ C ′

i
such thatC ′

i ∼ P ′
i; hence(C ′

1 ||A C ′
2,P ′) ∈ ρ. By the operational

semantics, it follows thatC −a→ C ′
1 ||A C ′

2.
– AssumeP −�a−→ P ′. If q ∈ p1 ||A p2 wherepi ∈ [[Bi]] for i = 1, 2, then
q∪a ∈ P anda I Aq iff pi∪a ∈ Pi anda I Api for i = 1, 2. It follows
thatP ′ = P ′

1 ||A P ′
2 whereP ′

i = {p | p ∪ a ∈ Pi, a I Ap}.
Due toε{a} ∈ P we know thatε{a} ∈ Pi and hencePi −�a−→ P ′

i for
i = 1, 2; hence (by the inner induction hypothesis)Ci −�a−→ C ′

i such that
C ′
i ∼ P ′

i for i = 1, 2; hence(C ′
1 ||A C ′

2,P ′) ∈ ρ. By the operational
semantics, it follows thatC −�a−→ C ′

1 ||A C ′
2.

Sequential composition.The sequential composition of system models is
given alternatively byP1 · P2 = {p1 · p2|p1 ∈ P1, p2 ∈ P2,Ap2 ⊆ Tp1}
where

p1 · p2 = 〈Ep1 ∪ Ep2 ,≤p1 ∪ ((Ep1 × Ep2) ∩D) ∪ ≤p2 , Tp1 ∩ Tp2〉 .

AssumeB = B1 ·B2, whereBi ∼ [[Bi]] for i = 1, 2 (inner induction
hypothesis). We prove that

ρ = {(C1 ·C2, ι1(P1) · ι2(P2)) | C1 ∼ P1, C2 ∼ P2}
is a bisimulation relation; this impliesB ∼ [[B]]. We prove only reverse
simulation; the other simulation direction is analogous. LetC = C1 ·C2
andP = ι1(P1) · ι2(P2).

– AssumeP −a→ P ′. Assumee ∈ EP is thea-labelled event that occurred.
It follows that e = (d, ∗) or e = (∗, d); furthermore,q ∈ P with
e ∈ minEq iff q = p1 · p2wherepi ∈ ιi(Pi) for i = 1, 2withAp2 ⊆ Tp1
and eithere ∈ minEp1 (if e = (d, ∗)) or a I Ap1 ande ∈ minEp2 (if
e = (∗, d)).
In the former case, it follows thatq \ e = (p1 \ e) · p2; henceP ′ =
ι1(P ′

1) · ι2(P2)withP ′
1 = {p \ e | p ∈ P1), e ∈ minEp}.But thenP1 −a→

224 A. Rensink, H. Wehrheim

P ′
1, implying (by the inner induction hypothesis)C1 −a→ C ′

1 with C ′
1 ∼

P ′
1; hence(C

′
1 ·C2,P ′

1) ∈ ρ. By the operational semantics, therefore,
C −a→ C ′

1 ·C2.
In the latter case, it follows thatq \ e = p1 · (p2 \ e); henceP ′ =
P ′

1 · P ′
2 with P ′

1 = {p | p ∪ a ∈ P1, a I Ap} andP ′
2 = {p \ e|p ∈

P2, e ∈ minEp}. But thenP1 −�a−→ P ′
1 andP2 −a→ P ′

2, implying (by the
inner induction hypothesis)C1 −�a−→ C ′

1 andC2 −a→ C ′
2 with C ′

i ∼ P ′
i;

hence(C ′
1 ·C ′

2,P ′) ∈ ρ. By the operational semantics, therefore,C −a→
C ′

1 ·C ′
2.

– AssumeP −�a−→ P ′. The proof is analogous to that for�a-transitions of
parallel compositions (see above).

Refinement.The refinement of system models is given alternatively by

P[R] = {w(p) | p ∈ P, w is anR-witness forp}
where anR-witness forp is a functionw : Ep → M such thatw(d) ∈
R(�(d)) andw(d) �= εT for all d ∈ Ep andAw(d) ⊆ Tw(d′) whenever
d �≤p d′. The refinement of a system runp according to a witnessw is
defined by

w(p) = 〈 {(d, e) | d ∈ Ep, e ∈ Ew(d)},
{((d1, e1), (d2, e2)) | d1<pd2, e1 D e2 or d1 =d2, e1 <w(d1) e2},
Tp1 ∩

⋂
e∈Ep1

Tw(e)〉 .

AssumeB = B1[r]; due towell-formednessofB,r is stronglyD-consistent.
LetR : a �→ [[r(a)]] for all a ∈ Act . AssumeB1 ∼ [[B1]] andr(a) ∼ R(a)
for all a ∈ Act (inner induction hypothesis). We prove thatρ =

⋃
i ρi with

ρ0 = {(C1[r],P1[R]) | C1 ∼ P1}
ρi+1 = {(C2 ·C1, (d× P2) · P1) | C2 ∼ P2, (C1,P1) ∈ ρi, d /∈ π1(EP1)}
is a bisimulation relation; this impliesB ∼ [[B]]. We prove only reverse
simulation of pairs inρ0; the other simulation direction is analogous, and the
proof forρi with i > 0 is analogous to that for weak sequential composition.
LetC = C1[r] andP = P1[R].
– AssumeP −a→ P ′. Assume(d, e) is thea-labelled event responsible for
this. We haveq ∈ P with (d, e) ∈ minEq iff q = w(p) for p ∈ P ′ and
w anR-witness onp with d ∈ minEp ande ∈ minEw(d) (where the
“only if” is due to Proposition 4.12). It follows that

q \ (d, e) = (d× (w(d) \ e)) ·w′(p \ d)
wherew′ = w � (Ep \ d). Note thatw′ is indeed anR-witness onp \ d.
Moreover, sinced′ �≤p d for all d′ ∈ p \ d, it follows that

Aw′(p\d) =
⋃
d′∈Ep\d

Aw′(d) ⊆ Tw(d)\e

Process algebra with action dependencies 225

and henced× (w(d) \ e) andw′(p \ d) satisfy the termination criterion
for the weak sequential composition of system runs. Letb = �(d); then
P ′ = (d× P ′

2) · P ′
1[R] where

P ′
1 = {p \ d | p ∈ P1, d ∈ minEp}
P ′

2 = {p \ e | p ∈ R(b), e ∈ minEp} .

Thus,P1 −b→ P ′
1 andR(b) −a→ P ′

2, implying (by the inner induction
hypothesis)C1 −b→ C ′

1 andr(b) −a→ C ′
2 such thatC ′

1 ∼ P ′
1 andC

′
2 ∼

P ′
2; hence(C

′
2 ·C ′

1[r],P ′) ∈ ρ1. By the operational semantics, then,
C[r] −a→ C ′

2 ·C ′
1[r].

– AssumeP −�a−→ P ′. Due to Proposition 4.12, it follows thata I Aw(p)
andw(p) ∪ a ∈ P[R] for somep ∈ P ′ andR-witnessw on p iff
a I Ap and p ∪ a ∈ P. It follows thatP ′ = P ′

1[R] whereP ′
1 =

{p | a I Ap, p ∪ a ∈ P ′}. ThenP1 −�a−→ P ′
1, implying (by the inner in-

ductionhypothesis)C1 −�a−→ C ′
1 such thatC

′
1 ∼ P ′

1, andhence(C
′
1[r],P ′);

the operational semantics implyC −�a−→ C ′
1[r].

Recursion. AssumeB = recX. B1. By the outer induction hypothesis, it
follows thatB1〈C/X〉 ∼ [[B1〈C/X〉]] = [[B1]]([[C]]) for arbitrary closed
C ∈ Lfin (since then the recursion depth ofB1〈C/X〉 is one smaller than
that ofB). In particular, this also holdsC = t[[B]], implying (since[[t[[B]]]] =
[[B]] is a fixpoint of[[B1]](−)) that

B1〈t[[B]]/X〉 ∼ [[B1]]([[B]]) = [[B]] ∼ t[[B]] ;

in other words,t[[B]] is a solution ofX = Bmodulo∼. Due to Theorem3.15,
therefore,B ∼ t[[B]] ∼ [[B]].)*
It still remains to prove a proposition of the previous section, which is a
corollary of Theorem 4.22.

Proposition 3.16 For all B ∈ Lwf , lts(B) is partially commutative up to
bisimulation.

Proof.Weprove that〈M,−→,P〉 is partially commutative; i.e., ifP −a→−b→ P ′

with a I b thenP −b→−a→ P ′. Theorem 4.22 then implies that ifB −a→−b→ B′

with a I b thenB −b→−a→ B′′ with B′ ∼ P ′ ∼ B′′.
P −a→−b→ P ′ with a I b implies〈d〉 ∈ P and〈e〉 ∈ P−〈d〉with �(d) = a

and�(e) = b, andP ′ = (P − 〈d〉) − 〈e〉. From〈e〉 ∈ P − 〈d〉 anda I b

it follows thatp = d
e
∈ P; hence〈d〉 = p − 〈e〉, 〈e〉 = p − 〈d〉 ∈ P and

〈d〉 ∈ P − 〈e〉. Furthermore, due to (4) we have
P ′ = (P − 〈d〉)− 〈e〉 = P − p = (P − 〈e〉)− 〈d〉 .

This concludes the proof.)*

226 A. Rensink, H. Wehrheim

A.3 Proofs of Section 5

Theorem 5.4 The axioms of Table 6 are sound w.r.t. bisimilarity.

Proof.We show only the soundness of some of themost interesting axioms:
C5, S4, RS3, RS4, RD1, RD2 and RF1–RF3. The cases of RS3 and RS4,
resp. RF1 andRF2, are proved in reverse order, since the proof of the former
depends on the latter.

C5 We show that the following is a bisimulation relation:

R = {(B + δA(B), B) | B ∈ Lwf +} ∪ ∼
We show only left-to-right simulation. AssumeB + δA(B) −α→ B′.

– If α = a, thenB −a→ B′ and(B′, B′) ∈ R.
– If α = �a, theneitherB −�a−→ B′ anda /∈ [A]I (i.e. the choice is resolved),
in which case(B′, B′) ∈ R; orB −�a−→ B′′ anda ∈ [A]I , in which case
B′ = B′′ + δA(B′′) and(B′, B′′) ∈ R.

S4 The following is a bisimulation relation:

R = {(B1 ·B2, B1 ||∅ B2) | A(B1) I A(B2)} .

We show only left-to-right simulation of proper (i.e., non-termination) tran-
sitions. AssumeB1 ·B2 −α→ B′; there are two cases.

– B1 −a→ B′
1 such thatB

′ = B′
1 ·B2. It follows thatB1 ||∅B2 −a→ B′

1 ||∅B2
such that(B′

1 ·B2, B
′
1 ||∅ B2) ∈ R.

– B1 −�a−→ B′
1 andB2 −a→ B′

2 such thatB′ = B′
1 ·B′

2 Due to Proposi-
tion 3.8, it follows thata ∈ A(B2), and hencea I A(B1); again by
Proposition 3.8, it follows thatB′

1 = B1. Furthermore,B1 ||∅ B2 −a→
B1 ||∅ B′

2 such that(B1 ·B′
2, B1 ||∅ B′

2) ∈ R.

RS4 The following is a bisimulation relation:

R = {(B�a, δa(B)) | a /∈ T (B)}
We show only left-to-right simulation. Assume(B1, B2) ∈ R andB1 −α→
B′

1; it follows thatB1 = B�a,B2 = δa(B) anda /∈ T (B). Proposition 5.1
implies thatα /∈ Act ; henceα = �b such thata I b.

We may derive thatB′
1 = B′�a whereB −�b−→ B′, andB2 −�b−→ B′

2 =
δa(B′). Proposition 5.1 impliesB −�a−�; thusB′ −�a−� due toProposition 3.12
and hencea /∈ T (B′) due to Proposition 5.1. We may conclude(B′

1, B
′
2) ∈

R.

Process algebra with action dependencies 227

RS3 The following is a bisimulation relationup tobisimilarity (see [50]):

R = {(B�a, a�(B ↓ a) + δa(B)) | a ∈ T (B)} ∪ ∼
We show only left-to-right simulation. Assume(B1, B2) ∈ R andB1 −α→
B′

1; henceB1 = B�a andB2 = a�(B ↓ a) + δa(B) such thata ∈ T (B).

– If α ∈ Act , thenα = a andB′
1 = B′ ·1, whereB −�a−→ B′. Due to

Proposition 5.1,B′ ∼ B ↓ a. It follows thatB2 −a→ B′
2 = 1 · (B ↓ a).

Using S1–S2, we obtainB′
1 ∼ B′

2 and hence(B
′
1, B

′
2) ∈ R.

– If α = �b, thena I b andB′
1 = B′�a, whereB −�b−→ B′. If B ↓a −�b−→ B′′

thenB −�a−→−�b−→ B′′ (by RuleR24 of Table 4) and hence (according to
Proposition 3.12)B′ −�a−→ B′′. According to Proposition 5.1, it follows
thata ∈ T (B′) andB′′ ∼ B′ ↓ a. It follows thatB2 −�b−→ B′

2 = a�B′′ +
δa(B′), and (since bisimilarity is a congruence for left sequential and
choice)B′

2 ∼ B′′
2 = a�(B′ ↓ a) + δA(B′) with (B′

1, B
′′
2) ∈ R.

If B↓a −�b−� then (according toProposition 3.12)B′ −�a−�; hence (accord-
ing to Proposition 5.1)a /∈ T (B′). It follows thatB2 −�b−→ B′

2 = δa(B′),
henceB′

1 ∼ B′
2 due to RS4; we may conclude(B

′
1, B

′
2) ∈ R.

RD1 The following is a bisimulation relation:

R = {((B + C) ↓ a,B ↓ a + C ↓ a) | B,C ∈ Lwf +} ∪ ∼
We show only left-to-right simulation. LetB1 = (B + C) ↓ a andB2 =
B ↓ a + C ↓ a, and assumeB1 −α→ B′

1; henceB + C −�a−→ B′′
1 −α→ B′

1. We
distinguish the following cases:

– B −�a−→ B′′
1 andC −�a−�. It follows thatB ↓ a −α→ B′

1 andC ↓ a −α�;
henceB2 −α→ B′

1 with (B′
1, B

′
1) ∈ R.

– B −�a−� andC −�a−→ B′′
1 . Symmetrical to the previous case.

– B −�a−→ B′ andC −�a−→ C ′ with B′′
1 = B′ +C ′. If eitherα = b orα = �b

with B′ −�b−� orC ′ −�b−�, then eitherB′ −α→ B′
1 and henceB ↓ a −α→ B′

1,
or C ′ −α→ B′

1 and henceC ↓ a −α→ B′
1; in either case,B2 −α→ B′

1 and
(B′

1, B
′
1) ∈ R. Otherwiseα = �b with B′ −�b−→ B′′ andC ′ −�b−→ C ′′ such

thatB′
1 = B′′ + C ′′; then alsoB ↓ a −�b−→ B′′ andC ↓ a −�b−→ C ′′, again

implyingB2 −α→ B′
1 and(B′

1, B
′
1) ∈ R.

RD2 We show that the following is a bisimulation relation:

R = {(b�B ↓ a, b�(B ↓ a)) | a I b, a ∈ T (B)} ∪ ∼
Let B1 = b�B ↓ a andB2 = b�(B ↓ a) with a I b anda ∈ T (B), and
assumeB1 −α→ B′

1. Due to Proposition 5.1, it follows thatB −�a−→ B′ such
thatB′ ∼ B ↓ a andb�B′ −α→ B′

1.

228 A. Rensink, H. Wehrheim

– If α ∈ Act thenα = b, B′
1 = 1 ·B′ andB2 −b→ B′

2 = 1 · (B ↓ a).
Using S1, we can deduce thatB′

1 ∼ B′
2; hence(B

′
1, B

′
2) ∈ R.

– If α = �c thenb I c andB′ −�c−→ B′′ such thatB′
1 = b�B′′. Moreover,

B ↓ a −�c−→ B′′ and henceB2 −�c−→ b�B′′ = B′
1. Since(B

′
1, B

′
2) ∈ R, we

are done.

RF2 Immediate, by the termination rule for refinement.

RF1 The following is a bisimulation relation:

R = {(a[r], r(a))} ∪ ∼ .

We prove only left-to-right simulation. Assumea[r] −α→ B′. If α = b, it
follows thatr(a) −b→ C ′ andB′ = C ′ ·1[r]; henceB′ ∼ C ′ by S2 and RF2.
On the other hand, ifα = �b thenB′ = a[r]. Sincea I b, byD-consistency
of r it follows thatA(r(a)) I b, hencer(a) −�b−→ r(a) by Proposition 3.8.

RF3 We only show the case of+ = · . The case of+ = � after a single step
evolves to this case;+ = + is straightforward. Let

R0 = {((B1 ·B2)[r], B1[r] ·B2[r]) | B1, B2 ∈ Lwf +}
Ri+1 = {(B0 ·B1, B0 ·B2) | B0 ∈ Lwf +, (B1, B2) ∈ Ri} .

We prove thatR =
⋃
i∈N
Ri is is a bisimulation relationup tobisimilarity

(see [50]).We show left-to-right simulation of proper (i.e., non-termination)
transitions for arbitrary(B,C) ∈ R, by induction oni. First let(B,C) ∈
R0, and assumeB −a→ B′. There are two cases to consider.

– B1 −b→ B′
1 andr(b) −a→ B′

0 such thatB′ = B′
0 · (B′

1 ·B2)[r]. We can
then deriveC −a→ C ′ = (B′

0 ·B′
1[r]) ·B2[r]; by S3, it follows thatC ′ ∼

C ′′ = B′
0 · (B′

1[r] ·B2[r]) with (B′, C ′′) ∈ R′.
– B1 −�b−→ B′

1, B2 −b→ B′
2 and r(b) −a→ B′

0 such thatB′ = B′
0 ·

(B′
1 ·B′

2)[r]. We can then deriveC −C−→′
= B′

1[r] · (B′
0 ·B′

2[r]); by S3
and S4 (using the fact thatb I A(B′

1) according to Proposition 3.8, and
henceA(r(b)) I A(B′

1) due toD-consistency ofr, with A(B′
0) ⊆

A(r(b)) due to Proposition 3.8), it follows thatC ′ ∼ C ′′ = B′
0 ·

(B′
1[r] ·B2[r]) with (B′, C ′′) ∈ R′.

Now let (B,C) ∈ Ri+1, and assumeB −a→ B′. Again, there are two cases
to consider.

– B0 −a→ B′
0 andB

′ = B′
0 ·B1. It follows thatC −a→ C ′ = B′

0 ·B2 such
that(B′, C ′) ∈ Ri+1.

– B0 −�a−→ B′
0,B1 −a→ B′

1, andB
′ = B′

0 ·B′
1. By induction,B2 −B−→′

2∼ B′′
2

such that(B′
1, B

′′
2) ∈ R; say(B′

1, B
′′
2) ∈ Rj . It follows thatC −a→ C ′ =

B′
0 ·B′

2 with C ′ ∼ C ′′ = B′
0 ·B′′

2 and(B′, C ′′) ∈ Rj+1.)*

Process algebra with action dependencies 229

Completeness forLt. In order to prove completeness of the equational
theory forLt, we need a number of auxiliary results. First of all, note
that Proposition 3.12 generalises to sequences of termination transitions:
if B −�a1−→ · · · −�an−−→ B′ thenB −�b1−→ · · · −�bn−→ B′ for arbitrary permutations
b1 · · · bn of a1 · · · an. Therefore, we may unambiguously denote

B −�T−→ B′ iff T = {a1, . . . , an} and B −�a1−→ · · · −�an−−→ B′ .

Using this notation, we can state the first auxiliary result, which expresses
that deadlock constants add no options to a given behaviour if that behaviour
is itself terminated for all actions independent of the deadlock alphabet.

Lemma A.9 B + 0A ∼ B iff B −�T−→ for all T ⊆fin [A]I .

Proof. The “only if” is due to the fact that ifB −�T−� for someT ⊆fin [A]I
thenB andB + 0A would obviously have different termination properties,
hence they could not be bisimilar. As for the “if”, we prove that the following
is a bisimulation relation:

R = {(B + 0A, B) | ∀T ⊆fin [A]I : B −�T−→} ∪ ∼
We show left-to-right simulation. AssumeB + 0A −α→ B′. If α ∈ Act
or α = �a with a D A, it follows thatB −α→ B′, hence we are done.
Otherwise,α = �a with a I A, and henceB′ = B′′ + 0A with B −�a−→ B′′.
For arbitraryT ⊆fin [A]I we haveB −�T∪{a}−−−−→ and henceB′′ −�T−→; it follows
that(B′′ + 0A, B′′) ∈ R.)*
Now we show that “Lt,δ = Lt”, i.e., if B ∈ Lt then the equational theory
allows us to rewriteδA(B) to a termLt (namely, to a sum of deadlock
constants).

Lemma A.10 For all B ∈ Lt, T & δA(B) =
∑
i∈I 0A∪Ai for some finite

nonempty familyAi ⊆ Act for i ∈ I.

The proof is straightforward (by induction on the structure ofB) and hence
omitted. As a consequence, the proof system can discard termination con-
stants from choice terms if they do not contribute to the behaviour.

Lemma 5.6 LetB ∈ Lt. If B + 0A ∼ B, thenT & B + 0A = B.

Proof. In fact, we show thatB + 0A ∼ B impliesT & δA(B) = 0A; this
gives rise to the required result due to C5. The proof proceeds by induction
on the structure ofB. Note that, by Lemma A.9,B + 0A ∼ B implies
B −�T−→ for all T ⊆fin [A]I .

– B = 0A′ . Thena I A for arbitrarya ∈ Act implies0A −�a−→ and hence
B −�a−→, thusa I A′. It follows that [A ∪ A′]I = [A]I ; hence we can
derive

T & δA(0A′) = 0A∪A′ = 0A .

230 A. Rensink, H. Wehrheim

– B = B1+B2. It follows that foreitheri = 1ori = 2,Bi −�T−→ for all finite
T ⊆ [A]I ; for otherwise,B1 −�T1−−� andB2 −�T2−−� for someT1, T2 ⊆fin

[A]I , which contradictsB −�T1∪T2−−−−→. Hence (due to Lemma A.9)Bi +
0A ∼ Bi for i = 1 or i = 2. W.l.o.g. assumei = 1; sinceT & δA(B2) =∑
j∈J 0A∪Aj by Lemma A.10, using the induction hypothesis we can

derive

T & δ(B1 + B2) = δA(B1) + δA(B2) = 0A + (
∑
j∈J 0A∪Aj) = 0A

usingT & 0A + 0A∪Ai = 0A + δAi(0A) = 0A for all i ∈ I.
– B = a�B1. Thenb I A implies0A −�b−→ and henceB −�b−→, thusb I a.
It follows that [A ∪ {a}]I = [A]I . Moreover,B1 −�T−→ for all finite
T ⊆ [A]I , and hence (due to Lemma A.9)B1 + 0A ∼ B1. Using the
induction hypothesis forB1, we can derive

T & δA(B) = δA(a)�δA(B1) = 0A∪{a}�0A
= δA∪{a}(0A) = 0A∪{a} = 0A .

This concludes the proof.)*
We are now ready to (re-)state and prove completeness forLt. Recall that
B =

∑
i∈I ai�Bi +

∑
j∈J 0Aj implies depth(B) =

max {1 + depth(Bi) | i ∈ I}.
Proposition 5.5 For all B1, B2 ∈ Lt,B1 ∼ B2 impliesT & B1 = B2.

Proof. LetB1, B2 ∈ Lt with B1 ∼ B2 be given by

B1 =
∑
i∈I ai�Bi +

∑
j∈J 0Aj B2 =

∑
k∈K ak�Bk +

∑
l∈L 0Al

.

WeshowT & B1 = B2 by induction onmax {depth(B1), depth(B2)}. The
proof consists of showing thatT & B1 +B2 = B2 and thus (by symmetry)
T & B1 + B2 = B1; the required result immediately follows.

First we show thatT & ai�Bi+B2 = B2 for all i ∈ I. Due toB1 ∼ B2
andB1 −ai−→ 1 ·Bi, it follows thatB2 −ai−→ B′

2 such that1 ·Bi ∼ B′
2; hence

ai = ak andB′
2 = 1 ·Bk for somek ∈ K. It follows thatBi ∼ Bk andhence

(by the induction hypothesis)T & Bi = Bk, implyingT & ai�Bi = ak�Bk
and henceT & ai�Bi + B2 = B2.

Now we show thatT & 0Aj + B2 = B2 for all j ∈ J . Clearly,B1 −�T−→
and henceB2 −�T−→ for all finite T ⊆ [Aj]I ; by Lemma A.9 this implies
B2 + 0Aj ∼ B2. Lemma 5.6 then impliesT & B2 + 0Aj = B2.)*
In order to prove normalisation ofLwf to Lt, we first need to know that
similar properties hold for the auxiliary operators.

Lemma 5.8 LetB ∈ Lt be arbitrary.

1. T & δA(B) = C for someC ∈ Lt with depth(C) = 0.

Process algebra with action dependencies 231

2. T & B ↓ a = C for someC ∈ Lt with depth(C) ≤ depth(B).
3. T & B�a = C for someC ∈ Lt with depth(C) ≤ 1 + depth(B).

Proof.

1. Immediate from Lemma A.10.
2. Proved by structural induction onB, using Axioms RD1–RD4 (where
T (x) in the side condition of RD2 and RD3 is defined since its argument
B1 does not contain residue operators).

3. Proved using the previous clause 2 and RS3–RS4 (whereT (x) in the
side condition of RS3 and RS4 is defined, since its argumentB does not
contain residue operators).

The normalisation property itself:

Proposition 5.7 Let B1, B2 ∈ Lt, and letr : Act → Lt be stronglyD-
consistent.

1. T & a = a�1.
2. T & B1 ·B2 = C for someC ∈ Lt.
3. T & B1 ||A B2 = C for someC ∈ Lt.
4. T & B1[r] = C for someC ∈ Lt.

Proof.

1. First note that using D1–D3 and LS3, we can derive

T & δ∅(a�1) = δ∅(a)�δ∅(1) = 0{a}�1 = δ{a}(1) = 0a = δ∅(a) .

Using S2, S5, RS5 and C5, we then have

T & a = a ·1 = a�1 + a�1 = a�1 + δ∅(a) = a�1 + δ∅(a�1) = a�1 .

2. LetLt,δ denote the fragmentofL+ consistingofLt plus theδA-operators;
then according to Lemma A.10, any term ofLt,δ can be rewritten to a
term ofLt. We now prove thatT & B1 ·B2 = C for someC ∈ Lt,δ, by
induction ondepth(B1)+depth(B2); this implies the required property.
Let

B1 =
∑
i∈I ai�Bi +

∑
j∈J 0Aj B2 =

∑
k∈K ak�Bk +

∑
l∈L 0Al

.

By S5, LS1–LS3, RS1–RS2 and RS5, it follows thatT & B1 ·B2 = C ′
with

C ′ =
∑
i∈I ai�(Bi·B2) +

∑
j∈J δAj (B2)

+
∑
k∈K

(B1�ak)�Bk +
∑
l∈L

δAl
(B1)

232 A. Rensink, H. Wehrheim

Lemma 5.8.3 states that for eachk ∈ K, T & B1�ak = B1,k for some
B1,k ∈ Lt with depth(B1,k) ≤ 1 + depth(B1); say

B1,k =
∑
i∈Ik ai,k�Bi,k +

∑
j∈Jk

0Aj,k

wheredepth(Bi,k) ≤ depth(B1) for all k ∈ K andi ∈ Ik. It follows
that

T & (B1�ak)�Bk =
∑
i∈Ik ai,k�(Bi,k ·Bk) +

∑
j∈Jk

δAj,k
(Bk)

for all k ∈ K. By replacing the subterms ofC ′ accordingly, we get
T & C ′ = C ′′ with C ′′ ∈ Lt,δ. Since for all subtermsC1 ·C2 of C ′′,
C1, C2 ∈ Lt anddepth(C1) + depth(C2) < depth(B1) + depth(B2),
it follows by induction that these subterms can be rewritten to terms in
Lt,δ. It follows thatT & C ′′ = C for someC ∈ Lt,δ; hence we are done.

3. Analogous to the previous clause.
4. Assumer = C1/a1, . . . , Cn/an with Ci ∈ Lt for all 1 ≤ i ≤ n. The

proof proceeds by induction on the structure ofB. The interesting case
isB = a�B′; then

T & (a�B′)[r] = a[r]�B′[r] = r(a)�B′[r] .

By the induction hypothesis,T & B′[r] = C ′ for someC ′ ∈ Lt. If
a �= ai for all 1 ≤ i ≤ n, thenr(a) = a; henceT & r(a)�B′[r] = a�C ′
wherea�C ′ ∈ Lt and we are done.
Otherwise assumea = ai and assumeCi =

∑
j∈J bj�Dj+

∑
k∈K 0Ak

;
then

T & r(a)�B′[r] =
∑
j∈J bj�(Dj ·C ′) +

∑
k∈K δAk

(C ′)

which (latter) term can be rewritten to a term ofLt due to Proposi-
tion 5.7.1 and Clause 3 above.)*

A.4 Proofs of Section 6

Theorem 6.1 If Bi, Ci ∈ L andAi ⊆ Act for i = 1, 2 such that for all
i �= j

– A(Bi) I A(Cj), and
– A(Bi) ∩Aj = A(Ci) ∩Aj = ∅
then (3) holds up to strong bisimilarity.

Proof. We prove the theorem via the operational semantics. We show that
the following is a bisimulation relation:

R = { ((B1 ||A1
C1) · (B2 ||A2

C2), (B1 ·B2) ||A1∪A2
(C1 ·C2))

| A(Bi) I A(Cj),A(Bi) ∩Aj = A(Ci) ∩Aj = ∅}

Process algebra with action dependencies 233

Weuse the following abbreviations in our proof:Di = Bi ||Ai
Ci for i = 1, 2,

D = D1 ·D2,B = B1 ·B2, C = C1 ·C2 andE = B ||A1∪A2
C.

AssumeD −α→ D′. There are two cases to consider:α = �a or α = a.
The first is the easier one: ifD −�a−→ D′ thenBi −�a−→ B′

i andCi −�a−→ C ′
i

for i = 1, 2 such thatD′ = (B′
1 ||A1

C ′
1) · (B′

2 ||A2
C ′

2). ThenE −�a−→
(B′

1 ·B′
2) ||A1∪A2

(C ′
1 ·C ′

2) and(D′, E′) ∈ R.
Now assumeα = a ∈ Act . There are again various cases to consider.

– The actiona comes from the first layer:D1 −a→ D′
1 such thatD′ =

D′
1 ·D2. The following cases have to be considered:
– B1 −a→ B′

1 with a /∈ A1 andD′
1 = B′

1 ||A1
C1. Then (by Proposi-

tion 3.8.1)a ∈ A(B1) and hence by communication closednessa /∈
A2. ThereforeE −a→ (B′

1 ·B2) ||A1∪A2
(C1 ·C2) and(D′, E′) ∈ R.

– C1 −a→ C ′
1 with a /∈ A1. Analogous to the previous case.

– B1 −a→ B′
1 andC1 −a→ C ′

1 anda ∈ A1 andD′
1 = B′

1 ||A1
C ′

1. It follows
thatE −a→ E′ = (B′

1 ·B2) ||A1∪A2
(C ′

1 ·C2) and(D′, E′) ∈ R.
– The more interesting case is when the actiona comes from the second
layer:D1 −�a−→ D′

1 andD2 −a→ D′
2 such thatD′ = D′

1 ·D′
2. First note

that it follows thatB1 −�a−→ B′
1 andC1 −�a−→ C ′

1 with D′
1 = B′

1 ||A1
C ′

1.
For theD2-transition, we have the cases
– B2 −a→ B′

2 with a /∈ A2 andD2 = B′
2 ||A2

C2. It follows (by Proposi-
tion 3.8.1) thata ∈ A(B2) and hence by communication closedness,
a /∈ A1 anda I A(C1); thus (by Proposition 3.8.3)C ′

1 = C1. Hence
E −a→ E′ = (B′

1 ·B′
2) ||A1∪A2

(C1 ·C2) and(D′, E′) ∈ R.
– C2 −a→ C ′

2 with a /∈ A2. Analogous to the previous case.
– B2 −a→ B′

2 andC2 −a→ C ′
2 such thata ∈ A2 andD′

2 = B′
2 ||A2

C ′
2. It

follows thatE −a→ E′ = (B′
1 ·B′

2) ||A1∪A2
(C ′

1 ·C ′
2) and(D′, E′) ∈

R.
Now assumeE −α→ E′. The case thatα = �a is essentially the same as
before. Now considerα = a.

– B −a→ B′ with a /∈ A1∪A2 such thatE′ = B′ ||A1∪A2
C. We again have

to consider two cases:
– B1 −a→ B′

1 such thatB′ = B′
1 ·B2. ThenD −a→ D′ = (B′

1 ||A1
C1) · (B2 ||A2

C2) and(D′, E′) ∈ R.
– B1 −�a−→ B′

1 andB2 −a→ B′
2 such thatB′ = B′

1 ·B′
2. Due toa ∈

A(B2) (see Proposition 3.8.1), by communication closedness we
again geta I A(C1), hence (due to Proposition 3.8.3)C1 −�a−→ C1;
thusD −a→ D′ = (B′

1 ||A1
C1) · (B′

2 ||A2
C2) and(D′, E′) ∈ R.

– C −a→ C ′ with a /∈ A1 ∪A2. Analogous to the previous case.
– B −a→ B′ andC −a→ C ′ with a ∈ A1 ∪ A2. We recognise two further
cases:

234 A. Rensink, H. Wehrheim

– a ∈ A1. It follows thata /∈ A(B2) ∪ A(C2); henceB1 −a→ B′
1 such

thatB′ = B′
1 ·B2 andC1 −a→ C ′

1 such thatC = C ′
1 ·C2, implying

D −a→ D′ = (B′
1 ||A1

C ′
1) · (B2 ||A2

C2) and(D′, E′) ∈ R.
– a ∈ A2. It follows thata /∈ A(B1) ∪ A(C1); henceB1 −�a−→ B′

1
andB2 −a→ B′

2 such thatB′ = B′
1 ·B′

2, andC1 −�a−→ C ′
1 andC2 −a→

C ′
2 such thatC ′ = C ′

1 ·C ′
2. It follows thatD −a→ D′ = (B′

1 ||A1
C ′

1) · (B′
2 ||A2

C ′
2) and(D′, E′) ∈ R.)*

