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Abstract

The interaction of quantity and quality performance in a factory is clearly of great
economic importance. However, there is very little quantitative analytical literature
in this area. This thesis is an essential early research step in analyzing how production
system design, quality, and productivity are inter-related in transfer lines. We develop
a new Markov process model for machines with both quality and operational failures,
and we identify important differences between types of quality failures. We present
analytic models, solution techniques, performance evaluations, and validation of two-
machine systems as well as longer transfer lines. Through numerical studies, we
have investigated some of the conventional wisdom on this interaction, and we have
found that the wisdom holds only under specific conditions, and we show that the
conventional wisdom is wrong under other conditions. We therefore anticipate that
more such research will have a dramatic effect on the performance of factories, and
we propose promising research directions.

Thesis Supervisor: Stanley B. Germanin
Title: Senior Research Scientist
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Chapter 1

Introduction

1.1 Motivation

During the past three decades, the success of the Toyota Production System has

spurred much research in manufacturing systems design. Numerous research papers

have tried to explain the relationship between production system design and produc-

tivity, so that they can show ways to design factories to produce more products on

time with less resources (including people, material, space, and equipment). At the

same time, topics in quality research have also captured the attention of practitioners

and researchers since the early 1980s. The recent popularity of Statistical Quality

Control (SQC), Total Quality Management (TQM), and Six Sigma has demonstrated

the importance of quality.

These two fields, Productivity and Quality, have been extensively studied and

reported separately in both the manufacturing systems research literature and the

practitioner literature, but there is a lack of research in their intersection. The need for

such work was recently described by authors from the GM Corporation based on their

experience [Inman et al., 2003]. All manufacturers must achieve high productivity and

high quality at the same time to maintain their competitiveness.

Toyota Production System advocates admonish factory designers to combine in-

spections with operations. In the Toyota Production System, the machines are de-

signed to detect abnormalities and to stop automatically whenever they occur. Also,

operators are equipped with means of stopping the production flow whenever they

note anything unusual. (This practice is called jidoka.) Toyota Production System

advocates argue that mechanical and human jidoka prevents the waste that would
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result from producing a series of defective items. Therefore jidoka is a means to

improve quality and increase productivity at the same time [Shingo, 1989], [Toyota

Motors Corporation, 1996]. But this statement is arguable: quality failures are often

such that the quality of each part is independent of the quality of others. This is

the case when the defect takes place due to common (or chance or random) causes

of variations [Ledolter and Burrill, 1999]. In this case, there is no benefit to stop a

machine that has made a bad part because there is no reason to believe that stopping

it will reduce the number of bad parts in the future. In this case, therefore, stopping

the operation does not influence quality but it does reduce productivity. On the other

hand, when quality failures are such that once a bad part is produced, all subsequent

parts will be bad until the machine is repaired (due to special or assignable or sys-

tematic causes of variations) [Ledolter and Burrill, 1999], detecting bad parts and

stopping the machine as soon as possible is the best way to maintain high quality

and productivity.

Zero inventory, or lean production, is another popular buzzword in manufactur-

ing systems engineering. Some lean manufacturing professionals advocate reducing

inventory on the factory floor since the reduction of work-in-process (WIP) reveals

the problems in the production lines [Black, 1991]. In this way, it can help improve

production quality. This is sometimes true: less inventory reduces the time between

making a defect and identifying the defect; thus, it improves the traceability of the

root causes of problems. But it is also true that productivity would diminish signifi-

cantly without stock due to increased blockage and starvation [Burman et al., 1998].

Since there is a tradeoff, there must be optimal stock levels that are specific to each

manufacturing environment. In fact, Toyota recently changed their view on inven-

tory and are trying to re-adjust their inventory levels [Fujimoto, 1999], [Benders and

Morita, 2004].

What is missing in discussions of factory design, quality, and productivity is a

quantitative model to show how they are inter-related. Most of the arguments about

this topic are based on anecdotal evidence or qualitative reasoning that lack a sound

scientific quantitative foundation. The research described here tries to establish such

a foundation to investigate how production system design and operation influence

productivity and product quality by developing conceptual and computational models

of transfer lines and performing numerical experiments.
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1.2 Background and literature review

1.2.1 Importance of quality

Since 1980, industry and academia's interest in quality has grown significantly because

it has been recognized that quality is critical to the competitiveness of companies.

Many studies have been conducted to estimate the importance of quality. Some

studies have tried to find a linkage between high products qualities and companies'

financial performances: for example Hendricks and Singhal [Hendricks and Singhal,

1997], [Hendricks and Singhal, 2001] demonstrate that companies that win quality

awards outperform other firms on operating income measures as well as stock perfor-

mance. Another group of studies attempt to develop economic measures of quality to

find optimal operation policy to minimize total cost [Son and Park, 1987], [Son and

Hsu, 1991], [Nandakumar et al., 19931.

1.2.2 Quality models

Quality failures are of two extreme types, depending on the characteristics of vari-

ations that cause the failures. In the quality literature, these variations are called

common (or chance or random) cause variations and assignable (or special or un-

usual) cause variations [Montgomery, 1991].

Figure 1-1 shows the types of quality failures and variations. Common cause

failures are those in which the quality of each part is independent of that of the others.

Such failures occur often when an operation is sensitive to external perturbations like

a random defect in raw material or the operation uses a new technology that is difficult

to control. This is inherent in the design of the process and cannot be removed. Such

failures can be represented by independent Bernoulli random variables, in which a

binary random variable indicating whether or not the part is good is chosen each time

a part is operated on. A good part is produced with probability ir, and a bad part

is produced with probability 1 - 7r. The occurrence of a bad part implies nothing

about the quality of future parts, so no permanent changes can have occurred in the

machine. For the sake of clarity, we call this a Bernoulli-type quality failure. Most of

the quantitative literature on inspection allocation assumes this kind of quality failure

[Raz, 1986], [Lee and Unnikrishnan, 1998]. In this case, if bad parts are destined to

be scrapped, it is useful to catch them as soon as possible because the longer before

they are scrapped, the more they consume the capacity of downstream machines and
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buffers. However, there is no reason to stop a machine that has produced a bad part

due to this kind of failure.

The quality failures due to assignable cause variations are those in which a quality

failure happens only after a change occurs in the machine. In that case, it is very

likely that once a bad part is produced, all subsequent parts will be bad until the

machine is repaired. Here, there is much more incentive to catch defective parts

and stop the machine quickly. In addition to minimizing the waste of downstream

capacity, this strategy minimizes the further production of defective parts. For this

kind of quality failure, there is no inherent measure of yield because the fractions of

parts that are good and bad depend on how soon bad parts are detected and how

quickly the machine is stopped for repair. In this thesis, we call this a persistent-type

quality failure. Most quantitative studies in Statistical Quality Control are dedicated

to finding efficient inspection policies (sampling interval, sample size, and others) to

detect this type of quality failure [Woodall and Montgomery, 1999]. In reality, there

may also be cases where failures occur independently but at different rates, depending

on what state the machine is in. These are referred to here as multiple-yield quality

failures. Specifically, the machine may produce defective parts with a certain small

probability p when it is in good working order; when it is in need of adjustment,

however, it might produce defective parts with a certain probability q > p.

It can be argued that the quality strategy of the Toyota Production System, in

which machines are stopped as soon as a defective part is detected, is implicitly based

on the assumption of the persistent-type quality failure.

Persistent

I _quality failrs
Bernoulli-
type quality
failure

,Repair takes place
.-- -Upper

Specification
Limit

... . . . ... Mean

'Random Variation Lo
Specification

Assigariatle i V~on Limit
(tool breakage) takes

place

Figure 1-1: Types of Quality Failures
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1.2.3 System yield

System yield is defined here as the fraction of input to a system that is transformed

into output of acceptable quality. This is an important metric because customers

observe the quality of products only after all the manufacturing processes are done

and the products are shipped. The system yield is a complex function of how the

factory is designed and operated, as well as of the characteristics of the machines.

Some influencing factors include individual operation yields, inspection strategies,

operation policies, and buffer sizes. Comprehensive approaches are needed to manage

system yield effectively. This research aims to develop mathematical models to show

how the system yield is influenced by these factors.

1.2.4 Quality improvement strategy

System yield is a complex function of various factors such as inspection, individual

operation yields, buffer size, operation policies, and others. There are many ways to

affect the system yield discussed in the literature.

Inspection strategy

Inspection policy has received the most attention in the literature. Research on

inspection policies can be divided into optimizing inspection parameters at a single

station and the inspection station allocation problem. The former topic has been

investigated extensively in the Statistical Quality Control (SQC) literature [Duncan,

1956], [Montgomery, 1980], [Montgomery, 1991], [Ho and Case, 1994], [Keats et al.,

1997], [Wooddall and Montgomery, 1999]. Here, optimal SQC parameters such as

sampling size, control limits, and frequency are sought for an optimal balance between

the inspection cost and the cost of quality.

The latter research looks for the optimal location and scope of inspection along

production lines [Raz, T., 1986], [Peters and Williams, 1987], [Shin et al., 1995]

[Lee, Unnikrishan, 1998], [Emmons and Rabinowitz, 2002]. Most of the literature on

inspection allocation assumes Bernoulli quality failures. The objective of the research

is to find optimal inspection locations and scopes to screen out defective parts as

efficiently as possible. Existing research does not attempt to identify machines in bad

states in order repair them to prevent the generation of defects in the future.
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Improving individual operation yield

Improving individual operation yield is another important way to increase the system

yield. Studies in this field try to stabilize the process either by finding root causes

of variation and eliminating them, or by making the process insensitive to external

perturbations. The former topic has numerous qualitative research papers in the fields

of Total Quality Management (TQM) [Besterfield et al., 2003] and Six Sigma [Pande

and Holpp, 2002]. Quantitative research is more oriented toward the latter topic.

Robust engineering [Phadke, 1989] is an area that has gained substantial attention.

1.2.5 Lean manufacturing, people, and quality

The design and the operation of manufacturing systems affect the people involved in

the production line. They also indirectly influence the performance of the manufac-

turing systems by changing the behavior of workers in the production lines [Schultz

et al., 1998], [Lieberman and Demeester, 1999]. Experts in lean manufacturing argue

that inventory reduction is an effective means to improve quality; they assert that

the reduction of inventory leads to an early detection of quality failures. Early de-

tection prevents defective parts moving downstream in the manufacturing line from

consuming capacities of the downstream machines, and facilitating the identification

of the root cause of the problems [Shingo, 1989] , [Monden, 1998], [Alles et al., 2000].

This allows people in the manufacturing lines to develop a better understanding of

the manufacturing processes and to gives them information required for operations

improvement (i.e., kaizen). Also, with less inventory, the manufacturing lines be-

come more vulnerable to the failures of a machine in the line: the manufacturing line

stops more frequently with less inventory. Therefore, workers feel more pressure to

prevent any kind of machine failures. On the other hand, it is also true that produc-

tivity would diminish significantly without inventory due to increased blockage and

starvation [Burman et al., 1998]. Since there is a tradeoff in the inventory reduction

between vulnerability of a manufacturing line to a machine failure and workers' learn-

ing speed, there must be optimal stock levels that are specific to each manufacturing

environment.

Another group of researchers and practitioners argue that U-shaped cellular man-

ufacturing lines, which are widely used in lean manufacturing, are better than straight

lines for producing higher quality products since there are more points of contact be-
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tween operators. Also there is less material movement, and there are other reasons.

(see Cheng, [Cheng et al., 2000].)

1.2.6 Stochastic modeling of manufacturing systems

A number of methods have been developed for analyzing production lines with un-

reliable machines and finite buffers. Dallery and Gershwin [Dallery and Gershwin,

1992] survey the literature on the stochastic modeling of manufacturing systems. Re-

cent books include Buzacott and Shanthikumar [Buzacott and Shantikumar, 1993],

Gershwin [Gershwin, 1994], and Altiok [Altiok, 1997]. Early analytic work focused

on various two-machine models. The synchronous discrete model was first introduced

by Buzacott [Buzacott, 1967]. Obtaining exact analytical solutions of asynchronous

models of production lines with deterministic processing times is in general not feasi-

ble. As a result, continuous models, which were first proposed by Zimmern [Zimmern,

1956], have been used to approximate the behavior of asynchronous models. The con-

tinuous models provide a good approximation of the original asynchronous model so

long as the average times to failures are significantly larger than the processing times,

which is usually the case in production systems.

Analysis of longer lines is based on approximation methods. Among these meth-

ods, the decomposition method developed by Gershwin [Gershwin, 1987] in the con-

text of the synchronous model appears to be quite accurate. The decomposition

equations proposed by Gershwin were more efficiently solved by the DDX-algorithm,

which was formulated by Dallery, David, and Xie [Dallery et. al, 1989]. This was not

directly applicable to systems in which machines had different processing times. A de-

composition technique for a continuous long line with different operation speeds and

operation dependent failures was proposed by Glassey and Hong [Glassey and Hong,

1993], and it was improved by Burman [Burman, 1995]. The decomposition method

was extended to assembly/disasembly systems in DiMascolo, David, and Dallery [Di-

Mascolo et al., 1991]. Recent works have extended these methods to systems with

closed loops [Levantesi, 2001].
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1.3 Thesis Outline

The rest of this thesis is organized as follows. In Chapter 2 we introduce a taxonomy,

quality failure models, fundamental modeling assumptions, and the basic structure

of the modeling techniques used throughout the thesis. Also the analysis and the

validation of 2-machine-i-buffer systems with zero buffer size and infinite buffer size

are presented. In Chapter 3, we provide modeling, solution techniques, performance

measures evaluation, and validation of 2-machine-i-finite buffer (2M1B) systems. Dis-

cussions on the behavior of a 2M1B line based on numerical experiments are provided

in Chapter 4. Chapter 5 provides long line analysis using the decomposition tech-

nique. Chapter 6 introduces a modeling technique for multiple-yield quality failures,

and with this technique, the optimality of stopping policy incorporated into Jidoka

practice is discussed. Future research plans are shown in Chapter 7. Chapter 8

provides summary of the contribution of this research and concludes the thesis.
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Chapter 2

Fundamental Models

2.1 Taxonomy and modeling assumptions

In this section, we specify notation, terminologies, and assumptions used in this thesis

to model a production line with quality failures. More detailed explanation can be

found in Schick [Schick et al., 2004].

2.1.1 Definition of terminology

" A flow (or transfer) line: a manufacturing system with a very special structure.

It is a linear network of service stations or machines (M 1 , M 2 , ... , Mk) separated

by buffer storages (B 1 , B 2 , ..., Bk-i). Material flows from outside the system

to M 1 , then to B 1, then to M 2 , and so forth until it reaches Mk after which it

leaves. Figure 2-1 depicts a flow line. The rectangles represent machines and

the circles represent buffers.

BM --46& M 4M,5

Figure 2-1: Five-Machine Flow Line

" Stationary processes: stationarity means that the probabilistic properties of a

system do not change over time.

" Saturated system: a system where inexhaustible supply of workpieces is available

upstream of the first machine in the line, and an unlimited storage area is present

downstream of the last machine. Thus, the first machine is never starved, and
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the last machine is never blocked. This is a widespread assumption in the flow

line literature [Dallery and Gershwin, 1992]. In reality, vendors sometimes fail to

deliver, and sales are sometimes less than expected. An easy approach to handle

this would be to use the first machine in the model to represent the arrivals of

material and the last machine of the model could represent the demand or sales

process [Dallery and Gershwin, 1992].

" Open system: a queuing system where arrival and departure are independent.

" Processing time variations: the cycle time is the time required for a single op-

eration on an isolated machine. Cycle times are considered deterministic when

they do not vary from one part to the next on a specific process. Stochastic

cycle times vary randomly from part to part. Flow lines are usually designed

to produce similar or identical products in large quantities. Unless work cen-

ters jam or fail completely, they usually perform their task with a low level of

variability when operational.

" Synchronous line: a production line where cycle time of each machine is deter-

ministic and identical, and operations start and stop together.

" Asynchronous line: a production line where cycle time of each machine may

differ from machine to machine, and operations do not start and stop together.

" Continuous model: continuous models treat material travelling through the

production system as if it were a continuous fluid. In this model, the quantity

of material in a buffer is a real number ranging from zero to the capacity of the

buffer. Figure 2-2 shows the two-machine-one-buffer continuous model where

the machines, buffer and discrete parts are represented as valves, a tank, and

a continuous fluid respectively. These models are useful approximations to

discrete material systems as long as cycle times are relatively small in relation

to failure and repair times and buffers are of a reasonable size. Continuous

models assume deterministic cycle times.

" Buffer transit time: buffer transit time is the time from when a part enters an

empty buffer that is not blocked by a downstream machine until that part is

able to leave the buffer. Most of the flow line models in the literature as well

as this study, assume a zero transit time in the buffer.
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M K B -- M2 M2l

Figure 2-2: Two-Machine-One-Buffer Continuous Model

" Conservation of flow: workpieces are not destroyed or rejected at any stage in

the line. Defective parts identified from inspection are marked and reworked or

scrapped later in a specified area. This is the case with the automotive assembly

lines where parts are bulky.

" Operational failure: failures like motor burn-outs which cause machines to stop

producing parts.

* Quality failures: the events that a defective parts is produced. These may

happen due to defective raw materials as well as failures like tool damage at the

operation.

" Operation dependent failures: machines fail only while processing workpieces.

Thus, if Machine Mi is operational but starved or blocked, it can not fail.

" Independent operational failures: each machine's operational failure process is

assumed to be independent of the state of the rest of the system. This excludes

such event as a power failure that affects the whole line.

" Unlimited repair personnel: the repair process at each machine depends only

on the characteristics of the machine, and not on any system-wide properties

(i.e., infinite number of repair persons).

" Non-self-correcting process: once an either of operational failure or quality fail-

ure has occurred, the process can be returned to the good condition only by

human intervention.

" Common (or chance or random) cause variation: variation that is inherent

in the design of the process and cannot be removed. Such variations occur

often when an operation is sensitive to external perturbations like imperfect

raw material.
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" Assignable (or special or random) cause variation: variation due to a specific,

identifiable cause which changes the process mean or variance.

" Bernoulli quality failures: quality failures due to common cause variations.

Since no permanent changes have occurred in the machine, the occurrence of a

bad part implies nothing about the quality of future parts.

" Persistent quality failures: quality failures due to assignable cause variations.

This kind of quality failures only happen after a change occurs in the machine

or raw material. In that case, once a bad part is produced, all subsequent parts

will be bad until the machine is repaired.

" Multiple- Yield failures: quality failures that occur independently but at different

rates, depending on what state the machine is in. For example, the machine may

produce defective parts with a certain small probability p when it is in good

working order; when it is in need of adjustment, however, it might produce

defective parts with a higher probability q > p.

" Statistical correlation among different quality failures: specific failures are as-

sociated with specific features of a part. Distinct failures may or may not be

correlated with each other depending on the relationship between features, as

well as the sequence in which features are processed by machines:

- Bias (mean-shift) correlation. when a single machine performs several

tasks, or several tools are mounted on a single head, it is possible that a

single misalignment could result in a consistent shift across several different

features.

- Variance correlation. when a single machine performs several tasks, or

several tools are mounted on a single head, it is possible that a single source

of imprecision (e.g. a loose arm) could result in several different features

being out of specification, though not necessarily in the same direction.

- Cumulative effects. in a sequence of operations, it is possible that an

upstream failure results in the malfunctioning of downstream operations as

well, or that a downstream failure results in the corruption of the product of

upstream operations. Thus, multiple failures may occur due to a single root

cause even when operations are performed by physically distinct machines.
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" Full blockage: machine Mi is fully blocked at time t if one of downstream machine

is down and all buffers between this machine and machine Mi are full.

" Full starvation: machine Mi is fully starved at time t if one of the upstream

machines is down and all buffers between this machine and machine Mi are

empty.

" Partial blockage: machine Mi is partially blocked at time t if one of downstream

machine (Mj) is working slower than Mi (i.e. pt < pz) and all buffers between

Mi and Mi are full. In this case, failure probability rates and inspection rates

need to be reduced. (e.g. p = pitl, g = gij'!, and fb = fiL!). Partial blockage

takes place only with continuous models.

" Partial starvation: machine Mi is partially starved at time t if one of upstream

machine (Mj) is working slower than Mi (i.e. pj < pi) and all buffers between

Mj and Mi are empty. In this case, failure probability rates and inspection

rates need to be reduced (e.g. pb = pi-'!, g, = gi-AL, and f, = f,-L). Partial

starvation takes place only with continuous models.

" Operation dependent inspection: inspection is carried out only while a machine

is processing workpieces. Thus, if Machine Mi is operational but starved or

blocked, inspection is not performed.

" Reliability of inspection: there axe two kinds of errors in inspection.

- Type I error: error that a good item is classified as defective.

- Type II error: error that a defective item is classified as good.

2.1.2 Modeling assumptions

In this thesis we assume:

* Stationary, saturated, and open systems.

" Continuous models which have deterministic cycle times and full/partial block-

age/starvation.

* Buffer transit time is zero.
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" Material flow is conserved: defective parts are reworked or scrapped later in a

specified area. No workpieces are destroyed in the line.

" Each machine can have operational failures and quality failures and these fail-

ures are operation dependent.

" All the failures and repairs are uncorrelated.

" Nondestructive and operation dependent inspection which has Type II errors

only.

" Only reactive actions on the failures excluding any of learning effect to people.

2.2 Single machine model

There are many possible ways to characterize the states of a machine for the purpose

of simultaneously studying quality and quantity issues. Here, we model a machine

as a discrete state, continuous time Markov process. Material is assumed continuous,

and Pi is the speed at which Machine i processes material while it is operating and

not constrained by the other machine or the buffer. It is a constant, in that pi does

not depend on the repair state of the other machine or the buffer level.

Figure 2-3 shows the proposed state transitions of a single machine with persistent-

type quality failures. In the model, the machine has three states.

" State 1: The machine is operating and producing good parts.

" State -1: The machine is operating and producing bad parts, but the operator

does not know this yet.

" State 0: The machine is not operating.

The machine therefore has two different failure modes (i.e. transition to failure

states from state 1):

" Operational failure: transition from state 1 to state 0. The machine stops

producing parts due to failures like motor burnout.

" Quality failure: transition from state 1 to state -1. The machine stops producing

good parts (and starts producing bad parts) due to a failure like sudden tool

damage.
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Figure 2-3: States of a Machine

When a machine is in state 1, it can fail due to a non-quality-related event. It goes

to state 0 with probability rate p. After that an operator fixes it, and the machine

goes back to state 1 with probability rate r. Sometimes, due to an assignable cause,

the machine begins to produce bad parts, so there is a transition from state 1 to state

-1 with a probability rate of g. Here g is the reciprocal of the Mean Time To Quality

Failure (MTQF). A more stable operation leads to a larger MTQF and a smaller g.

The machine, when it is in state -1, can be stopped for two reasons: it may

experience the same kind of operational failure as it does when it is in state 1; or

the operator may stop it for repair when he learns that it is producing bad parts.

The transition from state -1 to state 0 occurs at probability rate f = p + h where h

is the reciprocal of the Mean Time To Detect (MTTD). A more reliable inspection

leads to a shorter MTTD and a larger f. (The detection can take place elsewhere,

for example at a remote inspection station.) Note that this implies that f > p. All

the indicated transition times are assumed to follow exponential distributions.

The machine state definition illustrated in Figure 2-3 is a simplification of a more

generalized machine state definition shown in Figure 2-4. More complex machine state

definition leads to substantially more complicated internal transition equations and

boundary conditions discussed in Chapter 3. Therefore, for simplicity, we assume:

" A machine in a bad condition (i.e., state -1) can be returned to the good condi-

tion (i.e., state 1) only through repair (i.e., state 0). Therefore, a machine does

not have direct state transition from state -1 to state 1 (i.e., q = 0).

" When a machine is under repair (i.e., state 0, state 0', and state 0"), an op-

erator can not tell whether the machine is down due to a quality failure or an
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operational failure. Therefore, whenever a machine is under repair, the opera-

tor fixes the machine completely so that the machine goes back to state 1. As

a result, the repair rates of the three down states in Figure 2-4 are identical

(r = r' = r").

e Operational failure rates does not depend upon the state of the machine (either

state 1 or state -1). Thus, p = p' in Figure 2-4

0 0"i

P
P'

r

of

Figure 2-4: States of a Generalized Machine

To determine the production rate of a single machine, we first determine the

steady-state probability distribution. This is calculated based on the probability

balance principle: in steady state, the probability rate of leaving a state is the same

as the probability rate of entering that state. We have

(g + p)P(l) = rP(O) (2.1)

fP(-1) = gP(1) (2.2)

rP(O) = pP(1) + f P(-1) (2.3)

The probabilities must also satisfy the normalization equation:
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P() + P(1) + P(-1) = 1

The solution of (2.1)-(2.4) is

1
P(1) = (2.5)

1+ (p+g)/r+g/f

P(O) = -(~~r(2.6)1 + (p+g)/r+g/f

P(-1) = ( ) (2.7)
1 + (p + g)/r + g/f

The total production rate, including good and bad parts, is

1+± g/f
PT = A(P(1) + P(-1)) = A + + /f (2.8)

1 + (p + g)/r + g/f

The effective production rate, the production rate of good parts only, is

PE = IP(1) = I (2.9)
1 + (p + g)/r + g/f

The yield is

PE _ P(1) f (.0
PE + PT P(1) + P(-1) f + 9

2.3 Simulation Model

Discrete event simulation models are needed for the validation of the analytic models

developed from the research. A new discrete-event-simulation based on C++ (Qsim)

has been developed and tested to ensure accuracy.

For all the numerical experiments, we used a transient period of 10,000 time

units followed by 1,000,000 time units of data collection period. This ensures that

statistically significant number of events are generated since the typical value of the

mean time to operational failures or quality failures is around 100 time units.
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2.4 Special two-machine-one-buffer (2M1B) model

2.4.1 Infinite buffer case

An infinite buffer case is a special 2M1B line in which the size of the Buffer (B) is

infinite. This is an extreme case in which the first machine (M 1 ) never suffers from

blockage. To derive expressions for the total production rate and effective production

rate, we observe that when there is infinite buffer capacity between two machines

(M1, M 2), the total production rate of the 2M1B system is a minimum of the total

production rates of M, and M 2 . The total production rate of machine i is given by

(2.8), so the total production rate of the 2M1B system is

P** = min __(1_+ i/1h) p A 2 (1+ 92 /f 2 ) (2.11)
T+ g1)/rl + 1/f ' 1 + (P2 + g2)/r2 + 92/f2]

The probability that machine Mi does not add non-conformities is

Pi) _ fi
Yi = Pi) -= -A(2.12)

Pi (1) + Pi(-1) fA + i

Since there is no scrap and rework in the system, the system yield is

fhf2 (2.13)
(fi + g1)(f2 + 92)

As a result, the effective production rate is

f f2 T (2.14)PEO (h + 91) (f2 + 92) P

The effective production rate evaluated from (2.14) has been compared with a

discrete-event, discrete-part simulation. The continuous model is a good approxi-

mation since Table 2.1 shows good agreement. The parameters for theses cases are

shown in Appendix A.

2.4.2 Zero buffer case

The zero buffer case is one in which there is no buffer space between the machines.

This is the other extreme case where blockage and starvation take place most fre-

quently.
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Case # P"(Analytic) PE (Simulation) %Difference
1 0.762 0.761 0.17
2 0.708 0.708 0.00
3 0.657 0.657 -0.00
4 0.577 0.580 -0.50
5 0.527 0.530 -0.42
6 0.745 0.745 0.01
7 0.762 0.760 0.30
8 1.524 1.522 0.14
9 0.762 0.762 0.00
10 1.524 1.526 -0.13

Table 2.1: Infinite Buffer Case

In the zero-buffer case in which machines have different operation times, whenever

one of the machines stops, the other one is also stopped. In addition, when both of

them are working, the production rate is min[p1, A2]. To calculate the production

rates, consider a long time interval of length T during which M, fails m, times and

M2 fails m2 times. If we assume that average time to repair the M1 is 1/ri and

average time to repair M2 is 1/r 2, then the total system down time will be close to

D =M + m. Consequently, total up time will be approximately

m1 M2U = T - D = T - (- + -2) (2.15)
r1  r 2

Since we assume operation-dependent failures, the rates of failure are reduced for

the faster machine. Therefore,

i= pi "in(,1,A2) g=gi minGn 1,/A2) and fb = g, min(A, ,2)

The reduction of pi is explained in detail in [Gershwin, 1994]. The reductions of

gi and fi are done for the same reasons.

Table 2.2 lists the possible working states a, and a 2 of M, and M2. The third

column is the probability of finding the system in the indicated state. The fourth and

fifth columns indicate the expected number of transitions to down states during the

time interval from each of the states in column 1.

From Table (2.2), the expectations of mi and m2 are

1 1 Ub(b+b
Em, = L L Emi(ai, a 2) = 1 11

"j=-1 22-- 1,g (2.16)1 = 
Uf bEm2 = E EM2 (al, a2) = Uf2(2 +92 2.6

aj=-1 a2=-1 2+2
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a, a2 Probability ir(ai, a 2) Em, (ai, a2) Em2(ai, a 2)
1 1 f~gf+~p!Utr(1,1) p!Uir(1, 1)

1 -1 4bU~r(1, -1) fbU~r(l, -1)

-1 1 ~f'Uir(-l, 1) p!Ur(-l, 1)

-1 -1 ffUr(-1, -1) f2U7r(-1, -1)

Table 2.2: Zero-Buffer States, Probabilities, and Expected Numbers of Events

By plugging them into equation (2.15), we find the total production rate:

= _ Min[ji, 112]
PTO f I (pI+ fb(pb+gl)
1 + +g')

The effective production rate is

E =b b

(2.17)

(2.18)

The comparison with simulation is shown in Table 2.3. The parameters are in

Appendix A.

Case # PE(Analytic) PI(Simulation) %Difference
1 0.657 0.662 -0.73
2 0.620 0.627 -1.15
3 0.614 0.621 -1.03
4 0.529 0.534 -0.99
5 0.480 0.484 -0.77
6 0.647 0.651 -0.57
7 0.706 0.712 -0.91
8 1.377 1.526 -9.17
9 0.706 0.711 -0.77
10 1.377 1.380 -0.22

Table 2.3: Zero Buffer Case
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Chapter 3

Two-Machine-One-Finite-Buffer

(2M1B) Line

In this chapter, we present modeling, solution techniques, and validation of the two-

machine-one-finite-buffer case. The two-machine line is the simplest non-trivial case

of a transfer line. It is used in decomposition approximations of longer lines. (See

Chapter 5.)

3.1 Modeling

3.1.1 State definition

M, BI M 2

Figure 3-1: Two-machine-one-buffer line

The state of the 2M1B line illustrated in Figure 3-1 is (x, a,, a 2) where:

" x: the total amount of material in buffer B. 0 < x < N.

" a 1 : the state of M (a1 = -1,0, or, 1).

" a 2 : the state of M 2 (a 2 = -1,0, or, 1).
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The parameters of machine Mi are Ai, rj, pi, fi, gi as explained in section 2.2, and

the buffer size is N. The probabilistic behavior of the 2M1B is described by proba-

bility density functions (e.g., f(x, 1, 1)) when buffer B is neither empty nor full, and

by probability masses (e.g., P(0, 1, 1)) when the buffer is either empty or full. If we

find all the probability density functions and the probability masses, we can calculate

the performance measures of the 2M1B line, since these are expressed in terms of

the probability density functions and the probability masses. The probability density

functions and probability masses are to be found by solving the internal transition

equations and the boundary transition equations presented below.

3.1.2 Internal Transition Equations

In this section, we present equations describing behavior of the 2M1B system when

buffer B is neither full nor empty. When buffer B is neither empty nor full, its level

can rise or fall depending on the states of adjacent machines. Since it can change

only a small amount during a short time interval, it is reasonable to use a continuous

probability density f(x, a,, a2) and differential equations to describe its behavior.

The probability of finding both machines at state 1 with a storage level between x

and x + Jx at time t + it is given by f(x, 1, 1, t + Jt)Jx, where

f(x, 1, 1, t + it) = {1 - (Pi + g1 + P2 + g2)t}f(x + (A2 - Al)6t, 1,1) (3.1)
+r2Jtf(x - p 1 6t. 1,0) + r16tf (x + 26t, 0,1) + o(6t)

Except for the factor of Jx, the first term is the probability of transition from

between (x + (A 2 - 1 it)6t, 1, 1) and (x + (A2 - tt1)Jt + Jx, 1, 1) at time t to between

(x, 1, 1) and (x + Jx, 1, 1) at time t + it. This is because

" The probability of neither machine failing between t and t + it is

{1 - (P1 + gi)6t}{1 - (P2 + g 2 )Jt} ~ {1 - (P1 + g1 + P2 + g 2 )Jt} (3.2)

" If there are no failures between t and t + it and the buffer level is between x

and x + Jx at time t + it, then it could only have been between x + (p2 - Ai)Jt

and x + (Ap2 - A1)Jt + Jx at time t.
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The other terms, which represent the probabilities of transition from (1) machine

states (1,0) with buffer level between x--pjit and x-pi1 6t+x and (2) machine states

(0,1) with buffer level between x + A26t and (x + p26t + Jx can be found similarly.

No other transitions are possible. After linearizing, and letting 6t -- 0, this equation

becomes

tOf(x, 1, 1) - t f(x, 1, 1)
S- -(P1+g1+P 2 +g2)f(x, 1, 1)+r 2f (x, 1, 0)+rif(x, 0, 1).

(3.3)
In steady state =0. Then, we have

df(x, 1,1)
(A2 - p1 ) dX - (p1 +g1+P 2 +g 2)f (x, 1, 1) +r 2f(x, 1, 0)+rif(x, 0, 1) = 0 (3.4)

In the same way, the eight other internal transition equations for the probability

density function are

P2f(x, 1, 1) - (1 - (p, + gi + r2)f(x, 1, 0) + f 2f (x, 1, -1)rif(x, 0, 0) = 0dx -(1 1 J\,

(3.5)

92 f (x, 1, 1)+(A2 - i) df(X, 1,1) - (p1 +g+f 2)f(x, 1, -1) +rif (x, 0, -1) = 0 (3.6)
dx

df(x, 0,1)
Pif(x, 1, 1) + p2 dx - (ri + P2 + g2 )f(x, 0, 1) + r2f(x, 0, 0) + fif(x, -1, 1) = 0

(3.7)

Pif(x, 1, 0) +P 2 f(x, 0, 1) - (r1 +r 2)f(x, 0, 0) + f 2f(x, 0, -1)+ fif(x, -1,0) = 0 (3.8)

df(x, 0, -1)
pif(x, 1, -1) +g 2 f (x, 0, 1) - (ri + f 2)f(x, 0, -1) +p2 dx +fif(x, -1, -1) = 0

(3.9)
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gif (X, 1, 1)-(P2 +g 2 -fi)f(x, -1, 1)+(p2-p1) df (x, + 1) r2 f (x, -1, 0) = 0 (3.10)
dx

gif(X, 1, 0) - /ti dx ) - (r 2 + fi)f(x, -1, 0)+P2f (x, -1, 1)+f 2 f(x, -1,-1) = 0
(3.11)

df(x -1,-i) (if)~,1-)0
g1f(x, 1, -1) + g2 f (X, -1,1) + (P2 - Pi) ' ' - (l + f2)f (X, -1, -1) = 0.

dx
(3.12)

3.1.3 Boundary transition equations

While the internal behavior of the system can be described by probability density

functions, there is a nonzero probability of finding the system in certain boundary

states. For example, if p, < A2 and both machines are in state 1, the level of storage

tends to decrease. If both machines remain operational for enough time, the storage

will become empty (x = 0). Once the system reaches state (0, 1, 1), it will remain

there until a machine fails. There are 18 probability masses for boundary states

(P(N, a1 , a 2 ) and P(0, al, a 2) where a, = -1, 0 or 1, and a 2 = -1, 0 or 1).

The boundary behavior depends on which machine is faster ( P1 = A2 or p1 > A2

or p1 < P2). When M1 is faster than M2, the probability masses corresponding to

states with full buffer are greater than those with Mi being slower than M2 (P1 < /12).

Thus, there are three different sets of boundary equations.

Boundary condition for /1 = P2

To arrive at state (0, 0, 1) at time t + 6t when the p1 = A2, the system may have been

in one of five states at time t:

" It could have been in state (0, 1, 1) with an operational failure of M 1. Note

that the M2 could not have failed since it was starved. Therefore the transition

probability is p1 t.

" It could have been in state (0, -1, 1) with a detection of a quality failure at
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M 1 . Again, the M 2 could not have failed since it was starved. Therefore the

transition probability is fict.

" It could have been in state (0,0,1) without repair of M 1 . The corresponding

transition probability is 1 -r,6t since M 2 could not have failed due to starvation.

" It could have been in some internal state (x, 0, 1) where 0 < x < p 26t without

repair of M, and failure of M 2 . The corresponding transition probability is

(1 - ri6t)(1 - (P2 + g2)6t) ~ 1 - (r, + P2 + g2)6t.

* It could have been in state (0, 0, 0) with only repair of M 2 (not M 1 ). The

corresponding transition probability is (1 - rit)r 26t ce r 26t.

If the second order terms are ignored,

P(0, 0, 1, t + 6t) = pitP(0, 1, 1) + f1StP(0, -1,1) + (1 - rit)P(0, 0,1) (3.13)
+{1 - (r, + P2 + 92)Jt} foA6t f(x, 0, 1)dx + r26tP(0, 0, 0).

After the usual analysis, (3.13) becomes

&P(0, 1) = piP(0, 1, 1) - riP(0, 0, 1) + 2 f(0, 0, 1) + f 1P(0, -1, 1) + r2 P(0, 0, 0).
at

(3.14)

In steady state, it becomes as equation (3.15)

pP(0, 1, 1) - r1P(0, 0, 1) + p2f(0, 0, 1) + fiP(0, -1, 1) + r2P(0, 0, 0) = 0. (3.15)

There are 21 other boundary equations derived similarly for L1 = 12:

-(p 1 +g1 + p 2 + g 2 )P(0, 1, 1) + rP(0, 0, 1) = 0. (3.16)

P(0, 1, 0) = 0 (3.17)

92 P(0, 1, 1) - (p1 + gi + f 2)P(0, 1, -1) + r1 P(0, 0, -1) = 0 (3.18)
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-(ri + r2)P(0, 0, 0) = 0

p1P(0, 1, -1) - rP(0, 0, -1) + 92f (0, 0, -1) + fiP(0, -1, -1) = 0 (3.20)

gjP(0, 1, 1) - (fi + P2 + g2 )P(0, -1, 1) = 0 (3.21)

P(0, -1, 0) = 0 (3.22)

91P(0,1, -1)-+-g 2P(0, -1,1) - (fl+ f 2)P(0, -1, -1)= 0 (3.23)

-(Pl+91+ 2 +g2 )P(N, 1, 1) + r2P(N, 1, 0) = 0 (3.24)

P2P(N, 1, 1) - r2P(N, 1, 0) + pif(N, 1, 0) + f 2P(N, 1, -1) + riP(N, 0, 0) = 0 (3.25)

g2 P(N, 1, 1) - (pi + gi + f 2)P(N, 1, -1) = 0 (3.26)

P(N, 0, 1) = 0 (3.27)

-(r, + r2)P(N, 0, 0) = 0 (3.28)

P(N, 0, -1) = 0 (3.29)

giP(N, 1, 1) - (fi + g2 + P2)P(N, -1, 1) + r2P(N, -1, 0) = 0 (3.30)

-r 2P(N, -1, 0) + pi f (N, -1, 0) + f 2P(N, -- 1, -1) + P2P(N, -1, 1) = 0 (3.31)
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giP(N, 1, -1) + g2P(N, -1, 1) - (fi + f 2)P(N, -1, -1) = 0

pif(0, 1, 0) = riP(0, 0, 0) + p2P(0, 1, 1) + f 2P(O, 1, -1)

pif(0, -1, 0) = p2P(0, -1, 1) + f 2P(0, -1, -1)

p2 f(N, 0, 1) = r2P(N, 0, 0) + piP(N, 1, 1) + fiP(N, -1,1)

p2 f(N, 0, -1) = piP(N, 1, -1) + g2P(N, 0, 1) + fiP(N, -1, -1).

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

Boundary condition for pi > P2

When p > p2, 26 boundary equations can be derived similarly. In this case, there

are 4 more boundary equations than in the P1 = P2 cases since it is possible to

reach internal states (x, 1, 1), (x, 1, -1), (x, -1, 1), and (x, -1, -1) (where 0 < x <

(p - p2 )6t) at time t + Rt from the boundary states P(0, a,, a 2), (a, = -1,0,1, and

a 2 = -1,0,1) at time t.

pif(0, 1, 0) = 0

pif (0, -1, 0) = 0

(Pi - p2)f(0, 1, 1) = riP(0, 0, 1)

(P - p2)f(0, 1, -1) = riP(0, 0, -1)

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)

f(0, -1, 1) = 0

f(0, -1, -1) = 0
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pg f(N, 0, 1) = pbP(N, 1, 1) + fbP(N, -1,1)

1 2f (N, 0, -1) = p'P(N, 1, -1) + ff'P(N, -1, -1)

P(0, 1, 1) = 0

P(0, 1, 0) = 0

P(0, 1, -1) = 0

-riP(0, 0,1) + A2f (0, 0,1) + r2P(0, 0, 0) = 0

P(0, 0, 0) = 0

-r1P(0, 0, -1) + p2f(0, 0, -1) = 0

P(0, -1, 1) = 0

P(0, -1,0) = 0

P(0, -1, -1) = 0

-(A + g1 + P2 + g2)P(N, 1, 1) + (pi - P2 )f(N, 1, 1) + r 2 P(N, 1, 0) = 0

(3.43)

(3.44)

(3.45)

(3.46)

(3.47)

(3.48)

(3.49)

(3.50)

(3.51)

(3.52)

(3.53)

(3.54)

p 2P(N, 1, 1) - r2P(N, 1, 0) + pif(N, 1, 0) + f 2P(N, 1, -1) + riP(N, 0, 0) = 0 (3.55)
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g2P(N, 1, 1) - (pi + g, + f 2 )P(N, 1, -1) + (pi -

P(N, 0, 1) = 0

P(N, 0, 0) = 0

P(N, 0, -1) = 0

A 2 )f(N, 1, -1) = 0

g'P(N, 1, 1) - (f + g2 + P2)P(N, -1,1) + (Al - p2 )f(N, -1, 1) + r2P(N, -1, 0) = 0

(3.60)

--r2P(N, -1, 0) + 1pif (N, -1, 0) + f 2P(N, -1, -1) + P2P(N, -1, 1) = 0 (3.61)

g'P(N, 1, -- 1) + g2P(N, -1, 1) - (fl + f 2)P(N, -1, -1) + (p1 - p2)f(N, -1, -1) = 0
(3.62)

Boundary condition for p1 < A 2

Here, the 26 boundary equations for the pi < A2 case are shown.

pif (0, 1, 0) = pP(0, 1,1) + f2P(0, 1, -1)

[i if(0, -1, 0) = p!P(0, -1,1) + f2P(0, -1,-i)

(3.63)

(3.64)

(3.65)p 2f(N, 0, 1) = 0
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p 2f(N, 0, -1) = 0

(A2 - pi)f (N, 1, 1) = r2 P(N, 1, 0)

(/-2 - pi)f(N, -1, 1) = r2P(N, -1, 0)

(3.66)

(3.67)

(3.68)

(3.69)

(3.70)

f(N, 1, -1) = 0

f(N, -1, -1) =0

-(P1 + 91+p+ g)P(0, 1,1) + (ft2 - pi)f(0, 1,1) + riP(0, 0,1) = 0

P(0, 1, 0) = 0

(3.71)

(3.72)

gbP(0, 1, 1)-(p1 +g 1 if)P(0, 1, -1)+(p2-pi)f(0,1, -1)+riP(0, 0, -1) = 0 (3.73)

p1P(0, 1, 1) - riP(O, 0, 1) + p2f(0, 0, 1) + fiP(0, -1, 1) + r2 P(0, 0, 0) = 0

-(r1 + r2)P(0, 0, 0) = 0

p1P(0, 1, -1) - riP(0, 0, -1) + P2f (0, 0, -1) + fiP(0, -1, -1) = 0

g1P(0, 1, 1) - (li + pl + g )P(0, 1,1) + (P2 - Pl)f (0, -1, 1) = 0

(3.74)

(3.75)

(3.76)

(3.77)
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P(0, -1,0) = 0

g1P(0, 1, -1) + g 1P(0, -1, 1) - (fi + f2)P(0, -1, -1) + (P2 - Ai)f (0, -1, -1) = 0

(3.79)

P(N, 1, 1) = 0

-r 2P(N, 1, 0) + pif (N, 1, 0) + riP(N, 0, 0) = 0

P(N, 1, -1) = 0

P(N, 0, 1) = 0

P(N, 0, 0) = 0

P(N, 0, -1) = 0

P(N, -1, 1) = 0

-r 2P(N, -1, 0) + 1tif (N, -1, 0) + f 2P(N, -1, -1) + P2P(N, -1, 1) = 0

P(N, -1, -1) = 0

(3.80)

(3.81)

(3.82)

(3.83)

(3.84)

(3.85)

(3.86)

(3.87)

(3.88)

3.1.4 Normalization

In addition to these, all the probability density functions and probability masses must

satisfy the normalization equation:
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E =
N

0

f (X) Ce, a2 )dx + P(0, ai, a2 ) + P(N, ai, a 2)I= 1. (3.89)

3.1.5 Performance measures

After finding all probability density functions and probability masses, we can calculate

the average inventory in the buffer from

a1=-1,0,1 a2=-1,0,1 0
Xf(X, al, a 2)dx + NP(N, a,, a2)1

The total production rate is

N

PT = P = Z p17 f(x, -1, a 2) + f(x, 1, a2)}dx + P(0, 1, a2) + P(0, -1, a 2)]
2=--1,,1 0

+P 2 {P(N, 1, -1) + P(N, 1, 1) + P(N, -1, -1) + P(N, -1, 1}.
(3.91)

The rate at which machine Mi produces good parts is

N

P= f(x, 1, a 2)dx+P(0, 1, a 2)]+tt2 {P(N, 1, -1)+P(N, 1, 1)}. (3.92)
a2=-1,0,1 0

The probability that the first machine produces a non-defective part is then Y =

Pk/PT. The probability that the second machine finishes its operation without adding

a non-conforming feature to a part is Y2 = PE/PT where

PS =

N

0

Therefore, the effective production rate is

PE = Y1Y2PT-
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3.2 Solution technique

3.2.1 Solution to internal transition equations

It is logical to assume an exponential form for the solution to the steady state den-

sity functions since (3.4)-(3.12) are coupled ordinary linear differential equations.

A solution of the form eAxKcIK21K 2 worked successfully in the continuous material

two-machine line with perfect quality [Gershwin, 1994]. Therefore, a solution of a

form

f(x, ai, a2) = OXG1(ai)G2(a2) (3.95)

is assumed here. This form satisfies the transition equations if all of the following

equations are met. Equations (3.4)-(3.12) become, after substituting (3.95) into them,

{(P 2 -P1I)A-(p1 +g1 +p2+ 2)G1 (1)G 2(1)}+r 2G1 (1)G 2(0)+r 1 G1 (O)G 2(1) = 0 (3.96)

-{ 1A+(p 1 +g1 +r 2)}G1(1)G 2(0)+p 2Gi(1)G2(1)+f 2G1(1)G2(-1)+r1,G(O)G2(0) = 0

(3.97)

{(P2 -pi)A -(pi+gi+f 2)}G1(1)G 2(-1)+9 2G1 (1)G 2(1)+r 1 G1 (0)G 2(-1) = 0 (3.98)

{J2A- (r 1+p2+g 2)}G1 (0)G2(1)+p 1 G1 (1)G2(1)+r 2G1 (0)G 2(0)+fiG1 (-)G 2() = 0

(3.99)

p1G1(1)G 2(0)+p 2G1 (0)G2(1)-(r1+r 2)G1 (O)G2(0)+f 2G1 (O)G2(-1)+fiG1 (-)G 2(0) = 0

(3.100)

{# 2A-(r1+f 2)}Gi(0)G2(-1)+p1G1(1)G2(-1)+g2G1(0)G 2(1)+fiGi(-1)G2(-1) = 0

(3.101)
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{ (p2-pi)A -(P2+g2+fi)}G1(-)G2(1)+g1G1(1)G2(1)+r2G1(-1)G2 (0) = 0 (3.102)

-{p1A+(r2+fi)}G1(-1)G2(0)+g1G1(1)G2(0)+P2G1(-1)G2(1)+f2G1(-1)G2(-1) = 0

(3.103)

(p2-p1)A -(fi+f2)}G1(-1)G2(-1)+g1Gl(1)G2 (-1) +q2G(-1)G2(1) = 0. (3.104)

These are nine equations with seven unknowns (A, G1 (1), G2 (0), G 1(-1), G2 (1), G2(0),

and G2 (-1)). Thus, there must be seven independent equations and two dependent

ones. If we divide equations (3.96) - (3.104) by G1 (0)G 2(0) and define six new vari-

ables

1F = pi Gi(1) Gi(-1) = pY- ri + f Z , (i = 1, 2) (3.105)

Gi 0)Gi (0)r

'i = --pi - gi + ri =-Pi-()gi+ (i=1,2) (3.106)

Gi(1) Yi
6 = -A + gi Gi(-1) A + giy (i = 1, 2). (3.107)

then equations (3.96)-(3.104) can be rewritten as

Fl + F2 = 0

P2A = F1 + XF2

p1A= F2 + T1

(P1 - P 2 )A = '1 + '2

(3.108)

(3.109)

(3.110)

(3.111)
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(Al - p2)A = 6 1+ 6 2

pA= r2 + E1

-P2A = ril + 0 2

( - P2)A = P2 + E1

(A- P 2 )A = '1 + 2.

Equations (3.108) to (3.116) are reduced to seven equation.

E) = plA + r1

XF2 = 0 2

62 = -p 2 A - IF.

F1 + F2 = 0

Combining equations (3.117), (3.106), and (3.107), we have

T1 = pil + I1P

X2 = -P2A - r1

-Pi - g + = -fi i

r2 Y
S-p2 - g2 + 2 = -2 + Y2 .2Y2 Z2

From equation (3.122), we have

T1Yi = -(Pi + gi)Yi + ri (3.124)

51

(3.112)

(3.113)

(3.114)

(3.115)

(3.116)

(3.117)

(3.118)

(3.119)

(3.120)

(3.121)

(3.122)

(3.123)



T1Z1 = -fiZ 1 + g1Yi.

Together, equations (3.105), (3.124), and (3.125) imply

T1(yi + Z1) = -'1. (3.126)

Using the same procedure with equations (3.105) and (3.123), we find

(3.127)

Therefore, we get the new relationship

'F1 (Yi + Z 1 ) = -T 2 (Y2 + Z 2).

From equations (3.117) and (3.126),

IF, = p1A + r1 = p1A - 'F1.(Y + Z1)

Then, we have

1+Yi +Zi

Using similar procedures,

-/12A
1 +Y2 + Z2

(3.131)

By plugging equations (3.130) and (3.131) into equation (3.128), we have

Al1(Y1 + Z1) p 2 (Y 2 + Z 2)

1+Yi+Z1 1+Y 2 +Z 2

(3.132)

Now we try to rewrite the internal transition equations and all the unknowns

used for the equations to two equations and two unknowns by introducing two new

variables. From equations (3.105) and (3.108), we introduce a new variable U:

P1Yi - r1 + fiZ1 = -(P 2Y2 - r 2 + f 2 Z2 ) = U. (3.133)
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Another variable V is introduced from equation (3.132):

1 1 1 1-(1+ ) = -(1+ ) = V. (3.134)
i1 Y+Z 1  A2 Y2 +Z 2

From equation (3.134), we have

Z = - Y, Z2 1 Y2 (3.135)
p1ZV - 1 p2V - 1

After plugging it into equation (3.133), we have

= fif tsV1 Y = f(2r
Y = (U + ri - ), Y2 = (-U + r2 2) (3.136)

P1 - f1 111V - 1 P2 - f2 A2V - 1

Also, from equation (3.135),

(piV - 1)Y Y (p2V - 1)Y 2  (3.137)
1 1 - Yi(piV - 1)' 2 1 -y2(p2V -)

By using equations (3.136) and (3.137), we can replace Y, Y2 , Y 1 /Zi, and Y2 /Z 2

in equations (3.122) and (3.123) and get following two equations:

{(U+rj)(t&IV-1)-fi} 2 
_ {(p1+gl-fi)+rl(A1V-1)}{(U+rl)('1V-1)-fi} - = 0 (3.138)

(f1-pi)(tt1v-1) (fi-p1)(A1v-1)

{(-U+r 2 )(p 2 V-1)-f 2} 2 
_ {(p2+92-f 2 )+r 2 ( 2 V-1)}{(-U+r2)(J 2 V-1)-f 2} - r 2 = 0. (3.139)

(f2-p2)(/Z2V-1) (f2-p2)(A2V-1)

Now the 9 transition equations (3.96) - (3.104) and 7 unknowns are simplified into

two equations and two unknowns. By solving these quadratic equations, we can get

U and V. From equations (3.133) and (3.134), we can calculate Y, Y2 , Z 1 , and Z 2 .

From these a probability density function (equation (3.95)) can be found per (U, V)

set. The more detailed procedure is presented in sections 3.2.2 and 3.2.3.

3.2.2 Algorithm to solve equations (3.138) and (3.139)

By solving equations (3.138) and (3.139) simultaneously, we can calculate U and

V. An example of these equations is plotted in Figure 3-2. Equation (3.138) is
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represented as red (lighter) lines and equation (3.139) is shown as blue (darker) lines.

The intersections of the two lines are the solutions of the equations.

Figure 3-2: Plot of Equations (3.138) and (3.139)

These are high order equations for which no general analytical solution exists.

Therefore, a numerical approach is required to find the roots of the equations. But

conventional numerical solvers (e.g., the Newton-Raphson method) can not be used

directly since here are discontinuous ranges in each red (lighter) line and blue (darker)

line as illustrated in Figure 3-2. The coordinates of the end points of the red (lighter)

line are denoted as (U', V) and (U,, V). The end points of the blue (darker) lines

are denoted as (Ut, Va") and (Ub,, V/b). Thus, we need to identify the number of roots of

the equations and regions where roots exist. After that the Newton-Raphson method

is applied to find the exact location of each root.

Characterization of the curves

For the development of an efficient algorithm to find roots of equations (3.138) and

(3.139), we need to characterize their shape. As Figure 3-2 depicts, these curves have

asymptotes and discontinuities. Locating these is the first step in the characterization

of the shape.

Finding asymptotes As shown in Figure 3-2, there are two asymptotes perpendic-

ular to the U axis and and one perpendicular to the V axis for each red (lighter) and

blue (darker) line. We can find asymptotes perpendicular to the U axis as follows.

54



Equations (3.138) and (3.139) can be expressed in terms of U:

(piV - 1) 2U 2 + {-pi - g, - fi + ri(p1 V - 1)}(p 1V - 1)U (3.140)
-(g, + fi)(p1V - 1)ri + (pi + gi)f1 = 0

(p2V - 1) 2 U2 - {-P2 - 92 - f2 + r 2 (A 2 V - 1)}(/1 2V - 1)U (3.141)
-(9 2 + f2 )(I 2 V - 1)r 2 + (P2 + 92)f2 = 0.

After dividing equations (3.140) and (3.141) by V 2, we have

(2 - ?pi + 1)U 2 + {-P-91 f + ri(pi - 1)}(A - )U
A______ ___ V2_ (3.142)

(g1+f1)(1 -1)r1 + + 0V
2  V

(9 - 92 + V)U
2  _P222 + r 2 (A2 - )}(A2 - )U (3.143)

(92+f 2 )(p 2 V-1)r 2 + (P2+22)f2 = 0.V
2  

VF2

As V -> ±oo, equations (3.142) and (3.143) become

AlU(U + ri) = 0 (3.144)

2 U(U - r 2 ) = 0. (3.145)

Therefore, the asymptotes of the red lines that are perpendicular to the U axis

are U = 0 and U = -ri. And the asymptotes of the blue lines that are perpendicular

to the U axis are U = 0 and U = r 2.

Similarily, equations (3.138) and (3.139) can be expressed in terms of V to find

the asymptotes that are perpendicular to V axis:

Ap2U(U + ri)V2 + pit{-U(2U + 2r1 + p, + g, + fi) - r1 (g, + fi)}V
1 (3.146)

+U(U + rl +pi + gi + fi) + r(gi + fi) + fi(p + gi) = 0

A2U(U - r2 )V 2 + A2 {-U(2U - 2r 2 - P2 - 92 - f2) - r 2 (92 + f2)}V (3.147)
+U(U - r2 - P2 - 92 - f2) + r2(g2 + f 2) + f2(p2 + g2) = 0.

After dividing equations (3.146) and (3.147) by U2 , we get
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2(1 + 'j)V2 + p1{-(2+ 2rl+p+gl+fi) _ r(gl+fl)}

+(1+ rl+P1+p1+fl) + (gj+/f)+fipL1+g1) = 0

2(1 - rj)V 2 + {-(2 + -2r2-P2-2-f2) r2(92+f2) IV

+(1 + -r 2 -P2-92-f 2 ) + r2(92+f2)+f2(P2+92) = 0

As U -+oo, equations (3.148) and (3.149) become

(1 1V- 1)2 = 0

(pL2V -1)2 = 0.

Therefore, the asymptote of the red lines that

And the asymptote of the blue lines is V = 1.

Finding discontinuous range The solutions of

whose equations can be re-written as

is perpendicular to V is V = 1.

equation (3.138) are two red lines

V fr(U) = - [1+ {(p+gi+fi)U+(gi+fi)ri}+ F(pi+gi+fi)U+(gl+fi)rl 
2 -4U(U+rl)(pl+gl)fI

Alg 2U(U+rl) I

(3.152)

V =g'(U) = 1 {(P+91g+f)U+(g+f1)r}- V{(p1 +1+f1)U+(1+f1)r1}2-4U(U+r)(p1+g1)f1]
V =l 2U(U+rl) I

(3.153)

A discontinuous range in the red lines appears where V = fr(U) and V = gr(U)

have complex values. Therefore the U-coordinates of the two end points of the dis-

continuous range in the red lines are the solutions of the equation:

{(pi + gi + fi)U + (g, + fi)r1}2 - 4U(U + ri)(pi + gi)fi

= (p1 + g, + fi) 2 U2 + 2r1{(p1 +g 1)(g1 - fl) + fi(g, + fi)}U + (g, + fi) 2r2 = 0.
(3.154)

If we set aR = (p, + g, + fi)2, bR = 2r1 {(p1 + gi)(gi - fi) + fi(gi + fi)}, and

CR = (g1 + fi) 2r2, then,
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U = -bR- b2 -
4 aRCR = b± b2-74aRCR

I~r C I Ur 2aR

Corresponding V coordinates of the points are given as

1 (Pi + gi + fi)U + (g + f)r1
Vr IT-I

r L

[ +

2U,"(U + ri)

(p1 + gi + f)Ur + (gi + fl)r,]
2Ur(Ur + ri)

The (Ut, XU) and (U , !V) are the coordinates of the end points of the red line as

illustrated in Figure 3-2.

The solutions of equation (3.139) are two blue lines whose equations can be re-

written as:

V = fb(U) = -[1 +- {(p2+2+f 2 )U-( 2 +f 2)r 2 }+ P2+92+f2)U-(92+f2) -4U(U-r2)(P2+92)f2
A2 2U(U-r 2 )

(3.157)

V = gb(U) = ±[1 + -(2+92+f2)U-(92+f2)2}-@{2+92+f2)U-(92+f2r -U(U-r2)(2+2)22
pA2 2U(U-r 2 )

(3.158)

Using the same procedure, we can find (Ub", Vg") and (Ut, Vi'), which are the coor-

dinates of the end points of the blue lines as illustrated in Figure 3-2.

Us = bB + B -
4 aBCB ,U = - B - 4 aBCB

b2aB 2 aB
(3.159)

where aB = (P2 + g2 + f2) 2 , bB = -2r2{(P2 +9 2)(92 -f 2) +f2(92 +f 2)}, and CB =

(g + f2 )2r2

V" = I[1 - (P2 + g2 +f2 )Ub" + (g2 + f2)r2
CI T "TI -

p2

Vi = [I
A2

- 'r2)

+ -(P2 + g2 + f 2)Ul + (92 + f 2 )r2]2Ub(U - r2 )
(3.160)
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Region 1

Region 2

Region 4

Region 3

Figure 3-3: Typical shape of the solutions of equations 3.138 and 3.139

Root finding algorithm

Figure 3-3 shows a typical shape of the simplified internal transition equations (i.e.,

equations (3.138) and (3.139)). But the number and the locations of roots vary

depending on machine parameters (i.e. Al, A 2 , ri, r 2 , P1, P2 , gi, 9 2 , fi, and f2) as shown

in Figures 3-4, 3-5, and 3-6.

As illustrated in Figure 3-3, there are four regions in the (U, V) space in which

roots could possibly exist:

Region 1 There are 3 roots in this region regardless of machine parameters as

depicted in Figure 3-7. The asymptotes of the blue lines are located at U = 0, U = r2,

and the blue lines approach the asymptotes from the left. On the other hand, the

red curves have asymptotes at U = 0, U = -ri and approach them from the right.

Therefore, one blue curve approaching the asymptote U = r 2 meets two of the red

curves. The other blue curve approaching the asymptote U = 0 meets only one red

curve, which approaches the asymptote U = -ri.

Let us define c as a small number (e.g., order of 10-') and Ubig as a large number

(e.g., order of 106). We can find these roots in region 1 as follows:
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-2 -2 -I 0

Figure 3-4: Plot of the simplified internal transition equations with IL1 > A2

~3 -2 - 0

Figure 3-5: Plot of the simplified internal transition equations with ILi = A2

-3

....... .. .

Figure 3-6: Plot of the simplified internal transition equations with p, < A2
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" One root at the intersection of gb(U) and g,(U) (Root 1 in Figure 3-7) is located

in [-ri + c, r 2 - E]. It can be found by solving gb(U) - gr(U) = 0 using the

Newton-Raphson method.

* Another root at intersection of fb(U) and gr(U) (Root 2 in Figure 3-7) is located

in [-rl +E, -E]. It can be found by solving fb(U) -g,(U) = 0 using the Newton-

Raphson method.

* The other root at the intersection of f,(U) and gb(U) is

located in [f, r2 -- E]. It can be found by solving f,(U)

Newton-Raphson method.

g,(M) V

Root2 

------- =

(Root 3 in Figure 3-7)

- gb(U) = 0 with the

g (Al)

Root 3

r(o)
'Root I

----- 4-----

U =

Figure 3-7: Root finding in region 1

Region 3 There are no roots in this area regardless of machine parameters. This

is because the blue lines come from the right hand side and approach the asymptotes

located at U = 0, U = r 2. The red lines come from the left hand side and approach

the asymptotes located at U = 0, U = -ri. Thus, the blue lines and red lines can

not intersect with each other.

Region 2 If li ;> A2, then there is no root in region 2. Because the blue curves

approach V = - from above and the red curves approach V =L from below. But
f2 <y

if Alt < A2 , there are many cases to consider:
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(1) If fi > p, and gi > 0, there is a gap in the red lines as shown in Figure

(3-8). In this case, the number of roots depends on the location of the gap in the red

lines. In Figure (3-8), (U,", V") and (U,, V) are the Cartesian coordinates of the end

points of the gap in the red lines.

Here, let us define a new function Hb(U, V) as

Hb(U, V) = (V - fb(U))(V - gb(U)). (3.161)

fb(U) g'(U)

f,(U)

(Ur,'VrU)

Figure 3-8: Plot of red lines and blue lines with Mi < A 2 in region 2

The number and the location of roots in region 2 when fi > pi and g, > 0 are as

follows and these roots can be found through the Newton-Raphson method:

" Case 1: If V - fb(U,) > 0, there are four roots in the region:

- One from the equation fb(U) - fr(U) = 0 is located in [Ul + e, -E].

- Another from the equation fb(U) -g(U) = 0 is located in [Ur +e, -ri - E].

- Another from the equation gb(U) - g,(U) = 0 is located in [U + c, -ri - E].

- The other from the equation gb(U) - f,(U) = 0 is located in [Ur + E, -E].

" Case 2 : If V - fb(Ur) = 0, there are three roots in the region:

- One root is located at (Ut, VL).

- Another from the equation gb(U) -gr(U) = 0 is located in [Ur+E, -ri - e].

- The other from the equation gb(U) - f,(U) = 0 is located in [U + e, -E].
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Case 2

Figure 3-9: Case 1 and Case 2

Case 3 Case 4

Figure 3-10: Case 3 and Case 4

* Case 3: If V" - fb(U) > 0 and Hb(U , V) < 0, there are two roots in the

region:

- One from the equation gb(U) - g,(U) 0 is located in [Ur + e, -r, - E].

- The other from the equation gb(U) - fr(U) = 0 is located in [U + e, -c].

* Case 4: If V,. - fb(Ur) > 0 and V1 - gb(Ur) = 0, then one root is located at

(U, V1).

Case5 Case 6

Figure 3-11: Case 5 and Case 6

* Case 5: If V,. - fb(U) > 0 and V1 - gb(U,) < 0, then there is no root in the

region.
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* Case 6: If V - fb(Uu) = 0 and Hb(Ul, V) < 0, there are three roots in the

region:

- One at (Uy, V,.).

- The other from the equation gb(U)-g,(U) = 0 is located in [Ur+e, -ri -E].

- The other from the equation gb(U) - f,(U) = 0 is located in [Ur + e, -c].

Case 7 Case 8

Figure 3-12: Case 7 and Case 8

* Case 7: If V1 - fb(Ur) = 0 and V - gb(Ur) = 0, there are two roots in the

region:

- One is at (Ur, Vu).

- The other one is at (Ur, V!).

* Case 8: If Vu- f(U") = 0 and V-gb(Ur) < 0, one root is located at (Ur, Vu).

Case 9 Case 10

Figure 3-13: Case 9 and Case 10

9 Case 9: If Hb(Uu, V,.) < 0 and Hb(Ur, V) < 0, there are four roots in the

region;

- One from the equation fb(U) - g,(U) = 0 is located in [U,! - Ubig, Uru -
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- Another from the equation fb(U)-f,(U) = 0 is located in [U'- Ubig, U - E.

- Another from the equation gb(U) -g,(U) 0 is located in [U" +E, -ri - ].

- The other from the equation gb(U) - f,(U) = 0 is located in [U" + E, -6].

* Case 10: If Hb(U', V,.) < 0 and V - gb(Uj) = 0, there are three in the region:

One is at (U, V).

- Another from the equation fb(U)-g,(U) = 0 is located in [Ur -U g, Uu -c].

- The other from the equation fb(U)-f,(U) = 0 is located in [U 7 -U ,i, U, -

C].

Case I1 Case 12

Figure 3-14: Case 11 and Case 12

* Case 11: If Hb(U!', VU) < 0 and V' - gb(Ur) < 0, there are two roots in the

region:

- One from the equation fb(U) - gr(U) = 0 is located in [Ur - U g, Uru - C].

- The other from the equation fb(U)-fr(U) = 0 is located in [U7U-Ubi, U, -

6].-

" Case 12: If V,. -- gb(Ur) = 0, there are three roots in the region:

- One at (U", V,.).

- Another from the equation fb(U)-g,.(U) = 0 is located in [U 7 -Uig, U-E].

- The other from the equation fb(U)-fr(U) = 0 is located in [U,!- Ubig, Uru -

E].

" Case 13: If V,. -- gb(Ur) < 0, there are four roots in the region:

- One from fb(U) - gr(U) = 0 is located in [Uru - Ub,, U" - c).
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- Another from the equation fb(U)-f,(U) = 0 is located in [U1 -Ubig, U -].

- Another from the equation gb(U)-f,(U) = 0 is located in [U"-Ubig, U"-e].

- The other from the equation gb(U)-g,(U) = 0 is located in [Uu - Uig, U -

e].

Case 13 Case 14

Figure 3-15: Case 13 and Case 14

(2) If fi = g1 or g = 0, then there is no gap thus, the equations have 3 or 4

roots. In this case the two red curves intersect at (Up, V,") = (Ur, Vl)

" Case 14: If H(Ur, V,.) < 0, there are four roots in the region:

- One from the equation fA(U) - gr(U) = 0 is located in [Uru - Ubig, -r, - e].

- Another from the equation fb(U) - fr(U) = 0 is located in [Uu - Ubig, E].

- Another from the equation gb(U) - fr(U) = 0 is located in [U"u + e, -e].

- The other from the equation gb(U) -gr(U) = 0 is located in [U +e, -ri -].

" Case 15: If V," - gb(Ur) = 0, there are three in the region:

- One is at (U , VU).

- Another from the equation fr(U) = fb(U) is located in [Uru - Ubig, U - .

- The other from the equation gr(U) = fb(U) is located in [U" - Ubig, Ur -

" Case 16: If V," - fb(Ur) = 0, there are three roots in the region:

- One is at (Ur, V.u).

- Another from the equation fr(u) = gb(u) is located in [Ur + E, -e].

- The other from the equation g,(U) = gb(U) is located in [Uru-Uig, -ri-e].
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Case 15 Case 16

Figure 3-16: Case 15 and Case 16

Region 4 If 14 A p2, then there is no root in region 4 because the blue curves

approach V = 1 from below and the red curves approach to V = - from above.
A2 Al

But if Ai > A2, there are many cases to consider;

(1) If f2 > P2 and 92 > 0, there is a gap in the blue lines as shown in Figure

3-17. In this case, the number of roots depends on the location of the gap in the blue

lines. In Figure 3-17, (Ub", VJ') and (Ub,, V1) axe the Cartesian coordinates of the end

points of the gap in the blue lines.

gb(U) 4,(U)

fb(U)

(Ubu Vb") g9(U)

(U'V,9 .

Figure 3-17: Plot of red lines and blue lines with p, > A2 in region 4

Here, let us define a new function Hr(U, V) as

Hr(U, V) = (V - fr(U))(V - gr(U)). (3.162)

The number and the location of roots in region 4 are as follows and these roots

can be found using the Newton-Raphson method:
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Case 1

Figure 3-18: Case 1 and Case 2

9 Case 1: If Vb' - f,(U,) > 0, there are four roots in the region:

- One from the equation fr(U) - fb(U) = 0 is located in [E, Ub, - c].

- Another from the equation f,.(U) - gb(U) = 0 is located in [r 2 + 6, Ub, - 6].

- Another from the equation f,(U) - fb(U) = 0 is located in [e, U' - E].

- The other from the equation g,.(U) - gb(U) = 0 is located in [r 2 + e, Ub - E.

* Case 2: If V14 - f,(Ub,) = 0, there three roots in the region:

- One is at (U,, VJ).

- Another from the equation g,(U) - fb(U) = 0 is located in [e, Ub, - E].

- The other from the equation gr(U) - g(U) = 0 is located in [r2 + e, U - E].

Case 3 Case 4

Figure 3-19: Case 3 and Case 4

e Case 3: If VbU - f,(Ub) > 0 and Hr(Ub,, V1) < 0, there are two roots in the

region:

- One from the equation gr(U) - fb(U) = 0 is located in [E, Ub, - c].

- The other from the equation gr(U) - g(U) = 0 is located in [r 2 + 6, Ub - E].
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Case 5 Case 6

Figure 3-20: Case 5 and Case 6

" Case 4: If U" - f,(Ub') > 0 and V - g,(UbL) = 0, then one root is located at

(U,, Vi).

" Case 5: If V" - f,(Ub") > 0 and Vb' - g,(Ub) < 0, then there is no root in the

region.

" Case 6: If VJ' - f,(Ub) = 0 and H,(U,, V) < 0, there are three roots in the

region:

- One is at (Ua", V).

- Another from the equation g,(U) - fb(U) = 0 is located in [e, Ub, - E].

- The other from the equation g7(U) - gb(U) = 0 is located in [r 2 + e, Ub, - E.

C
Case 7 Case 8

Figure 3-21: Case 7 and Case 8

" Case 7: If VJ' - fr(Ub") = 0 and V' - g,(U') = 0, then two roots are located in

the region:

- One is at (Ut", VJ').

- The other is at (U,, V1).

* Case 8: If Vbu - f,(Ub") = 0 and V1-gr(Ub,) < 0, one root is located at (Ubu, Vbu).
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Case 10

Figure 3-22: Case 9 and Case 10

* Case 9: If H,(U", VS) < 0 and H,(Ul, VW) < 0, there are four roots in the

region:

- One from the equation f7 (U) - gb(U) = 0 is located in [Ubu + c, Ubj + Ubi9 ].

- Another from the equation f,(U)-fb(U) = 0 is located in [Ubu+E, Ub"+Ubig].

- Another from the equation gr(U) - fb(U) = 0 is located in [e, Ub, - E].

- The other from the equation g,.(U) - gb(U) = 0 is located in [r 2 + e, Ub, - E].

" Case 10: If Hr(Ub, VJ') < 0 and Vb' - gr(Ub,) = 0, then there are three roots in

the region:

- One is at (U,, V,).

- One from the equation fr(U) - gb(U) = 0 is located in [Ubu + e, Ubu + Ubi9 ].

- Another from the equation fr(U)-fb(U) = 0 is located in [U,'+c, Ubu+Uig].

(1"
Case I1I

(F,
Case 12

Figure 3-23: Case 11 and Case 12

* Case 11: If Hr(Ub", VJ") < 0 and V - g,(U,) < 0, there are two roots in the

region:

- One from the equation fr(U) - gb(U) = 0 is located in [Ubu + e, Ubu + Ubig].
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- Another from the equation f,(U)-fb(U) = 0 is located in [Ubu+, UbU+Ug].

* Case 12: If VJ' - g,(Ub) = 0,three roots are located in the region:

- One is at (Ul, Vbu).

- Another from the equation fr(U)-gb(U) = 0 is located in [U 1"+E, Ub+Ubig].

- The other from the equation fr(U) - fb(U) = 0 is located in [Ubu + E, Ubu +

* Case 13: If VJ' -- g,(Ub) < 0, there are four roots in the region:

- One from the equation f,(U) - gb(U) = 0 is located in [U,' + E, Ub + Ub9 ].

- Another from the equation f 7 (U)-fb(U) = 0 is located in [U 1"+E, Ub+Ub].

- Another from the equation gr(U)-fb(U) = 0 is located in [U 1'+E, U1 '+U b].

- The other from the equation gr(U) - gb(U) = 0 is located in [Ubu + E, Ubu +

Ui(].

Case 13 Case 14

Figure 3-24: Case 13 and Case 14

(2) If f2 = g2 or g2 = 0, then there is no gap in the blue lines. Thus, the

equations have either 3 or 4 roots. In this case the two blue curves intersect at

(Ub, Vu) = (U, V"j).

* Case 14 If H,(U', VJ") < 0, there are four roots in the region:

- One from the equation fA(U) - gr(U) = 0 is located in [E, Ubu - E.

- Another from the equation fb(U)-fr(U) = 0 is located in [U 1"+E, U"+U , .

- Another from the equation gb(U)-fr(U) = 0 is located in [R2+E, Ubu+Ubi].

- The other from the equation gb(U) -gr(U) = 0 is located in [R2+E, Ubu -E].
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Case 16

Figure 3-25: Case 15 and Case 16

" Case 15: If V" - f,(Ub) = 0, there are three located in the region:

- One is at (Us", Vu).

- Another from the equation gr(U) - fb(U) = 0 is located in [c, Ub" - E].

- The other from the equation gr(U) - gb(U) = 0 is located in [r 2 +E, Ubu - e].

* Case 16: If Vbu - gr(Ub") = 0, there are three in the region;

- One is at (Ubu, Vu).

- Another from the equation fr(U)-f(U) = 0 is located in [Ubu+e, Ub"+Ubig]

- The other from fr(U) - gb(U) = 0 is located in [Ub + e, Uu -+ Ui g]

3.2.3 Building the probability density function

Once we find the roots of equations (3.138) and (3.139), we can get Y and Zi (i =

1, 2) from equations (3.133) and (3.134). From I = g , Z) = G ) we can get

G1 (1), G 1(-1), G2 (1), and G2(-1) by setting G,(0) = G2 (0) = 1 since only the ratios

matter. Then, from equations (3.105) and (3.122), A is

-Pi - gi + r/G( 1 ) - piG,(1) + r1 - fiG1(-1)

Pi
(3.163)

As a result, we can get the probability density function fi(x, a1 , a 2 ) corresponding

to a (U, V) pair. Therefore, the general expression of the probability density function

is

RN

f (X), ala 2) cifi(X,l, a2) (3.164)
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where RN is the number of roots of equations (3.138) and (3.139) which is found in

3.2.2.

The remaining unknowns, including coefficients c, i = 1,2..., RN and probabil-

ity masses at the boundaries, can be calculated by solving the boundary transition

equations and the normalization equation.

3.2.4 Methods to solve boundary conditions

Al = p2 Case

The boundary equations (3.15) - (3.36) are linear equations in which the unknowns

are the probability masses and the coefficients in equation (3.164). Some of the

probability masses are 0 according to the equations, and functions fi(x, a,, a2 ) are

found by solving the internal transition equations in section 3.2.2. Note that when

/1 = P2, the internal transition equations have 3 roots. The boundary equations can

be simplified as follows:

" Drop off the probability masses which are set to 0.

" Temporarily set P(0, 1, 1) = 1.

" Substitute

f (x, a,, a2) = cifi(x, al, a 2) + c2 f 2(x, a,, a 2 ) + c3f 3 (x, a1 , a2)

where fj(x,ai,a 2) = eAjXGi(ai)G'(a 2) and G'(1) = Yj ,G3(O) = 1, and

Gj(-1) = Z7 (i == 1, 2,3 and j = 1, 2).

Then, we have an equation AX = B (3.165), which is in matrix form. For example,

the first row of A and .B are from equation (3.15). After plugging f(0, 0,1) = c1 Y2
1 +

c2 Y + c3Y2, into equation (3.15), the equation becomes p2 (C1Y 2' + c2Y + c3Y2) -

r1P(O, 0, 1) + +fiP(O, -1, 1) + Pi = 0. The unknowns (ci, c2, c3 , P(0, 0, 1), and

P(0, -1,1)) are placed at the matrix X, pi is at B, and the others are at A. After

solving the equation (3.165) using a linear equation solver, all the unknowns are

expressed as multiples of P(0, 1, 1). Then, the value of P(0, 1, 1) can be calculated

from the normalization equation (3.89).
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P1 > p2 Case

When pi > P2, the number of roots from the internal transition equations varies from

three to seven depending on machine parameters. The number of roots and the cor-

responding probability density functions are found through the algorithm presented

at 3.2.2.

The boundary equations (3.37) - (3.62) can be simplified:

" Drop off the probability masses which are set to 0.

" Temporarily set P(0, 0, 1) = 1.

" Substitute

RN

f(x,ai,a 2) = Zcifi(x, a,, a2)
i=1

where RN is the number of roots, fi(x, a,, a 2) = eA4G'(ai)G'(a 2) and G (1)

Yj ,G3(0) = 1, and G.(-1) = Z3 (i = 1, 2, 3 and j = 1, 2).

When there are seven roots from the equations (3.138) and (3.139), we have an

equation AX = B (3.166), which is a matrix form. After solving the equation (3.166)

using a linear equation solver, all the unknowns are expressed as multiples of P(0, 0, 1).

Then, the value of P(0. 0, 1) can be calculated from the normalization equation (3.89).

When there are six roots from the equations (3.138) and (3.139), the number of

unknowns is reduced to 13 from 14. (c7 no longer exists). In this case we can use the

same equation (3.166) and the same procedure after setting c7 = 0. We can do the

same procedure when the internal transition equations have 3, 4, or 5 roots:

" In case of 5 roots, set c7 = 0, c6 = 0.

" In case of 4 roots, set c7 = 0, c6 = 0, and c5 = 0.

" In case of 3 roots, set c7 = 0, c6 = 0, c5 = 0, and , c4 = 0.

Matrix A in equation (3.166) contains elements which can be different by several

orders of magnitude (e.g., eAiNZjY and Yi). This may cause the reduction of the

apparent rank of matrix A, which will lead to errors. Techniques to prevent this kind

of numerical error are presented in Appendix C.
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pi < p2 Case

When si < p 2 , the number of roots from the internal transition equations varies from

three to seven depending on machine parameters. The number of roots and the cor-

responding probability density functions are found through the algorithm presented

at 3.2.2.

The boundary equations (3.63) - (3.88) can be simplified:

" Drop off the probability masses which are set to 0.

" Temporarily set P(0, 1, 1) = 1.

* Substitute

RN

f (x, a,, a2) Zcifi(x, a,, a2)
i=1

where RN is the number of roots, fA(x, ai, a2) = eAiXG'(ai)G'(a2) and G.(1) =

Yj ,G5(O) = 1, and Gj(-1) = Zj (i = 1, 2, 3 and j = 1, 2).

When there are seven roots from the equations (3.138) and (3.139), we have a

equation AX = B (3.167), which is a matrix form. After solving the equation (3.167)

using a linear equation solver, all the unknowns are expressed as multiples of P(O, 1, 1).

Then, the value of P(O. 1, 1) can be calculated from the normalization equation (3.89).

When there are six. roots from the equations (3.138) and (3.139), the number of

unknowns is reduced to 13 from 14. (c7 no longer exists). In this case we can use the

same equation (3.167) and the same procedure after setting c7 = 0. We can follow

the same procedure when the internal transition equations have 3, 4, or 5 roots:

* In case of 5 roots, set c7 = 0, c6 = 0.

* In case of 4 roots, set c7 = 0, c6 = 0, and c5 = 0.

" In case of 3 roots, set c7 = 0, c6 = 0, c5 = 0, and , c4 = 0.
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3.2.5 Methods to evaluate performance measures

Normalization Equation

R'
From f (x, a,,a2 ) = cle AixG'(ai)G'(a 2), we have

1 2

N RN

f(x, a,, a2)dx (e 'N _ 1)G'(a)G'(a2 )-
\j 1

(3-168)

Then,

LN _ ANj RN

f (Xa 2 d ci(e' -1) Z E G'(a)G'(a2 )
a1=-1,0,1 a2=-1,0,1 al=-1,0,1 a2=-1,A1 i=1

(eXN~ RN
= _ 1v_ N1) E E G2)Al i=1 1= ,, 1 22-,,

N RN

(3.169)

Therefore, the normalization equation (3.89) becomes

RN

-'( + 1 + Y)(Ai + 1 + y')
i=1

+ E Z {P(0,ai,a2)+P(N,ai,a 2)}=1.
al=-1,0,1 a2=-1,0,1

(3.170)

Production Rates

In equation (3.91)

N

SZ f f(x.
1l=-1,1 a2 =-1,0,1 0

RN ci(eAiN-1)

= Z '*(-)E
2=1 a=11

NRN

ai,a2)dx= f E ce'iG(a)Gi(a2)dx
Oi=-1,1 Q2=-1,0,1 0 i=1

RN

G'(ai) Gi G(a 2) = + Zi)(Yl +1+ Z2)
(2-1,,1 i=1
(3.171)

Therefore, the total production rate equation (3.91) becomes
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RN

T= Pi c(e Ai-1)(Yi + Zi)(Yi + 1 + Zi)+Pi1  E {P(0, 1, a2)
i=1 a2=-1,1

+P±2 {P(N, -1, -1) + P(N, -1, 1) + P(N, 1, -1) + P(N, 1, 1)}.

Finally the same procedure, Pk (equation (3.92)) is expressed as

+ P(O, -1, a2)}

(3.172)

eAiN - i
Y(Yl+ 1 + Z2) ±1

Ciyl'(y2 Ai A EP(0, 1, a2)+p2{P(N,1, -1)+P(N, 1, 1)}
a2=-1,O,1

(3.173)

and PE (equation (3.93)) becomes

ciY (Y + 1 + Zi)
eAiN _ 1

+A2
13 P(N, a1 , 1) + p 1 {P(0, 1,-1) + P(0, 1, 1)}

a1=-1,0,1

(3.174)

Average Inventory

In equation (3.90),

N

f Z f xf(x, ai, a 2)dx=
Ce1=-1,O,1 C"2=-1,O,1 0

N RN

S Z f[x E ceAixG'(c)G'(a2)]dx
al=-1,0,1 a2=-1,0,1 0 i=1

RN N

= Z [ci f xeAixdx Gi(a) Z G'(a2 )]
i=1 0 a1=-1,0,1 a2=-1,0,1
RN N

= Z [ci(Y" + 1 + Z')(Y + 1 + Z2) f xe\ixdx].
i=1 0

(3.175)

From integration by parts, f f'g = fg - f fg', we can set f' = eAX, g = x. Then, we

have

N

f xeAxdx = [ -
0

N
fexd=eAN _ T1(e AN _1) (if A$= 0)

0

= N 2/2 (if A = 0)

Finally, the average inventory equation (equation (3.90)) becomes
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A IE

RN

P2 [S

(3.176)



RN
X = [c(Y + 1 + Z)(Y2± + 1 + Zi)(zeAIN _ eAiN-1)

= Ai (3.177)
N P(N, a,, a2)

Cil=-1,0, a2=-1,A1

3.3 Validation

A mathematical model for the two-machine-one-finite-buffer system has been solved.

But as we have indicated, we present discrete parts in this model as a continuous

fluid and time as a continuous variable. On the other hand, in simulation and in

most real systems, both material and time are discrete. We compare analytical and

simulation results in this section. For simulation, transient period of 10,000 time units

and 1,000,000 time units of data collection period are used. For each case, the half

widths of the 95% confidence intervals on the total production rate and the effective

production rates fall below 1% of their mean values. Also, the half widths of the 95%

confidence intervals on the average inventory become less than 3% of the nominal

value of average inventory for all cases.

10.00%
8.00%

6.00%

14 4.00%

I 2.00%-

0.00%

-2.00%

-4.00%

-6.00%

-8.00%

-10.00%

Case Number

Figure 3-26: Validation of the total production rate

Figures 3-26, 3-27, and 3-28 illustrate the comparison of the total production rate,

the effective production rate, and the average inventory from the analytic model and

the simulation respectively. By changing machine and buffer parameters, 100 cases

are generated and % errors are plotted in the vertical axis. The parameters for these

cases are given in Appendix A. The % errors in the production rates are calculated
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Figure 3-27: Validation of the effective production rate
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Figure 3-28: Validation of average inventory
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from

PT %error = PT(A)x 100(%)
PT(S)

PE' %error = PE(A) - PE(S)
PE(S)rrr =X 100(%) (3.178)PE(ES)

where PT(A) and PE(A) are the total production rate and the effective production rate

calculated from the analytical model, and PT(S) and PE(S) are the total production

rate and the effective production rate estimated from the simulation. But the % error

in the average inventory is calculated from

mv %rrorInv( A) - Inv(S)
In0 %error= x 100(%) (3.179)0.5 x N

where Inv(A) and Inv(S) are average inventory estimated from the analytical model

and the simulation respectively and N is buffer size. This equation is an unbiased

way to calculate the error in average inventory. If it were calculated in the same way

as the error in the production rates, the error would depend on the relative speeds of

the machines. This is because there will be a lower error when the buffer is mostly

full (i.e., when M1 is faster than M2) and a higher error when the buffer is empty

(i.e., when M1 is slower than M2).

The average absolute value of the % errors in the total production rate, the ef-

fective production rate, and the average inventory are 0.49%, 0.92%, and 3.22% re-

spectively. The estimate of total production rate shows less error than that of the

effective production rate. The observation that the production rates estimates are

better than average buffer levels is consistent with the rest of literature [Dallery and

Gershwin, 1992], [Burman, 1995].

3.4 Quality information feedback

Factory designers and managers know that it is ideal to have inspection after every

operation. However, it is often costly to do this. As a result, factories are usually

designed so that multiple inspections are performed at a small number of stations.

In this case, inspection at downstream operations can detect bad features made by

upstream machines. (We call this quality information feedback.). A simple example

of the quality information feedback in 2M1B systems is when Mi produces defective
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features but does not have inspection, and M 2 has inspection and it can detect bad

features made by M1 . In this situation, as we demonstrate below, the yield of a line

is a function of the size of the buffer. When the buffer gets larger, more material

can accumulate between an operation (M 1 ) and the inspection of that operation

(M 2 ). All such material will be defective if a persistent quality failure takes place.

In other words, if the buffer is larger, there tends to be more material in the buffer

and consequently more material is produced before detection occurs. In addition,

it takes longer to have inspections after finishing operations. We can capture this

phenomenon with the adjustment of the transition probability rate of M1 from state

-i to state 0.

Let us define ff as the transition rate of M1 from state -1 to state 0 when there is

quality information feedback and fi as the transition rate without quality information

feedback. The adjustment can be done in a way that the yield of M, becomes the

same as K where:

" K' : the expected number of bad parts generated by M, from the time it enters

state -1 until it leaves state -1.

" K' : the expected number of good parts produced by M, from the moment

when Al 1 leaves the -1 state to the next time it arrives at state -1.

From equations (2.5), (2.6), and (2.5), the yield of M, is

P(1) f l

P(1) + p(-) flq+gi (-10

Suppose that Mi has been in state 1 for a long time. Then all parts in the buffer

B are non-defective. Suppose that M1 then goes to state -1. Defective parts will then

begin to accumulate in the buffer. Until all the parts in the buffer are defective, the

only way that M, can go to state 0 is due to its own inspection or its own operational

failures. Therefore, the probability of a transition to 0 before M finishes a part is

X11 = f. (3.181)
Api

Note that fi < pi since the detection of bad feature can not be done before the

completion of making the feature.

Eventually all the parts in the buffer are bad, so that defective parts reach M 2 .

Then, there is another way that M1 can move to state 0 from state -1: quality
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information feedback. The probability that inspection at M 2 detects a nonconformity

made by M is

X2 = (3.182)

where -L is the mean time until the inspection at M 2 detects a bad part made by

M, after M 2 receives the bad part.

The expected number of bad parts produced by M, before it is stopped by either

operational failures or quality information feedback is

Ki = [Xii + 2 X1(1 - Xii) + 3X1(1 - X11) 2 + ... + wX(1 - X)w~1] (3.183)
+[(w + 1)(1 - X11)WX21 + (w + 2)(1 - Xl)w+1X21(1 - X21) + ... ]

where w is average inventory in the buffer B. This is an approximation since we simply

use the average inventory rather than averaging the expected number of bad parts

produced by M, depending on different inventory levels wi. After some mathematical

manipulation,

K - (1 - Xu)'W (1 - X11) m X21[(w + 1) - w(1 - X1)(1 - X21)]
1 X11 [1 - (1 - Xu)(1 - X21)]2

(3.184)

On the other hand, K19 is given as

K19 = + - (3.185)
K 9  + 91 Pi + 91 Pi + 91 Pi + 91 Pi + 91 91

By setting + K we have

__1(1+WX11)(1--X11)w (1-Xll)WX21[1+W(X21+Xll-X2lXll)I (3'16
X11 + [1-(1-X1I)(1-X21)]2

Since the average inventory is a function of ff and ff is dependent on the average

inventory, an iterative method is used to get these values.

Figures 3-29, 3-30, and 3-31 show the comparison of the total production rate,

the effective production rate and the average inventory from the analytic model and

the simulation. By selecting different machines and buffer parameters, 50 cases are

generated, and % errors are plotted in the vertical axes. The parameters for these
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Figure 3-29: Quality information feedback: total production rate
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Figure 3-30: Quality information feedback: effective production rate

Case Number

Figure 3-31: Quality information feedback: average inventory
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cases are given in Appendix A. % errors in the effective production rate and average

inventory are calculated using equations (3.178) and (3.179) respectively. The average

absolute value of the % error in PT, PE and Y estimates are 0.38%, 0.46%, and

5.64% respectively. Comparisons of average inventory (Figures 3.179 and 3-31) reveal

that the estimation from the analytical model have positive bias. This bias happens

because the minimum buffer size is 1 for the simulation whereas it is 0 for the analytic

model; when 2M1B system with buffer size N is compared, the simulation treats the

system as if it has N - I effective buffer space, but the analytic model uses N effective

buffer space.
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Chapter 4

Insights From Numerical

Experimentation

In this chapter, we describe a set of numerical experiments that provide intuitive

insight into the behavior of 2M1B systems with quality and productivity issues. The

parameters of all the cases are presented in Appendix A.

4.1 Beneficial buffer case

In this section, we describe a case in which a larger buffer leads to the higher effective

production rate as well as the more total production rate.

4.1.1 Production rates

Having quality feedback means having more inspections than otherwise. Therefore,

machines tend to stop more frequently. As a result, the total production rate of

the line decreases. However, the effective production rate can increase since added

inspections prevent the making of defective parts. This phenomenon is shown in Fig-

ures 4-1 and 4-2. Note that the total production rate PT without quality information

feedback is consistently higher than PT with quality information feedback regardless

of buffer size, and the opposite is true for the effective production rate PE. In the

beneficial buffer case, it should be noted that both the total production rate and the

effective production rate increase with buffer size, with or without quality information

feedback.
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Figure 4-1: Beneficial Buffer Case: Total Production Rate
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Figure 4-2: Beneficial Buffer Case: Effective Production Rate
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4.1.2 System yield and buffer size

Even though a larger buffer increases both total and effective production rates in this

case, it decreases yield. As explained in Section 3.4, the system yield is a function of

the buffer size if there is quality information feedback. Figure 4-3 depicts system yield

decreasing as buffer size increases when there is quality information feedback. This

relationship happens because when the buffer gets larger, more material accumulates

between an operation and the inspection of that operation. All such material will be

defective when the first machine is at state -1 but the inspection at the first machine

does not find it. This is a case in which a smaller buffer improves quality, which is

widely believed to be generally true. If there is no quality information feedback, then

the system yield is independent of the buffer size (and is substantially less).
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Figure 4-3: Beneficial Buffer Case: System Yield as a Function of Buffer Size

4.2 Harmful buffer case

4.2.1 Production rates

Typically, increasing the buffer size leads to higher effective production rate. This

relationship is illustrated in Figure 4-2. But under certain conditions, the effective

production rate can actually decrease as buffer size increases. This phenomenon can

happen when:

* The first machine produces bad parts frequently: this means g, is large.
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" The inspection at the first machine is poor or non-existent and inspection at

the second machine is reliable: this means h, < < h2 or fi - pi << f2 - p2.

" There is quality information feedback.

" The isolated production rate of the first machine is higher than that of the

second machine:

Ap (1 + gi/fI) > 2(1 + 92/f2)
1 + (pi + gi)/r1 + gi/fi 1 + (P2 + g2)/r 2 + g2/f2

Figure 4-4 presents a case in which a buffer size increase leads to a lower effective

production rate. Note that even in this case the total production rate monotonically

increases as buffer size increases (See Figure 4-5).

1.5-

- 05be,w -h

JI: L' L5 10 15 25
Buffer Size

Figure 4-4: Harmful Buffer Case: Effective Production Rate

4.2.2 System Yield

The system yield for this case is shown in Figure 4-6. Note that the yield decreases

dramatically as the buffer size increases. In this case, the decrease of the system yield

is more than the increase of the total production rate so that the effective production

rate monotonically decreases as buffer gets bigger.
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Figure 4-5: Harmful Buffer Case: Total Production Rate
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4.3 Optimal buffer case

As demonstrated in Figure 4-7, there are cases in which the effective production

rate increases up to a certain level then decreases as the buffer size (N) increases.

In this situation, we have an optimal buffer level N* that maximizes the effective

production rate. When N < N*, as the buffer size gets bigger, the increase of the

total production rate is more than the decrease of the system yield. Therefore, the

effective production rate, which is a multiplication of the total production rate and

the buffer size, increases. But it decreases as the buffer size gets bigger when N > N*

91



since the decrease of the system yield excels the increase of the total production rate.

The behaviors of the total production rate and the system yield are shown in Figures

4-8 and 4-9.
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Figure 4-9: Optimal Buffer Size Case: System Yield

4.4 How to improve quality in a line with

persistent quality failures

Quality can be improved in two major ways. One way is to increase the yield of indi-

vidual operations, and the other is to perform more rigorous inspection. Performing

extensive preventive maintenance on manufacturing equipment and using robust en-

gineering techniques to stabilize operations have been suggested as tools to increase

yield of individual operations. Both approaches increase the mean time to quality

failure (MTQF) (i.e., decrease g). On the other hand, the inspection policy aims to

detect bad parts as soon as possible and to prevent their flow toward downstream

operations. More rigorous inspection decreases the mean time to detect (MTTD)

(i.e., increases h and therefore increases f). It is reasonable to believe that using only

one kind of method to achieve a target quality level would not give the most cost

efficient quality assurance policy. Figure 4-10 indicates that the impact of individual

operation stabilization on the system yield decreases as the operation becomes more

stable. Figure 4-11 shows that effect of improving inspection (MTTD) on the system

yield decreases as inspection becomes more reliable. Therefore, it is optimal to use a

combination of both methods to improve quality.

93



50 100 150 200 250

MTQF
300 350 400 450

Figure 4-10: Quality Improvement Through Increase of MTQF

I

0.9

0.8

0.7

Ci2

0.6

0.5

0.4

0.3

0.2

0.1

0 0.1 0.2 0.3 OA 0.5 0.6
f = p+h

0.7 0.8 0.9 1

Figure 4-11: Quality Improvement Through Increase of f

94

I

0.9

0.8

0.7

0.6

E 0.5

cT 0.4

0.3

0.2

0.1



4.5 How to increase the effective production rate

Improving the stand-alone throughput of each operation and increasing buffer space

are typical ways to increase the production rates of manufacturing systems. If opera-

tions are apt to have quality failures, however, there may be other ways to increase the

effective production rate: increasing the yield of each operation and conducting more

reliable inspections. Stabilizing operations, thus improving the yield of individual

operations, will increase effective throughput of a manufacturing system regardless

of the type of quality failure. On the other hand, reducing the mean time to de-

tect (MTTD) will increase the effective production rate only if the quality failure is

persistent, but it will decrease the effective production rate if the quality failure is

Bernoulli. This phenomenon occurs because the quality of each part is independent

of the others when the quality failure is Bernoulli. Therefore, stopping the line does

not reduce the number of bad parts in the future.

In a situation in which machines produce defective parts frequently and inspection

is poor, increasing inspection reliability is more effective than increasing buffer size

to boost the effective production rate. Figure 4-12 demonstrates this. Also, in other

situations in which machines produce defective parts frequently and inspection is

reliable, increasing machine stability is more effective than increasing buffer size to

enhance effective production rate. Figure 4-13 depicts this phenomenon.
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Figure 4-12: Mean Time to Detect and Effective Production Rate
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Chapter 5

Long Line Analysis

The two-machine lines of Chapter 3 can be solved analytically, and this means that

fast computer programs can be written to determine performance measures. How-

ever, no such exact analytical solution exists for longer lines. In this chapter, we

describe approximate techniques for long transfer lines with quality failures. Many

different kinds of long manufacturing lines can be analyzed: different topologies (e.g,

tandem, parallel, assembly/disassembly, and closed loops), different quality failures,

different inspection policies and so on. However, in this chapter we focus only on three

non-trivial long manufacturing line tasks to provide fundamental solution methods.

Analysis of various long manufacturing lines is a promising topic for future research.

(See Chapter 7.)

5.1 Introduction

5.1.1 Approximation techniques in long line analysis

Analysis of a line with more than two machines is more difficult than the analysis of

a two-machine system since it leads to a higher state space dimension and increases

the number of boundary conditions. Gershwin and Schick [Gershwin and Schick,

1983] derived an exact solution for the three-machine version of the discrete model.

However, they recognized that it is not extendable to larger systems since it is difficult

to program and ill-behaved.

In case of the continuous model, the analysis of longer lines increases the dimen-

sions of the partial differential equations used in the internal transition equations.

Thus, it appears that obtaining a solution for transfer lines with more than two ma-
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chines requires approximations. Two different types of approximate techniques have

been proposed so far: decomposition methods and aggregation methods.

The use of decomposition techniques for the analysis of long transfer line was pro-

posed by Zimmern [Zimmern, 1956] for the machines with operation-dependent fail-

ures and by Sevast'yanov [Sevast'yanov, 1962] for the machines with time-dependent

failures.

The idea of the decomposition technique is to decompose a long line into a set of

two-machine lines. Both authors used the continuous model and considered only the

case of homogeneous lines in which all machines have the same repair rates. For the

analysis of the discrete model of long homogeneous lines, approximate decomposition

equations were proposed by Gershwin [Gershwin, 1987]. The decomposition equa-

tions proposed by Gershwin was efficiently solved by the DDX-algorithm, which was

formulated by Dallery, David, and Xie [Dallery et. al, 1989].

Aggregation techniques for the approximate analysis of transfer lines have been

independently proposed by Ancelin and Semery [Ancelin and Semery, 1987], and

Terracol and David [Terracol and David, 1987] in the case of operation-dependent

failures, and De Koster [De Koster, 1987] in the case of time-dependent failures.

The basic idea of the aggregation method is to replace a two-machine-one-buffer

section of the line by a single equivalent machine. Sections of the line are repeatedly

aggregated until only one two-stage system remains. The major deficiency of the ag-

gregation models is that they only account for a unidirectional propagation of events.

For example, when the first two machines are aggregated, there is no accounting for

the effects that downstream blocking might have on the parameters of a previously

aggregated stage. Therefore, the result from aggregating from the first two machines

can be quite different from the result from the aggregating from the last two machines.

The rest of the chapter focuses only on the decomposition methods.

5.1.2 Decomposition techniques for continuous models

without quality failures

For two-machine lines, we can find an exact solution to calculate performance mea-

sures. However, for a long line, it appears to be impossible to find such a solution.

Therefore, an approximation technique is needed. The decomposition technique is the

most popular approximation technique that decomposes the K machine line L into a

set of K - 1 two-machine lines L(i) (i = 1, 2, ..., K - 1). Each line L(i) is composed of
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Figure 5-1: Decomposition of a four-machine line into three two-machine lines

an upstream machine M,(i) and a downstream machine Md(i), separated by a buffer

B(i). This decomposition is illustrated in Figure 5-1 for a four-machine line.

The principle of the decomposition is that the behavior of the material flow in

buffer B(i) closely matches that of the flow in buffer Bi of line L. Machine M(i)

represents the part of the line L upstream of Bi and machine Md(i) represents the

part of the line L downstream from Bi.

Decomposition techniques for continuous long lines with operation dependent fail-

ure is more complex than other models (e.g., a deterministic processing time long line)

since it assumes different machine speeds, and the speeds of machines can be slowed

down due to partial blockage and partial starvation. A decomposition technique for a

continuous long line with different operation speeds and operation dependent failures

was first proposed by Glassey and Hong [Glassey and Hong, 1993]. Another method

was developed by Burman [Burman, 1995].

The Accelerated DDX algorithm (ADDX), which was formulated by Burman [Bur-

man, 1995], converges faster and gives more accurate estimates than Glassey and

Hong's algorithm. The algorithm works as follows:

(1) Initialization

Provide the following initial guesses for the parameters of each two-stage line:

pUi) = pi
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ru(i) = ri

p.(i) = Ii

Pd(i) = Pi+1

rd(i) = ri+1

A(i) = Ni+1 i = 12 ..-. , k - 1 (5.1)

(2) Iteration

Perform Step 1 and Step 2 until the Termination Condition is satisfied.

Step 1 Let i range over values from 2 to k - 1. Evaluate L(i - 1) using the

continuous two-machine-one-buffer model with the most recent values of rd(i - 1),

Pd(i - 1), pd(i - 1), ru(i - 1), pu(i - 1), pu(i - 1). Then substitute these parameters

and the resulting P(i -- 1) into the upstream decomposition equations (5.2) - (5.4),

in that order.

PUW) = piK2K3 + rip, + riKK 3  (5.2)
r, + K 2 K 3 - K1 K 3

ru(i) = pjK 2 K3 + ripi + r K 1 K3  (5.3)
pi + K1 K 3 - K 2K

K3 ( p, + ri )
p/Zi = 3(i i (5.4)

ri + K 2K 3 - K 1 K3

where

Pi- 1 (0, 1, 1) (u(i - 1) - 1)) + (P1(0, 0, 1) r.(i - 1) (5.5)
P(i -- 1) pd(i 1) P(i - 1)

K2 =(ru(i - 1) - ri) pi1 1(0, 0, 1) (5.6)
(P(i - 1)

K3 1 1 1 1 (5.7)
P(i- 1) ejjsi ed(i-1)pA(i-1)

Here pi (x, a,, a 2 ) is the probability that the decomposed two-machine system i

is at state (x, a,, a 2 ), P(i) is the production rate of the decomposed two-machine
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system i, and ej is the isolated production rate of the two-machine line.

Step 2 Let i range over values from k - 2 to 1. Evaluate L(i + 1) using the

continuous two-machine-one-buffer model with the most recent values of rd(i + 1),

Pd(i + 1), Pd(i + 1), r,(i + 1), pu(i + 1), pL(i + 1). Then substitute these parameters

and the resulting P(i+1) into the downstream decomposition equations (5.8) - (5.10).

pdi)= p+ 1 K 5K 6 + ri+1Pi+1 + ri+1K 4K 6  (5.8)
ri+ + K 5K 6 - K 4K 6

rdW) = pj+ 1K 5 K 6 + ri+lPi+1 + ri+1K 4 K 6  (5.9)
Pi+1 + K4K 6 - K 5K 6

Ad(i) = K 6(Pi+1 + ri+1) (5.10)
ri+1 + K 5 K 6 - K 4K 6

where

K4 = Pi+1 Pi+i(Ni+,(i + 1) i ) + Pi+(Ni+, 1, 0)) rd(i+1) (5.11)
P(i + 1) f pU(i + 1) P(i + 1)

K5 = (rd(i + 1) - ri+1) + pi+ i+1 1, 0) (5.12)

1
K 1 1 _ 1(5.13)

P(i+1) ei+1Pi+1 eU(i+1)AU(i+1)

(3) Termination Condition Terminate the algorithm when

IIP(i) - P(1)11 (5.14)

is smaller than a pre-defined small number c.

5.2 Long line analysis case 1

5.2.1 Introduction

Many different kinds of long manufacturing lines with quality and operational failures

can be analyzed: different topologies, different quality failures, different inspection

policies, and so on. However, there has been no analytical model of these in the
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literature. In this thesis, we try to take the first and fundamental research step in

building analytic models of long manufacturing lines with quality and operational

failures, by focusing only on three non-trivial long manufacturing line tasks. Analysis

of various long manufacturing lines is a promising topic for future research. (See

Chapter 7.)

:M 1 B M2 2 M 3MB

Inspection

Figure 5-2: The first long line analysis task

The first task is the ubiquitous inspection case illustrated in Figure 5-2. This

is the most fundamental but non-trivial model for the long line analysis since the

manufacturing line is long (i.e., more than two machines) and the machines have

both quality and operational failures. In this case, we assume that every machine

undergoes both quality failures and operational failures, and inspection is done at

every operation. More detailed assumptions of the case are as follows:

" Each machine has both operational failures and quality failures.

* Each operation works on different features (e.g., holes, grooves). Thus, quality

failures at an operation do not influence the quality of other operations.

" Inspection at machine Mi can detect defective features made by Mi, not others.

" There is no scrap or rework in the line; defective parts are marked, and scrapped

or reworked later.

5.2.2 Solution method

Transformation technique

Since machines with quality and operational failures have five parameters, pi, ri, pi, gi,

and fi, the analysis of a K-machine line with quality failures requires equations for

10(K - 1) pseudo-machine parameters and a efficient algorithm to solve them.
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For the ubiquitous inspection case, quality failures at an operation do not influence

the quality of other operations because of the assumption that each operations works

on different features. As a result, gi is independent of other machines' parameters.

Therefore, we have

9ui) = 9i

gd(i) = gi+1. (5.15)

Another fundamental assumption of the model is that inspection can only identify

bad features made by its own operation. Therefore, for each decomposed line L(i),

(i = 1, 2, ... K - 1) the incoming parts from upstream machines are treated as non-

defective since the inspections at the decomposed line L(i) can not detect defective

parts from the upstream machines. In addition, outgoing defective parts from L(i) are

not detected by the inspections at downstream machines. Thus, fi is also independent

of other machines' parameters. Therefore, we get

fu W) = fi

fd(i) = fi+1. (5.16)

4(K - 1) equations are developed from equations (5.15) and (5.16). The remain-

ing 6(K - 1) equations are for the determination of pu(i), pd(i), ru(i), rd(i), Pu(i),

and pd(i), which are the parameters for machines with operational failures only. To

determine these parameters, we propose that three-state-machines (state 1, state -1,

and state 0) can be approximated by two-state-machines (state 1' and state 0), as

depicted in Figure (5-3).

P3s0
p~s

OpTrted s dt

Figure 5-3: Three-state-machine and corresponding two-state-machine
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In Figure 5-3, two up states (state 1 and state -1) of the three-state-machine are

consolidated into one up state (state 1') of the two-state-machine.

For a three-state-machine in isolation, the probability of a machine being at each

state is

1
PAst(l) =1

1 + (P3st + 93st)/r3st + 93f/3s

Ast(0) = (P3st + g3st)/r3st
1 + (P3,M + g9at)/r3st + 93,t/f3st

P38t(-1) = 93st/f3st (5.17)
1 + (P3st + g3st)/r3st + 93st/f3st

On the other hand, for a two-state-machine in isolation, the probability of a

machine being at each state is

P2st(l') =r2,t
P2st + r2,t

P2st(0) = P2st (5.18)
P2st + r2st

The probability of state 1' of the two-state-machine is the sum of the probability

of state 1 and state -1 of the three-state-machine. Therefore,

P39t(1) + P3st(-1) = P2st(1'). (5.19)

From equations (5.17), (5.18), and (5.19), we have

P2st = .3 t) (5.20)
f3st + g3st

As a result, the three-state machine can be approximated by the two-state machine

with machine parameters p2,t = /.L3st, r3st = r2st, and P2at = fhat(P 8 t+g3a ). From these
f3at+Y3at

equations, the mean transition time from up states to down state (i.e., the expected

time from the moment a machine leaves state 0 to the next time it arrives at state

0) of the three-state-machine is matched with that of the corresponding two-state-

machine. But the distribution of the transition time from up states to down state

of the three-state-machine and that of the corresponding two-state-machine are not

similarly adjusted. The distributions may not match well; once a three-state-machine
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gets to state 1, it has two paths to move to state 0: directly to state 0 with the

rate of p, or through state -1 with the rate of g and then to state 0 with the rate f.

However, the corresponding two-state-machine has only one path to get to state 0.

Therefore, the validity of the approximation depends on whether the distribution of

the transition time from up states to down state of the three-state-machine follows

closely that of the two-state-machine, which is an exponential distribution.

To check this, a simple simulation model of a three-state-machine is developed

and the transition times from up states to down state are recorded. For statistical

significance,1,000,000 cycles of run were used.

10 1

-- - - --- - - - .......

T4 I - -- - -. . ... .. . .. . . . -- - - - -

4- 41:

10'-*4.4. 4. '4

0 100 200 3M 400 00 m 7o 0 0 100 100 200 250 3M 350 400 450 500

Transition ime Transiaon time

(a) p-0.01, g-aOif-I (a) j-0.01, g=OO1f=01

Figure 5-4: Distribution of transition time from up states to down state: three-state
machines

Figure 5-4 represents the observed distributions of the transition times for two

different parameter settings where operational failures and quality failures take place

equally frequently. The horizontal axis represents the transition time and the vertical

axis represents the corresponding probability in a logarithmic scale. Both cases in

Figure 5-4 show a close to linear relationship between transition times and the cor-

responding probabilities in logarithmic scales. This means that the transition time

closely follows the exponential distribution.

The equivalent two-state-machine gives the total production rate and average

inventory. But the effective production rate should be estimated indirectly since the

two-state-machine can not tell the difference between 'good' state and 'bad' state.

Since there is no scrap in the system, the yield of a machine is P3"l) =
P3 .t(1)+Pa(-1)

f3 . For multiple machine lines, the system yield becomes a product of the

105



individual yields. Thus, the effective production rate can be calculated by multiplying

the system yield by the total production rate.

5.00%

4.00%

3.00%

2.00%

S1.00%

-2.00%

-3.00%

-4.00%

-5.00%
Cam Number

Figure 5-5: 3-state-machine vs. 2-state-machine - comparison of PT
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Figure 5-6: 3-state-machine vs. 2-state-machine - comparison of PE
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Figure 5-7: 3-state-machine vs. 2-state-machine - comparison of Inv

The performance measures of the 2M1B system with the three-state-machines and

the corresponding two-state-machines are compared in Figures 5-5, 5-6, and 5-7. By

changing machines and buffer parameters, 100 cases are generated, and % errors are

plotted in the vertical axis. The parameters for these cases are given in Appendix
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A. The average absolute errors in the total production rate, the effective production

rate, and the average inventory are 0.34 %, 0.68%, and 1.07%, respectively.

Analysis procedure

The four-machine ubiquitous inspection case, presented in Figure 5-2, can be analyzed

by using the following procedure:

" Step 1: Calculate the system yield

Y5 1 - , 2 X 8 f3 X

hy f + 91 f2 + 92 f3 + 93 h4 + 94

" Step 2: Transform the original line L with 3-state-machines into an equivalent

line L' with 2-state-machines by setting

- ' = , r(=rip = (i = 1, 2, 3, 4 ).

-Nil= Ni (i = 1, 2, 3).

" Step 3: The total production rate and average inventory levels for Bi (i = 1, 2, 3)

of the 2-state-machines line L' is calculated from ADDX algorithm.

" Step 4: Evaluate the effective production rate by multiplying the system yield

by the total production rate.

The same procedure can be used for the analysis of a general K-machine line.

5.2.3 Performance Evaluation

Figures 5-8, 5-9, and 5-10 illustrate the comparison of the performance measures

of a large number of four-machine lines with ubiquitous inspections, between the

decomposition algorithm result and simulation result. By choosing machine and buffer

parameters, 50 cases are generated, and % errors are plotted on the vertical axes. The

parameters used for these cases are given in Appendix B. The average absolute errors,

which is the average of the absolute value of the % errors, are presented in Table 5.1.

As observed in the two-machine lines, (Figures 3-26, 3-27, and 3-28), the estimate of

total production rate shows less error than that of the effective production rate. The

observation that the production rates estimates are better than average buffer levels

is consistent with the rest of literature [Dallery and Gershwin, 1992], [Burman, 1995].
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Table 5.1: Average absolute errors in long line analysis case 1

PTI PE WIP Inv, Iv 2  Inv3
Average absolute error (%) 0.37 0.64 3.41 5.46 4.51 2.34

10.00%

L.IS%

6.30%-

400%

2.88%

-6.00%

-LIS%

-10.00%
Came Nuber

(a) Total Production Rate

16.00%

-. 00%

6.00%

4.00%
' 2.00%

-4000%

-00%

-10.00%

Case NUaTer

(b) Effective Production Rate

Figure 5-8: Validation - total production rate and effective production rate
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Figure 5-9: Validation - WIP (Work-In-Process) and average inventory at B1
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Figure 5-10: Validation - average inventory at B 2 and B 3

5.3 Long Line Analysis Case 2

5.3.1 Introduction

The second long manufacturing line analysis task is an extended quality information

feedback (EQIF) case with four machines as illustrated in Figure 5-11. This is an

extension of the 2M1B quality information feedback model to a longer line. This is

a good approximation of a real situation where operations in the manufacturing line

are reliable in terms of quality, whereas incoming raw material causes major quality

problems, and the defect in the raw material can only identified at the end of line.

Assumptions of the model are as follows:

Operational Failures + Quality Failures

--------------- --- -- -- -- ----- - - - - - -----

M 3 M 4

A

Figure 5-11: The second long line analysis task

" The first machine (M 1 ) has both operational failures and quality failures.

" The other machines have only operational failures.

" The only inspection is located at the end of line and it can detect non-conformities

made by M 1.
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5.3.2 Solution method

The four-machine EQIF case is an extension of 2M1B with quality information feed-

back. Therefore, we can use the similar procedure that is used for 2M1B with quality

information feedback: adjustment of transition probability rate of M1 from state -1 to

state 0 (i.e., adjusting fi). The only difference is that there are three buffers between

M, and M 4 for EQIF case rather than one. Thus, w in equation (3.186) is replaced by

Work-In-Process (WIP = Inv 1 + Inv 2 + Inv 3 ) in the EQIF line. After fi is adjusted,

EQIF case becomes ubiquitous inspection case so that the similar solution method is

used.

The four-machine EQIF case shown in Figure 5-11 can be analyzed by using the

procedure as follows:

" Step 1: Estimate WIP (=Inv, + Inv 2 + InV3 ) to get an initial estimate of f .

" Step 2: Adjust J" by using the quality information feedback formula

= 1-(1+WIPX11)(1-Xi1)WIP + (1_Xll)WIPX41[1+WIP(X41+X11-X41X11)] (5.21)
X11 [1-(1-X11)(1-X41)12

where xi = f, and X41 = f4.

" Step 3: Calculate the system yield

f1 f2 ____ __4

sY f1+g1 f2 +g 2  f3 +g 3  f4 +g 4 '

* Step 4: Transform the original line L with 3-state-machines into an equivalent

line L' with 2-state-machines by setting

- p' = pi, r'= ri, p'. = ( + (i = 1, 2, 3, 4 ).

- Nil= Ni (i =1, 2, 3).

" Step 5: Use the ADDX algorithm to calculate the total production rate (PT)

and average inventory at each buffer Bi (i = 1, 2,3).

" Step 6: Estimate the effective production rate (PE) by multiplying the total

production rate by the system yield.

" Step 7: If new PT, PE, Inv are close enough to previous values, then stop.

Otherwise go to Step 2 and repeat the procedure.
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Figure 5-12 illustrates this solution method.

Estimate WIP
4,& Step 1 Inspection

M M 1M M4

A, r. A pA, r2, A2 A, r - p, rU., P,.,

g1, X Step 2

M2 M Ma LM
A. 5.A , rG, A lu>, r, pA p4, r., IA

Step 3 & 4

11  M2  
M B, M4  L'

p 2, r2, P2 r,, p, r, A

Step 5

M.(1) B(I) LMI)

p . (. J(1), re() p.(.

B2) L (2)

p, (2), r (2), p,.(2) N, q,(2), rd(2), P,(2)

M3 A L()

Step 6

Calculate Pr PE, Inv

Figure 5-12: Procedure of long line analysis task 2

5.3.3 Performance Evaluation

Figures 5-13, 5-14, and 5-15 illustrate the comparison of the performance measures

of a large number of four-machine EQIF lines, between the decomposition algorithm

result and simulation result. By changing machines and buffer parameters, 50 cases

are generated, and % errors are plotted in the vertical axes. The parameters used

for these cases are given in Appendix B. The average absolute errors are presented
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in Table 5.2. As observed in the two-machine lines and the ubiquitous inspection

case, the estimate of total production rate shows less error than that of the effective

production rate. The observation that the production rates estimates are better than

average buffer levels is consistent with 2M1B systems and the ubiquitous inspection

case. Note that performance estimates of EQIF case are slightly worse than these

of ubiquitous inspection case since the quality information feedback equation is an

approximate formula as discussed in Chapter 3.

Table 5.2: Average absolute errors in long line analysis case 2

PT PE WIP Inv1 Inv2  Inv 3
Average absolute error (%) 0.52 1.02 3.47 5.16 5.56 2.43
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-15.00%
Case NuMAber

(a) Total Production Rate

-15.00%:-5.66%

Case Number

(b) Effective Production Rate

Figure 5-13: Validation - PT and PE
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Figure 5-14: Validation - WIP and Average Inventory at B1
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Figure 5-15: Validation - Average Inventory at B 2 and B 3

5.4 Long Line Analysis Case 3

5.4.1 Introduction

Due to the cost of inspection stations, factories are often designed so that multiple

inspections are performed at a small number of stations. The inspection stations are

usually located at the end of a (sub) line to guarantee that outgoing parts are defect-

free. This is a typical example of a multiple quality information feedback (MQIF)

case, which is illustrated in Figure 5-16. The assumptions of the model are as follows:

--------

....... ... .... .

ecLion

Figure 5-16: The third long line analysis task

" All the machines have both operational failures and quality failures.

" The only inspection is located at the end of line, and it can detect non-conformities

made by any of the machines (M 1 , M 2 , M 3 , and M 4 ).

" Each operation works on different features. Quality failures at an operation do

not influence the quality of other operations.
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e There is no scrap in the line; defective parts are marked and reworked later.

5.4.2 Solution method

The four-machine MQIF case shown in Figure 5-16, is an extension of EQIF case

in a sense that multiple quality information feedback loops exist. Therefore, we can

repeat the same procedure that is used for EQIF case for each of the loop. The only

difference is that w in equation (3.186) is replaced by:

* Inv, + Inv 2 + IrV3 for the adjustment of fi.

SInv2 + Inv3 for the adjustment of f2.

" Inv 3 for the adjustment of f3.

The four-machine MQIF case can be analyzed by using the procedure as follows:

* Step 1: Estimate the average inventory of each buffer (Inv,, Inv 2, and Inv3 ).

" Step 2: Adjust 'F (i = 1, 2,3) by using the QIF formula:

= -(1--xii)"i - w,(1 - xix),W + (1-Xii)WiX4[(wi+1)-wi(-Xih)(1-X4i)
Xii [1-(1-Xii)(1-X4i)1'

where Xii = , X4i = , w, = Inv, + Inv2 + Inv 2 , W2  Inv2 + Inv3 , and

W3 =Inv3.

* Step 3: Calculate the system yield

I1 12 X X f4

Sy"fs + 1g f 2 + 92 f3 + 93 4 + 94

* Step 4: Transform the original line L with 3-state-machines into an equivalent

line L' with 2-state-machines by setting

- ' = , r == ri, ' = (it +gi) (i = 1, 2, 3, 4).

-- Nj = Ni (i := 1, 2, 3).

" Step 5: Use the ADDX algorithm to calculate the total production rate (PT)

and average inventory at each buffer Bi (i = 1, 2,3).
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Figure 5-17: Procedure of long line analysis task 3
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" Step 6: Estimate the effective production rate (PE) by multiplying the total

production rate by the system yield.

" Step 7: If the new PT, PE, Inv are close enough to their previous values, then

stop. Otherwise go to Step 2 and repeat the procedure..

Figure 5-17 illustrates this solution method.

5.4.3 Performance Evaluation

Figures 5-18, 5-19, and 5-20 illustrate the comparison of the performance measures

of a large number of four-machine MQIF lines, between the decomposition algorithm

result and simulation result. By changing machine and buffer parameters, 50 cases

are generated, and % errors are plotted in the vertical axes. The parameters used

for these cases are given in Appendix B. The average absolute errors are presented in

Table 5.3.

As observed in the two-machine lines, the ubiquitous inspection case, and the

EQIF case, the estimate of total production rate shows less error than that of the

effective production rate. The observation that the production rates estimates are

better than average buffer levels is consistent with the other cases. Note that per-

formance estimates of MQIF case are slightly worse than these of EQIF case since

the approximate quality information feedback equation is used multiple times. This

deterioration of performance estimates suggests that the errors tend to increase as the

manufacturing line gets longer (thus, more quality information feedback loops exist).

Table 5.3: Average absolute errors in long line analysis case 3

PT PE WIP Inv1  Inv2  Inv3
Average absolute error (%) 0.55 1.95 8.62 5.97 4.75 2.76

In this chapter, we propose the solution methods for the three non-trivial long

manufacturing line tasks as a first step in analyzing long manufacturing lines with

quality and operational failures. The comparison with simulations show that the

solution methods provide the reliable performance estimates of long manufacturing

lines. Analysis of various long manufacturing lines is a promising topic for future

research. (See Chapter 7.)
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Figure 5-18: Validation - PT and PE
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Chapter 6

Jidoka

6.1 Jidoka practice in Toyota Production System

A significant portion of the Toyota Production System is traceable to an automatic

loom invented early in the 20th century at Toyota Spinning & Weaving, the parent

company of the Toyota Motors Corporation. The loom was designed to stop working

immediately whenever thread snapped. The principle of stopping an operation when

a problem occurs and preventing the production of defective items is fundamental to

the Toyota Production System. This principle is called jidoka [Togo and Waterman,

1993]. In the Toyota Production System, equipment is designed to detect abnormal-

ities and to stop automatically and immediately whenever they occur. Operators

at assembly lines are provided means of stopping the production flow (andon cords)

whenever they note anything unusual.

Experts in the Toyota Production System argue that the Jidoka practice has

brought several benefits: The most significant of them is that it eliminates the need

for the workers to oversee machine operations. As a result, an operator can handle

multiple machines. It is not unusual that one operator handle 7 to 10 machines in

the Toyota Production System. The man-machine separation led to significant direct

labor cost saving and made it possible to use cellular manufacturing systems.

Another widely mentioned advantage of "stopping a line when abnormalities take

place" is that it motivates kaizen (continuous improvement) since operators can

clearly see the painful outcome of producing defects: the line stoppage. And it

is easier to find the root cause of a problem right after the problem takes place.

Through the use of systematic ways of resolving problems (e.g. asking "Why?" five
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times) which are widely accepted in Toyota, operators' learning speed accelerated [Fu-

jimoto, 1999]. It has been known that operators' learning can significantly improve

productivity and quality [Henderson, 1982], [Sandberg, 1995].

The other benefit of jidoka that Toyota Production System advocates claim is

that it prevents the waste that would result from producing a series of defective

items. Therefore, jidoka is considered to be a means to improve quality and increase

productivity at the same time [Toyota Motors Corporation, 1996], [Monden, 1998].

When quality failures are persistent, in which once a bad part is produced, all subse-

quent parts will be bad until the machine is repaired, catching bad parts and stopping

the machine as soon as possible is the best way to maintain high quality and pro-

ductivity. This is the case with breakage of thread, which caused the invention of

jidoka practice a century ago at Toyota Spinning & Weaving [Togo and Waterman,

1993]. On the other hand, defects are often from Bernoulli quality failures in which

the quality of each part is independent of the others. In this case, there is no benefit

to stop a machine that has made a bad part because there is no reason to believe that

upcoming parts are bad; thus stopping the machine would reduce the number of bad

parts in the future. In this case, therefore, stopping the operation does not improve

quality but it reduces productivity by losing working time.

In reality, most of machines have multiple-yield quality failures. When a machine

is in good shape and operating without any assignable cause variations (in control

or high-quality state), it may produce a defective part with a very small probability,

not because of any internal change in the machine but because of random external

perturbations. However, when a machine is operating under assignable cause varia-

tions (out of control or low-quality state), it is likely that many of upcoming parts

are bad. In this situation, the optimal stopping policy is, therefore to stop the ma-

chine only if the machine is in low quality state. But in many cases it is not easy to

tell whether the machine is in high-quality state or low-quality-state (in other words,

whether quality failure is from random variation or assignable cause variation) with

one sample. Matters even get more complicated when inspection is not reliable.

In this case, what would be an optimal stopping policy? Qualitatively speaking,

stopping immediately after detecting a bad part may not be optimal when Bernoulli

quality failures is more frequent, mean time to repair (MTTR) is long and inspection

is not reliable. Analytic models developed in Chapter 3 can give more precise and

quantitative answers to the question.
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6.2 Modeling of Multiple-Yield Quality Failures

6.2.1 Multiple-Yield Quality Failures

Jidoka practice means stopping a machine or a manufacturing line immediately when

a defective part is made. Basically, people adopt jidoka assuming that inspection is

100% reliable and that all the defects are from persistent quality failures. In that

case, it is clear that jidoka improves quality and productivity at the same time. But

when there are Bernoulli quality failures and multiple-yield quality failures, there is

no guarantee that subsequent parts will be defective after finding a non-conformity.

In this case, it may be better to stop a machine when the machine produces two

defective parts in a row since it is not likely to have two Bernoulli-type quality failures

consecutively. To check the optimality of the jidoka stopping policy, we need to

model multiple-yield quality failures. Figure 6-1 shows a modified state definition of

a machine for the simplest multiple-yield quality failure model:

" State 1: The machine is in good shape and operating without any assignable

cause variations. It may produce defective parts with probability 1 -7r(1), which

is close to 0, due to random variations.

" State -1: The machine is operating under assignable cause variations and pro-

ducing bad parts with probability 1 - 7r(-1), which is close to 1. But the

operator does not know this yet.

" State 0: The machine is not operating.

Therefore, 7r(1) is the yield of a machine when the machine is at state 1. And

7r(-1) is the yield of the machine when it is at state -1. When the machine is either in

state 1 or -.1, it can be stopped for two reasons: operational failures with probability

rate pi and quality failures with transition rate q3 (j = -1, 1). Here, 1/qj is a Mean

Time to Stop due to Quality failures (MTSQ) which depends on frequency of quality

failures, inspection reliability, and machine stopping policies. Since we assume that

the occurrence of operational failures is independent of machine states, p1 - P(_1) - .

The transition from state 1 to state 0 occurs with probability rate s = p1 + q1 ,

and the transition from state -1 to state 0 occurs with probability rate f = p- + q- 1.

A system that has persistent quality failures only is a special case where:

0 7r(1) = 1 and 7r(-1) = 0.
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Figure 6-2: Two-Machine-One-Buffer system with multiple-yield quality failures

Figure 6-2 shows a 2M1B system with multiple-yield quality failures. Each ma-

chine has 7 parameters as shown in the figure. The analysis of 2M1B systems with

multiple-yield quality failures is the same as 2M1B systems with the persistent quality

failures except for a modification of the effective production rate formula. Internal

transition equations, boundary conditions, total production rate, and average inven-

tory are independent of iri(1) and ir (-1). The effective production rate of M1 is

N

Pk = Z p 1 [f{r(-1)f(X, -1, a 2) +7ri(1)f(x, 1, a 2 )}dx + 7r(1)P(0, 1, a 2 )
a2=-1,,1 0

+iri(-1)P(0, -1, a 2 )] + A 2 [7r1(1){P(N, 1, -1) + P(N, 1, 1)}

+7rj(-1){P(N, -1, -1) + P(N, -1, 1)}].
(6.1)

Similarly, the effective production rate of M2 is
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N

E= E p2[f {r 2(-1)f(x, ci, -1) + 7r 2(1)f(x, al, 1)}dx + 7r2(-1)P(N, a,, -1)
ac=--1,O,1 0

+7r 2(1)P(N, a,, 1)] + p1[7r2 (1){P(0, -1, 1) + P(0, 1, 1)}

+7r2 (-1){P(0, -1, -1) + P(0, 1, -1)}].
(6.2)

Equations (6.1) and (6.2) become equations (3.92) and (3.93) when ri(1) = 1 and

iri(-1) = 0.

6.2.2 Modeling of Stopping Policies

As discussed earlier, we define qi as the probability rate that a machine i (Mi) is

stopped due to quality failures when Mi is in state j (j = -1, 1). The value of qi

depends on frequency of quality failures, inspection reliability, and stopping policies.

Jidoka is based on 100% reliable inspection, and the frequency of quality failures is

intrinsic to operations. Therefore, we only need to consider stopping policies to check

the optimality of jidoka practice. For the sake of simplicity, we consider two different

stopping policies:

" Policy 1: Stop a machine when a bad part is produced.

" Policy 2: Stop a machine when two bad parts are produced consecutively.

Stopping policy 1 is the policy that is incorporated in jidoka practice. If the per-

sistent quality failures are the only quality failures, stopping a machine immediately

after it produces a defect is better than stopping with two consecutive defects. But,

in the case of Bernoulli quality failures and multiple-yield quality failures, the per-

formance of the two stopping policies depends on many factors (e.g. g, 7r(1), r, and

others).

Modeling of stopping policy 1

The probability of making a bad part when Mi is in state j is 1 - 7rt(j). For stopping

policy 1, we assume 100% reliable inspection and an immediate stoppage of a machine

after a detection of a defect. As a result, the MTSQ (=-) is the same as the mean

time for a quality failure to occur:
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1 1 1
-- = - [(1-7r(j))+2(1-7ri(j))7ri(j)+3(1-7ri(j))(7ri(j))2+...] -= (j = -1, 1).
ej Ai pi(1 - 7ri(j))

(6.3)

Here, -L is a cycle time. Therefore,

q = pi (1 - iri(j)), (j = -1,1) (6.4)

The 2M1B systems with multiple-yield quality failures and stopping policy 1 can

be analyzed with the 2M1B systems developed in Chapter 3 with some modifications:

e Modify machine parameters pi with si = pi + pz(1 - iri(1)) and fi with fi =

pi + Aj(1 - 7ri(-i)). Other parameters, gi, ri, N (i = 1, 2), are unchanged.

SP.E and PE are calculated from equations (6.1) and (6.2).

Modeling of stopping policy 2

For stopping policy 2, MTSQ is an expected time for two quality failures to occur in

a row. Therefore, MTSQ can be estimated through the expected time to absorption

problem. [Bertsekas and Tsitsiklis, 2002].
In Figure 6-3, there are three states:

" State 0: There is no defect in the last two products.

" State 1: There is one defect in the last two products.

" State 2: There are two defects in the last two products.

P is the probability of producing a good part. When two bad parts are produced

in a row, the machine is stopped according to stopping policy 2. Therefore, state 2 is

absorbing. If we define vi as the expected times to absorption from a transient state

i, then MTSQ is vo/pi.

We can construct equations for the expected time to absorption problem as follows

[Bertsekas and Tsitsiklis, 2002]:

vo = (1 -3)vi +Pv 0 +1 (6.5)

Vi = #vo + 1 (6.6)
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Figure 6-3: MTSQ estimation through an expected time to absorbtion problem

By solving equations (6.5) and (6.6), we get

VO = (6.7)
'0 (1 - 0)2

Since # = 7ri(j), (j = -1, 1) for machine i (M),

Pi( - r(j))2 (6.8)
2-7r (j)

Therefore,

Si = pi + j17j))
2 - 7r_ _ ( j ) ( 6 .9 )s1 = P i + " 2 ( ( 6 .9)j

Again, the 2M1B system with multiple-yield quality failures and stopping policy

2 can be analyzed with the 2M1B systems developed in Chapter 3 with modification

of machine parameters as shown in equation (6.9) and PE1 and PA being calculated

from equations (6.1) and (6.2).

6.2.3 Optimality of stopping with one defect

The effective production rates of 2M1B systems with two different stopping policies

are compared with varying machine parameters to see under what operating condi-

tions, 'stopping with one defect', which is used by jidoka practice is effective.

We should note that the comparison of the two policies does not give the an

exact answer to the question "under what conditions, is the stopping with one defect

optimal?" In fact, guaranteeing the optimality would be a difficult task since there

would be a large number of policies to be examined (e.g. 'stop a line when n out of

m recent parts are bad'). But this numerical experiment gives a good idea on under

what operating conditions, stopping with one defect would be close to optimal.

Base input parameters are shown in Table 6.1
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Table 6.1: Base Machine Parameters

pi ri Pi 91 71 (1) 7rj (- 1)

1 0.12 0.01 0.01 0.997 0

A2 r 2  P2 92  7r2 (1) 7r 2 (-1)
1 0.2 0.01 0.01 0.997 0

Figure 6-4 shows the effective production rate of 2M1B systems with the two

stopping policies by changing 7ri (1) (i = 1, 2). As the figure indicates, the effectiveness

of the stopping policies depends significantly on 7ri(1). Stopping policy 1 is better

than stopping policy 2 only when ri(1) is very close to 1 (i.e. 7ri ;> 0.997). This is

a case in which a machine seldom produces a defect unless it is in low-quality state

since there is very little random variation in the operation.

P(Doicy 1) >P6 (policy 2
0.9

P.0lc )> ,t~lc

0,76,

0,.76
0,14
0.794

0.72

0.94 0.942 094 0.946 0.9X 0.99 0.992 0,994 0,996 0,99 1

Figure 6-4: Effectiveness of stopping policy vs. 7r(1)

g determines the frequency of the transition from high-quality state (state 1)

to low-quality state (state -1). Figure 6-5 shows the impact of g on the relative

performance of the two stopping policies. Note that the influence of g on the the

relative performance of each stopping policy seems to be smaller than that of 7r(1).

Stopping policy 1 is better where g is large since large g means more frequent

transition to low-quality state from high-quality state; thus, when a bad part is

detected, it is likely that the machine has been in low-quality state.

Quicker repair means a reduction of capacity loss caused by the inappropriate
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stoppage of a machine. Therefore, stopping with one defect outperforms stopping with

two defects in a row, when r is large which is shown in Figure 6-6. More numerical

experiments show that a higher value of iri(1) leads to a higher r value where the

two stopping policies give the same effective production rate. The comparison with

Figures 6-4 and 6-5 reveals that the impact of r on the relative effectiveness of the

two stopping policies is weaker than ir(1) and g.

Numerical experiments show that the relative performances of 2M1B systems with

the two stopping policies are insensitive to other machine parameters (e.g. pi, fi, p,

and 7r(-1),i = 1,2).

Figure 6-7 illustrates the domain of 7r(1) and g where 'stopping with one defect'

outperforms 'stopping with two defects'. Two machine parameters 7r(1) and g are used

since these are the two major factors that the effective production rate is sensitive

to. Standard process capability used at Toyota is C, = 1.33, which means more than

99.99% of yield in operations [Monden, 1993]. If we assume that typical value of r

at factories in the automotive industry is around 0.2, and that g is usually less than

0.01, this operating condition is in the domain where 'stopping with one defect' is

better as shown in Figure 6-7.

0.01

0.040.05

0.04

0.03

0.98 0.985 0.99 0.995 1

Figure 6-7: Comparison of stopping policy and operation range of Toyota plants

In other words, it seems that the stopping policy with jidoka practice is close

to optimal at Toyota plants under the assumption that inspection is reliable. Note

that all the equations are based on the 'perfectly reliable inspection' assumption.

When inspection is not reliable, stopping with one defect is less likely be optimal

since it is even not certain whether the machine actually produced nonconformity.

We conclude that jidoka is likely to be optimal when factories are operating under

128



desirable conditions (e.g., high process capability (C, > 1), infrequent occurrence

of assignable causes, and short repair time). However, more research is needed to

determine the influence of other realistic factors such as imperfect inspection.
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Chapter 7

Future Research

Throughout the thesis work, we have observed the lack of prior research on the

intersection of quality, productivity, and manufacturing systems design. Discussions

with automotive companies have revealed the industry's strong need for the research

in this field. This thesis lays a cornerstone for the quantitative research in the area

but there still remain many research opportunities. These opportunities are identified

and some promising research strategies are described in this chapter.

7.1 Two-machine-one-buffer systems

7.1.1 Part scrapping at each operation

We have focused on manufacturing systems with no scrapping within the line (i.e.,

scrapping can take place at the end of the line). This is a reasonable assumption for

an automotive assembly line where parts are big and heavy so that removing a part

from the middle of the line is economically infeasible. But scrapping in the middle of

the line may happen frequently in the manufacturing of small parts, such as electronic

parts. In this case, the analytic modeling of the 2M1B systems becomes completely

different. A new state definition may be needed since we need to differentiate good

parts from defective parts in the buffer to scrap the bad ones only. In addition, a

whole new set of internal transition equations and boundary conditions would have

to be developed. The change in the buffer level, when the buffer is neither empty nor

full, is no longer infinitesimal during a short time interval when scrapping takes place.

Also, arrival to and departure from the boundaries become more complicated. New

solution methods to solve the internal transition equations and boundary conditions

131



would be needed.

7.1.2 Part rework

In a situation where defective parts are reworked at each operation, correcting the

defects may require some additional operations. Therefore, it may alter the operation

cycle time (i.e., machine speed) temporarily. As a result, the speed of a machine

becomes dependent on the state of the machine. Again, a new set of internal transition

equations, boundary conditions, and a solution method to solve these equations should

be developed.

7.1.3 Correlation among different quality failures

Each quality failure is associated with a specific feature of a part. Throughout this

thesis, we have assumed that each machine works on a different feature. This allows

us to assume that the quality failures of the machines are independent. However, if

a feature is the product of a sequence of operations (e.g., two machines work on the

same hole: the first machine (M1 ) does a roughing operation and the second machine

(M2 ) does a finishing operation), quality failures of M2 are influenced by the operation

of M 1. In this case, the state of M2 is a function of the state of M1 . (i.e., M2 is more

likely to go to state -1 if M, is in state -1). In addition, the traceability of the root

cause of a quality failure would be an issue; a defective feature made from a sequence

of operation may contain a defect due to any one of the operations in the sequence.

Then, determining which machine to stop for repair would be an important problem.

7.1.4 Reliability of inspection

Typically, testing is an imperfect process. The reliability of an inspection depends on

many factors, including inspection equipment, sampling frequency, sample size, and

others, but completely eliminating the errors in inspection is impossible. There are

two types of errors:

" Type 1 error: errors where the part is good, but the test concludes that it is

defective.

" Type 2 error: errors where the part is defective, but the test concludes that it

is good.
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In this thesis, 2M1B models include Type 2 errors in inspection; when f is small,

a machine may produce multiple bad parts before it is stopped by operator for repair.

But Type 1 errors are not considered. Including the Type 1 error may need modifi-

cation of the transition rate between state 1 and state 0 or it may need a different

machine state definition.

7.1.5 Productivity reduction due to inspection

In this thesis, we assume that inspection does not consume time. In many cases,

however, inspection is time-consuming and tends to slow down the manufacturing

process. Therefore, adding inspection may not only incur more cost (e.g., floor space,

equipments, and labor) but may also reduce the capacity of the manufacturing system.

The time-consuming inspection problem may be solved simply by adding a machine

whose cycle time corresponds to the inspection time.

7.1.6 Aging

A machine may produce conforming parts with probability ir(t). If the machine

were to get progressively out of tune due to tool wear, then ir(t) is a decreasing

function of time. This phenomenon is called an aging process, and it is not unusual

in manufacturing processes. The continuous aging process can be approximated with

a machine with numerous discrete states with decreasing yields (7r 1 > 7r 2 - > 7rN) as

shown in Figure 7-1.

PI P2  P3  PN-4

E R2 E3 IT4 .. 1N

r -

Figure 7-1: Modeling of aging process
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7.2 Large systems

7.2.1 Topology of manufacturing systems

The modeling and analysis of quality and productivity issues in a manufacturing

system are fundamentally influenced by its topology. Production lines come in widely

different forms: serial lines, assembly/disassembly lines, parallel lines, and closed-loop

systems. Decomposition techniques to analyze these topologies have been developed

for production systems without quality failures [Gershwin, 1994], [Levantesi, 2001].

It is not clear whether the same kind of solution techniques, which are used in this

thesis for the analysis of serial lines, can be applied to analyzing production systems

with different topologies.

A split-merge line illustrated in Figure 7-2 is widely used when operations in the

parallel lines (e.g.,M 3 ) are substantially slower than operations in the serial line (e.g.,

M 7 ). In the parallel lines that are designed to perform identical functions, normal

everyday operation may lead to small amounts of variability in nominally identical

machines, and therefore in the parts produced by those machines. Such variability

may have an effect on quality of products after the end of the line after the parallel

lines merge especially when a high precision assembly or fabrication operation may

follow. Estimating the influence of parallel lines on the quality of products would be

an important research topic.

M3 B3 M4

M1_ B2 M7 M8

M5 B4 M6

Figure 7-2: Split-merge line

7.2.2 Location and domain of inspection

Ideally, ubiquitous inspection (i.e., the placement of an inspection station after each

machine) would result in the immediate detection and isolation of quality failures,

simplifying root-cause traceability and minimizing the waste of downstream produc-

tion capacity. However, inspection stations are expensive, in that they consume floor

space, capital, and labor. Therefore, it is necessary to choose the number and loca-
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tion of inspection stations carefully, so as to place them as sparsely as possible while

meeting quality goals.

An inspection station placed after a certain sequence of machines may be designed

to detect quality failures produced by all the machines in that sequence (Figure 7-3),

or only a subset of them (Figure 7-4), (Figure 7-5). Some features produced by certain

operations may undergo multiple inspections (Figure 7-6). Different configurations of

the inspection domain may require different decomposition procedures. The accuracy

of the long line analysis may significantly depend on the the number, the location,

and the configuration of inspections.

Scrap or rewor

Figure 7-3: Single downstream inspection

Scrap or rework Scrap or rewor

Figure 7-4: Contiguous inspection regions

Scrap or rework Scrap or rewor

Figure 7-5: Non-contiguous inspection regions

7.2.3 Behavior of long lines

Through the numerical experiments, the behaviors of 2M1B systems were studied in

Chapter 4. Although much of the qualitative behavior of long manufacturing lines
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Scrap or rework Scrap or rewor

Figure 7-6: Overlapping inspection regions

can be inferred from that of the 2M1B system (e.g., beneficial, harmful, and optimal

buffer cases), there may be some special behaviors of the long lines that can not

be conjectured from the 2M1B systems. Looking for interesting behaviors of the

long lines through conducting numerical experiments is time-consuming since the

number of parameters in the system grows rapidly as the lines get longer (e.g., for K

machine lines, there are 6K -1 machine and buffer parameters). The analytic models

provided in this thesis have substantial advantage over simulation, in searching for

special behavior of the long manufacturing lines due to substantial computation time

savings.

7.3 Optimal manufacturing system design

The optimal design of manufacturing systems is a vast research area in which a

substantial number of papers have been published [Raz, 1986], [Gershwin and Schore,

2000], [Daya and Rahim, 2003]. Under this topic, two major sub-problems have

received significant attentions: the optimal inspection allocation problems, and the

optimal buffer space allocation problems. These two problems have been extensively

studied, but there is a lack of research in their intersection since the two fields have

been considered separate. In the optimal inspection allocation problems, previous

authors have assumed Bernoulli-type quality failures [Raz, 1986]. Therefore, the role

of inspection is to screen out defective parts, not to identify machines in bad states

and fix them. Therefore, the system yield has nothing to do with average inventories

and buffer sizes. In the optimal buffer space allocation problems, no quality failures

are considered; machines are assumed to produce conforming parts and they undergo

operational failures only. However, when persistent or multiple-yield quality failures

exists and quality information feedback is used, the system yields become a function
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of buffer sizes as demonstrated in Chapter 4. As a result, the optimal inspection

allocation problems and the optimal buffer size allocation problems become coupled and

should be solved simultaneously. The analytical models of serial long lines presented in

Chapter 5 can be used for this end, combined with a proper optimization technique.

7.4 Worker motivation and learning

The design and operation of manufacturing systems may affect the behavior of the

workers on the production line, thereby indirectly influencing the quality and produc-

tivity of the manufacturing system. The relationship between the design of production

lines, and workers' motivation and learning speed has been out side of the scope in

this thesis. However, there has been significant research conducted on this relation-

ship [Schultz et al., 1998], [Lieberman and Demeester, 1999], [Fujimoto, 1999], [Alles

et al., 2000]. This research suggest that the reduction of inventory leads to an early

detection of quality failures; thus, it facilitates the identification of the root cause of

the problems. This allows people on manufacturing lines to develop a better under-

standing of the manufacturing processes and to feel more motivation for operations

improvement (i.e., kaizen).

In a manufacturing system where manual labor is heavily used, (e.g., assembly

lines), this relationship between the system design and the workers' behavior becomes

more important. The increase of buffer size in the beneficial buffer case (Figure 4-

2) presented in Chapter 4 may not actually be beneficial (i.e., leading to higher

productivity) in fact, if the detrimental influence of large buffer on workers' learning

is considered. Stopping with one defect, which is incorporated in the jidoka practice,

might be the optimal stopping policy even for the less desirable operating conditions

described in section 6.2.3 (see Figure 6-7) in the long run, if the workers' motivation

and learning are taken into consideration.

Most quantitative research on the manufacturing system design has neglected

the human issue. Manufacturing system design principles derived from this kind of

research are useful for designing and operating factories where automated machines

are heavily used (e.g., flexible manufacturing systems). But these principles would be

inappropriate if they are applied to labor intensive factories. Therefore, more holistic

research combining the issue of the interaction between people and manufacturing

system design with quantitative modeling and analysis of manufacturing system is
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needed.
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Chapter 8

Conclusion

This thesis takes an essential early research step in analyzing how production system

design, quality, and productivity are inter-related. There was very little quantitative

analytical literature that explores this area, even though the effects of the interaction

are recognized on the plant floor anecdotally.

Throughout the thesis, we identify important differences among types of quality

failures, and develop a new Markov process model for machines with both quality

and operational failures. Based on the single-machine analysis, we present analytic

models, solution techniques, performance evaluations, and validation of two-machine

systems, as well as longer production lines.

Numerical studies using two-machine models show that when the first machine

has quality failures and the inspection occurs only at the second machine, there are

cases in which the effective production rate increases as buffer size increases, and

there are cases in which the effective production rate decreases for larger buffers.

We present various methods of improving quality and productivity, and demonstrate

that the effectiveness of each method is greatly dependent upon the particularities

of factories. Therefore, the need to find the most effective combination of method

in each case is identified, and the usefulness of the quantitative tools developed in

this thesis is shown. We also investigate the effectiveness of jidoka practice, and find

that jidoka is useful only when machines are operating under stable conditions. We

reaffirm the importance of and the urgent need for research in this field, and we

propose promising research directions.
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Appendix

2M1B parameters

Table A.1: Machine and buffer parameters for infinite buffer case and zero buffer case
validation

Case# I1 /12 r r2  P .P2 1 92  f f2
1 1.0 1.0 0.1 0.1 0.01 0.01 0.01 0.01 0.2 0.2
2 1.0 1.0 0.3 0.3 0.005 0.005 0.05 0.05 0.5 0.5
3 1.0 1.0 0.2 0.05 0.01 0.01 0.01 0.01 0.2 0.2
4 1.0 1.0 0.1 0.1 0.05 0.005 0.01 0.01 0.2 0.2
5 1.0 1.0 0.1 0.1 0.01 0.01 0.05 0.005 0.2 0.2
6 1.0 1.0 0.1 0.1 0.01 0.01 0.01 0.01 0.5 0.1
7 2.0 1.0 0.1 0.1 0.01 0.01 0.01 0.01 0.5 0.1
8 3.0 2.0 0.1 0.1 0.01 0.01 0.01 0.01 0.2 0.2
9 1.0 2.0 0.1 0.1 0.01 0.01 0.01 0.01 0.2 0.2
10 2.0 13.0 10.1 0.1 10.01 10.01 10.01 10.01 10.2 0.2
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Table A.2: Machine and buffer parameters for intermediate buffer case validation

Case # i p2 r i r 2 I PI P 2 J ig 2 1fI f 2 IE
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40 1.0 1 1.0 1 0.1 1 0.1 0.001 I 0.010

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
0.5
1.5
2.0
2.5
3.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
0.5
1.5
2.0
2.5
3.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1

0.01
0.05
0.2
0.5
0.8
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.5
0.01
0.1
0.1
0.1

0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.01
0.05
0.2
0.5
0.8
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.5

0.01
0.1

0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01

0.001
0.005
0.02
0.05
0.1

0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01

0.010
0.010
0.010
0.010
0.100
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0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01

0.001
0.005
0.02
0.05
0.1

0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01

0.010
0.010
0.010
0.010
0.010

0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01

0.001
0.005
0.02
0.05
0.1
0.01
0.01
0.01
0.01
0.01

0.010
0.010
0.010
0.010
0.010
0.010

0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01

0.001
0.005
0.02
0.05
0.1

0.01
0.01
0.01
0.01
0.01

0.010
0.010
0.010
0.010
0.010
0.010

0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2

0.02
0.05
0.1
0.5

0.95
0.2
0.2
0.2
0.2
0.2
0.2

0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2

0.02
0.05
0.1
0.5

0.95
0.2
0.2
0.2
0.2
0.2
0.2 1 30

30
5

10
15
20
25
30
35
40
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30



Table A.3: Machine and buffer parameters for intermediate buffer case validation -
continued

Case # pi A2 ri r2 PI P2 g _2 fi f2

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.2
1.2
1.2

1.333
1.333
1.333

1.5
1.5
1.5
2

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.5

0.010
0.500
0.010
0.500
0.010
0.500
0.010
0.100
0.100
0.100
0.100
0.100
0.100
0.100
0.100
0.100
0.100
0.100
0.100

0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1

0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.5

0.010
0.500
0.010
0.500
0.010
0.500
0.010
0.100
0.100
0.100
0.100
0.100
0.100
0.100
0.100
0.100
0.100
0.100
0.100

0.1
0.2
0.2
0.1
0.2
0.3
0.1
0.4
0.4
0.1

0.010
0.010
0.010
0.010
0.010
0.010
0.010
0.010
0.010
0.010

0.1
0.001
0.010
0.010
0.010
0.010
0.010
0.010
0.100
0.001
0.100
0.001
0.100
0.001
0.010
0.010
0.010
0.010
0.010
0.010
0.01
0.02
0.02
0.01
0.02
0.02
0.01
0.05
0.05
0.01

0.100
0.001
0.010
0.010
0.010
0.010
0.010
0.010
0.010
0.010

0.1
0.001
0.010
0.010
0.010
0.010
0.010
0.010
0.100
0.001
0.100
0.001
0.100
0.001
0.010
0.010
0.010
0.010
0.010
0.010
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01

0.010
0.010
0.100
0.001
0.010
0.010
0.010
0.010
0.010
0.010
0.01

0.010
0.050
0.001
0.010
0.010
0.010
0.010
0.050
0.001
0.010
0.010
0.010
0.010
0.050
0.001
0.050
0.001
0.010
0.010
0.01
0.01
0.05
0.01
0.03
0.03
0.01
0.01
0.05
0.01

0.010
0.010
0.010
0.010
0.100
0.001
0.010
0.010
0.010
0.010
0.01
0.010
0.050
0.001
0.010
0.010
0.010
0.010
0.050
0.001
0.010
0.010
0.010
0.010
0.050
0.001
0.050
0.001
0.010
0.010
0.01

0.005
0.005
0.01
0.01
0.01
0.01
0.01
0.01
0.01

0.2
0.2
0.2
0.2
0.2
0.2
0.9

0.05
0.2
0.2
0.2

0.200
0.200
0.200
0.950
0.050
0.200
0.200
0.200
0.200
0.950
0.050
0.200
0.200
0.950
0.050
0.200
0.200
0.950
0.050

0.2
0.2
0.2
0.2
0.3
0.3
0.2
0.2
0.2
0.2

0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.9
0.05
0.2

0.200
0.200
0.200
0.950
0.050
0.200
0.200
0.200
0.200
0.950
0.050
0.200
0.200
0.950
0.050
0.200
0.200
0.950
0.050

0.2
0.2
0.2
0.2
0.1
0.1
0.2
0.2
0.2
0.2

N
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
50
5

30
30
30
30
50
5

30

50
50
5
50

30
30
30
30
30
30
30
30
30
30
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Table A.4: Machine and buffer parameters for intermediate buffer case validation -
continued

Case # p, A2 r, r 2  Pi P2 9i 92 fi f2 N
81 2 1.0 0.08 0.3 0.05 0.01 0.05 0.008 0.4 0.2 30
82 2 1.0 0.05 0.3 0.05 0.01 0.05 0.01 0.2 0.2 30
83 3 1.0 0.1 0.1 0.01 0.01 0.01 0.01 0.2 0.2 30
84 3 1.0 0.08 0.18 0.2 0.015 0.01 0.01 0.1 0.2 30
85 3 1.0 0.08 0.18 0.3 0.015 0.01 0.01 0.1 0.2 30
86 1.0 1.2 0.1 0.1 0.01 0.01 0.01 0.01 0.2 0.2 30
87 1.0 1.2 0.2 0.1 0.01 0.02 0.005 0.01 0.2 0.2 30
88 1.0 1.2 0.2 0.1 0.01 0.02 0.005 0.05 0.2 0.2 30
89 1.0 1.333 0.1 0.1 0.01 0.01 0.01 0.01 0.2 0.2 30
90 1.0 1.333 0.2 0.1 0.01 0.02 0.01 0.03 0.1 0.3 30
91 1.0 1.333 0.3 0.1 0.01 0.02 0.01 0.03 0.1 0.3 30
92 1.0 1.5 0.1 0.1 0.01 0.01 0.01 0.01 0.2 0.2 30
93 1.0 1.5 0.4 0.1 0.01 0.05 0.01 0.01 0.2 0.2 30
94 1.0 1.5 0.4 0.1 0.01 0.05 0.01 0.05 0.2 0.2 30
95 1.0 2 0.1 0.1 0.01 0.01 0.01 0.01 0.2 0.2 30
96 1.0 2 0.3 0.08 0.01 0.05 0.008 0.05 0.2 0.4 30
97 1.0 2 0.3 0.05 0.01 0.05 0.01 0.05 0.2 0.2 30
98 1.0 3 0.1 0.1 0.01 0.01 0.01 0.01 0.2 0.2 30
99 1.0 3 0.18 0.08 0.015 0.2 0.01 0.01 0.2 0.1 30
100 1.0 3 0.18 0.08 0.015 0.3 0.01 0.01 0.2 0.1 30
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Table A.5: Machine and buffer parameters for quality information feedback validation

[Case#I p, I A2 r1 r2 I P1 P2 | 1 | 92 11 | f2 11|
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

0.5
1.5
2
1
1
1
1
1
1

1
1
1

1
1
1
1
1
1
1
11
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

0.5
1.5
2
1
1
1
1
1
1

1
1

1
1
1
1
1
1
1
1
1
1
1

0.1
0.1
0.1
0.1
0.1

0.01
0.05
0.5
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.5

0.01
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1

0.1
0.1
0.1
0.1
0.1

0.01
0.05
0.5
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.5

0.01
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1

0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.001
0.03
0.1

0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.1

0.001
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01

0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01

0.001
0.03
0.1
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.1

0.001
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01

0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01

0.001
0.005
0.02
0.05
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.05

0.001
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01

0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01

0.001
0.005
0.02
0.05
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.05

0.001
0.01
0.01
0.01
0.01
0.01
0.01

0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.001
0.005
0.02
0.05
0.01
0.01
0.01
0.02
0.05
0.1
0.2

0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.05
0.001
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1

1
1
1
1
1

0.05
0.1
0.3
0.5
0.7
0.9

10
0
5

20
30
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
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Table A.6: Machine and buffer parameters for quality information feedback validation
- continued

Case # pi 2 ri r2  Pi P2 g1  9 2  fi f2 N
41 1.2 1 0.1 0.1 0.01 0.01 0.01 0.01 0.01 1 10
42 1 1.2 0.1 0.1 0.01 0.01 0.01 0.01 0.01 1 10
43 1.333 1 0.1 0.1 0.01 0.01 0.01 0.01 0.01 1 10
44 1 1.333 0.1 0.1 0.01 0.01 0.01 0.01 0.01 1 10
45 1.5 1 0.1 0.1 0.01 0.01 0.01 0.01 0.01 1 10
46 1 1.5 0.1 0.1 0.01 0.01 0.01 0.01 0.01 1 10
47 2 1 0.1 0.1 0.01 0.01 0.01 0.01 0.01 1 10
48 1 2 0.1 0.1 0.01 0.01 0.01 0.01 0.01 1 10
49 3 1 0.1 0.1 0.01 0.01 0.01 0.01 0.01 1 10
50 1 3 0.1 0.1 0.01 0.01 0.01 0.01 0.01 1 10
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Table A.7: Machine and buffer parameters for 3-state-machine and 2-state-machine
comparison ( Figures 5-5, 5-6, and 5-7)

1Case # I pA2 1r, I r2 Pi P2 g1 92 fi f2 IN IQIF
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

1.0
1.0
1.0
1.0
0.5
2.0
3.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.01
0.05
0.5
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.5
0.01
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.2
0.2

0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.01
0.05
0.5
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.5
0.01
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1

0.05
0.05

0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.001
0.05
0.1

0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.1

0.001
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01

0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.001
0.05
0.1

0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.1

0.001
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01

0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01

0.001
0.05
0.1
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.1

0.001
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01

0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01

0.001
0.05
0.1

0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.1

0.001
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01

0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.02
0.5
0.95
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.9

0.05
0.2
0.2
0.2
0.2
0.2
0.2
0.2

0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2

0.02
0.5

0.95
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.9

0.05
0.2
0.2
0.2
0.2
0.2

30
5

20
50
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
5

20
50
5

20
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Table A.8: Machine and buffer parameters for 3-state-machine and 2-state-machine
comparison ( Figures 5-5, 5-6, and 5-7)- continued

|Case # I p 2 r r2 IP] P2 1 gi f 2 ]fi 2 N IQIF
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.2
1.2
1.2
1.2
1.2
1.33
1.33
1.33
1.33
1.33
1.50
1.5
1.5
1.5
1.5
2.0
2.0
2.0
2.0
2.0
3.0
3.0
3.0
3.0
3.0
1.0
1.0
1.0
1.0
1.0

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1.2
1.2
1.2
1.2
1.2

0.2
0.05
0.05
0.05
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1

0.08
0.05
0.1
0.1
0.1

0.08
0.08
0.1
0.1
0.1
0.2
0.2

0.05
0.2
0.2
0.2
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.2
0.2
0.1
0.1
0.1
0.2
0.3
0.1
0.1
0.1
0.4
0.4
0.1
0.1
0.1
0.3
0.3
0.1
0.1
0.1
0.18
0.18
0.1
0.1
0.1
0.1
0.1

0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.02
0.02
0.01
0.01
0.01
0.02
0.02
0.01
0.01
0.01
0.05
0.05
0.01
0.01
0.01
0.05
0.05
0.01
0.01
0.01
0.2
0.3
0.01
0.01
0.01
0.01
0.01

0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.015

0.015
0.015
0.01
0.01
0.01
0.02
0.02
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0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.05
0.01
0.01
0.01
0.03
0.03
0.01
0.01
0.01
0.01
0.05
0.01
0.01
0.01
0.05
0.05
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01

0.005
0.005

0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01

0.005
0.005
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01

0.008
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.05

0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.3
0.3
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.4
0.2
0.2
0.2
0.2
0.1
0.1
0.2
0.2
0.2
0.2
0.2

0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.1
0.1
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2

50
5
20
50
30
30
30
30
30
30
30
10
30
30
30
30
10
30
30
30
30
10
30
30
30
30
10
30
30
30
30
10
30
30
30
30
10
30
30
30

N
N
N
N
N
N
N
N
N
N
N
Y
N
N
N
N
Y
N
N
N
N
Y
N
N
N
N
Y
N
N
N
N
Y
N
N
N
N
Y
N
N
N



Table A.9: Machine and buffer parameters for 3-state-machine and 2-state-machine
comparison ( Figures 5-5, 5-6, and 5-7)- continued

Case # i, A2 r, r 2  Pi P2 g1  g2 , 2 N QIF
81 1.0 1.333 0.1 0.1 0.01 0.01 0.01 0.01 0.2 0.2 30 N
82 1.0 1.333 0.1 0.1 0.01 0.01 0.01 0.01 0.2 0.2 10 Y
83 1.0 1.333 0.1 0.1 0.01 0.01 0.01 0.01 0.2 0.2 30 N
84 1.0 1.333 0.2 0.1 0.01 0.02 0.01 0.03 0.1 0.3 30 N
85 1.0 1.333 0.3 0.1 0.01 0.02 0.01 0.03 0.1 0.3 30 N
86 1.0 1.5 0.1 0.1 0.01 0.01 0.01 0.01 0.2 0.2 30 N
87 1.0 1.5 0.1 0.1 0.01 0.01 0.01 0.01 0.2 0.2 10 Y
88 1.0 1.5 0.1 0.1 0.01 0.01 0.01 0.01 0.2 0.2 30 N
89 1.0 1.5 0.4 0.1 0.01 0.05 0.01 0.01 0.2 0.2 30 N
90 1.0 1.5 0.4 0.1 0.01 0.05 0.01 0.05 0.2 0.2 30 N
91 1.0 2 0.1 0.1 0.01 0.01 0.01 0.01 0.2 0.2 30 N
92 1.0 2 0.1 0.1 0.01 0.01 0.01 0.01 0.2 0.2 10 Y
93 1.0 2 0.1 0.1 0.01 0.01 0.01 0.01 0.2 0.2 30 N
94 1.0 2 0.3 0.08 0.01 0.05 0.008 0.05 0.2 0.4 30 N
95 1.0 2 0.3 0.05 0.01 0.05 0.01 0.05 0.2 0.2 30 N
96 1.0 3 0.1 0.1 0.01 0.01 0.01 0.01 0.2 0.2 30 N
97 1.0 3 0.1 0.1 0.01 0.01 0.01 0.01 0.2 0.2 10 Y
98 1.0 3 0.1 0.1 0.01 0.01 0.01 0.01 0.2 0.2 30 N
99 1.0 3 0.18 0.08 0.015 0.2 0.01 0.01 0.2 0.1 30 N
100 1.0 3 0.18 0.08 0.015 0.3 0.01 0.01 0.2 0.1 30 N

Table A.10: Machine and buffer parameters for Figures 4-1, 4-2, and 4-3

Al A 2  r1 r2  P1 P2 1 92 1 flY f2
1.0 1.0 0.1 0.1 0.01 J 0.01 . .1 j 0.1 .9

Table A.11: Machine and buffer parameters for Figures 4-4, 4-5 and 4-6

[.0 A .2 M .5 0.1-.005n 0.05 0r F 4-7, 4-8 a0d.

Table A. 12: Machine and buffer parameters for Figures 4-7, 4-8 and 4-9

lIII1Il r27 Pi P2 1 9i 2 If1 1f2
1k. .0~L~ 0.05 0.51.10.01 [0.05 0.005 0.01 1.0
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Table A.13: Machine and buffer parameters for Figure 4-10

I 92 r 2 Pi IP2 f, f2 N
1.0 1.0 010.1 0.01 0.01 0.2 10.2 30

Table A. 14: Machine and buffer parameters for Figure 4-11

A~I r, r r2I Pi P2 1 9i 2  NI
[111.0 0.1 0.1 0.01 0.01 0.01 0.01 30

Table A. 15: Machine parameters for Figure 4-12

E~ A2 / Irl r2I Pi P2 g1 192
ipo.1.0 0.1. 0.110.01 0.01. 0.01 0.01

Table A. 16: Machine parameters for Figure 4-13

1A, A~2 r, riI 2 IPi IP2 fl f 2
1.0 1.0 0.1 0.1 0.01 0.01 0.2 0.2
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Appendix B

Long Line Task Parameters

B.1 Ubiquitous inspection case

Table B.1: Machine and buffer parameters for ubiquitous inspection validation

Case # 1 2 3 4 5 6 7 8 9 10

0.1 0.1 0.1 0.02 0.05 0.5 0.1 0.1 0.1 0.1
PI 0.01 0.01 0.01 0.01 0.01 0.01 0.001 0.005 0.02 0.05
91  0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
fi 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
A2 1 1 1 1 1 1 1 1 1 1
r2 0.1 0.1 0.1 0.02 0.05 0.5 0.1 0.1 0.1 0.1
P2 0.01 0.01 0.01 0.01 0.01 0.01 0.001 0.005 0.02 0.05
92 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
f2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
/3 1 1 1 1 1 1 1 1 1 1
r3 0.1 0.1 0.1 0.02 0.05 0.5 0.1 0.1 0.1 0.1
P3  0.01 0.01 0.01 0.01 0.01 0.01 0.001 0.005 0.02 0.05
93 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
f3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

4  1 1 1 1 1 1 1 1 1 1
r4 0.1 0.1 0.1 0.02 0.05 0.5 0.1 0.1 0.1 0.1
P4  0.01 0.01 0.01 0.01 0.01 0.01 0.001 0.005 0.02 0.05
g4 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
f4 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
N1  10 20 50 20 20 20 20 20 20 20
N2  10 20 50 20 20 20 20 20 20 20
N3 10 20 50 20 20 20 20 20 20 20
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Table B.2: Machine and buffer parameters for ubiquitous inspection validation-
continued

Case# 11 12 13 14 15 16 17 18 19 20

Al 1 1 1 1 1 1 1 1 0.5 1.5
r, 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Pi 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
91 0.001 0.005 0.02 0.05 0.01 0.01 0.01 0.01 0.01 0.01

fi 0.2 0.2 0.2 0.2 0.02 0.05 0.5 0.9 0.2 0.2

A2 1 1 1 1 1 1 1 1 0.5 1.5
r2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
P2 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
92 0.001 0.005 0.02 0.05 0.01 0.01 0.01 0.01 0.01 0.01
f2 0.2 0.2 0.2 0.2 0.02 0.05 0.5 0.9 0.2 0.2
A3 1 1 1 1 1 1 1 1 0.5 1.5
r3  0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

P3  0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

93 0.001 0.005 0.02 0.05 0.01 0.01 0.01 0.01 0.01 0.01
f3 0.2 0.2 0.2 0.2 0.02 0.05 0.5 0.9 0.2 0.2

p4 1 1 1 1 1 1 1 1 0.5 1.5
r4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

P4 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
94 0.001 0.005 0.02 0.05 0.01 0.01 0.01 0.01 0.01 0.01
f4 0.2 0.2 0.2 0.2 0.02 0.05 0.5 0.9 0.2 0.2
Ni 20 20 20 20 20 20 20 20 20 20
N2  20 20 20 20 20 20 20 20 20 20
N3 20 20 20 20 20 20 20 20 20 20
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Table B.3: Machine and buffer parameters for ubiquitous inspection validation-
continued

Case # 21 22 23 24 25 26 27 28 29 30
2 1 1 1 1 1 1 1 1 1

0.1 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Pi 0.01 0.01 0.01 0.01 0.01 0.05 0.01 0.01 0.01 0.01
g1  0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.05
fi 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
A2 2 1 1 1 1 1 1 1 1 1
r2 0.1 0.1 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1
P2 0.01 0.01 0.01 0.01 0.01 0.01 0.05 0.01 0.01 0.01
g2  0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
f2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
A3 2 1 1 1 1 1 1 1 1 1
r3  0.1 0.1 0.1 0.3 0.1 0.1 0.1 0.1 0.1 0.1
P3  0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.05 0.01 0.01
g3 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
f3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
A4 2 1 1 1 1 1 1 1 1 1
r4 0.1 0.1 0.1 0.1 0.3 0.1 0.1 0.1 0.1 0.1
P4 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.05 0.01
94 0-01 0.01 0-01 0.01 0-01 0.01 0.01 0.01 0.01 0.01
f4 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
Ni 20 20 20 20 20 20 20 20 20 20
N2  20 20 20 20 20 20 20 20 20 20
N3 20 20 20 20 20 20 20 20 20 20
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Table B.4: Machine and buffer parameters for ubiquitous inspection validation-
continued

Case # 31 32 33 34 35 36 37 38 39 40
Ai 1 1 1 1 1 1 1 2 1 1
ri 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Pi 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
gi 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

fi 0.2 0.2 0.2 0.05 0.2 0.2 0.2 0.2 0.2 0.2
p12 1 1 1 1 1 1 1 1 2 1
r2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
P2 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
g2 0.01 0.05 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
f2 0.2 0.2 0.2 0.2 0.05 0.2 0.2 0.2 0.2 0.2
P3 1 1 1 1 1 1 1 1 1 2
r 3  0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
P3 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
g3  0.01 0.01 0.05 0.01 0.01 0.01 0.01 0.01 0.01 0.01
f3 0.2 0.2 0.2 0.2 0.2 0.05 0.2 0.2 0.2 0.2

A4 1 1 1 1 1 1 1 1 1 1
r4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

P4 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
94 0.01 0.01 0.01 0.05 0.01 0.01 0.01 0.01 0.01 0.01
f4 0.2 0.2 0.2 0.2 0.2 0.2 0.05 0.2 0.2 0.2
N 20 20 20 20 20 20 20 20 20 20
N2  20 20 20 20 20 20 20 20 20 20
N3 20 20 20 20 20 20 20 20 20 20
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Table B.5: Machine and buffer parameters for ubiquitous inspection validation-
continued

Case # 41 42 43 44 45 46 47 48 49 50
PI 1 3 3 3 1 1 1 1 1 1
r, 0.1 0.05 0.05 0.05 0.1 0.1 0.1 0.1 0.1 0.1
Pi 0.01 0.03 0.03 0.03 0.01 0.01 0.01 0.01 0.01 0.01
g1  0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
f, 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
A2 1 3 1 1 3 3 1 1 1 1
r2 0.1 0.05 0.1 0.1 0.05 0.05 0.1 0.1 0.1 0.1
P2 0.01 0.03 0.01 0.01 0.03 0.03 0.01 0.01 0.01 0.01
g2  0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0-01 0.01
f2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
A3 1 1 3 1 3 1 3 1 1 1
r3 0.1 0.1 0.05 0.1 0.05 0.1 0.05 0.1 0.1 0.1
P3 0.01 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.01 0.01
g3 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
f3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
14 2 1 1 3 1 3 3 1 1 1
r4 0.1 0.1 0.1 0.05 0.1 0.05 0.05 0.1 0.1 0.1
P4 0.01 0.01 0.01 0.03 0.01 0.03 0.03 0.01 0.01 0.01
94 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
f4 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
N1  20 20 20 20 20 20 20 5 20 20
N2  20 20 20 20 20 20 20 20 5 20
N3 20 20 20 20 20 20 20 20 20 5
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B.2 Extended quality information feedback case

Table B.6: Machine and buffer parameters for EQIF validation-continued

Case# 1 2 3 4 5 6 7 8 9 10
Pi 1 1 1 1 1 1 1 1 1 1
ri 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Pi 0.01 0.01 0.01 0.05 0.05 0.05 0.002 0.002 0.002 0.01
gi 0.01 0.01 0.01 0.002 0.002 0.002 0.05 0.05 0.05 0.01
fi 0.01 0.01. 0.01 0.05 0.05 0.05 0.002 0.002 0.002 0.01
p2 1 1 1 1 1 1 1 1 1 1

r2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
P2 0.01 0.01 0.01 0.05 0.05 0.05 0.002 0.002 0.002 0.01
92 0 0 0 0 0 0 0 0 0 0
f2 0.01 0.01 0.01 0.05 0.05 0.05 0.002 0.002 0.002 0.01
p3 1 1 1 1 1 1 1 1 1 1
r3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

P3 0.01 0.01 0.01 0.05 0.05 0.05 0.002 0.002 0.002 0.01
93 0 0 0 0 0 0 0 0 0 0
f3 0.01 0.01 0.01 0.05 0.05 0.05 0.002 0.002 0.002 0.01
A4 1 1 1 1 1 1 1 1 1 1
r4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

P4 0.01 0.01 0.01 0.05 0.05 0.05 0.002 0.002 0.002 0.01
g4 0 0 0 0 0 0 0 0 0 0

h4 1 1 1 1 1 1 1 1 1 0.1

N1  10 20 30 10 20 30 10 20 30 10
N2  10 20 30 10 20 30 10 20 30 10
N3 10 20 30 10 20 30 10 20 30 10
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Table B.7: Machine and buffer parameters for EQIF validation-continued

Case # 11 12 13 14 15 16 17 18 19 20
Ai 1 1 1 1 1 1 1 1 1 1
ri 0.1 0.1 0.1 0.02 0.05 0.5 0.1 0.1 0.1 0.1
Pi 0.01 0.01 0.01 0.01 0.01 0.01 0.001 0.005 0.02 0.05
91 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
fi 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
A2 1 1 1 1 1 1 1 1 1 1
r2 0.1 0.1 0.1 0.02 0.05 0.5 0.1 0.1 0.1 0.1
P2 0.01 0.01 0.01 0.01 0.01 0.01 0.001 0.005 0.02 0.05
92 0 0 0 0 0 0 0 0 0 0

f2 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
A3 1 1 1 1 1 1 1 1 1 1
r3 0.1 0.1 0.1 0.02 0.05 0.5 0.1 0.1 0.1 0.1
P3 0.01 0.01 0.01 0.01 0.01 0.01 0.001 0.005 0.02 0.05
93 0 0 0 0 0 0 0 0 0 0
f3 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
A4 1 1 1 1 1 1 1 1 1 1

4 0.1 0.1 0.1 0.02 0.05 0.5 0.1 0.1 0.1 0.1
P4 0.01 0.01 0.01 0.01 0.01 0.01 0.001 0.005 0.02 0.05
g4 0 0 0 0 0 0 0 0 0 0
f4 0.5 0.1 0.5 1 1 1 1 1 1 1
N1  10 20 20 20 20 20 20 20 20 20
N2  10 20 20 20 20 20 20 20 20 20
N3 10 20 20 20 20 20 20 20 20 20
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Table B.8: Machine and buffer parameters for EQIF validation-continued

Case # 21 22 23 24 25 26 27 28 29 30
Ai 1 .1 1 1 1 1 1 1 1 1
r, 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Pi 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

91 0.001 0.005 0.02 0.05 0.01 0.01 0.01 0.01 0.01 0.01
fi 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

A2 1 1 1 1 1 1 1 1 1 1
r2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

P2 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

92 0 0 0 0 0 0 0 0 0 0

f2 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
A3 1 1 1 1 1 1 1 1 1 1
r 3  0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
P3 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

93 0 0 0 0 0 0 0 0 0 0

f3 0.01 0.01 0.01 0-01 0.01 0.01 0.01 0.01 0.01 0.01
A4 1 1 1 1 1 1 1 1 1 1
r4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

P4 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

94 0 0 0 0 0 0 0 0 0 0

f4 1 1 1 1 1 1 1 1 1 1
N, 20 20 20 20 20 10 10 20 20 10
N2  20 20 20 20 10 20 10 20 10 20
N3 20 20 20 20 10 10 20 10 20 20
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Table B.9: Machine and buffer parameters for EQIF validation-continued

Case# 31 32 33 34 35 36 37 38 39 40
2 3 3 3 1 1 1 1 1 1

0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.1 0.1
Pi 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01
g1  0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
fi 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
p2 3 2 3 3 1 1 1 1 1 1
r2 0.1 0.1 0.1 0.1 0.2 0.1 0.2 0.2 0.1 0.1
P2 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02
92 0 0 0 0 0 0 0 0 0 0

f2 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
A3 3 3 2 3 1 1 1 1 1 1
r3  0.1 0.1 0.1 0.1 0.2 0.2 0.1 0.2 0.1 0.1
P3  0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
g3 0 0 0 0 0 0 0 0 0 0

f3 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
A4 3 3 3 2 1 1 1 1 1 1
r4 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.1 0.1 0.1
P4 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
94 0 0 0 0 0 0 0 0 0 0
f4 1 1 1 1 1 1 1 1 1 1
N1  20 20 20 20 20 20 20 20 20 20
N2  20 20 20 20 20 20 20 20 20 20
N3 20 20 20 20 20 20 20 20 20 20
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Table B.10: Machine and buffer parameters for EQIF validation-continued

Case # 41 42 43 44 45 46 47 48 49 50
Al 1 1 3 2 2 2 3 3 2 2
r, 0.1 0.1 0.05 0.2 0.2 0.2 0.05 0.05 0.2 0.2
Pi 0.01 0.01 0.03 0.01 0.01 0.01 0.03 0.03 0.01 0.01
gi 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
fi 0.01 0.01 0.03 0.01 0.01 0.01 0.03 0.03 0.01 0.01
Ap2 1 1 2 3 2 2 3 2 3 3
r2 0.1 0.1 0.2 0.05 0.2 0.2 0.05 0.2 0.05 0.05
P2 0.01 0.01 0.01 0.03 0.01 0.01 0.03 0.01 0.03 0.03
92 0 0 0 0 0 0 0 0 0 0
f2 0.01 0.01 0.01 0.03 0.01 0.01 0.03 0.01 0.03 0.03
P3 1 1 2 2 3 2 2 3 2 3
r 3  0.1 0.1 0.2 0.2 0.05 0.2 0.2 0.05 0.2 0.05
P3 0.02 0.01 0.01 0.01 0.03 0.01 0.01 0.03 0.01 0.03
g3 0 0 0 0 0 0 0 0 0 0

f3 0.01 0.01 0.01 0.01 0.03 0.01 0.01 0.03 0.01 0.03
A4 1 1 2 2 2 3 2 2 3 2
r4 0.1 0.1 0.2 0.2 0.2 0.05 0.2 0.2 0.05 0.2
P4 0.01 0.02 0.01 0.01 0.01 0.03 0.01 0.01 0.03 0.01
94 0 0 0 0 0 0 0 0 0 0
f4 1 1 1 1 1 1 1 1 1 1
N 20 20 20 20 20 20 20 20 20 20
N 2  20 20 20 20 20 20 20 20 20 20
N3 20 20 20 20 20 20 20 20 20 20
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B.3 Multiple quality information feedback case

Table B.11: Machine and buffer parameters for MQIF validation

Case# 1 2 3 4 5 6 7 8 9 10
i 1 1 1 1 1 1 1 1 1 1
r, 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Pi 0.01 0.01 0.01 0.05 0.05 0.05 0.002 0.002 0.002 0.01
g1  0.01 0.01 0.01 0.002 0.002 0.002 0.02 0.02 0.02 0.01
fi 0.01 0.01 0.01 0.05 0.05 0.05 0.002 0.002 0.002 0.01
A2 1 1 1 1 1 1 1 1 1 1
r2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
P2 0.01 0.01 0.01 0.05 0.05 0.05 0.002 0.002 0.002 0.01
92 0.01 0.01 0.01 0.002 0.002 0.002 0.02 0.02 0.02 0.01
f2 0.01 0.01 0.01 0.05 0.05 0.05 0.002 0.002 0.002 0.01
A3 1 1 1 1 1 1 1 1 1 1
r3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
P3  0.01 0.01 0.01 0.05 0.05 0.05 0.002 0.002 0.002 0.01
93 0.01 0.01 0.01 0.002 0.002 0.002 0.02 0.02 0.02 0.01
f3 0.01 0.01 0.01 0.05 0.05 0.05 0.002 0.002 0.002 0.01
A4 1 1 1 1 1 1 1 1 1 1
r4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
P4  0.01 0.01 0.01 0.05 0.05 0.05 0.002 0.002 0.002 0.01
94 0.01 0.01 0.01 0.002 0.002 0.002 0.02 0.02 0.02 0.01

4 1 1 1 1 1 1 1 1 1 0.1
N 10 20 30 10 20 30 5 10 15 10
N2  10 20 30 10 20 30 5 10 15 10
N3 10 20 30 10 20 30 5 10 15 10

171



Table B.12: Machine and buffer parameters for MQIF validation - continued

Case # 11 12 13 14 15 16 17 18 19 20
14 1 1 1 1 1 1 1 1 1 1
ri 0.1 0.1 0.1 0.02 0.05 0.5 0.1 0.1 0.1 0.1
Pi 0.01 0.01 0.01 0.01 0.01 0.01 0.001 0.005 0.02 0.05
g1  0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
fi 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
P2 1 1 1 1 1 1 1 1 1 1
r2 0.1 0.1 0.1 0.02 0.05 0.5 0.1 0.1 0.1 0.1
P2 0.01 0.01 0.01 0.01 0.01 0.01 0.001 0.005 0.02 0.05
g2 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
f2 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

P3 1 1 1 1 1 1 1 1 1 1
r3 0.1 0.1 0.1 0.02 0.05 0.5 0.1 0.1 0.1 0.1
P3 0.01 0.01 0.01 0.01 0.01 0.01 0.001 0.005 0.02 0.05
93 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

f3 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
A4 1 1 1 1 1 1 1 1 1 1
r4 0.1 0.1 0.1 0.02 0.05 0.5 0.1 0.1 0.1 0.1
P4 0.01 0.01 0.01 0.01 0.01 0.01 0.001 0.005 0.02 0.05
94 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
f4 0.5 0.1 0.5 1 1 1 1 1 1 1
N1  10 20 20 10 10 10 10 10 10 10
N2  10 20 20 10 10 10 10 10 10 10
N3 10 20 20 10 10 10 10 10 10 10
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Table B.13: Machine and buffer parameters for MQIF validation - continued

Case # 21 22 23 24 25 26 27 28 29 30
i 1 1 1 1 1 1 1 1 1 1

Pi 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Pi 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
g 0.001 0.005 0.02 0.05 0.01 0.01 0.01 0.01 0.01 0.01
fi 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
A2 1 1 1 1 1 1 1 1 1 1
r2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
P2 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
92 0.001 0.005 0.02 0.05 0.01 0.01 0.01 0.01 0.01 0.01
12 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
A3 1 1 1 1 1 1 1 1 1 1
r 3  0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
P3 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
g3 0.001 0.005 0.02 0.05 0.01 0.01 0.01 0.01 0.01 0.01
A 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
A4 1 1 1 1 1 1 1 1 1 1
r4  0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
P4 0.01 0.005 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
g4 0.001 0.01 0.02 0.05 0.01 0.01 0.01 0.01 0.01 0.01
f4 1 1 1 1 1 1 1 1 1 1
N1  10 10 10 10 20 10 10 20 20 10
N2  10 10 10 10 10 20 10 20 10 20
NA3 10 10 10 10 10 10 20 10 20 20
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Table B.14: Machine and buffer parameters for MQIF validation - continued

Case # 31 32 33 34 35 36 37 38 39 40
Al 2 3 3 3 1 1 1 1 1 1
ri 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.1 0.1
Pi 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01
91 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
fi 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
A2 3 2 3 3 1 1 1 1 1 1
r2 0.1 0.1 0.1 0.1 0.2 0.1 0.2 0.2 0.1 0.1
P2 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02
g2 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
f2 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
A3 3 3 2 3 1 1 1 1 1 1
r 3  0.1 0.1 0.1 0.1 0.2 0.2 0.1 0.2 0.1 0.1
P3 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
93 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

f3 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

A4 3 3 3 2 1 1 1 1 1 1
r4 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.1 0.1 0.1
P4 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

g4 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

f4 1 1 1 1 1 1 1 1 1 1

N1  10 10 10 10 10 10 10 10 10 10
N2  10 10 10 10 10 10 10 10 10 10
N3 10 10 10 10 10 10 10 10 10 10
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Table B.15: Machine and buffer parameters for MQIF validation - continued

Case # 41 42 43 44 45 46 47 48 49 50
1 1 3 2 2 2 3 3 2 2

0.1 0.1 0.05 0.2 0.2 0.2 0.05 0.05 0.2 0.2
pi 0.01 0.01 0.03 0.01 0.01 0.01 0.03 0.03 0.01 0.01
91  0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
fi 0.01 0.01 0.03 0.01 0.01 0.01 0.03 0.03 0.01 0.01
A2 1 1 2 3 2 2 3 2 3 3
r2 0.1 0.1 0.2 0.05 0.2 0.2 0.05 0.2 0.05 0.05
P2 0.01 0.01 0.01 0.03 0.01 0.01 0.03 0.01 0.03 0.03
92 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
f2 0.01 0.01 0.01 0.03 0.01 0.01 0.03 0.01 0.03 0.03
A3 1 1 2 2 3 2 2 3 2 3
r3 0.1 0.1 0.2 0.2 0.05 0.2 0.2 0.05 0.2 0.05
P3 0.02 0.01 0.01 0.01 0.03 0.01 0.01 0.03 0.01 0.03
93 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
f3 0.01 0.01 0.01 0.01 0.03 0.01 0.01 0.03 0.01 0.03
A4 1 1 2 2 2 3 2 2 3 2
N 0.1 0.1 0.2 0.2 0.2 0.05 0.2 0.2 0.05 0.2
P4 0.01 0.02 0.01 0.01 0.01 0.03 0.01 0.01 0.03 0.01
94 0.01 0.01 0-01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
f4 1 1 1 1 1 1 1 1 1 1
N1  10 10 10 10 10 10 10 10 10 10
N2  10 10 10 10 10 10 10 10 10 10
N3 10 10 10 10 10 10 10 10 10 10
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Appendix C

Matrix manipulation technique

Matrix A in equations (3.165), (3.166), and (3.167) contains elements which can be

different by several orders of magnitude (e.g., eAiNZIjYi and Y). When A > 0 and

N is large, this may cause the reduction of the apparent rank of matrix A, which

will lead to errors. To prevent this, following technique is used for solving equations

(3.165), (3.166), and (3.167).

" Build a new matrix A' by doing:

- For each column i in matrix A, check if the column contains eAiN

- For the column that contains eAiN terms, divide all the elements in the

column by eAjN if A > 0.

" Calculate X' which is a solution of A'X' = B using numerical methods.

" Divide the elements in X' by eAiN if corresponding column in A is modified.

This gives X which is the solution of the original equation AX = B.
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