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Abstract After surgery most of the surgical patients have to be admitted in a ward
in the hospital. Due to financial reasons and a decreasing number of available
nurses in the Netherlands over the years, it is important to reduce the bed usage
as much as possible. One possible way to achieve this is to create an operating room
(OR) schedule that spreads the usage of beds nicely over time, and thereby mini-
mizes the number of required beds. An OR-schedule is given by an assignment of
OR-blocks to specific days in the planning horizon and has to fulfill several resource
constraints. Due to the stochastic nature of the length of stay of patients, the analytic
calculation of the number of required beds for a given OR-schedule is a complex task
involving the convolution of discrete distributions. In this paper, two approaches to
deal with this complexity are presented. First, a heuristic approach based on local
search is given that takes into account the detailed formulation of the objective.
A second approach reduces the complexity by simplifying the objective function.
This allows modeling and solving the resulting problem as an ILP. Both approaches
are tested on data provided by Hagaziekenhuis in the Netherlands. Furthermore, sev-
eral what-if scenarios are evaluated. The computational results show that the approach
that uses the simplified objective function provides better solutions to the original prob-
lem for instances based on the situation in HagaZiekenhuis. By using this approach,
the number of required beds for the considered instance of HagaZiekenhuis can be
reduced by almost 20 %.
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1 Introduction

Due to an ageing population and increased health care costs, hospitals are forced to
use their resources more efficiently, meaning that the same amount of patients has to
be treated with less resources or more patients with the same amount of resources.
One of the resources used in hospitals are the beds on the nursing wards. The cost for
acquiring these beds is not substantial, however, the costs for maintaining and cleaning
the beds, and the labour costs for treating the admitted patients are significantly high.
Also, more and more costly technical appliances, such as interactive screens, are
available at each bed. In addition, the number of available nurses in the Netherlands
has been decreasing significantly over the years and will further decrease the coming
years. Therefore, it is important to reduce the number of required beds as much as
possible.

The starting point of this research was a request from HagaZiekenhuis, a hospital
in the Netherlands, to get more insight in the factors that influence the bed occupancy.
The operating room (OR) schedule is one of the most important factors that influence
the bed occupancy, since most of the surgical patients have to be admitted at one of the
wards after surgery. Therefore, it is important to consider the required bed capacity
when creating the OR-schedule, which is the topic of this paper. First, we analyze
this problem and investigate several approaches to solve it, and second, we show what
improvements can be made in HagaZiekenhuis.

There is a vast amount of literature on OR planning and scheduling. Cardoen et al.
(2010) and Hulshof et al. (2011) provide an overview of papers that address this topic.
The problems discussed in these papers can be divided into two groups. The first
group considers OR planning on the tactical level and the second group considers
OR planning on the operational level. The tactical level is concerned with allocating
available resources to groups of patients that share the same characteristics from a
medical and logistics point of view in a time-horizon of a few weeks up to a few
months. The operational level is concerned with planning and scheduling a given
demand of elective patients within a time-horizon of a few days up to a few weeks
while taking into account several uncertainties such as arriving emergency patients
and stochastic treatment durations.

Several of the papers mentioned by Cardoen et al. (2010) and Hulshof et al. (2011)
address the issue of considering the wards when creating an OR-schedule. The first
paper that considers this topic is the work of Beliën and Demeulemeester (2007). They
schedule blocks of elective surgeries of the same type by assigning them to a day in
the planning horizon while minimizing the number of required beds. They assume that
the length of stay (LOS) is given by a multinomial distribution that differs per surgery
type. The number of required beds resulting from an OR-schedule is approximated in
several ways, however, no exact formulation is used. Beliën et al. (2009) extend this
approach by including multiple wards instead of one, allowing different block lengths
and by scheduling individual surgeons instead of surgeon groups. In addition, they
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develop a decision support system that visualizes the OR-schedule and the resulting
bed occupancy.

van Oostrum et al. (2008) schedule surgical procedures instead of OR-blocks by
assigning the procedures to an OR and to a day in the planning horizon. The LOS of the
patients is assumed to be deterministic and by using this deterministic LOS, the number
of required beds is minimized. Adan et al. (2009, 2011) schedule surgical procedures
by assigning them to a day in the planning horizon as is done by van Houdenhoven
et al. (2008) and van Oostrum et al. (2008). But opposite to van Houdenhoven et al.
(2008) and van Oostrum et al. (2008), they assume a fixed amount of beds is available
at the hospital and minimize the over- and underutilization of these beds. Thus, the
number of required beds is not minimized, but their use is optimized.

Chow et al. (2011) develop an integer linear programming model to generate
improved OR-schedules in terms of the maximum expected bed occupancy. This
expected bed occupancy is calculated by using the expected LOS of surgery types
and after this, the average bed occupancy per day is determined by means of simula-
tion.

As in Beliën and Demeulemeester (2007), Vanberkel et al. (2011a,b) schedule
blocks of surgeries of the same type and assume a multinomial distribution of the
LOS that differs per surgery type. However, in contrast to Beliën and Demeulemeester
(2007), they analytically determine the complete probability distribution of the number
of occupied beds for each day in the planning horizon. The goal of this approach is
not to minimize the number of required beds, but to develop a model that can be used
as an evaluation tool for the OR-schedule.

Bekker and Koeleman (2011) developed a method that determines the mean bed
occupancy per day when a weekly admission pattern is given. In addition, they use a
quadratic programming model to determine the optimal number of elective admissions
per day such that an average desired bed occupancy per day is achieved.

For the operational planning level, (Cardoen et al. 2009a,b) propose a mixed integer
linear programming approach and a column generation approach to determine the
sequence in which patients must have surgery on a given day such that the peak use of
recovery beds is minimized. They assume the LOS on the recovery to be deterministic
and thus, no stochasticity is included. Fei et al. (2010) also focus on the sequence in
which patients must have surgery, however, they consider the number of beds available
at the recovery to be fixed, and therefore, do not focus on minimizing the peak use.

Many of the discussed papers consider the expected LOS of patients instead of
the LOS probability distribution or focus on minimizing the maximum expected bed
occupancy without considering the bed occupancy probability distribution. However,
in practice, the LOS of patients is stochastic, and thus, it is important to also consider
the variance in the bed occupancy. In this paper, we both incorporate the stochasticity
of the LOS and of the bed occupancy to account for these variances. As in practice
most hospitals use a cyclic OR-schedule, we develop an OR-schedule by assigning
OR-blocks to a day in the planning horizon. We assume an OR-block consists of
not only one but several surgical procedure types to make the problem more suitable
for application. Because we schedule surgery types and not individual patients, this
scheduling problem is considered to be on the tactical level. As in Beliën and Demeule-
meester (2007) and Vanberkel et al. (2011b), we assume the LOS to be multinomially
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distributed. This distribution can easily be obtained from historical data. We use the
analytical formulation of Vanberkel et al. (2011b) to determine the number of required
beds, and minimize this number while taking into account several restrictions on the
OR-schedule such as OR, surgeon, and instrument availability. As the problem orig-
inated in HagaZiekenhuis, we focus on resource constraints that are relevant in the
setting of this hospital. However, it is possible to add additional constraints with-
out destroying the structure of the developed model. Note that we only consider the
scheduling of elective surgeries, but it is quite easy to also include emergency surgeries
when determining the number of required beds.

The developed model is discussed in Sect. 2 and it consists of linear constraints and
a complex non-linear objective function that involves the convolution of discrete distri-
butions. To deal with this complexity, we introduce in Sect. 3 two different approaches
to approximate the optimal solution. The first approach is a local search approach that
takes the complex formulation of the objective function into account. We have chosen
to use Simulated Annealing (SA) since this approach is easy to implement and has
proven to be successful for other combinatorial optimization problems. The second
approach reduces the complexity of the problem by linearizing the objective func-
tion. Although we prove the resulting problem to be NP-hard, we model and solve
the resulting problem as an Integer Linear Program (ILP), because our considered
instances are small enough to be solved within a reasonable amount of time. By com-
paring these two different approaches, we can determine whether it is better to not
fully search the solution space with a complete evaluation of the objective function
or to approximate the objective function and search the complete solution space. In
fact, it is investigated if it is necessary to model the problem in full detail to be able to
achieve a good solution.

The comparison is performed on data provided by HagaZiekenhuis. However, we
use this data not just for comparing the two contrasting approaches, but we also
aim to support HagaZiekenhuis by determining which resources are a bottleneck for
minimizing the number of required beds. We do this by considering several what-if
scenarios that relax some or all of the resource constraints. The computation results
of the comparison and the what-if scenarios are given in Sect. 4. Section 5 presents
conclusions and gives recommendations for further research.

2 Problem formulation

Hospitals aim to use as few beds as possible. When less beds are used, as a consequence
less personnel is needed and less money is spent on cleaning and maintaining these
beds. Another effect of using less beds is that also the bed occupancy during the week
is better levelled and this reduces stress on the wards.

In hospitals, the number of beds occupied during the week is mostly determined
by the OR-schedule. In general, a patient is admitted on the day of surgery, and after
surgery, the patient must stay in the hospital for a few extra days. Thus, in order to
influence the number of beds used, we should create an OR-schedule that minimizes
the number of required beds, and thereby levels the amount of occupied beds as much
as possible. HagaZiekenhuis, like many other hospitals, uses a cyclic OR-schedule that
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repeats every T days. This means that we have to develop such a cyclic OR-schedule
for T days and not an OR-schedule for a whole year.

An OR-schedule consists of OR-blocks that are assigned to days of the planning
cycle. Each OR-block is dedicated to a specific specialism or specialist and is filled with
several surgery types chosen by this specialism or specialist. Thus, each specialism or
specialist provides a list containing as many OR-blocks as this specialism or specialist
gets during a period of T days. It only remains to assign these OR-blocks to a specific
day in the planning horizon to create an OR-schedule.

2.1 Restrictions

In this section, we discuss several restrictions on the OR-schedule that are relevant for
HagaZiekenhuis. Although we only provide these specific constraints, it is possible to
add additional constraints without destroying the structure of the chosen approach.

Let K be the given set of OR-blocks. To each OR-block k ∈ K , we have to assign
a specific day t ∈ T = {1, . . . ,T }. For this, we define binary decision variables Xkt

that are one when OR-block k ∈ K is assigned to day t ∈ T , and zero otherwise.
Then, the following constraints ensure that all OR-blocks k ∈ K are assigned to a day
in the OR-schedule:

∑

t∈T

Xkt = 1, ∀k ∈ K . (1)

The assignment of OR-blocks to days is limited by several constraints. First, some
OR-blocks can only be performed in a subset of the available ORs, because, for
example, special equipment is needed that is not available in all ORs. To model this,
we define a set J of different OR types and for OR type j ∈ J , we denote by the
subset K j ⊆ K the OR-blocks that can be performed in OR type j ∈ J . In addition,
the number of available ORs of type j ∈ J on day t ∈ T is limited and denoted by
a jt . The following constraints ensure that the assignment of OR-blocks to days fulfils
these limitations:

∑

k∈K j

Xkt ≤ a jt , ∀ j ∈ J, t ∈ T . (2)

Each OR-block is allocated to a specific surgeon type, because most surgeons in
HagaZiekenhuis are specialized in a certain set of surgery types. The surgeon types
are given by set S, and the OR-blocks that have to be performed by surgeon type s ∈ S
are given by subset Ks ⊆ K . The number of available surgeons of type s ∈ S on
day t ∈ T is limited and denoted by bst . The following constraints ensure that the
assignment of OR-blocks to days fulfils these restrictions:

∑

k∈Ks

Xkt ≤ bst , ∀s ∈ S, t ∈ T . (3)
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Each OR-block consists of several surgeries that must be performed consecutively.
The total set of possible surgery types is defined by I , and the number of surgeries of
a specific type i ∈ I performed in OR-block k ∈ K is given by oik . For each surgery
type i ∈ I , a specific set of instruments is needed to perform the surgery. The set of
all available instrument sets is given by set R, and wkr denotes how many instrument
sets r ∈ R are needed for OR-block k ∈ K . Because a limited number of instrument
sets is available and the instrument sets have to be sterilized after surgery, the number
of surgeries that need instrument set r ∈ R scheduled per day is limited by qr . This is
ensured by the following constraints:

∑

k∈K

Xktwkr ≤ qr , ∀r ∈ R,∀t ∈ T . (4)

Note that the oik values are not used explicitly, but are covered in the wkr values.
However, we have introduced the values since they are needed in the next section.

2.2 Objective function

Constraints (1)–(4) are the restrictions on the decision variables Xkt , and therefore,
describe the set Φ of feasible solutions. In this subsection, we specify the quality of
a feasible solution φ ∈ Φ given by the maximum number of beds needed during the
entire planning horizon. To determine this number for a proposed OR-schedule, we
have to determine the bed occupancy for each day. If we would specify the bed occu-
pancy by a deterministic measure (e.g., maximum or expected number of used beds),
we do not take the stochastic nature of the LOS into account. Using the expected bed
occupancy per day results in canceling patients for surgery because quite often not
enough beds are available to admit them after surgery. Using the maximum number of
beds needed leads to a solution for which almost always too much beds are available.
Therefore, we choose to calculate the complete bed occupancy probability distribu-
tion per day and afterwards take the p-percentile of these probability distributions to
ensure that sufficient beds are available with p percent chance. Since these percentiles
represent the number of beds needed on day t ∈ T of the planning horizon, we obtain
the number of beds needed in the wards by taking the maximum over all days.

For a given OR-schedule, the probability distribution of the bed occupancy can be
obtained by using the LOS distribution of all surgery types scheduled in the OR-blocks.
The LOS distribution of each surgery type i ∈ I is given by a multinomial distribution
that can be obtained from historical data. After the LOS distributions are obtained from
the historical data, we can compute the probability distribution of the bed occupancy
for each day as in Vanberkel et al. (2011b) by taking discrete convolutions of the LOS
distributions. In the following paragraphs, we shortly explain this method. For a more
detailed description of this method, we refer to Vanberkel et al. (2011b).

Before we explain the method into more detail, we want to note that the LOS of a
patient in the historical data might be influenced by the bed occupancy on the wards.
When the wards are more crowded, it is likely that a patient is discharged sooner than
would have been the case when the ward was less crowded. However, because our
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approach is on the tactical level and not on the operational level, we do not include
these dependencies.

The probability distribution of the LOS of surgery type i ∈ I is given by values li
n ,

which denote the probability that the LOS of a surgery type i ∈ I is exactly n days
(n ∈ {1, . . . ,Li }), where Li is the maximum LOS of surgery type i ∈ I . From this,
we can determine the conditional probability that a patient who is still admitted on day
n is discharged that day, which is denoted by di

n . Note that di
1 denotes the probability

that a patient is discharged on the day of surgery (i.e., an outpatient surgery) and
di
Li

= 1. The value of di
n is given by

di
n = li

n∑Li
m=n li

m

. (5)

From these values, we can calculate the probability distribution hik
n (x) that n days

after carrying out OR-block k ∈ K , x patients of surgery type i ∈ I are still in recovery.
Recall that oik denotes the number of patients of type i ∈ I assigned to OR-block
k ∈ K . Therefore, these probabilities are computed recursively as follows:

For n = 1:

hik
1 (x) =

{
1 when x = oik,

0 otherwise .
(6)

For n > 1:

hik
n (x) =

oik∑

y=x

(
y
x

) (
di

n−1

)y−x (
1 − di

n−1

)x
hik

n−1(y). (7)

Next, we take discrete convolutions of hik
n (x) over all i ∈ I to determine the bed

occupancy caused by OR-block k ∈ K . This gives the probability h̃k
n(x) that n days

after carrying out OR-block k ∈ K , x patients are still in recovery:

h̃k
n(x) = h1k

n (x) ∗ h2k
n (x) ∗ · · · ∗ hI k

n (x). (8)

Because we use a cyclic OR-schedule, which repeats every T days, patients who
had surgery in one cycle may still be admitted in the next cycle. Therefore, we must
take into account �Nk/T � consecutive cycles, where Nk denotes the maximum LOS
of the surgeries scheduled in OR-block k ∈ K , i.e, Nk = maxi∈I |oik≥1 Li . In other
words, Nk represents the range of one cycle of the OR-schedule. Now, by again using
discrete convolutions, we can compute the probability distribution Hk

t (x) of recovering
patients on day t ∈ T of the cycle induced by OR-block k ∈ K as follows:

Hk
t (x) = h̃k

t (x) ∗ h̃k
t+T (x) ∗ h̃k

t+2T (x) ∗ · · · ∗ h̃k
t+�Nk/T �T (x). (9)

The last step in calculating the probability distribution of the bed occupancy is
to combine the probability distributions Hk

t (x) for all OR-blocks. To do this, we
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first have to shift the distribution Hk
t (x) such that the patients who have surgery in

OR-block k ∈ K are admitted on the day they have surgery, i.e., the day t ∈ T for
which Xkt = 1. The shifted probability distribution is denoted by H̄ k

t (x) and is defined
as follows:

H̄ k
t (x) =

{
Hk

t−t̂+1
(x) for t̂ with Xkt̂ = 1 and t̂ ≤ t,

Ht−t̂+T +1 otherwise .
(10)

By taking the discrete convolutions of H̄ k
t (x) over k ∈ K , we now determine the

probability distribution of the bed occupancy for each day t ∈ T denoted by Ht , which
is computed by

Ht (x) = H̄1
t (x) ∗ H̄2

t (x) ∗ · · · ∗ H̄K
t (x). (11)

Thus, the number of required beds γ (φ) for a given solution φ ∈ Φ is given by:

γ (φ) = max
t∈T

min

⎧
⎨

⎩x

∣∣∣∣∣∣

x∑

y=0

Ht (y) ≥ p

100

⎫
⎬

⎭ . (12)

Note, that the calculations for (5)–(9) can be performed beforehand. Nevertheless,
determining the objective function for a new OR-schedule still involves convoluting
several probability distributions as shown by Eq. (11). Therefore, it is not straight-
forward to quantify or predict the effect in the objective function when changing an
OR-schedule and it is hard to approximate the objective function. Moreover, calculat-
ing the objective function takes a lot of computation time. To reduce this computation
time, we can either choose to not fully search the solution space, or to approximate
the objective function. This leads to the following two solution approaches: (1) use
a local search heuristic based on the given constraints and objective function and
(2) approximate the objective function and incorporate this approximation in an ILP
that includes the given constraints of the OR-schedule. For the second approach, the
original objective value is determined afterwards to determine the number of beds
needed in practice and to make a fair comparison between the two approaches. The
comparison is used to determine whether it is better to not fully search the solution
space with a complete evaluation of the objective function or to approximate the
objective function and search the complete solution space. The two approaches are
discussed in more detail in the following section.

3 Solution approaches

Because of the complex objective function, we cannot solve reasonable sized instances
of the problem to optimality. Therefore, we have to make a choice between using a
heuristic procedure to solve the original problem and using a global approach to solve
a simplified version of the problem. Both approaches do not guarantee to find the
optimal solution, therefore, we want to investigate which of these two methods leads
to better solutions. The first approach is based on SA, which is a local search method.
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The second approach is an ILP that uses an approximation of the objective function.
In the following, these two approaches are discussed in more detail.

3.1 Local search approach: simulated annealing

As a first approach to solve our problem we have chosen SA (Kirkpatrick et al. 1983).
SA is a local search procedure that in each step moves from the current solution,
denoted by φc, to a randomly selected neighbor solution, denoted by φn . A solution
is represented by the assignment of OR-blocks to a day in the planning horizon and is
considered to be feasible when it satisfies constraints (1)–(4). As neighbor solutions,
we consider all feasible solutions that can be obtained by swapping two OR-blocks
that are assigned to two different days. We do not consider swapping two OR-blocks
assigned to the same day, because this does not affect the objective value. If the ran-
domly selected neighbor solution has a lower objective function value than the current
solution, i.e., γ (φn) ≤ γ (φc), the neighbor solution is accepted as the new current
solution. Otherwise, the neighbor solution is accepted with a probability that depends
on the objective value of the current and neigbhor solution and on a temperature
parameter. This temperature parameter, denoted by Γ , gradually decreases during
the search process, and therefore, also the acceptance probability of a worse solution
decreases. The allowance of moving to worse solutions makes it possible to escape
from a (poor) local minimum. For each temperature value, we perform ω iterations
that together form a Markov chain, because the next state only depends on the current
state. Also, during the entire process of SA, we keep track of the best solution found
so far. A more detailed description of this method is given by Kirkpatrick et al. (1983).

Summarizing, our implementation of SA is as follows, where φ̄ denotes the current
best solution:

[Step 1.] Start with the initial solution φc given by the OR-schedule currently used
at the hospital. Set φ̄ := φc and determine the objective function γ (φc). Set the initial
temperature, i.e., Γ := Γs , and a reduction factor α.

[Step 2.] Repeat ω times:

(a) Randomly select a neighbor solution φn of the current solution and determine
γ (φn).

(b) If γ (φn) ≤ γ (φc), set φc := φn , and if γ (φn) ≤ γ
(
φ̄
)
, set φ̄ := φn .

Otherwise, set φc := φn with probability e
γ (φc)−γ (φn )

Γ .

[Step 3.] Set Γ = αΓ . If Γ < Γ f , the final temperature, then stop; else, go to
Step 2.

We choose the initial temperature Γs such that an increase of the objective value at
the beginning of the procedure is accepted with a relatively high probability. This is
needed to easily escape from a local minimum. We observe that the maximum increase
of the objective value equals the maximum over the number of surgeries assigned
to an OR-block minus the minimum over the number of surgeries assigned to an
OR-block, i.e., maxk

∑
i oik − mink

∑
i oik , because all patients are admitted on the

day of surgery. We want to accept this maximum increase at the start of the procedure
with probability 0.95, thus the initial temperature is given by
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Γs = maxk
∑

i oik − mink
∑

i oik

ln 0.95
(13)

Using the same approach, we determine the final temperature Γ f . This temperature
is chosen such that the probability of accepting the minimum increase of the objective
value is very low. This means that at the end of the procedure almost no worse solution
is accepted, and thus, the procedure converts to a local minimum. Since our objective
function returns an integer amount of beds, the minimum increase is one bed. Thus,
we set the threshold temperature Γ f such that an increase of one bed is accepted with
probability 0.001, i.e.,

Γ f = −1

ln 0.001
(14)

We set the number of iterations for each temperature value equal to the number of
neighbour solutions that can be achieved by one swap of the current solution. This
number is equal to the total amount of OR-blocks, i.e, ω equals the cardinality of set
K , because in theory each OR-block can be swapped with one of the other OR-blocks.
However, due to the restrictions described in Sect. 2.1, some swaps are prohibited.
The reduction factor α is set to 0.95.

During preliminary runs, we tested the effect of varying the values for the initial
temperature Γs , the final temperature Γ f , the length of the Markov chain ω and the
reduction factor α. We evaluated different values for the initial temperature by deter-
mining the performance of the SA approach when the acceptance probability of the
maximum increase is set to 0.75 and 0.5. This means that we limit the increase in
the objective function at the start of the SA approach. The final temperature is varied
by increasing the acceptance probability of the minimum increase to 0.1, 0.01 and
0.005. When the computational time of the SA approach is increased, the approach
might provide better results. Increasing the computational time can be achieved by
increasing the length of the Markov chain or by increasing the reduction factor. For
the Markov chain, we have evaluated the values 100 and 500 and for the reduction
factor the value 0.97. To further investigate the effect of the reduction factor, we have
also evaluated the performance of the SA approach when the reduction factor is set to
0.9. None of these mentioned values lead to a significant change of the performance
of the SA approach. Only when all parameters are set such that the computing time
is maximal, i.e., Γs and Γ f are set at their original values, and ω and α are set to 500
and 0.97, respectively, the performance slightly improves. However, when using these
parameter settings the computational time increases by a factor 20. Therefore, we use
the values of the parameters as described above.

3.2 Global approach: linearization of objective function

The local search approach described in the previous subsection incorporates the com-
plete evaluation of the objective function but only searches a part of the solution space.
The global approach described in this subsection searches the entire solution space, but
for such an approach the relation between a solution and the objective function must
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Fig. 1 Overlap of patients’
multiple cycles × × × × × × ×

× × × × × × ×

× × × × ×

Cycle 1 Cycle 2 Cycle 3

be evident. However, Sect. 2 shows that there is no straightforward and direct relation
between a given OR-schedule and the resulting required number of beds. Therefore,
we choose to linearize the objective function by replacing it with the maximum over
the expected number of occupied beds per day. For calculating the expected number of
occupied beds per day, we follow the approach of Beliën and Demeulemeester (2007).
However, their formula does not work properly when the LOS of a patient exceeds
the planning horizon. Figure 1 shows that when the maximum LOS Li of a surgery
type i ∈ I exceeds the length T of the planning horizon, patients of two cycles of
the OR-schedule may be admitted simultaneously, i.e., patients from different cycles
may overlap. In Beliën and Demeulemeester (2007), it is assumed that this holds for
all days in the planning horizon, however, this only holds for a few days as shown
in Fig. 1, where a situation is sketched with T = 5 and Li = 7. This deficiency
can be accounted for by a small modification in the weight factor used in the formula
defined in Beliën and Demeulemeester (2007). This modification ensures that patients
are only counted multiple times on the days of the planning horizon that the LOS of
several cycles overlap.

As a result, the expected number of occupied beds γt (φ) on day t ∈ T of the
planning horizon is given by:

γt (φ) =
∑

i∈I

∑

k∈K

∑

τ≤t

⎛

⎝
Li∑

n=t−τ+1

li
noik

⌈
n − t + τ

T

⌉⎞

⎠ Xkτ

+
∑

i∈I

∑

k∈K

∑

τ>t

⎛

⎝
Li∑

n=T +t−τ+1

li
noik

⌈
n − T − t + τ

T

⌉⎞

⎠ Xkτ (15)

Equation (15) determines for each day t in the planning horizon, the impact of all
OR-blocks on the bed occupancy. Thus, for all OR-blocks it is determined whether
patients operated on in this OR-block are still admitted in the hospital while taking
into account overlapping cycles.

The first part of the equation only considers patients that are operated before or
on the considered day t ∈ T by integrating the binary variable Xkτ , which is one
when OR-block k ∈ K is scheduled on day τ ∈ T , and summing over all τ ≤ t . The
expected number of patients of type i operated in block k and still admitted n days
after surgery is given by li

noik . As we only want to include the patients that are still
admitted on day t , we only include li

n for n ∈ {t − τ +1, . . . ,Li }. A patient should be
counted only once if its LOS lies between t − τ + 1 and T − τ + t and counted twice
if its LOS lies between T + t − τ + 1 and 2T − τ + t , etc., which is represented
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Fig. 2 Situation for first part of
Eq. (15)

Fig. 3 Situation for second part
of Eq. (15)

by
⌈ n−t+τ

T

⌉
. Figure 2 depicts the minimum LOS of a patient that should be counted

twice when determining the expected number of occupied beds.
The second part of the equation only considers patients that are still admitted in

one of the cycles after the cycle in which they had surgery. This means that we only
include patients who have a LOS of (T − τ + 1) + (t − 1 + 1) = T − τ + 1 + t
or more days. This minimum LOS is depicted in Fig. 3. This means that when the
patient’s LOS is between T − τ + 1 + t and 2T − τ + t , the patient should only be
counted once. When the LOS is between 2T − τ + t and 3T − τ − 1 + t , the patient

should be counted twice. This is represented by
⌈

n−T −t+τ
T

⌉
.

Note that the expected value associated with the probability distribution of the bed
occupancy as given in Sect. 2.2 corresponds to γt (φ). We can incorporate the linearized
objective function given by Eq. (15) in an ILP that includes the constraints given in
Sect. 2.1. Then, the resulting ILP is:

min
φ∈Φ

γ̄ (φ) (16)

s.t. (1) − (4), (15)

γ̄ (φ) ≥ γt (φ),∀t ∈ T

Xkt ∈ {0, 1}

This resulting problem is strongly NP-hard. For this, consider an instance with
3 ORs, a planning horizon of T days and thus 3T OR-blocks. Each of the 3T
OR-blocks consists of ak patients with k = 1, . . . , 3T and

∑
k ak = T b, where b

is a given positive integer. In addition, each of the patients has a LOS of exactly one
day. For this instance, determining whether there exists an OR-schedule that requires
b beds is equivalent to determining whether there are T pairwise disjoint subsets
Rl ⊂ {1, . . . , 3T } such that

∑
Rl

ak = b for l = 1, . . . ,T , which is known as the
3-partition problem (Garey and Johnson 1979).

The ILP given by (16) consists of |K |T binary variables and (|J | + |S| + |R|+2) T
+|K | constraints. After solving the ILP, each OR-block is assigned to a day in the plan-
ning horizon leading to a solution φ ∈ Φ. For this solution, the real objective value,
i.e., the maximum over the p-percentiles of the resulting bed occupancy probability
distribution, can be determined using the method described in Sect. 2.2.

The ILP only provides an optimal solution to the original problem when for each
pair of solutions φ, φ′ ∈ Φ the following holds: γ̄ (φ) ≤ γ̄ (φ′) ⇔ γ (φ) ≤ γ (φ′),
i.e., the ordering of the solutions in set Φ according to the expected number of beds
should be the same as the ordering according to the number of beds needed for the
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p-percentile. In general, the validity of this relation depends on the input data of the
LOS distributions and cannot be guaranteed for all pairs of solutions. However, if
it holds for most pairs, good solutions to the original problem may be obtained by
solving the ILP.

4 Results

The purpose of this section is twofold. First, we compare the SA and ILP approach
in Sect. 4.1 for 100 random generated instances based on data from HagaZiekenhuis.
For the global approach, the original objective value for the resulting OR-schedule
is determined afterwards such that a fair comparison can be made between the local
and global approach. The results are used to determine whether it is better to not
fully search the solution space with a complete evaluation of the objective function
or to approximate the objective function and search the complete solution space.
Second, we consider several what-if scenarios for HagaZiekenhuis with the solution
approach that performed best in Sect. 4.1. We use these scenarios to determine whether
the resource availability in HagaZiekenhuis limits the reduction of the number of
required beds.

As mentioned in the introduction, the goal of the research is to give HagaZieken-
huis more insight in the factors that influence their bed occupancy. Therefore, the data
used in the following subsections is based on data of HagaZiekenhuis. HagaZieken-
huis provided us with an OR-schedule of the orthopedics department with a planning
horizon of 28 days, where up to three ORs and nine surgeons are available. The exact
availability of the ORs and surgeons is given for each day in the planning horizon.
The OR-schedule consists of 49 unique OR-blocks that have to be scheduled exactly
once during the planning horizon. In total, 43 different surgery types are scheduled
and the LOS per surgery type varies from 1 to 59 days with an average LOS of 3.7
days. For each surgery type, it is denoted which instrument sets are needed and for
each of the ten available instrument sets it is given how many are available each day.
As the number of required beds, we take the maximum of the 95-percentile of the
probability distribution of the bed occupancy over the 28 days.

4.1 Comparing local and global approach

To determine which of the two considered approaches performs better, we have gener-
ated 100 random instances based on the data of HagaZiekenhuis. For the original data
set, each OR-block had to be performed exactly once. To get different instances hav-
ing similar characteristics as the original data, we vary the number of times a certain
OR-block has to be performed during the planning horizon, i.e., some OR-blocks are
not performed at all and some are performed multiple times in one cycle. To make sure
there exists a solution that satisfies the fixed OR, surgeon and instrument sets availabil-
ities, we generate the instances as follows: first, we randomly select for each available
OR for each day in the planning horizon a surgeon available on that day. After this, we
randomly select one of the OR-blocks that can be performed in the considered OR by
the selected surgeon. During this selection process, we also consider the availability

123



598 J. T. van Essen et al.

Fig. 4 Results of 100 random instances for 95-percentile

of instrument sets. Because the number of times an OR-block is performed varies for
the generated instances, we create instances that vary among the number of surgeries
and the average LOS of the patients. Therefore, we analyze a broad range of different
instances. The number of surgeries varies between 201 and 236 and the average LOS
over all surgeries scheduled in a random instance varies between 3.75 and 4.11 days.

The SA approach is implemented in CodeGear Delphi, and the ILP is solved with
CPLEX 12.3. Both methods are executed on a Intel Core2 Duo CPU P8600 2.40 GHz
with 3.45 GB RAM. Since proving the optimality of a solution by CPLEX takes quite
some time, we interrupt the solver after 10 min. The maximum achieved integrality
gap for the 100 random instances is 1.41 %. The results for the 100 instances can be
found in Fig. 4 where the dashed lines denote the average of the objective values for the
two approaches. Note that the random instances are sorted according to the objective
function values to clarify the differences between the two approaches.

Figure 4 shows that the global approach performs better than the local search
approach for all of the 100 random instances. In addition, we see that the difference
between the global and local objective value is almost everywhere the same. The
difference in the objective values is two beds for 8 % of the instances, three beds for
73 % of the instances, four beds for 18 % of the instances, and five beds for 1 % of the
instances. Note that both objective values represent the maximum of the 95-percentile
of the probability distribution of the number of required beds over all days.

Figure 5 shows one of the random instances for which the difference between
the two approaches can be explained nicely. The peaks for the global approach are
flat, which results in a constant number of occupied beds. This flat bed occupancy
can be achieved because the OR schedule leaves enough room for improvement. The
constraints do not restrict the solution that much that a flat bed occupancy cannot be
achieved. The peaks of the local search approach fluctuate, which results in a higher
number of required beds. Note that because of these fluctuations, zero patients are
admitted on the second Sunday of the cycle. When the peaks in bed occupancy are
decreased, the number of admitted patients on this day would likely increase.

The solution time needed for the local search approach varies between 32 and 74 s
with an average of 42 s. The solution time needed for the global approach is set to
600 s. Therefore, as expected, the global approach takes longer than the local search
approach, but 10 min is still a reasonable amount of time.
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Fig. 5 Difference in levelled bed occupancy
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Fig. 6 Results of 100 random instances for 90-percentile

Fig. 7 Results of 100 random instances for 85-percentile

The ILP also outperforms the SA approach when we look at the 90-percentile and
the 85-percentile. As the objective function of the ILP only depends on the expected
number of beds needed, we do not have to solve the ILP again, but only have to
determine the 90-percentile and 85-percentile for the solutions found by the ILP. The
SA does consider the chosen percentile during the procedure, and therefore, we have
to run SA again to determine new solutions for these percentiles. The results for the
100 random instances are depicted in Figs. 6 and 7.
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Fig. 8 Relation between expected value, 0.85-percentile and 0.95-percentile of 1,000 random solutions for
instance based on data HagaZiekenhuis

The given results already indicate that for the considered instances based on the
characteristics of the data from HagaZiekenhuis, it is not necessary to include the
detailed objective function to determine a good OR-schedule as the ILP provides
better results than the SA approach. As stated in Sect. 3.2, the ILP provides the optimal
solution to the original problem when the ordering of the solutions in set Φ according
to the expected number of beds is the same as the ordering according to the number
of beds needed for the p-percentile. To investigate to which extend this holds for the
considered instances, we have plotted the expected number of beds, the 85-percentile
and the 95-percentile of beds needed in Fig. 8 for 1,000 random solutions to the original
instance provided by HagaZiekenhuis. Note that the random instances are sorted in
increasing order of the expected number of beds needed.

The wiggliness of the graphs of the 85-percentile and 95-percentile shows that the
stated property does not hold for all 1,000 solution pairs. However, the small number of
wiggles indicate that this property does hold for most pairs. This gives an explanation
why the ILP provides good solutions to the original problem. Even though we cannot
guarantee that the ILP finds the optimal solution, the ILP performs better than the
SA approach when we compare both methods in the ability to reach a good feasible
solution for the considered instances. Figure 8 shows that the error made by using
the expected number of beds instead of the 95-percentile is at most two beds for the
considered 1,000 random solutions. If we, for example, choose one of the solutions
with expected value 39, the 95-percentile varies from 43 to 45. Thus, although two
solutions may be considered to be equally good based on the expected value, one of the
solutions might outperform the other when considering the 95-percentile. However,
if this error is limited by two beds, the ILP still provides good solution to the original
problem if only the expected values are used.

Although the ILP performs good for the considered instances, we cannot guarantee
that this method also works on instances from other hospitals. For each considered
setting, first the relation between the expected value and the chosen p-percentile should
be investigated. When the property stated above holds for most solution pairs, the ILP
can be used to find good solutions to the original problem. Else, it might be better
to use the SA approach to solve the problem. For instances arising from practice,
we believe that the ILP will outperform the SA approach as we expect that the LOS
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distributions will not differ much from the LOS distributions used in the instance
provided by HagaZiekenhuis. Nevertheless, it would be interesting to determine what
conditions would result in completely or at least regularly fulfilling the stated property.
These conditions can then be used to determine beforehand which of the two proposed
methods would be most suitable. However, determining these conditions is outside the
scope of this paper.

4.2 What-if scenarios

The starting point of this research was the request from HagaZiekenhuis to get more
insight in the factors that influence the bed occupancy. Therefore, we use the global
approach to show the reduction in the number of required beds when the OR-schedule
is changed, and we investigate whether the resource availability at HagaZiekenhuis
limits this reduction. The hospital provided us an OR-schedule with a planning horizon
of 28 days used by the orthopedics department. For the OR-schedule as provided by
HagaZiekenhuis, 48 beds were needed to admit all surgical patients. We determined
a new OR-schedule by solving the ILP and interrupting the solver after 10 min. To
determine whether one or more of the constraints limit the improvement of the OR-
schedule, we also consider the following scenarios:

– Relax the number of available ORs per day: The number of ORs of type j ∈ J
that are available each day is given by a jt . By relaxing constraint (2), we do not
restrict the model to schedule a fixed amount of OR-blocks per day. Since we relax
the problem, we expect to come up with a schedule that requires less beds on the
wards. We allow a maximum of 5 OR-blocks scheduled per day since 5 ORs are
physically available at the operating department. Note that the number of available
ORs in the weekend is still set to 0 as usually no surgeries are performed during
this time.

– Relax the surgeon availability: As with the previous scenario, the surgeon avail-
ability corresponds to a constraint in the model. To determine what restriction this
constraint imposes on the resulting OR-schedule, and thus on the required number
of beds, we solve the model while relaxing constraint (3). Note that the surgeons
are not available during the weekend as usually no surgeries are performed during
this time.

– Relax the instrument availability: For each instrument set r ∈ R, qr denotes the
number of instrument sets available per day. By omitting constraint (4), we can
determine the impact of this constraint on the number of required beds.

– Relax all constraints: By solving the model without all the above-mentioned
constraints, we can determine the number of required beds when all resource
capacities are unrestricted.

– Relax all constraints including weekends: Typically, no elective surgeries are
performed during the weekends. However, it might be interesting to see which
restriction this imposes on the objective function. Therefore, we also relaxed the
availability of the ORs and surgeons during the weekends, i.e., the OR availability
is set to 5 and all surgeons are available during the weekend.
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Table 1 Results of scenarios

# Expected
beds

# 95-perc.
beds

# Times peak
achieved

Int. gap
(%)

Original 43.2 48 1 –

Global approach 34.7 40 14 1.06

Relax OR availability 34.4 40 5 1.93

Relax surgeon availability 34.1 40 5 1.08

Relax instrument availability 34.7 40 15 1.16

Relax all constraints 33.9 40 2 1.68

Relax all constraints including weekends 32.7 38 12 2.14

Fig. 9 Resulting bed occupancies of three scenarios

The results of the considered scenarios are given in Table 1. This table shows
the expected number of required beds and the number of beds required when the
95-percentile is considered. In addition, we show the number of days in the planning
horizon for which the maximum number of beds is achieved, which is denoted by ‘#
Times Peak Achieved’. We also provide the integrality gap denoted by ‘Int. Gap’.

Table 1 shows that the global approach reduces the number of required beds from 48
to 40 by reassigning the OR-blocks while taking into account all resource constraints.
The results for the other scenarios show that the OR and surgeon availability during
the week and the number of available instrument sets do not influence the required
number of beds, because for all considered scenarios, except the last one, the number
of beds needed equals 40. However, the expected number of required beds and the
number of times the peak bed occupancy is achieved indicate a slight improvement
for the scenarios where the OR availability, the surgeon availability or all resource
constraints are relaxed. The scenario where the constraints are also relaxed during the
weekends decreases the number of required beds from 40 to 38 beds. The resulting
bed occupancies over the entire planning horizon for the original OR-schedule used
in HagaZiekenhuis, the OR-schedule obtained by the global approach and the OR-
schedule for the last mentioned scenario are given in Fig. 9.
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The differences between the bed occupancy for the original OR-schedule and the
one resulting from using the global approach might be explained by the differing
number of surgeries scheduled per day. For the original OR-schedule, there is a peak
in the number of surgeries scheduled per day at the start of the week and halfway
through the week, while for the OR-schedule created by the global approach, there is
only a peak at the start of the week. The global approach also schedules OR-blocks
with a high average LOS at the end of the week. Note that the bed occupancy, shown
in Fig. 9, for the global approach is rather flat during the week, however, during the
weekends the bed occupancy is rather low. To flatten out these peaks, HagaZiekenhuis
should consider to open the OR for elective surgeries during the weekends, because
then, the number of beds needed can be reduced by two extra beds.

5 Conclusions

In this paper, we developed two approaches to improve the OR-schedule such that
the number of required beds is reduced. The first approach incorporates the analytical
formulation of the probability distribution of the bed occupancy and improves the
OR-schedule by using a local search procedure. The second approach approximates
the required number of beds by the expected bed occupancy, which enables us to
solve the problem as an ILP. Both approaches are tested on 100 random instances
to determine which of the two approaches provides the best solution to the original
problem. The computational results show that the ILP with the simplified objective
function performs the best for instances based on the situation in HagaZiekenhuis.
Note that after solving the ILP, the number of required beds is still determined by
using the analytic formulation. The computational results show that the number of
required beds at the orthopedic department of HagaZiekenhuis can be reduced by
almost 20 % when the ILP is used. None of the resources used at HagaZiekenhuis
restrict the improvement that can be made to the OR-schedule; however, the number
of required beds can be reduced slightly when the OR is also available for elective
surgeries during the weekends.

Beliën and Demeulemeester (2007) considered a similar problem as discussed in
this paper, however, they focused on minimizing the total expected bed shortage instead
of minimizing the number of required beds. They compared an SA approach that con-
siders the original objective function, and an ILP that considers an approximation of
the objective function. The approximation used in the ILP is given by the minimization
of the maximum expected bed occupancy which is quite different from the original
objective function that indirectly focuses on minimizing the expected bed occupancy
for all days in the planning horizon. Opposite to our results, Beliën and Demeule-
meester (2007) conclude that the SA approach performs better than the ILP when the
outcome of both approaches is compared based on the original objective function.
This can be explained by the fact that the original and approximated objective func-
tion used by Beliën and Demeulemeester (2007) differ significantly, while in our case,
both objective functions are quite similar. Therefore, we conclude that approximat-
ing the objective function only provides good solutions to the original problem when
the approximated and original objective function leads to approximately the same
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ordering of feasible solutions. Therefore, when using the proposed solution approach
in practice, it should be verified that most feasible solutions for the considered instance
are ordered in the same way by the approximated and original objective function. Fur-
ther research is needed to determine which conditions of an instance leads to entirely
the same ordering of feasible solution.

The approach developed in this paper only considers elective surgeries, because
only these surgeries can be scheduled in advance. However, patients who have to
undergo surgery immediately, and as a consequence, their surgery cannot be scheduled
beforehand, also have to be admitted at one of the wards after surgery. By using the
model of Vanberkel et al. (2011b), we can incorporate these emergency surgeries by
introducing dummy OR-blocks that are already fixed to a specific day in the planning
horizon and contain the expected number of emergency surgeries. In this way, the
arrival and admission of emergency patients is considered while determining a new
OR-schedule for the elective surgeries, and thus, the total number of required beds is
minimized and both elective and emergency patients can be admitted after surgery.
However, this approach only considers the expected number of emergency patients
and does not take into account the stochastic nature of the arrival process of emergency
patients. Incorporating the stochastic arrival process of emergency surgeries would be
an interesting topic for further research.

The developed approach can also be used to determine the admission schedule
for non-surgical patients. To achieve this, we should schedule individual admissions
instead of OR-blocks. This increases the complexity of the ILP as the number of vari-
ables increases. In addition, for the case of non-surgical patients, it is not defined how
many admissions can be scheduled per day as this number may be unlimited. This
also increases the complexity of the ILP due to the increasing solution space. There-
fore, it might be needed to improve the solution approach to guarantee a reasonable
computation time.

In the considered model, we assumed that the assignment of surgery types to
OR-blocks is determined beforehand by the specialism of the surgeon. However, this
assignment also influences the number of required beds on the wards. Therefore, it
would be interesting to also incorporate this assignment when creating an OR-schedule
such that the number of required beds can be reduced even further. Note that this also
imposes some extra constraints on the model, because we also have to consider the
stochastic duration of the surgeries such that the required surgical time does not exceed
the available surgical time. Thus, it would be interesting to investigate this problem in
future research.

Another interesting topic for future research is to take the available bed capacity at
the wards into account when minimizing the number of required beds. For example,
when the available bed capacity at the ward equals 40, it is not necessary to reduce
the number of required beds further to 38. In addition, it might be beneficial to free
as many wards as possible during the weekends to reduce the number of staff needed
during the costly weekends.
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