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Abstract

We develop and test multistage portfolio selection models maximizing expected end-of-horizon

return while minimizing one-sided deviation from a target return level. The trade-off between two

objectives is controlled by means of a non-negative parameter as in Markowitz Mean-Variance

portfolio theory. We use a piecewise-linear penalty function, leading to linear programming mod-

els and ensuring optimality of subsequent stage decisions. We adopt a simulated market model to

randomly generate scenarios approximating the market stochasticity. We report results of rolling

horizon simulation with two variants of the proposed models depending on the inclusion of trans-

action costs, and under different simulated stock market conditions. We compare our results with

the usual expected return-based stochastic programming models. The results indicate that the ro-

bust investment policies are indeed quite stable in the face of market risk while ensuring expected

return levels quite similar to the competing expected-return maximizing stochastic programming

model at the expense of solving larger linear programs.

Key words: Finance, risk, multi-period portfolio selection, stochastic programming, discrete

scenario tree, downside risk.

1 Introduction

Multi-period investment problems taking into account the stochastic nature of the financial markets,

are usually solved in practice by scenario approximations of stochastic programming models, which

may ignore the risk associated with the portfolio positions resulting from their implementation. The

purpose of this paper is to develop and test robust to market risk, multi-period (two- or three-

period) portfolio selection models using scenario approximation of the market parameters. The main
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contribution consists in establishing experimentally that the models advocated in this paper and based

on a trade-off objective function aiming to maximize expected return while minimizing a downside

risk measure, in the spirit of Markowitz portfolio theory [6] that used the variance of the portfolio

return as the risk measure, are indeed robust to market risk in the sense of reducing significantly the

variance of the end-of-period return and the probability of a loss. Furthermore, the two-stage models

have the property of retaining optimality of the second-stage (recourse) decisions. The optimization

tool used in the paper is simply linear programming with off-the-shelf optimization software although

admittedly the dimensions of the associated robust linear programs increase by a factor proportional

to the number of scenarios in comparison to the risk-neutral stochastic linear programs. To the best

of the author’s knowledge the aforementioned ideas had not been tested yet in a multi-period portfolio

selection context. The present paper aims to fill this void.

2 The Stochastic Multi-Period Investment Problem

For ease of exposition we develop our models for the two-period investment problem, and give the

three period version as a natural extension. Although the general multi-period versions are obtained

in a straightforward manner, due to the practical limitations of computing power we confine our study

to three-period models. The two-period investment setting is the following. Let us assume that we

have m+ 1 assets of which the first m are risky stocks, whereas the (m+ 1)th is the riskless asset that

we can assume to be cash. We will denote the portfolio decision vector at the beginning of period 1

as x0 with components x0[i] corresponding to the monetary value of asset i in the portfolio. A similar

definition for the portfolio decision vector x1 at the beginning of period 2. Let us denote by r1 and r2

the random vectors of asset returns that are revealed to the investor only after period 1 and period 2

are elapsed. In other words, the investor does not know the realization of r1 at the beginning of period

1, commits to a portfolio vector x0 (possibly paying some transaction fees) using a total budget of 1

unit of currency, waits during period 1 to observe the realization of r1 and with his/her total current

endowment obtained as a result of the market movement during period 1, commits to a new portfolio

position x1 (again possibly paying some transaction fees) which he/she holds during period 2 at the

end of which he/she realizes a gain or loss over his/her initial endowment at the beginning of period

1. We do not allow short positions.

Throughout this paper we follow the general probabilistic setting of [4] in that we approximate the

behavior of the stock market by assuming that r1 and r2 are discrete random variables supported on a

finite probability space (Ω,F , P ) whose atoms are sequences of real-valued vectors (asset values) over

the discrete time periods t = 0, 1, 2. We further assume the market evolves as a discrete scenario tree

in which the partition of probability atoms ω ∈ Ω generated by matching path histories up to time

t corresponds one-to-one with nodes n ∈ Nt at level t in the tree. The root node n = 0 corresponds

to the trivial partition N0 = Ω consisting of the entire probability space, and the leaf nodes n ∈ N2

correspond one-to-one with the probability atoms ω ∈ Ω. In the scenario tree, every node n ∈ Nt for

t = 1, 2 has a unique parent denoted π(n) ∈ Nt−1, and every node n ∈ Nt, t = 0, 1 has a non-empty
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set of child nodes S(n) ⊂ Nt+1. The probability distribution P is obtained by attaching weights pn

to each leaf node n ∈ N2 so that
∑
n∈N2

pn = 1.

A random variable X is a real valued function defined on Ω. It can be lifted to the nodes of a

partition Nt of Ω if each level set {X−1(a) : a ∈ R} is either the empty set or is a finite union of

elements of the partition. In other words, X can be lifted to Nt if it can be assigned a value on each

node of Nt that is consistent with its definition on Ω, [4]. This kind of random variable is said to be

measurable with respect to the information contained in the nodes of Nt. A stochastic process {Xt} is

a time-indexed collection of random variables such that each Xt is measurable with respect Nt. The

expected value of Xt is uniquely defined by the sum

Ep[Xt] :=
∑

n∈Nt
pnXn.

Under the light of the above definitions, r1 and r2 are members of a stochastic process. Let r1
n denote

realizations of random vectors r1 corresponding to node n at level 1 of the scenario tree. Likewise,

Let r2
n denote realizations of random vectors r2 corresponding to node n at level 2 of the scenario

tree. Then the root node of the scenario tree corresponds to the beginning of period 1, and thus to

the selection of x0 while, with each node of level 1 is associated portfolio positions x1
n for all n ∈ N1.

Then the straightforward stochastic programming formulation of the two-stage portfolio selection

model based on maximizing expected end-of-horizon return reads as follows:

max
x0
{
∑

n∈N2

pnQn(x0)|eTx0 = 1, x0 ≥ 0} (1)

where

Qn(x0) = max{r2
nx

1
π(n)|eTx1

π(n) = (r1
π(n))

Tx0}. (2)

Due to the separability of the recourse problems Qn(x0), n ∈ N2, the above optimization problem (1)

is equivalent to

max
x0,{x1

n,n∈N2}
{
∑

n∈N2

pn(r2
n)Tx1

π(n)|eTx0 = 1, eTx1
n = (r1

n)Tx0 ∀n ∈ N1, x
0 ≥ 0, x1

n ≥ 0, ∀n ∈ N1}. (3)

3 The Robust Models

The above formulation (3) assumed that the decision maker is risk-neutral, i.e., bases the portfolio

decisions solely on expected return. Mulvey, Vanderbei and Zenios [7] proposed to incorporate risk

into two-stage stochastic programs by adding a risk term into the objective function controlled by a

scalar parameter. They advocated the use of variance as the risk term à la Markowitz mean-variance

portfolio theory [6]. Later, Malcolm and Zenios [5] developed an application of this methodology

to power capacity expansion planning. Such an approach would lead to the following model in our

context:

max
x0
{
∑

n∈N2

pnQn(x0)− λf((r2
1)Tx1

π(1), . . . , (r
2
N )Tx1

π(N))|eTx0 = 1, x0 ≥ 0} (4)
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where Qn(x0) is defined in (2).

Instead of the above model where separability is no longer assured, Mulvey, Vanderbei and Zenios

[7] proposed a robust model which in our context would correspond to

max
x0,{x1

n,n∈N1}
{
∑

n∈N2

pn(r2
n)Tx1

π(n) − λf((r2
1)Tx1

π(1), . . . , (r
2
N )Tx1

π(N))|(x0, x1
n,∀n∈N1

) ∈ X} (5)

with

X = {(x0, x1
n,∀n∈N1

) : eTx0 = 1, eTx1
n = (r1

n)Tx0, n ∈ N1, x
0 ≥ 0, x1

n ≥ 0, ∀n ∈ N1},

where λ is a non-negative scalar, N represents the total number of nodes in the scenario tree, and

f : RN 7→ R is a variability measure, usually the variance on the second period returns. The value

of λ serves as a knob to control the trade-off between a higher expected return and an investment

policy with smaller variability in return. In a more recent paper, Takriti and Shabbir [8] showed that

for an arbitrary variability measure f , the robust model (5) may give an optimal solution where the

second-period portfolio decisions are not optimal for the recourse problem (2). In other words, we

can no longer claim that models (4) and (5) are equivalent. A consequence of this fact is that the

robust model (5) may have underestimated the risk associated with the investment policy it advocates.

Takriti and Ahmed [8] show that if f is a non-decreasing function, and λ ≥ 0, then (4) and (5) are

equivalent. Therefore, the use of a non-decreasing variability measure resolves the issue of second-

period optimality. Takriti and Ahmed use in [8] a piecewise-quadratic measure of variability defined

as follows:

f(t) =
∑̀

i=1

ρi(R∗ − ti)2
+,

where R∗ is a target value (in our context, a target return level), (z)+ denotes max(0, z) for a real

number z, and t is a discrete random variable with realizations t1, . . . , t`, and ρ1, . . . , ρ` are the

corresponding probabilities. To keep our computational effort at a minimum by solving only linear

programming problems we adopt a piecewise-linear variability measure given by

f(t) =
∑̀

i=1

ρi(R∗ − ti)+, (6)

which also fulfills the condition of being non-decreasing. Indeed, Ahmed in a later (unpublished yet)

technical report [1] also elaborates on the piecewise-linear variability measure. Therefore, our basic

model of two-period portfolio selection in the present paper is the following:

max
x0,{x1

n,n∈N1}
{
∑

n∈N2

pn(r2
n)Tx1

π(n) − λ
∑

n∈N2

pn(R∗ − (r2
n)Tx1

π(n))+|(x0, x1
n,∀n∈N1

) ∈ X} (7)

where X is as defined above. Now, using Proposition 3 of [8] we can state the following result that

summarizes the discussion thus far.

Proposition 1 Let λ ≥ 0. Then, model (4) with f as defined in (6) and model (7) are equivalent.
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The natural extension of the above framework to three-period portfolio selection problem is as

follows. Let r3
n denote realizations of random vectors r3 corresponding to node n at level 3 of the

scenario tree. Then the root node of the scenario tree corresponds to the beginning of period 1, and

thus to the selection of x0 while, with each node of level 1 is associated portfolio position x1
n for all

n ∈ N1, and to each node n of level 2 corresponds portfolio position x2
n for all n ∈ N2. Let the total

number of variables in the problem be N = (m+ 1)N1 + (m+ 1)N2 +m+ 1, where N1 is the number

of nodes in the scenario tree at level one and N2 is the number of nodes at level 2. Define the set of

equations governing the self-financing transaction dynamics as

Z = {(x0, x1
n,∀n∈N1

, x2
n,∀n∈N2

) : eTx0 = 1, eTx1
n = (r1

n)Tx0, n ∈ N1, e
Tx2

n = (r2
n)Tx1

π(n), n ∈ N2}.

Then, our robust model of three-period portfolio selection in the present paper is the following:

max
x0,x1

n,∀∈N1
,x2
n,∀n∈N2

{
∑

n∈N3

pn(r3
n)Tx2

π(n)−λ
∑

n∈N3

pn(R∗−(r3
n)Tx2

π(n))+|(x0, x1
n,∀n∈N1

x2
n,∀n∈N2

) ∈ Z∩RN
+}.

(8)

Clearly, setting λ = 0 we recover the three-period version of the risk-neutral stochastic programming

problem (3):

max
x0,x1

n,∀∈N1
,x2
n,∀n∈N2

{
∑

n∈N3

pn(r3
n)Tx2

π(n)|(x0, x1
n,∀n∈N1

, x2
n,∀n∈N2

) ∈ Z ∩RN
+}. (9)

4 The Robust Model with Linear Transaction Costs

In this section we present a slightly different version of the robust model (7) allowing transaction costs

for buying and selling assets, proportional to the amount sold and bought. We chose to develop this

subject as an extension not to detract from the simplicity of the basic two-period investment models

in the previous section.

We proceed as in [2] (where the authors are in turn inspired by the model of [3]) and denote by

y1
n the (m+ 1)-vector of amount of assets bought at level 1 and node n ∈ N1, and by z1

n the (m+ 1)-

vector of amount of assets sold at level 1 and node n ∈ N1. We use µ1
i to denote the transaction

cost associated with buying one dollar worth of asset i in period 1, and by ν1
i the transaction cost

associated with selling one dollar worth of asset i in period 1. Since we do not allow short positions

we do not need to define selling variables for the initial portfolio position. We denote by x1
n[i] the ith

component of vector x1
n, and by x0[i] the ith component of vector x0, and similarly for y1

n and z1
n.

Now, the asset dynamics are stated as follows: for all i = 1, . . . ,m (risky assets) and for all n ∈ N1

we have

x1
n[i] = r1

n[i]x0[i] + y1
n[i]− z1

n[i], (10)

whereas for the riskless asset (cash) we have for all n ∈ N1:

x1
n[m+ 1] = r1

n[m+ 1]x0[m+ 1]−
m∑

i=1

(1 + µ1
i )y

1
n[i] +

m∑

i=1

(1− ν1
i )z1

n[i]. (11)
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The initial budget equation is also modified as follows:

m∑

i=1

(1 + µ0
i )x

0[i] = 1− x0[m+ 1]. (12)

Now, define the feasible set T = {(x0, x1
n, y

1
n, z

1
n, ∀n ∈ N1) ≥ 0 : (10), (11), (12) hold}. The expected

return maximizing stochastic linear programming model is as follows:

max
x0,{x1

n,y
1
n,z

1
n,n∈N1}

{
∑

n∈N2

pn(r2
n)Tx1

π(n)|(x0, x1
n, y

1
n, z

1
n, ∀n ∈ N1) ∈ T }. (13)

Similarly to the previous section, we can state the robust two-period portfolio selection model with

linear transaction costs:

max
x0,{x1

n,y
1
n,z

1
n,n∈N1}

{
∑

n∈N2

pn(r2
n)Tx1

π(n) − λ
∑

n∈N2

pn(R∗ − (r2
n)Tx1

π(n))+|(x0, x1
n, y

1
n, z

1
n, ∀n ∈ N1) ∈ T }.

(14)

We skip the three-period versions of the models with transaction costs as the basic three-period model

are already quite demanding computationally, and the two-period models with transaction costs are

sufficient to make our point in the section on numerical results.

5 The Experimental Financial Market Setup

We adopt the following stochastic model based on a simple factor model for the asset returns from

[2]:

ln rl[i] = ΩTi (κe+ σvl), l = 1, 2, i = 1, . . . ,m, (15)

and

ln rl[m+ 1] = κ, l = 1, 2, (16)

where {v1, v2} are independent k-dimensional Gaussian random vectors with zero mean and unit

covariance matrix (equal to identity matrix), e = (1, . . . , 1)T ∈ Rk, and Ωi ∈ Rk
+ are fixed vectors

(not to be confused with the Ω and ω of the Introduction). The random vectors r1 and r2 are i.i.d,

while the the coordinates of every vector are interdependent. The returns of the riskless asset are

simply deterministic and do not depend on the period. For simplicity, we also assumed the transaction

costs to be deterministic, and independent of asset type and time period throughout the experiments,

i.e., we take ν1
i = µ1

i = µ0
i = ν where ν is some positive constant. We define ωi = ΩTi e, as the sum of

the elements of Ωi, for all i = 1, . . . ,m.

In our simulations, we choose the parameters, Ωi, i = 1, . . . ,m, κ, σ so as to satisfy the following

requirements as in [2]:

• Since the (m + 1)th asset is the riskless (cash) asset, it is natural that the other assets should

have an expected return higher than the riskless asset. Denote the expected value of a random

variable by “mean” and its standard deviation by “std”. From the model (15)–(16) we have

mean(rl[i]) = exp{ωiκ+ ΩTi Ωiσ
2/2},
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and

std(rl[i]) = mean(rl[i])
√

exp{ΩTi Ωiσ2/2} − 1.

Observing that κ and σ are of the same order of magnitude, both being significantly less than

one since the annual rate of growth of a national economy is a few percent, we see that if ωi is

significantly less than 1, then mean(rl[i]) < exp{κ}. Therefore, we should choose Ωi so as to

make ωi greater than or equal to 1.

• The higher the expected return of the riskless asset, the higher its risk should be. In the

model of [2], this is indeed (almost) the case since we have that the ratio std(r l[i])/mean(rl[i]) =

exp{σ2ΩTi Ωi}−1, so that the risk (which is the left-hand ratio) grows with ΩT
i Ωi while one would

ideally like it to grow with ωi. Nonetheless, the aforementioned growth property is sufficient for

our purposes.

• One has to make sure that the most attractive assets in terms of expected return should carry

a significant probability of a return inferior to the riskless asset return. In other words, we

want the probability of the event ln rl[i] < κ, l = 1, 2, to be significant. Without repeating

the discussion of [2], these requirements are fulfilled in [2] by choosing three free parameters as

follows:

κ > 0, γ ∈ [0.5, 0.15], and ωmax ∈ [1.5, 2],

and then setting

σ = κ/γ,

k = b( ωmax
ωmax − 1

)2c,

ki = min{k, bm− i
m

k +
i

m
+ 1c},

ωi =
m− i
m

+
i

m
ωmax,

for i = 1, . . . ,m. Furthermore, the number of non-zero entries in Ωi is ki, and the indices of these

entries are picked at random in the set of integers {1, 2, . . . , k}. Then, the ki-dimensional vector

wi containing of non-zero entries of Ωi is assigned randomly in the simplex {w ∈ Rki
+ |
∑
j wj =

ωi}. With these choices, the probability of the event ln rl[i] < κ, l = 1, 2, is indeed significant;

see [2] for details.

Ben-Tal, Margalit and Nemirovski [2] also characterize the market by the risk indices of the assets

defined as Prob(rl[i] < 1), and choosing the maximum among these probabilities to represent the

market risk.

Having set the aforementioned parameters as described above, we generate a scenario tree to be

used in the numerical experiments in accordance with the requirements of the models of the present

paper. The scenario generation procedure is quite straightforward, and works as follows. We fix

a positive integer S for the number of scenarios to be generated per period. I.e., we generate S

random vectors r1
j , j = 1, . . . , S and another S random vectors r2

j , j = 1, . . . , S, for periods 1 and 2,
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respectively, as detailed below in (17)–(18). The random vectors r1
1, . . . , r

1
S constitute the level 1 nodes

of the scenario tree. Then, with each node of the level 1 we associate S child nodes corresponding each

to r2
1, . . . , r

2
S, thereby obtaining a total of S2 nodes at level 2 of the scenario tree. The jth scenario of

the period l corresponding to asset i is obtained as

rlj [i] = exp{ωiκ+ σΩTi τ
l
j}, i = 1, . . . ,m (17)

and

rlj [m+ 1] = exp{κ} (18)

where τ lj is a Gaussian k-dimensional vector with zero mean and covariance matrix equal to the

identity matrix. This process is carried out for l = 1 generating τ lj , for l = 1, . . . , S, and setting the

return vectors according to (17) for each asset in {1, . . . ,m+ 1} and then independently generating τ lj

for l = 2 (and, for l = 3 in the case of three-periods) and again setting the return vectors for each asset

in {1, . . . ,m+1} according to (18). Upon completion of this process, we have S2 nodes corresponding

to S2 paths from the root to each leaf node, each having equal probability of occurrence 1/S2.

Therefore, we approximate the return process given by the factor model (15)–(16) by the discrete

probability distribution generated according to (17)–(18). With this setup, the model (7) without

linear transaction costs has (S + 1)(m + 1) + S2 non-negative variables and S2 + S + 1 constraints

when posed as a linear program after dealing with the piecewise-linear objective function in the usual

way. The model (14) under the above setup has (3S + 1)(m + 1) + S2 non-negative variables and

S2 + S(m + 1) + 1 constraints when posed as a linear program. In contrast, the model (3) has

(S + 1)(m + 1) non-negative variables with S + 1 constraints while model (13) has (3S + 1)(m + 1)

non-negative variables and S(m+ 1) + 1 constraints. Obviously, in the three-period models we obtain

S3 scenario paths from the root to each leaf node with equal probability (1/S3). Consequently, the

number of constraints and variables of the linear program corresponding to the three-period robust

problem (8) is given by S3 + S2 + S + 1 and (m + 1)(S2 + S + 1) + S3, respectively. Removing the

term S3 one arrives at the number of non-negative variables and constraints of the model (9).

6 Numerical Results

In this section we compare the performance of the robust two-period and three-period investment

policies with the performance of the expected-return-based stochastic programming policy under dif-

ferent simulated market conditions. To keep the resulting linear programs at a reasonable size (in

the order of a few thousand variables and constraints) since we will solve a large of number of these,

we limit our experimentation to m = 21 assets, the last one being the riskless asset, and to S = 60

yielding 3600 2-stage scenario paths in the two-period case. We also tried larger S, e.g., S = 80 and

S = 100. Since the results essentially remained identical, we kept S = 60 in the interest of shorter

run times. For the three period case, we limit ourselves 10 + 1 assets with at most S = 30, yielding

27000 scenario paths.
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Rolling Horizon Testing. We test all investment policies under the rolling horizon simulation mode

of [2], which works as follows. In the two-period case we first build and solve the two-period model

— be it the model (3), (7), (13) or (14) — and record the x0 component of the optimal solution.

Building the initial model entails setting the parameters ωmax, τ , and γ, generating the return vector

realizations according to (17) and (18), as well as choosing λ, R∗, ν and µ depending on whether

we solve the expected value maximizing stochastic linear program or the robust stochastic linear

program. Then, with the portfolio x0 fixed for the moment, the asset returns are simulated according

to (17)–(18), and the value of x0 updated using the simulated return vector. This portfolio value is

used afterwards as the initial endowment for the solution of a 1-period portfolio problem — of the

same kind as the previous two-period one among again (3), (7), (13) or (14) — that is set up and

solved. The optimal solution of this problem is adopted as the final (end-of-period) portfolio that we

use for “stress testing” against a suitable number K of randomly generated (according to (17)–(18))

return scenarios. For the three-period case, the rolling horizon simulation mode is identical with the

exception that we start by solving the full three-period problem, and go on by solving a two-period

problem, and finally a single period problem, at which time we subject the final portfolio to stress

testing as in the two-period case.

There are two major questions we wish to answer with these tests:

1. Does the robust model indeed deserve the title “robust”? I.e., does it reduce significantly the

variability of portfolio value at the end of the planning horizon in both two and three-period

models? Does it reduce the risk of losses in the portfolio significantly even in adverse market

conditions?

2. Does the robust model preserve the ability to still realize a significant appreciation of the portfolio

value while reducing risks?

To answer these questions, in the paragraphs below we report the results of 50 major simulations for

each line in the tables as in [2] (with the exception of Table 4; see explanation below), where a major

simulation is a single rolling horizon test of an investment policy with K = 100 end-of-period random

tests. Therefore, each line in the Tables 1,2, and 3 below corresponds to statistics obtained from the

sample of 5000 random realizations of the end-of period portfolio value associated with that particular

investment policy. We refer to the execution of the 50 major simulations as a “run”. We report the

following statistics for a run:

• the minimum portfolio value observed, denoted vmin,

• the maximum portfolio value observed, denoted vmax,

• the average portfolio value, denoted vavg,

• the sample standard deviation of portfolio value, vstd,

• the empirical probability (frequency) of loss (a loss is defined as the value of the portfolio being

less than 1) computed as the ratio of observed losses in the sample to the sample size, denoted

Pl,
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• the empirical probability (frequency) of a significant loss (a significant loss is defined as the

portfolio value being inferior to 0.8) again computed as the ratio of the number of observed

significant losses to the sample size, denoted Psl,

• the empirical probability (frequency) of significant appreciation (a significant appreciation in the

value of the portfolio is defined as the portfolio value being superior to the conservative policy of

investing the initial endowment of 1 unit in the riskless asset and keeping this investment until

the end of the two-period horizon; the associated portfolio value in our case is given by (exp τ)2

in the two-period environment, and by (exp τ)3 in the three-period one) computed again as the

above frequencies, which we denote Psa.

All experiments are carried out on a personal computer with 2.8 GHz clock speed using the GAMS-

IDE (General Algebraic Modeling System) interface with the CPLEX 8.1 linear programming solver.

In this computing environment, a single run (i.e., 50 major simulations as detailed above) of models

(3), (13), (7) or (14) takes between 20 minutes to 2 hours of computing time. A major portion

(almost 70%) of this running time is spent in translating the GAMS models into a form readable by

CPLEX 8.1 optimizer, the robust models taking longer times to get treated by GAMS and solved by

CPLEX. The three-period model runs take around three to four hours to complete. This increased

computational burden seems to be the price to pay to integrate robustness into the models.

After an exploratory phase of initial experimentation, we settled for the value of τ = 0.05, and

adopted four different values of γ depending on how risky we want the simulated market to be. These

values are chosen as 0.33, 0.25, 0.216 and 0.2 as in [2] which would correspond (with an associated

τ = 0.1 and ωmax = 1.2) to market risk ranging from 33% to about 40%; c.f., definition of risk indices

of assets following discussion on the choice of these parameters in the previous section. We also choose

ωmax = 1.2. Our empirical results reported below show that the market indeed becomes riskier as γ

falls from 0.33 to 0.2. We use R∗ = 1.11 in our experiments.

We report our results in Tables 1, 2, 3 and 4 below. We abbreviate the robust model results as

ROB, and those with the expected return maximizing stochastic programming models as STOCH. In

the first three tables we have m = 20 risky assets plus the riskless asset and 3600 scenario paths. In

Table 1, we summarize the results with the two-period models without transaction costs. In Table

2 and Table 3, we summarize our experimentation with two-period models with transaction costs of

ν = µ = 0.01 and ν = µ = 0.001, respectively. Table 4 gives results for the three-period model without

transaction costs where we used m = 10 risky assets in addition to the riskless asset, and we have

carried out 10 major simulations with K = 300 as the models become too large and time-consuming.

Therefore, in Table 4, our sample is size 3000.

We can summarize our findings as follows:

• It is clear that the robust models indeed diminish the variability of the final portfolio value

significantly as the value of λ is increased. In fact, the decrease in the standard deviation of the

portfolio value vstd from the expected return maximizing stochastic model to the robust model

seems to be a linear function of λ at least until a certain value of λ around 10. The reduction in
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the loss frequency is even more pronounced, being almost always equal to zero in the significant

loss case, while the risk-neutral optimal portfolio may result in heavy losses.

• The robust portfolios of Table 1 display an empirical probability of a gain exceeding the riskless

investment strategy comparable (in fact superior) in all cases to that of the risk-neutral invest-

ment strategy. Combined with the much reduced risk of losses (as well as the amount of loss at

stake) the robust investment strategy appears to be preferable for most investors.

• Pushing λ to larger values (we have reported results in Table 1 with λ = 50 on two-period

models) makes the robust portfolio almost mimic a riskless investment where the riskless asset

constitutes more than 90 percent of the portfolio composition.

• In Tables 2 and 3 we have reported results with different transaction costs. The results of Table

2 reveal that although the robust models still fulfill their function of diminishing variability in

portfolio value and loss frequencies, the robust portfolios yield a relatively smaller chance of

value appreciation beyond the riskless investment compared to the risk-neutral strategy; c.f. the

final column of the tables. However, this result is to be expected under the relatively high level of

transaction costs as in the Table 2 experiments under the increasingly riskier market conditions.

In Table 3 we diminish the transaction costs tenfold, and obtain robust investment strategies

with reduced variability as usual, and with a higher chance of value appreciation beyond the

riskless return.

• From Table 4 we notice that we can achieve significant reductions in the variability of portfolio

value at the end of the three-period planning horizon while preserving a considerable chance of

exceeding the riskless return.

Clearly, these observations serve to answer in the affirmative the two questions we posed above.

Finally, in Figure 1 we plot the vavg versus the vstd values for a typical problem with m = 21, 3600

scenario paths and γ = 0.33, using λ values varying from 1 to 8. We refer to the resulting trade-off

curve as the “Experimental portfolio value versus risk trade-off curve”. It is reassuring to be able

to display – albeit only experimentally —a curve reminiscent of efficient mean-variance frontiers à la

Markowitz.

7 Conclusions

In this paper we developed and tested under simulated market conditions, robust multi-period (two

and three- stage) portfolio selection models based on penalizing a downside-risk term while maximizing

the expected end-of-horizon portfolio value. Detailed testing of the robust investment policies under

the rolling horizon simulation mode revealed that the proposed models are indeed robust even in

adverse market conditions in the sense of reducing the variability of the final portfolio value and

the loss probability significantly while maintaining the chance of a decent end-of-period return. The

robust models correctly identify a risk-return trade-off, giving a chance to the individual investor to
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vmin vmax vavg vstd Pl Psl Psa

γ = 0.33

ROB(λ = 3) 0.908 1.48 1.126 0.068 0.021 0 0.642

ROB(λ = 5) 0.965 1.42 1.12 0.045 0.004 0 0.654

ROB(λ = 50) 0.991 1.197 1.111 0.022 1.98× 10−4 0 0.653

STOCH 0.573 1.975 1.136 0.17 0.197 0 0.537

γ = 0.25

ROB(λ = 3) 0.846 1.632 1.13 0.084 0.033 0 0.632

ROB(λ = 5) 0.935 1.53 1.12 0.05 0.005 0 0.644

ROB(λ = 50) 1.000 1.189 1.11 0.021 0 0 0.634

STOCH 0.462 2.365 1.142 0.233 0.272 0.04 0.513

γ = 0.216

ROB(λ = 3) 0.808 1.74 1.133 0.096 0.041 0 0.628

ROB(λ = 5) 0.923 1.616 1.122 0.055 0.006 0 0.64

ROB(λ = 50) 1.003 1.194 1.11 0.021 0 0 0.634

STOCH 0.402 2.659 1.147 0.275 0.307 0.063 0.502

γ = 0.2

ROB(λ = 3) 0.788 1.838 1.135 0.104 0.045 1.98× 10−4 0.62

ROB(λ = 5) 0.914 1.677 1.122 0.058 0.006 0 0.641

ROB(λ = 50) 0.942 1.225 1.107 0.02 0.001 0 0.622

STOCH 0.507 2.302 1.125 0.224 0.303 0.052 0.504

Table 1: Two-Period Models: Numerical Results without Transaction Costs, with ωmax = 1.2, κ =

0.05 and 3600 scenario paths.

position her/himself on an “experimental” trade-off curve by the choice of the preference parameter

λ.
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vmin vmax vavg vstd Pl Psl Psa

γ = 0.33

ROB(λ = 3) 0.93 1.23 1.105 0.015 0.003 0 0.43

ROB(λ = 5) 1.086 1.164 1.106 0.006 0 0 0.44

STOCH 0.668 2.23 1.124 0.190 0.253 0.025 0.493

γ = 0.25

ROB(λ = 3) 0.878 1.277 1.104 0.021 0.007 0 0.42

ROB(λ = 5) 1.08 1.163 1.106 0.007 0 0 0.432

STOCH 0.567 2.783 1.127 0.258 0.322 0.076 0.485

γ = 0.216

ROB(λ = 3) 0.828 1.402 1.105 0.028 0.014 0 0.416

ROB(λ = 5) 1.042 1.169 1.106 0.008 0 0 0.436

STOCH 0.509 3.214 1.126 0.304 0.364 0.117 0.468

γ = 0.2

ROB(λ = 3) 0.807 1.476 1.105 0.033 0.017 0 0.424

ROB(λ = 5) 0.993 1.173 1.105 0.01 1.98× 10−4 0 0.44

STOCH 0.478 3.498 1.131 0.329 0.376 0.136 0.468

Table 2: Two-Period Models: Numerical Results with Transaction Costs µ = ν = 0.01, with ωmax =

1.2, κ = 0.05 and 3600 scenario paths, 50 major simulations and K = 100.
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vmin vmax vavg vstd Pl Psl Psa

γ = 0.33

ROB(λ = 3) 0.903 1.712 1.114 0.056 0.011 0 0.532

ROB(λ = 5) 1.019 1.258 1.107 0.013 0 0 0.5

STOCH 0.711 2.034 1.136 0.185 0.235 0.01 0.513

γ = 0.25

ROB(λ = 3) 0.866 1.966 1.117 0.075 0.019 0 0.531

ROB(λ = 5) 1.023 1.197 1.107 0.013 0 0 0.492

STOCH 0.614 2.808 1.15 0.256 0.302 0.045 0.507

γ = 0.216

ROB(λ = 3) 0.832 2.254 1.12 0.093 0.027 0 0.533

ROB(λ = 5) 1.011 1.198 1.107 0.013 0 0 0.49

STOCH 0.515 3.243 1.159 0.303 0.329 0.081 0.503

γ = 0.2

ROB(λ = 3) 0.809 2.411 1.121 0.104 0.031 0 0.529

ROB(λ = 5) 0.999 1.198 1.107 0.013 1.98× 10−4 0 0.497

STOCH 0.484 3.530 1.164 0.329 0.343 0.096 0.500

Table 3: Two-Period Models: Numerical Results with Transaction Costs µ = ν = 0.001, with ωmax =

1.2, κ = 0.05 and 3600 scenario paths, 50 major simulations and K = 100.
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vmin vmax vavg vstd Pl Psl Psa

15625 scenario paths

ROB 0.959 1.499 1.149 0.066 0.006 0 0.349

STOCH 0.653 2.353 1.23 0.233 0.146 0.006 0.577

27000 scenario paths

ROB 0.964 1.552 1.162 0.058 6.64× 10−4 0 0.422

STOCH 0.612 1.859 1.147 0.160 0.189 0.013 0.45

Table 4: Three-Period Model: Numerical Results without Transaction Costs, m = 10, with ωmax =

1.2, κ = 0.05, γ = 0.2 and λ = 100, 10 major simulations and K = 300.
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