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Abstract The concepts of both duality and fuzzy uncertainty in linear program-
ming have been theoretically analyzed, comprehensively and practically applied in
an abundance of cases. Consequently, their joint application is highly appealing for
both scholars and practitioners. However, the literature contributions on duality in
fuzzy linear programming (FLP) are neither complete nor consistent. For example,
there are no consistent concepts of weak duality and strong duality. The contribu-
tions of this survey are (1) to provide the first comprehensive overview of literature
results on duality in FLP, (2) to analyze these results in terms of research gaps in
FLP duality theory, and (3) to show avenues for further research. We systematically
analyze duality in fuzzy linear programming along potential fuzzifications of linear
programs (fuzzy classes) and along fuzzy order operators. Our results show that re-
search on FLP duality is fragmented along both dimensions, more specifically duality
approaches and related results vary in terms of homogeneity, completeness, consis-
tency with crisp duality, and complexity. Fuzzy linear programming is still far away
from a unifying theory as we know it from crisp linear programming. We suggest fur-
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ther research directions, including the suggestion of comprehensive duality theories
for specific fuzzy classes while dispensing with restrictive mathematical assumptions,
the development of consistent duality theories for specific fuzzy order operators, and
the proposition of a unifying fuzzy duality theory.

Keywords Fuzzy linear programming, Fuzzy decision making, Fuzzy duality,
Duality theory, Weak duality, Strong duality, Complementary slackness condition,
Fundamental theorem of duality

1 Introduction

Linear Programming (LP) is one of the most frequently applied OR techniques in
real-world problems [64]. Traditional LP requires the decision maker to have deter-
ministic and precise data available but this assumption is not realistic in many cases
for several reasons [94, 2]: a) Many real life problems and models contain linguistic
and/or vague variables and constraints. b) Collecting precise data is often challenging
because the environment of the system is unstable or collecting precise data results
in high information cost. c) Decision makers might not be able to express goals or
constraints precisely because their utility functions are not defined precisely, or phe-
nomena of the decision problem might only be described in a “fuzzy” way. Thus,
being able to deal with vague and imprecise data may greatly contribute to the dif-
fusion and application of LP. It should be noticed that the mentioned imprecision is
not rooted in randomness but often in subjectivity of preferences and assessments.
As a consequence, the use of probability distributions has not proved very successful
in solving problems that show this type of uncertainty. Since Zadeh [92] introduced
“Fuzzy sets”, there exists a useful way of modeling vagueness in real life systems
without having recourse to stochastic concepts.

Based on fuzzy sets, fuzzy decision making [4] and fuzzy mathematical program-
ming, in particular Fuzzy Linear Programming (FLP), have been developed to tackle
problems encountered in many different real-world applications [2, 64]. For example,
FLP is used to solve problems in agricultural economics [55, 38, 16, 41, 48, 71, 70],
network location [17], banking and finance [53, 54, 38, 27, 84, 37, 40], environment
management [72, 52, 42], inventory management [49, 66, 65], manufacturing and
production [78, 76, 80, 59, 30, 75, 81, 82, 32, 56], resource allocation [1, 36], supply
chain management [14, 57, 58, 6, 85], personnel management [73], media selection
[83], trade balance [9], management of the reservoir watershed [12], dimension de-
sign [13], transportation management [78, 94, 10, 11, 22, 43, 68, 69, 79], product mix
[33] and marketing [74].

The power of (crisp) LP includes valuable insights that are based on duality the-
ory (see, for example, [29, 5]). The particular usefulness of duality theory is not only
given through its algorithmic (e.g., dual simplex algorithm) and mathematical ben-
efits (e.g., weak/strong duality theorems), but it also includes explanatory power in
economic interpretation [29, p. 203ff]. Together with the benefits of fuzzy mathe-
matical programming, the joint application of fuzzy linear programming and duality
theory is highly appealing for both scholars and practitioners but literature contribu-
tions on duality in FLP are neither complete nor consistent. For example, there are no
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consistent concepts of weak duality and strong duality. Striving for a comprehensive
and consistent understanding of duality in FLP is an essential step towards jointly
exploiting the power of duality and FLP, which are usually applied only separately.

The contributions of this survey are (1) to provide the first comprehensive overview
of literature results on duality in FLP, (2) to analyze these results in terms of research
gaps in FLP duality theory, and (3) to show avenues for further research. We system-
atically analyze duality in fuzzy linear programming along potential fuzzifications of
linear programs and along fuzzy order operators.

The remainder of this paper is structured as follows: Section 2 presents the the-
oretical background regarding crisp linear duality theory, fuzzy sets and fuzzy arith-
metic. In Section 3, we present the literature findings on duality in FLP. Section 4
analyzes our findings, identifies research gaps and suggests paths for further research,
before Section 5 concludes the paper.

2 Theoretical background

In this section, we provide a brief overview of duality theory in linear programming,
including key theorems and economic interpretations. We also provide a concise
overview of fuzzy sets and fuzzy arithmetic.

2.1 A brief overview of duality theory

Linear programming and duality theory belong to the best understood fields in math-

ematical programming. We briefly present the most important findings of duality in

linear programming (see, for example, [29, 5]), and we later draw on these findings

to assess the level of maturity of research on duality in fuzzy linear programming.
Given the primal (linear) problem!

max Z=clx

subjectto Ax <b
x>0
c,xeR? M
beR"
A e R™™

the dual problem? is defined by

min W =>0bly

subjectto ATy >¢ )
y>0.

From a structural perspective, the dual problem is derived by a) transforming
a maximization problem into a minimization problem, b) making the dimension of

! Note that each linear problem can be easily transformed into the form given below.

2 Here, we define the dual problem by means of mathematical properties. An alternative, economic
interpretation is given by Hillier and Lieberman [29, p. 203ff].
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the solution space (number of decision variables) the number of constraints and vice
versa, ¢) substituting < constraints with >constraints, and d) switching the coeffi-
cients in the objective function with the right hand side values. We can also formulate
more sloppy that variables become constraints and vice versa.

The key (structural) primal-dual relationships are as follows (proofs are included
in many OR textbooks, including [29]):

Weak duality theorem: If x is a feasible solution for the primal problem and y is a
feasible solution for the dual problem, then ¢’ x < b7y.

Strong duality theorem: If x* is an optimal solution for the primal problem and y*
is an optimal solution for the dual problem, then ¢’ x* = b7 y*.

Complementary slackness condition: Reformulating the functional constraints in
the primal problem (1) and in the dual problem (2) by introducing “slack™ vari-
ables, we yield Ax+x; = b and ATy —y; = ¢, respectively. Let (x,x,) and (y,y,) be
feasible solutions of the primal and the dual problem, respectively. Then, (x,x;)
and (,y;) are optimal solutions of the problems if and only if x”y; +xTy = 0.

Fundamental theorem of duality: The following relationships are the only possi-
ble ones between the primal and the dual problems:
1. If one problem has feasible solutions and a bounded objective function (and
so an optimal solution), then so does the other problem.
2. If one problems has feasible solutions and an unbounded objective function
(and so no optimal solution), then the other problem has no feasible solutions.
3. If one problem has no feasible solutions, then the other problem has either no
feasible solutions or an unbounded objective function.

Due to the strong duality theorem, it is sufficient to solve the dual problem in
order to get the optimal solution value of the primal problem. This property can also
be proved when we draw on Lagrangian relaxation. For example, Gordon [23] uses
the Lagrangian multiplier theorem to show that the problem (minc'x s.t. Ax < b) has
the same optimal solution as the problem (max —b'y s.t. A’y = —c',y > 0), assumed
that both problems have bounded optimal solutions. We can easily apply this result
on our primal-dual problems by transforming the non-negativity constraints (x > 0)
into (—x < 0) and using the transformation (max f(x) = —min — f(x)). Rodder and
Zimmermann [63] use an economic interpretation® of the Lagrangian function for
the primal problem (1) and show that the saddle point (x*,y*) of the Lagrangian
function represents the optimal solutions x* and y* of the primal and the dual problem,
respectively.

The usefulness of duality theory is manifold. First, it is of algorithmic value as
(1) it is sufficient to solve the easier problem of the primal-dual problem pair in order
to obtain the optimal solutions for both problems, (2) if the primal problem has an
optimal solution, then the objective value of any feasible solution of the dual problem
is an upper bound of the optimal objective value of the primal problem (due to the

3 The researchers interpret x as production units and y as resource prices on the market.
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weak duality theorem), and (3) it is the root of the dual Simplex algorithm. A second
major benefit of duality theory lies in its economic interpretation: in economic con-
texts, the objective function often corresponds to profit and the functional constraints
often represent constraints of resources, such as machine hours or financial budgets.
For each basic feasible solution of the primal problem, the corresponding objective
value of the dual problem is given by W = Y7 | b;y;. Consequently, each b;y; can
be interpreted as the contribution to profit by having b; units of resource i available
for the primal problem. In other words, the dual variable y; can be interpreted as the
contribution to profit per unit of resource i, when the current set of basic variables is
used to obtain the primal solution. This property is particularly useful for the optimal
basic solution in the primal problem because each y; value in the optimal solution in
the dual problem gives the marginal increase of profit if the corresponding resource is
increased by 1 (“shadow prices”). Also the complementary slackness condition can
be interpreted in this economic context: if a constraint in the primal problem is not
binding (the corresponding slack variable is positive), then the shadow price must
equal zero. If the shadow price is positive, then the corresponding constraint must be
binding (the slack variable equals zero). This holds for the dual problem, too, due
to the symmetry property (the dual problem of the dual problem is the primal prob-
lem). For a more comprehensive interpretation of the economic meaning of the dual
problem see [29, p. 203ff].

2.2 A concise overview of fuzzy sets and fuzzy arithmetic

Fuzzy set theory goes back to Zadeh [92], who proposed fuzzy sets as means for
dealing with non-probabilistic uncertainty. The key idea of fuzzy set theory is the
extension of the (crisp) membership concept in traditional set theory by providing
for a degree with which an element belongs to a set. The degrees are specified by a
membership function.

Among the many introductory books on fuzzy sets and fuzzy optimization, we
mainly draw on references [96, 97, 19, 64] to briefly present the very basics. We
present only those subfields of fuzzy set theory and fuzzy arithmetic that are relevant
for (duality theory in) FLP.

Definition 1 (Fuzzy set) Let X be a crisp set. Then we define a fuzzy set A in X as a
set of ordered pairs

A={(x,ua(x))|x € X}. 3)
Ua : X — R is called the membership function. Important concepts of fuzzy sets are:

— Normality: If sup, ts (x) = 1, then the fuzzy set A is called normal.

— Support: The support (0-level set) of a fuzzy set A is the set
S(A) = {x € X|a(x) > O},

— Core: The core of a fuzzy set A is the set C(A) = {x € X|ua(x) = 1}.

— a-cuts: The a-level set (or a-cut) A[a] of a fuzzy set A in X is defined by A[a] =
{xeX|ua(x) > a}, 0 < o < 1.For X =R, the O-level set A[¢t] is defined as the
closure of the set {x € R|u4(x) > 0}.
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— Convexity: A fuzzy set A is convex if
[.LA()JQ +(1=A)xz) > min{[,LA(xl},uA(xz)} XL, eX,Ae [0; 1]
i.e. if its membership function is quasi-concave.

Apparently, a key difference between crisp and fuzzy sets is their membership
function; a crisp set is conceptually a specific fuzzy set with the membership function
ua(x) =1,if x € A, pa(x) =Oelse.

While set-theoretic operations on crisp fuzzy sets are defined consistently, various
implementations of set-theoretic operations on fuzzy sets have been proposed: For
example, Zadeh [92] defines the intersection A N B and the union A U B of two fuzzy
sets A and Bin X as

ANB = {(x, tans(x))}, Hang(x) = min{pa (x), up(x)}

and
AUB = {(x, taug(x)) }, Haus (x) = max {4 (x), up(x) },

respectively. As the max and the min operators usually do not correspond to what
is meant by “and/intersection” and “or/union”, other operator implementations have
been proposed, including the Hamacher operators, the Yager operators and the Dubois
and Prade operators [97, p. 29ff].

A general class of intersection/union operators for fuzzy sets has been defined as
t-norms/t-conorms (s-norms) [19, 20, p. 17, p. 90].

Definition 2 (t-norm/t-conorm) t-norms (t-conorm) are two-valued functions ¢ that
map from [0, 1] x [0, 1] into [0, 1] and that satisfy the following conditions:

1. 1(0,0) =0; t(ua(x),1) =1(1, ua(x)) = pa(x), x € X (t-norm)
t(1,1) =1; t(ua(x),0) = (0, pa(x)) = pa(x), x € X (t-conorm)
2 100 0. () < ). )
if pa(x) < pe(x) and pp(x) < pp(x) (monotonicity)
t(pa E?“B x)) = t(up(x), tta(x)) (commutativity)

. 11 (x). (1 (0), e (x))) = (1 (a (), (s (1)), () (associativity)

(O8]

In the field of fuzzy optimization, a particular type of fuzzy sets, fuzzy numbers
F(R), are used. They are defined by Dubois and Prade [19] as a special case of a
fuzzy interval.

Definition 3 (Fuzzy interval and fuzzy number) A fuzzy interval y is a fuzzy set
in X = R whose membership function 5 (c <a < b <d,a,b,c,d € R)* is

. a continuous mapping from R to [0, 1],

. constant on (—oo,c| : pz(x) = 0Vx € [—oo,c],
. strictly increasing on [c,a],

. constant on [a,b] : g(x) = 1Vx € [a,b],

. strictly decreasing on [b,d],

N A W=

4 Eventually, we can also have ¢ = —eo,0ora =b,0orc =a,orb=d, or d = .
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6. constant on [d, o] : U5(x) =0 Vx € [d,o].
A fuzzy number is the special case of a fuzzy interval, where a = b.

Unfortunately, there is some terminological confusion in the literature regarding
the definition of fuzzy numbers as many authors, e.g., [7, 15, 18, 34, 46, 50] allow
in their definitions of fuzzy numbers a core of more than one element and refer to
Dubois and Prade [19] fuzzy intervals as fuzzy numbers, which is not in accordance
with Definition 3. In order to remain consistent with this widely used terminology
and to avoid confusion, we adopt this (broader) understanding of fuzzy numbers in
the remainder of this paper. This approach is consistent with Zimmermann [97].5 We
also mark in Table 1 those papers which use an understanding different from Dubois
and Prade [19].

Definition 4 (Spread) The left spread of a fuzzy number y with a membership func-
tion Uy (¢ <a <b<d,a,b,c,d € R) is defined as (a — c). The right spread of y is
defined as (d — b).

Definition 5 (Specific types of fuzzy numbers) A fuzzy number y = (¢,a,b,d) with
membership function y is called

— trapezoidal if yg is piecewise linear and a < b,
— triangular if 5 is piecewise linear and a = b,
— symmetric if pg(a —h) = uz(b+h) Vh > 0,

— an LR type fuzzy number if

L("5*) forx <m, o0 >0
H50) = L R(5) forx > m, B >0

with L(x) = L(—x), L(0) = 1, R(x)
increasing on [0,00).

R(—x), R(0) =1, L, R continuous and non-

Let X be a nonempty subset of R. The membership function g is called (see, for
example, [61])

— quasi-concave on X if
p5(Ax+ (1= A)y) > min{ps(x), ()}

for every x,y € X and every A € (0,1) with Ax+ (1 —A)y € X,
— strictly quasi-concave on X if

5 (Ax+ (1= A)y) > min{5(x), t(y) }
for every x,y € X,x #y, and every A € (0,1) with Ax+ (1 — A1)y € X,

5 “Nowadays, definition 5-3 [ defining a fuzzy number with a core of one element | is very often modified.

For the sake of computational efficiency and ease of data acquisition, trapezoidal membership functions
are often used. |[...] Strictly speaking, it [the fuzzy set with trapezoidal membership functions] is a fuzzy
interval [...] " (p. 59)
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Fig. 1 Sum and product of fuzzy numbers 3and 6
3 63+6 306
] N~

-/‘. \
1 1 1 1 1

LI L L T 1 T
1 3456 89 13 18 40

Note: 3 [J§ is not a triangular fuzzy number.

— semistrictly quasi-concave on X if iy is quasi-concave on X and (4) holds for
every x,y € X and every A € (0,1) with Ax+ (1 =2)y € X, uz(Ax+ (1= 21)y) €
(0,1) and pg(x) # ps(y).

Fuzzy arithmetic operations are defined by Dubois and Prade [18] based on the
extension principle proposed by Zadeh [89, 90, 91]:

Definition 6 (Fuzzy arithmetic) Let a and b be two fuzzy numbers with member-
ship functions g and . The membership function (g of the fuzzy number that

results from the operation ¢ = dob, o € {+,—,%,/}, is defined as

He(z) = Sup min{(x), 14(y)}-

An equivalent definition draws on a-cuts and interval arithmetic [35, chapter 4].
Figure 1 demonstrates arithmetic on triangular fuzzy numbers in a sample case.

While there is a consensus in the literature on how to perform arithmetic oper-
ations on fuzzy numbers, there is no universally accepted way to order fuzzy num-
bers. A key concept of ordering fuzzy numbers is the usage of a ranking function
R :F(R) — R, with @ < b if and only if R(a) < R(b) and a =~ b if and only if
R(@) = R(b) (see, for example, [50]). R is called linear if and only if R(a+ Ab) =
R(a) + /'LR(Z)7 A € R. A second option is to draw on a (lexicographic) ranking func-
tion R’ : F(R) — R x R [28] based on the concepts of possibilistic mean value and
variance of a fuzzy number [8]. Third, ranking fuzzy numbers can also draw on in-
dices based on possibility theory [21].

While ranking functions support a crisp decision of whether a fuzzy number a
is smaller than or equal to a fuzzy number b, a different approach based on fuzzy
relations assigns a value with which a is smaller than or equal to b [61]. The relation
=< on F(R) x F(R) is valued such that u< : F(R) x F(R) — [0,1]. u<(a,b) can be
regarded as the degree with which & is smaller than or equal to b.

While fuzzy relations, which enable the comparison of fuzzy numbers, are ap-
plied to fuzzy subsets of F(R) x F(R), Zimmermann [95] proposes an extension of
comparison operators of crisp numbers in order to compare crisp numbers in a fuzzy
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sense. Here, relations are fuzzy subsets of R x R, i.e. the relation < on R x R is
valued such that p<: R xR — [0, 1].

In the literature a fuzzification of the max and min operations has been proposed.
One of the key concepts was proposed by Dubois and Prade [18]:

Definition 7 (Fuzzy max/min) Let a and b be two fuzzy numbers with membership
functions pz and ;. The “fuzzy max” of @ and b, which we denote by ¢ = max(a, b),
has a membership function pz such that

pe(z) =  max  min{pz(x), i (y)}-

max{x,y}=z
In the same way, d= 1;1\1%(27, 5) has a membership function 7 such that

pi(z) = max min{ug(x), u;(v)}-

min{x,y}=z

In the next section we present the results of our literature review.

3 Duality in fuzzy linear programming

In order to structure the findings of the literature, FLP models are classified according
to the components that can be fuzzified. In a FLP, the maximization of the objective
function (max), the order operator of constraints (<), the limit values of constraints
(b), the coefficients of the objective function (c), the coefficients of constraints (A),
and the decision variables can be fuzzified. Each of the model components can be
either crisp or fuzzy. Because of the limited practical usefulness of fuzzy decision
variables (cf. succeeding paragraph) and in order to keep the number of classes man-
ageable, we do not explicitly provide a dimension for the type of decision variables.

When decision variables are fuzzy, the optimal solutions of such problems are
also fuzzy. However, in most real-world applications decision makers require crisp
solutions to make a decision. For example, Nasseri et al. [S1] consider a FLP profit
maximization problem, where the produced units of products are represented as fuzzy
sets. This implies that the optimal number of units to be produced is also a fuzzy num-
ber. However, companies can produce only a crisp number of units, which needs to be
considered in the setup of production machines. On the other hand, fuzzy solutions
can have practical benefits in situations where crisp decisions are not derived directly
from fuzzy solutions, but fuzzy solutions represent the input for further optimization
problems. For example, fuzzy solutions might be the result of an optimization prob-
lem that looks for optimal market prices of a good. These fuzzy prices can then be
used as (fuzzy) coefficients in a further optimization problem that looks for (crisp)
solutions of a production plan. However, we still admit that the practical applicability
of fuzzy solutions is limited. For the sake of completeness of theoretical approaches,
we discuss LP models with fuzzy variables in Subsection 3.5.

Overall, our classification results in a number of 25 — 1 = 31 potential classes of
fuzzy linear programs if we require a model to have at least one fuzzy component. A
similar classification is proposed by Baykasoglu and Goecken [2], but the researchers



10 Guido Schryen, Diana Hristova

do not distinguish between fuzzifying the order operator and the limit values of the
constraints. However, since a fuzzy order operator can also be used to compare crisp
numbers (see section 2.2) and fuzzy numbers can only be compared by a fuzzy order
operator, we consider this separation necessary.

Table 1 shows the resulting classes and the references that contribute to the dual-
ity theory of the respective class. While columns represent (five) model components,
which can be fuzzified, rows correspond to (31) classes of fuzzy linear programs. The
symbol v" in row no. i and column no. j indicates that class i is fuzzified with regard
to model component j; otherwise the table entry is empty. Table 1 shows that some of
the 31 potential classes of fuzzy linear programs are impossible and are thus excluded
from further consideration: a) When coefficients in the objective function are fuzzy
then the objective value is fuzzy, too, and underlies a fuzzy maximization operator.
Consequently, classes 2-3,6-7,10-11, and 14—15 are excluded. b) Constraint opera-
tors (<) must be fuzzy if b, A, or both are fuzzy. Thus, classes 1,3,4-7,17, and 19-23
are excluded. To sum up, among the 31 potential classes of fuzzy linear programs
only 14 classes remain feasible. We found that among these 14 classes, only seven
classes (classes 8,16,18,24,28,30,31) have been addressed in the literature. The last
column lists references for each of these classes; blank entries indicate that we have
not found any reference for the respective class.

Some of the existing papers work with arbitrary symmetric trapezoidal fuzzy
numbers as a definition of the right-hand side of a constraint, which is not in ac-
cordance with the idea behind the constraints in FLP. In particular, they allow a fuzzy
right-hand side to be modeled as a fuzzy number with a non-zero left/right spread,
which implies that there does not exist a level under/over which the left-hand satis-
fies the constraint with certainty. This contradicts the interpretation of the constraints
of FLP program, where a tolerance level above/below the certainty level is given.
However, since most of the trapezoidal fuzzy numbers discussed in the presented
works can be additionally restricted to have a zero left/right spread, we discuss the
approaches further under the condition that they are only applicable with this addi-
tional restriction. An exception here is Nasseri et al. [51] where the authors require
the use of fuzzy numbers with positive left and right spread. As a result, we believe
that the paper does not provide a useful contribution to duality in FLP and exclude it
from further discussion.

Table 1 shows that with regard to fuzzy models of class 28 we found two papers
in the literature. These approaches use fuzzy decision variables in the primal problem
and crisp decision variables in the dual problem. However, the authors do not provide
a sound justification for simply mapping fuzzy numbers onto crisp numbers. We thus
argue that the presented approaches do not provide any additional value to the field
of fuzzy duality theory and thus exclude these from further discussions. As a result,
the number of considered classes reduces to six. Finally, as discussed in the previous
section, we mark those papers which define fuzzy numbers different from Definition
3.

‘We now present literature results for those feasible classes where we found refer-
ences (classes 8,16,18,24,30,31). The order of presentation is in the order of ascend-
ing numbers of classes with two exceptions. The first one is due to the fact that many
papers draw on the early ideas of Hamacher et al. [26] and Rodder and Zimmermann
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Table 1 Classification of fuzzy linear programs.

Class  Objective Constraints  Limit values Coefficients of Coefficients of References
of constraints objective function constraints
(max) (9] (b) (©) (A)

(1) v impossible

2) v impossible

3) v v impossible

“4) v impossible

) v v impossible

(6) v v impossible

(@) v v v impossible

8) v [77]

9) v v

(10) v v impossible
(11) v v v impossible
(12) v v

(13) v v v

(14) v v v impossible
(15) v v v v impossible
(16) v [44]

17) v v impossible
sy v v [77L[71%)
(19) v v v impossible
(20) v v impossible
21) v v v impossible
22) v v v impossible
(23) v v v v impossible
24) v v [3, 63, 26, 93, 25]
(25) v v v

(26) v v v

27) v v v v

28 v v v [45, 471(0-(2.(3),(4)
(29) v v v v

(30) v v v v [50](D-2:(4) [517(1):(2):3).(4)
(31) v v v v v [87, 31, 61, 60, 62, 25],

28]V, [46]():#)

1) fuzzy decision variables

M
@ duality results are meaningful only when the left (right) spread of trapezoidal fuzzy numbers on right-hand side of < (>) constraints equals zero
(3) excluded from further discussion due to theoretical weaknesses

) the definition of fuzzy numbers differs from Definition 3

[63], which are used for deriving duality results in class 24. Thus, this class is pre-
sented first. The second exception is due to the separate discussion in Subsection 3.5
of approaches, which consider fuzzy decision variables.

In labeling the optimization problems we generally used the following conven-
tion: primal problems in subsection i are labeled (Pi); dual problems in subsection i
are labeled (Di). In case of more than one approach in a given subsection and differ-
ence between the primal or dual problems, we use lower case letters to differentiate
between the approaches, i.e. the first primal problem in subsection i is labeled (Pia).
Derived problems are labeled using additional prime marks. Important auxiliary prob-
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lems are labeled (Af), where i is initialized at one and increased with the number of
labeled problems.

In the following subsections, we present the duality results of the literature re-
garding the various classes of fuzzy linear problems with a particular focus on du-
ality theorems as they are known from duality theory of crisp linear programming.
We want to note that (1) while we checked the literature for included proofs of dual-
ity theorems, we did not investigate whether further duality theorems can be derived
from the findings of the respective researchers as we believe that such an investigation
is beyond the scope of a literature review, and (2) some of the papers draw on formu-
lations of “strong duality” and “complementary slackness” that are slightly different
from the common definitions presented in Subsection 2.1.

3.1 Class 24: Fuzzy maximization and fuzzy constraints

The primal optimization problem of this class looks as follows:

max, c¢'x
st. Ax=<b (P1)
x>0

In this case, there is only uncertainty regarding the maximization and comparison
operators so “max” and “<" need to be specified. We found four papers [63, 3, 25,
26] which deal with (P1) as its primal problem and present them in the following
subsections. At the end of this section we provide a brief overview of the discussed
approaches.

3.1.1 Approach of Rodder and Zimmermann (1980)

The paper by Rédder and Zimmermann [63] does not directly consider problem (P1)
as its primal problem. However, as it deals with uncertainty regarding the optimal
value of the objective as well as the degree of satisfaction of the constraints of the
crisp equivalent of (P1), we present it here. Rodder and Zimmermann [63] define
their approach based on the idea that the solution of (P1) in the crisp case is the one
that maximizes the Lagrangian function:

L(x,y)= c'x +y(b—Ax). 4)
(x,y) = X ( )
primary secondary

The researchers interpret L(x,y) as the total profit for a producer (primary plus sec-
ondary), who produces x, where y represents the price of production resources on the
market, ¢ contains the prices for the production on the market, A is the technology
matrix and b are the available resource capacities of the producer.

In a fuzzy setting the producer does not maximize his profit, but rather has a certain
aspiration level ¢/x° for the primary profit that s/he aims to reach, i.e. the maximiza-
tion operator in the primal problem is fuzzy. Moreover, the producer is said to have a
degree of satisfaction from his secondary profit y' (b — Ax) as a function of the prices
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on the market y. Let the membership functions of the primary and the secondary profit
be us(c'x,c'x°) and pu<(Ax,b,y), respectively. To solve (P1), the researchers follow
the symmetrical approach of [4] so that in such an optimization problem the objective
is treated as a constraint and the solution is the one that maximizes the intersection
of the membership functions of the objective and the constraints. Thus, the solution
of (P1) is, for given price of the resources on the market y, the one that satisfies

x = argmax,>o(min{ p- (c'x,¢'x°), u< (Ax,b,y)}). (5)
The primal problem (P1) can then be rewritten as

maxy o O
s.t. s (c'x,c'x0) > «
U<(Ax,b,y) > a (Pla)
x>0
acR

Note that the primal problem is defined as a parametric problem for a given y and its
optimal solution is a pair (¢t(y),x*(y)).

The dual problem is defined analogously to the primal problem, however, in this case
the decision-maker is not the producer, but the market with an analogous interpre-
tation. The membership functions of the objective of the dual problem and the con-
straints are g~ (b'y, b'y") and ps (A'y, c, x) respectively. The dual problem can then be
rewritten as a parametric problem of x with an optimal solution (x(x),y*(x)):

miny x K
sit. —u<(b'y,b'y0) < k
—U-(A'y,c,x) < K (Dla)
y=0
KeR

The researchers define:

X ={x>0[Vy>0:yb < 0= yAx <0}
YO={y>0[Vx>0:c'x>0=yAx>0}

as the set of solutions of (Pla) and (D1la) respectively, where the two problems are
bounded. To prove duality, the researchers restrict the sets X° and Y to the sets X
and Y respectively:

X={x>0Vy>0:yb<0=yAx <0}
Y={y>0V¥x>0:cx>0=)yAx>0}

and by applying Farkas’ lemma show that they are equivalent to:

X ={x>03B cR,B >0,Bb>Ax}

Y ={y>0[3yeR,y >0,y <y'A} ©
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The researchers then restrict the solution set of (Pla) and (Dla) to X and Y as
follows:
maxy o g &
s.t. s ('x,c'x0) >«
.uj(Avavy) >
x>0
aeR (P1a)
Bb > Ax
' <y'A
B>0
y=0

miny, ¢ y K
s.t. —u<(b'y,b'y0) < x
i (Aly.ex) <
y=0
kR (D1a’)
Bb > Ax
Y <y'A
B>0
y=>0

Note that in (P1a’) y and y are given as parameters, while in (D1a’) 8 and x are given
as parameters.

Weak duality For any two optimal solutions (a(y),x*(y), B(y)) and (k(x),y*(x), ¥(x))
of (P1d’) and (D1d’) respectively the following holds:

)

Note that the presented weak duality theorem is a relation of the elements of X and Y
and would hold regardless of the formulation of (Pla) and (Dla) and regardless of
whether x and y are optimal.

3.1.2 Approach of Bector and Chandra (2002)

The paper by Bector and Chandra [3] also addresses (P1) as the primal problem and
modifies the approach by Rodder and Zimmermann [63]. To compare crisp numbers
in a fuzzy sense, given two real numbers A and B, A < B is defined in the paper using
a linear, monotone membership function p< : R x R — [0, 1] as follows:

0 A>B+fy
u<(A,B)=< 1-4L8 B<A<B+fp (8)
1 A<B

where fy > 0 is the tolerance interval describing the extent to which the constraint
can be violated. - is defined analogously.
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Bector and Chandra [3] define “max” following also the approach of Bellman and
Zadeh [4]. The researchers transform the objective into a constraint using the aspira-
tion level ¢/’x. (P1) can then be rewritten as:

x> c'x0
Ax=<b (P1b)
x> 0.

The solution of (P1b) is the pair (x, ¢t) such that

maxy o O
s.t. s (c'x,cx0) >«
1= (Ax,b) > (P1b")
x>0
ac[0,1].

Note that t<(Ax,b) is not a single number, but rather a vector containing, for each
constraint i, the value t~; (Ajx,b;), where M~ ;) stands for the corresponding mem-
bership function. Let the tolerance interval of the membership function p(;) be p;
(see (8)) and p = (pi1,...,pm)- Let, in addition py be the tolerance interval of the
membership function g (c'x,c’x"). The researchers define the dual problem as fol-
lows:

nﬁﬂy b'y
st. Aly=c 9
y=>0

After transforming the objective to a constraint with aspiration level 'y, this prob-
lem becomes
bty =< btyO
Aly»c (D1b)
y>0.

The crisp linear problem analog to (P12') is then

miny . —K
s.t. 1< (b'y,b'y) >k
U-(Aly,c) > k (D1b%)
ke0,1]
y=0

with a solution (y, k).

Note that s (A'y,c) is not a single number, but rather a vector containing, for each
constraint j, the value p.(;((A");y,c;), where p, ;) stands for the corresponding
membership function. Let the tolerance interval of the membership function f1,-(;) be
q; (see (8)) and g = (q1,---,qn)- Let, in addition go be the tolerance interval of the
membership function p< (b'y, b'y).
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Weak duality For each feasible solution (x, @) of (P15’) and each feasible solution
(y,x) of (D1b') the following inequality holds:

(@—=1)p'y—(k—1)g'x < (b'y—cx), (10)

The theorem is equivalent to the crisp weak duality theorem in case & = K = 1.
Bector and Chandra [3] additionally show that, given two feasible solutions (x, @)
and (y, k) of (P15’) and (D1b’), respectively, the following implication holds:
If the subsequent conditions hold

= (a—1D)p'y+(k—1)gx = (by—c'x)

- (@ =1)po+(x—1)g0 = ('x—b'y) + (b'y’ — 'x°)

_ szo _ btyU < O,
then (x, &) and (y, k) are optimal solutions.

In this subsection, we would also like to mention the paper by Gupta and Mehlawat
[25]. It follows an approach that is very similar to that of Bector and Chandra [3] and
that differs in the type of the membership functions (exponential membership func-
tions) for the constraints and objectives of (P1b) and (D1b). The researchers provide
the same duality results with a modification for the particular membership functions.
In addition, Gupta and Mehlawat [25] show how their approach can be applied to
problems of class 31 by using ranking functions for the comparison of fuzzy num-
bers and transforming the fuzzy problems of class 31 to the problems (P15’) and
(D1b'). Due to the similarities of the ideas in the papers by Bector and Chandra [3]
and Gupta and Mehlawat [25], we omit a detailed presentation of the results of Gupta
and Mehlawat [25].

3.1.3 Approach of Hamacher et al. (1978)

The paper by Hamacher et al. [26] considers a primal problem with fuzzy maximiza-
tion and a mixture of fuzzy and crisp constraints. Since crisp contraints can be seen
as a special case of fuzzy constraints, we consider the paper in this class. The primal
problem is defined as follows:

max, c'x

st. Ax=<b
Dx< f
x>0

(Plo)

Similar to the other two approaches presented in this section, max is defined by the
membership function p-(c'x,c'x?), where ¢/x" is the aspiration level of the deci-
sion maker. < is defined by the membership function p<(Ax,b) representing soft
constraints. Following the symmetrical approach of Bellman and Zadeh [4] and the
assumption of linear membership functions, the researchers rewrite (Plc) as the fol-
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lowing crisp linear optimization problem:

maxy, ¢ O
s.t. U (c'x,c'x%) > o
”5(Ax7b) > o
Dx< f (P1c)
x>0
s (c'x,c'x%) € [0, 1]
”5(Ax7b) € [07 1]

The dual problem is defined as the crisp dual of (P1c’), which is also a crisp linear
problem and strongly depends on the membership functions chosen. The researchers
provide an economic interpretation of the variables of the dual problem and admit that
as opposed to the crisp case not all of them can be interpreted as shadow prices. Thus,
they perform sensitivity analysis on the primal problem to “... derive the functional
relationships between changes of components of the right-hand-side and changes of
the optimal value of the primal objective functions ...” (p. 270). The researchers do
not prove any duality results.

3.1.4 Summary

To sum up, the paper by Rodder and Zimmermann [63] aims to define fuzzy dual-
ity in a very intuitive way, using a clear economic interpretation. However, the ap-
proach suffers from some disadvantages, such as the particular form of the member-
ship functions, which allow values higher than one and lower than zero. In addition,
the researchers show only weak duality, which they prove in a mathematically very
restricted setting.

The paper by Bector and Chandra [3] modifies the ideas in Rodder and Zimmer-
mann [63] to address most of the above mentioned disadvantages. In addition, here
the optimization problems are easier to solve than in [63]. However, there are also
a few disadvantages. First, the approach is restricted to the use of linear monotone
membership functions. Secondly, they prove only weak duality and provide a cri-
terion to test solutions for optimality. However, Bector and Chandra [3] admit that
strong duality would generally not hold.

Finally, the paper by Hamacher et al. [26] extends the literature on duality theory
in fuzzy linear optimization by performing sensitivity analysis on the primal problem.

3.2 Class 8: Fuzzy constraints
The primal optimization problem in this class is
max, c'x

st. Ax=<b (P2)
x> 0.
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Note that here only the fuzzy order operator must be defined. We found only one
paper [77] that addresses duality of this problem type. The researcher defines < simi-
larly to Bector and Chandra [3] through the use of a continuous and strictly monotone
membership function p<. An example of such a function is shown in (8).

The difference to problems of class 24 (fuzzy maximization and fuzzy constraints)
is that here the symmetric principle of Bellman and Zadeh [4] cannot be applied as
max is a crisp operator and not a fuzzy one and thus the objective and the constraints
cannot be treated symmetrically. Therefore, Verdegay [77] suggests a parametric ap-
proach where the degree to which the constraints of (P2) are satisfied is represented
by an exogenously given parameter ¢. (P2) can then be transformed into:

max, c'x

skt u<(Ax,b) >« ,
aclo] (P2
x> 0.

This results in a fuzzy set as an optimal value because, for each degree of certainty
o, we obtain a different solution x.
The dual problem in reference [77] is defined as

II/li\I;y by
sit. Aly>c (D2)
y =0,

which has the same fuzzy components as the problems of class 18. (D2) is trans-
formed into a parametric problem with an exogeneously given parameter f3 as fol-
lows:

miny, b'y

S.t. [.Lj(b]) >1 —ﬁ,j el,...m
Aly>c¢ (D2%)
y=0
B €[0,1].

where, 1; are membership functions for the coefficients of the objective. However, it
is not clear from the paper why the equivalence between (D2) and (D2') holds. The
interested reader should turn to [24, pp. 231ff] for more information. For continuous
and strictly monotone membership functions, (D2') can be transformed to

miny ¥, 457 (1= B)y;
sit. Aly>c
y=>0

B €10,1].

Here, in contrast to (P2'), the parameter  does not affect the feasible region, but
only the value of the objective function.

(1)

Strong duality Given P2’ (resp. D2') with continuous and strictly monotone mem-
bership functions < (resp. ;Vj) and the corresponding dual problem problem
D2’ (resp. P2'), the optimal objective values are the same fuzzy sets. The proof is
based on crisp duality theory.
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An advantage of this approach is that it applies very elegantly the main reason for
the popularity of duality theory, namely that by solving one of the primal or dual
problems we can find the solution of the other. In this case, the primal problem is
very difficult to solve as it contains the parameter ¢ in each of its constraints, i.e. the
parameter o determines the feasible region. The problem (D2) on the other hand can
be transformed into a crisp linear problem, where the parameter 3 is only part of the
objective function. This makes (D2) much easier to solve. Note that the paper can
just as well be classified in class 18 since all the results hold also when the primal
problem is (D2). Then the dual problem would be (P2).

3.3 Class 18: Fuzzy maximization, fuzzy coefficients of objective function

The primal problem in this section is

max, ¢'x
st. Ax<b (P3)
x>0.

We found only one paper that deals with this type of primal problem [7]. The re-
searchers work with general fuzzy numbers. Note that this problem is equivalent (in
terms of parts that are fuzzified) to the problem (D2) presented in subsection 3.2.
Cadenas Figueredo and Jiménez Barrionuevo [7] follow the approach in Subsection
3.2 and rewrite (P3) as a parametric problem with an exogeneously given parameter
o

max, c'x

s.t. ,uj(Cj)Z(X,jG 1,...n
Ax<b (P3")
x>0
o €[0,1],

where the membership function f(c;) is non-negative on the interval [c; — d} .G+

d?] Vj and equals to one in the interval [c;,¢;]. Problem (P3') is then equivalent to
the following interval parameter linear programming problem:

max, [¢c —d'a,¢c+d*alx
st. Ax<b

x>0

o €0,1],

(P37)

where ¢ = (c1,...,¢n), € = (CT,...,Gn), d' = (d},...,d}), d> = (d3,....d>2).
In the next step the researchers derive the crisp dual problem of (P3") as follows:

miny, b'y
t gl = 2

st. Aly>|c—d'oa,c+d*a] (12)
y=>0

o €[0,1]
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Let

Knin = {y > O|Aty > Q_dl Ol}

K={y>0[Ay>c*c" €[c—d'a,c+d*al}

Knax = {y > 0|A’y > ¢+ d*a}
Then K,y C K C Kyin. The researchers use these relationships to show that the op-
timal value of problem (12) is bounded from above and below by the optimal values
of the following two auxiliary crisp linear parametric problems:

miny, b'y

s.t. ;}l’;%g—d]a (A1)
a€[0,1]

miny, b’y

s.t. ;V; % c+d’a (A2)
o< [0,1]

Based on the duality between (P3”) and (12), the researchers show that, if Yy, ()
is the optimal solution of (A1) and y,,. () the optimal solution of (A2), then the
optimal value of the objective function of (P3") for a given « € [0, 1] is included in
the interval:

[btymin(a)abtymax(a)]
The dual problem in this subsection is defined as:

miny, b'y
sit. Aly=c (D3)
y=>0.

Note that by choosing suitable membership functions, both (A1) and (A2) can be
rewritten in the form of (D3). Thus, it can be shown that the optimal value of the
objective function of (P3) is bounded by the optimal values of the objective functions
of two fuzzy linear optimization problems of type (D3). Similarly, the researchers
prove that the optimal value of the objective function of an optimization problem of
type (D3) is bounded by the optimal value of the objective functions of two fuzzy
optimization problems of type (P3).

Strong duality Given a problem (P3), there always exist two problems of type (D3)
so that the optimal value of the objective function of (P3) is both lower and upper
bounded by the optimal values of the objective functions of the problems of type
(D3). Analogously, given a problem of type (D3), there always exist two prob-
lems of type (P3) so that the the optimal value of the objective function of (D3)
is both lower and upper bounded by the optimal values of the objective functions
of the problems of type (P3).

To sum up, the paper by Cadenas Figueredo and Jiménez Barrionuevo [7] uses linear
interval programming to define the concept of duality. The approach is very intuitive
and quite innovative. Moreover, the results in this paper extend and systematize the
work of Verdegay [77]. However, the researchers do not present any other duality
theorems except strong duality.
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3.4 Class 31: Fuzzy maximization, fuzzy constraints, fuzzy coefficients of
constraints, fuzzy limit values of constraints and fuzzy coefficients of objective
function

The primal fuzzy linear optimization problem in this class is defined as follows:

max, ¢'x
st. Ax=<b (P4)
x>0

In order to properly define problem (P4), we need to define which fuzzy numbers
are used and how the operators “<” and “max” are specified. The literature [60,
31, 61, 87, 46, 62] is not homogeneous in this regard, which results in syntactically
similar, but semantically different duality theorems. Thus, for each of the papers we
explicitly present the respective results of the researchers and finally provide a brief
overview of the approaches at the end of this subsection.

3.4.1 Approach of Inuiguchi et al. (2003)

The works by Ramik [60] and Inuiguchi et al. [31] follow a very similar approach,
therefore we discuss only the second one here. Inuiguchi et al. [31] use compact,
strictly convex, normal fuzzy subsets of the real numbers. They define < as a fuzzy
relation with a membership function p< : F(R) x F(R) — [0, 1], which is based on
t-norms, t-conorms and valued relations. Inuiguchi et al. [31] define max using an
exogenously given aspiration level d € F(R) and the fuzzy relation <, in which their
approach differs from the approaches in the other papers presented in this subsection.
The researchers rewrite (P4) as follows:

dx>=d
Ax=<b (P4a)
x>0

Inuiguchi et al. [31] define the set of a-fea~sible ~solution56, 0<a<1,asthosex>0
which satisfy the constraints of (P4) (i.e. Ax < b,x > 0 in (P4a)) at least with degree
o. An a-satisficing solution is an a-feasible solution x that additionally satisfies the
objective of (P4) (i.e. the constraint ¢'x = d in (P4a)) at least with degree . This
concept is based on the symmetric approach of Bellman and Zadeh [4].

The dual problem in [31] is defined as follows:

by=<h
Aly=¢ (D4a)
y=>0

6 Note that we define the concepts of a-feasible and c-satisficing solution here for the particular case
to which the researchers apply duality theory. Their definition is much broader.
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Weak duality Under some assumptions (p. 171), for each a-feasible solution x of
(P4a) and each a-feasible solution y of (D4a) the following inequality holds:

Y & (1—a)x; < Y b (1 - a)y; for a € 0.5,1) (13)
J i

They call property (13) “a weak form of the duality theory”. Here, E,-R (l—a)and
l;-R(l — a) are the upper bounds of the “(1 — o) — cuts” of ¢; and b;, respectively,

ie. (1 —a) = supéj[1 — o] and by (1 — &) = supbi[1 — .

Strong duality If there exists an ¢-satisficing solution for (P4a) and a (1 — o)-
satisficing solution for (D4a), then and under some additional assumptions (p.
172) there exist an a-satisficing solution x* for (P4a) and a (1 — o)-satisficing
solution y* for (D4a) such that

Y& (@) = L bi (@) (14)
j i

3.4.2 Approach of Ramik (2005)

The approach of Ramik [61] modifies the approach of Inuiguchi et al. [31]7. More-
over, the ideas of Ramik [62] can be seen as an extension of the ideas of Ramik [61].
While Ramik [61] proves duality results only for the case, where the comparison op-
erators in the primal problem are based on t-norms and those in the dual are based on
t-conorms, Ramik [62] proves also weak and strong duality for the opposite case. We
thus believe that presenting the ideas of Ramik [61] in detail is enough to understand
both papers.

Ramik [61] similarly to Inuiguchi et al. [31] defines < as a fuzzy relation, which is
based on t-norms, t-conorms and valued relations. In contrast to Inuiguchi et al. [31],
in order to determine max, [61] does not transform the objective into a constraint.
Instead he uses the following relation on the set of fuzzy numbers, which is a binary
relation for a given o € (0, 1] and fuzzy numbers a and b:

d<abe (uj(a,'é)zawj(z,aka) (15)

An a-efficient solution for (P4) (i.e. definition of max) is then defined as an o-
feasible solution x such that there does not exist an o-feasible solution x’ with ¢'x <
5/
cCX.

Ramik [61] defines the dual problem as follows:

I/IHIT), by
sit. Aly=¢ (D4b)
y=>0

where the comparison operator > is the dual operator of < Ramik [61, p. 26f.], as
used in the primal problem (P4).

7 The researcher, too, works with the same type of fuzzy numbers as Inuiguchi et al. [31] with the
difference that the membership functions of Ramik [61] are semistrictly quasi-concave.
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Weak duality Ramik [61] defines two weak duality theorems. The first one states
that under some assumptions (p. 33f) for an a-feasible solution x of (P4) and a
(1 — a)-feasible solution y of (D4b) the following inequality holds:

MM CITES YOI (16)
j i

~ ~R . .
where ¢;%(a) and b; (c) are defined as in subsection 3.4.1.
Regarding the second weak duality theorem, the researcher proves that if

Y& () = Lbi (@)
J i

then x is oc-efficient for (P4) and y is (1 — o)-efficient for (D4b). This theorem
can be used as a test criterion for optimality.

Strong duality Under some assumptions (p. 35) (P4) has an o-efficient solution x*
and (D4b) has a (1 — a)-efficient solution y* and the following equation holds:

IGRCHIES WARCH an
J l

3.4.3 Approach of Wu (2003)

The researcher [87] works with normal, convex fuzzy subsets of the real numbers
with upper-semicontinuous membership functions and compact a-cut for & = 0. He
defines > for two fuzzy numbers a and b as follows:

irbie (a(a)L > b(a)E Aa(a)R > b(a)R Yo € [0, 1]) (18)

Here a(o)¥ is the lower bound of the “o — cut” of a. Note that > is a binary relation
on the set of fuzzy numbers, as it is not parametrized by .
In contrast to the approaches of Inuiguchi et al. [31] and Ramik [61], this paper
defines the primal problem as a minimization problem and the dual problem as a
maximization problem:

min, ¢'x

st Ax > Z (P4c)

x>0

maxy by
st. Aly=<¢ (D4c)
y=>0

The researchers define the optimal solution of (P4c) as the feasible solution x* that
minimizes ¢’x over all feasible solutions according to the definition of . The optimal
solution of (D4c) is defined analogously.
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Weak duality For each feasible solution x of (P4c) and each feasible solution y of
(D4c), the following inequality holds:

cx=bly (19)

In addition, the researcher shows that if (23) holds with equality for two feasible
solutions of the primal and the dual problem, then these solutions are optimal.

Strong duality Even though the comparison operator defined in Wu [87] is a binary
relation, it must hold Ve € [0, 1]. This makes it difficult to prove strong duality
analogously to the crisp case. The researchers solve this problem by transforming
(P4c) and (D4c) into the following four crisp linear parametric problems:

min, (c%)'x

s.t. Al&x > bl& (P4cé)
x>0

min, (cR)'x

st ARx > bR (P4cR)
x>0

sit. (Abyy<dét (D4cp)
y=>0

max, (Z;Igc)ty

st (ARyy <R (D4cR)
y=>0

Note that, for fixed a, (P4ck) and (D4ck) as well as (P4cR) and (D4cR) are
dual pairs, for which crisp duality theory holds. The researcher defines further the
following sets:

ARGMINp, = set of all finite optimal solutions of (P4ck)
ARGMINpg = set of all finite optimal solutions of (P4cR)
ARGMINp, = Mo<a<1(ARGMINp) (20)
ARGMINp, = No<a<1 (ARGMINpy)

ARGMINp = ARGMINp, NARGMINp,

Intuitively, ARGMINp, contains the lower bound o-cut solutions of the primal
problem, that hold for each 0 < or < 1. Analogously, ARGMINp, contains the
upper bound ¢-cut solutions of the primal problem, that hold for each 0 < ¢ < 1.
ARGMINp contains the optimal solutions that cover both the lower and the upper
bound of the primal problem. Since a fuzzy number can be represented through
its a-cuts, we would expect that ARGMINp covers the optimal solutions of (P4c).
Analog notations are used for the dual problem, where ARGMINp would cover
the optimal solutions for (D4c).

The strong duality theorem then states that if ARGMINp and ARGMINp are
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nonempty, then (P4c) and (D4c) have no duality gap.

Complementary slackness Suppose that x* and y* are feasible solutions of (P4c)
and (D4c), respectively. If one of the following conditions is satisfied
(Xx* =b)A(x = (gx*)’y*)
(Xty* —c)\A Ezy* _ (A'ty*)tx*)
(Etx* _ (y*)’(gx*)) A (Ety* _ (g’y*)’x*>
(?x* _ (gty*)tx*) A (Zt * (y*)’(/?x*)) ’

2n

then x* and y* are optimal solutions of (P4c) and (D4c), respectively.

3.4.4 Approach of Mahdavi-Amiri and Nasseri (2006)

Mahdavi-Amiri and Nasseri [46] work with trapezoidal fuzzy numbers and define >~
using linear ranking functions. The researchers define the optimal solution of (P4) as
the feasible solution with the highest objective value according to the definition of .
The dual problem is defined as

min, b'y
st Aly=¢ (D4d)
y>0.

Weak duality For each feasible solution x of (P4) and each feasible solution y of
(D4d) the following holds:

dx = by (22)
In addition, the researchers show that if ¢'x ~ b y, then the solution x is optimal
for (P4) and the solution y is optimal for (D4d). This can be used as a test crite-
rion for optimality.

Strong duality If one of (P4) or (D4d) has an optimal solution (x* resp. y*), then
both problems have optimal solutions and ¢'x* = b'y*.

Complementary slackness Given two feasible solutions x* of (P4) and y* of (D4d),
they are optimal if and only if

A1y~ 3% + (") (b Ax') 0. @3

Fundamental theorem of duality For (P4) and (D4d) exactly one of the following
holds: _
1. Both have optimal solutions x* and y* and ¢'x* ~ b'y*.
2. One problem is unbounded and the other is infeasible.
3. Both problems are infeasible.
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3.4.5 Summary

We now discuss the findings of the papers presented in this section. The paper by
Inuiguchi et al. [31] defines fuzzy optimization similar to the symmetric approach
by Bellman and Zadeh [4], requiring the definition of fuzzy goals. The researchers
prove both weak and strong duality. The main contribution of the paper is that it
defines fuzzy order as well as maximization in terms of membership functions and
thus retains the initial fuzzy uncertainty in the operators.

Ramik [61] extends the paper by Inuiguchi et al. [31] in that he defines fuzzy
maximization in a more natural way (using the highest value and not fuzzy goals).
His duality results are also more general.

The paper by Wu [87] provides a duality theory that defines the comparison of
fuzzy numbers using a binary relation. The disadvantage of the approach is that
thereby the uncertainty stemming from the fuzzy order is lost as the comparison be-
tween two fuzzy number is only a “true” or “false” decision and not a fuzzy set.

Finally, the paper by Mahdavi-Amiri and Nasseri [46] presents for each crisp du-
aliy theorem a fuzzy duality theorem. However, they can prove those theorems only
because of the use of ranking functions, which allows them to do all the proofs anal-
ogously to the crisp case. This results again to loss of uncertainty in the comparison
operators. Moreover, the used trapezoidal fuzzy numbers need to be additionally re-
stricted to a zero left (right) spread as discussed in the introduction of Section 3.

3.5 Fuzzy decision variables

In this subsection, we discuss papers that cover FLP with fuzzy decision variables.
As explained in the introductory part of this section, these approaches have limited
practical usefulness. However, since the approaches represent a significant part of
fuzzy duality theory literature, we believe that they should be discussed here for the
reason of completeness of theoretical approaches.

3.5.1 Class 30: Fuzzy maximization, fuzzy constraints, fuzzy coefficients of objective
function, fuzzy decision variables

The primal problem in this class is

maxz ¢'x
st. AX=b (P5a)
x> 0.

Note that here “max”, “=<” and the used fuzzy numbers need to be defined.

The paper [50] considers (P5a) as its primal problem and the researchers derive
their results using symmetric trapezoidal numbers. For the comparison of fuzzy num-
bers they apply a linear ranking function. The optimal solution of (P5a) is defined as
the feasible solution with the highest objective value according to the defined fuzzy
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comparison operator. The dual problem is defined as

i B
sit. Aly=c (D5a)
y>=0.

Note that the solutions of (P5a) and (D5a) are fuzzy numbers.
Weak duality For two feasible solutions X and y of (P5a) and (D5a), respectively,
the following inequality holds:

by - &'x 24)

Moreover, the researchers show that if Z’iz ¢'x, then the feasible solutions are
also optimal.

3.5.2 Fully fuzzified linear problem (special case of class 31)

The primal problem in this class looks as follows:

max, ¢'x
s.it. Ax=<b (P5b)
x=0

Note that in this class “max”, “<" and the used fuzzy numbers need to be defined. We
found only one paper by Hashemi et al. [28] that deals with (P5b). The researchers
work with symmetric LR fuzzy numbers®.

Hashemi et al. [28] propose a method for ordering fuzzy numbers which is similar
to ranking functions. However, it differs in that the function (see p. 10) is defined as

R:F
a—
ar

(R) — R?
[M(a),—SD(a)] (25)

b & R(@)—R(b) 216 0.

Here, M and SD are the possibilistic mean and standard deviation of the fuzzy num-
ber and >; denotes a “lexicographically non-negative vector”. Note that, just as the
other ranking functions, this function is a binary relation. The optimal solution of
(P5b) is the feasible solution with the highest objective value according to the defi-
nition of ».

The researchers propose a two phase approach for solving (P5b), where in the first
phase they ... maximize the mean value of the fuzzy objective function subject to the
constraints ...” (p. 257). The second phase is to ... minimize the standard deviation
of the original fuzzy objective function subject to the set obtained at the first phase.”

8 The researchers define fuzzy arithmetics based on interval arithmetic and a-cuts, which is equivalent
to the extension principle approach.
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(p- 257) In both phases crisp linear problems are solved.
The dual problem in this section is defined as

min, by
st. Ay=¢ (D5b)
y=0.

(D5b) is solved analogously to (P5b), by applying the dual operations to those in the
primal problem. In the first phase, the mean of the objective function is minimized,
while in the second phase ... among feasible solutions obtained at the end of the
first phase the one with the maximum standard deviation is selected.” (p. 259)

Weak duality For each feasible solution X of (P5b) and y of (D5b) it holds that
b'y = 'x. If in addition b’y = ¢, then the solutions are optimal.

3.5.3 Summary

In this subsection, we discuss the advantages and disadvantages of the two presented
papers. Nasseri and Mahdavi-Amiri [50] prove only the weak duality theorem and
their results are based on two very restrictive assumptions: (1) Fuzzy numbers are
compared using linear ranking functions. (2) Fuzzy numbers are symmetric trape-
zoidal numbers. As discussed above, especially the second assumption is not appro-
priate in the context of FLP because b in (P5a) and ¢ in (D5a) should be defined
with a zero left and right spread respectively. The reason for this is that < and >
should be satisfied in FLP below and above a given value with certainty, which is not
the case for general symmetric trapezoidal numbers. However, their approach can be
extended straightforward to asymmetric trapezoidal numbers with zero left and right
spread. Thus, we recommend that the approach is only applied under this additional
requirement.

Hashemi et al. [28] are quite innovative with their idea to use the possibilistic
mean and standard deviation of fuzzy numbers. In addition, they provide a method to
efficiently solve fully fuzzified optimization problems, which is a major contribution
to fuzzy linear optimization. However, similar to Nasseri and Mahdavi-Amiri [50]
their contribution to fuzzy duality theory is only a proof of the weak duality theorem.

3.6 Other models

In this section we consider more general models which do not fit in any of the
above sections but if specified can cover some of the above classes. We identified
two types of generalization: the first type refers to fuzzy linear multiple-criteria op-
timization problems [44, 93], the second type to fuzzy non-linear optimization prob-
lems [39, 67, 86]. While we present literature contributions of the former type in this
subsection, we do not include literature contributions of the latter for the following
reasons: a) An extension of our literature search with fuzzy non-linear optimization
problems would extend this lengthy literature review substantially. We regard such
work an independent review paper. b) Having reviewed the above fuzzy non-linear
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optimization papers we found that they draw on the Langragian approach and duality
theory of non-linear optimization. Consistent with our overview of linear duality the-
ory in the current paper, an overview of non-linear duality theory would then deem
appropriate. However, such an overview would have extended this paper also. The
interested reader might want to read our appendix where we present the ideas of
(duality in) fuzzy non-linear optimization problems [39, 67, 86].

3.6.1 Approach of Liu et al. (1995)

Liu et al. [44] consider duality of fuzzy MC? (multiple criteria, multiple constraint
levels) linear programming. The primal problem in this paper is defined as

maxy A'Cx
st. Ax <Dy (P6a)
x>0,

where C and D are matrices, A > 0 determines the weights of the different criteria
and 7 > 0 determines the weights of constraints. Note that uncertainty in the above
problem is included only in max. In case of one constraint and one objective, this
problem belongs to class 16. max is defined as a satisficing level between the lower
and upper aspiration bound of the objective function.

To solve (P6a) the researchers define the following two crisp optimization problems:

max, A'Cx

st. Ax<Dy (A3)
x>0

min, A‘Cx

s.1. Ax<Dy (Ad)
x>0

The researchers define the sets of all potential bases® of (A3) and (A4), respectively,
asU ={Uj,...,U,} and L={Ly,..., Ly }. For every possible combination of elements
of U and L and for each feasible solution x of (P6a) they define a linear membership
function, which equals to one when the objective function of (P6a) at x is greater or
equal to that of (A3) and equals to zero when the objective function of (P6a) at x is
less or equal to that of (A4).

The dual problem is defined as follows:

miny yD'y
st Aly>C'A (D6a)
u>0

Similarly to the primal problem, to solve the dual problem the researchers define
two auxiliary crisp optimization problems with the same constraint set and objec-
tive function. The first auxiliary problem is a maximization problem and the second

9 The interested reader can refer to reference [44, p. 392, Definition 2.2] for more information on the
potential basis of an MC? problem.
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is a minimization problem. A solution of (D6a) is defined analogously to the pri-
mal problem by using a membership function over the solutions of the two auxiliary
problems.

The researchers interpret fuzzy weak duality as the decision maker’s preferences
regarding (P6a) and (D6a).

Weak duality For a solution x of (P6a) with a membership function pp(x) and a so-
lution y of (D6a) with a membership function pp(x), the relation between the two
problems is defined as pg(x,y) = O(up(x), up(y)), where O € {min, max, mean}.

The reason to use a membership function as a basis for weak duality is that “... the
decision makers want to identify a set of satisficing (fuzzy) solutions for the given
problem, as well as its dual problem.” (p. 410).

To sum up, the proposed approach provides a very elegant way for solving fuzzy
MC? problems. However, Liu et al. [44] do not prove any other duality theorems
except of weak duality.

3.6.2 Approach of Zhong and Shi (2002)

The paper of Zhong and Shi [93] also considers MC? problems, but the researchers
propose a fuzzy duality theory different to that of Liu et al. [44]. Their idea follows
that of Rodder and Zimmermann [63] as presented in subsection 3.1.1. They define
the primal problem as follows:

max, AM'Cx
st. Ax=<Dy (P6b)
x>0

In case of one constraint and one objective this problem belongs to class 24. max is
defined as a constraint using an aspiration level z;. The primal problem can thus be
rewritten as
AlCx = 71
s.t. Ax 2 Dy (P6b’)
x>0.

Note that, similar to [63], in an economic context the membership function of the
constraints depends on the unit price y of production resources on the market.

(P6b') is solved using the symmetrical approach by Bellman and Zadeh [4] i.e.
given the membership function p<(Ax,Dy,y) of the objective and u- (A'Cx,z;) of
the constraints, the solution is

max (min{ 1 (A'Cx,21), = (A% DY )}). (26)
X2
The dual problem is defined as

miny ¥ D'y

st. Aly=C'A (D6b)
y=>0
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and solved analogously.

To construct the membership functions of the constraints and objectives in the
fuzzy primal and dual problems the researchers first solve their corresponding crisp
problems, i.e

max, A'Cx
st. Ax<Dy (AS)

x>0

miny, ¥’ D'y
st Aly>C'A (A6)

y=>0.

Then they determine, for each combination of potential solutions of (A5) and (A6),
(i, ), the intersection R(i, j) of the primal and dual weight sets [93, p. 337, Def. 2.1]
that satisfies given conditions '°.

The membership functions of the primal and dual problem are then defined for each
R(i, j). We thus rewrite (29) as:

mga;(min{ui“’” (A'Cx,z1), uﬁ“*” (Ax,Dy,)}).

As an illustration, ugi’j ) (A'Cx,z1) equals to one at the potential solution of (A5) with
(7,A) € R(i, j) and equals to zero at the optimal solution of the problem

min, A'Cx
st. Ax< Dy
x>0 27

(1,A) € R(i, j),

i.e. the aspiration level is the optimal objective value of the corresponding crisp MC?
problem. Note that in this way, for each R(i, j), there is one pair of primal and dual
problems, which we call (P6b)g; ;) and (D6b)g; j)-

Weak duality Let (A,7) € R(i,j), and let (uP®RED(x*) x*)  and
(uPRED) (y4), y*) be optimal solutions of (P6b)g(i,j) and (D6b)g( j)» respec-
tively. Then the fuzzy weak duality membership function is defined as

“(R<iaj))(x*7y*) — “P(R(i,j))(x*) /\“D(R(laf))(y*>
Moreover, A'Cx < ¥ D'y.

To sum up, the approach of Zhong and Shi [93], offers a promising idea about the
concept of duality in fuzzy MC? problems, based on the approach of Rodder and
Zimmermann [63]. However, the researchers do not prove any other duality results
than weak duality.

10 Here R(i, j) is a pair of ranges for y and A.
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Table 2 Literature findings on duality in FLP.

Duality theorems

Class Weak duality Strong duality Complemente?r.y slackness Fundamemal.theorem
condition of duality
8 — [77] — —
16 [44] — — —
18 — [77,7] — —
24 [3, 63,25, 93] — — —
30 (501, — — —
31 [87,31, 61, 46, 60, 62, 25] [28](") | [87, 31, 61, 46, 60, 62] [87, 46] [46]
Other models [44, 93] — — —
M fuzzy decision variables
Reference Assumptions
Fuzzy numbers Fuzzy order operators
[3] — linear, monotone membership function
[71 general fuzzy numbers trapezoidal membership function
[25] — exponential membership function
[28] symmetric LR fuzzy numbers binary relation, based on the possibilistic mean and
standard deviation
[31] compact, normal fuzzy subsets of real numbers with membership function, based on t-norms, t-conorms
strictly semi-concave membership functions and valued relations
[44] — linear membership function
[46] trapezoidal fuzzy numbers with zero left (right) binary relation, based on linear ranking functions
spread
[50] trapezoidal fuzzy numbers with zero left (right) binary relation, based on linear ranking functions
spread
[60] compact, convex, normal fuzzy subsets of real num- membership function, based on t-norms, t-conorms
bers and valued relations
[61] compact, normal fuzzy subsets of real numbers with membership function, based on t-norms, t-conorms
semistrictly quasi-concave membership functions and valued relations
[62] compact, normal fuzzy subsets of real numbers with membership function, based on t-norms, t-conorms
semistrictly quasi-concave membership functions and valued relations
[63] — non-normalized membership function
[77] — continuous, strictly monotone membership function
[87] convex, normal fuzzy subsets of real numbers upper- binary relation, based on ¢-cuts
semicontinuous membership functions
[93] — non-normalized membership function

— no fuzzy numbers used

4 Discussion

In this section, we present a summary of our findings, identify research gaps, and
show avenues for further research. Table 2 summarizes our findings on duality in
FLP. The upper part of the table shows which duality theorems have been proven in
the literature for which of the classes as defined in Table 1. The lower part shows the
mathematical assumptions on fuzzy numbers and fuzzy order operators.

The literature findings shown in Tables 1 and 2 invite for a discussion from
two perspectives. The first perspective is class-specific and addresses the question of
which duality theorems have been proven for which FLP class. The second perspec-
tive is related to the used fuzzy operators and addresses the question of why and how
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literature results show a fragmented picture of FLP duality (theorems). We address
both issues in separate subsections before we suggest avenues for further research.

4.1 Class-specific duality theorems

We identified 19 relevant papers in the field of FLP. Among these papers, 15 papers
contribute to fuzzy duality theory in terms of key duality theorems (weak duality,
strong duality, complementary slackness condition, fundamental theorem of duality).
The contributions cover only six of 14 potential classes. However, if we regard crisp
theorems as specializations of fuzzy theorems, e.g., a crisp number can be regarded
as a special fuzzy number, then some classes cover others in the sense that results on
fuzzy duality in a more general class can also be applied to more special classes. In
more detail, we identify the following coverage relationships:

— Class 24 covers classes 8 and 16. As a consequence, weak duality is shown also
for classes 8 and 16.

— Class 30 covers classes 8, 12, 16, 18, 24, 26 and 28. However, fuzzy numbers need
to be trapezoidal numbers with left (right) being zero. Moreover, fuzzy order is
defined using ranking functions. Finally, decision variables of models in this class
are fuzzy, which limits both theoretical and practical applicability.

— Class 31 covers all other feasible classes. However, theorems are proven by Wu
[87] under very restrictive mathematical conditions and the fuzzy comparison
operator is a binary relation. Moreover, Mahdavi-Amiri and Nasseri [46] require
fuzzy numbers to be trapezoidal (we identified as an additional requirement that
the left (right) spread be zero) and again the use of ranking functions.

To sum up, weak and strong duality theorems in various forms (and partly under
different mathematical assumptions) are proven for all feasible classes. In contrast,
the complementary slackness condition and the fundamental theorem of duality have
been proven explicitly for class 31 and implicitly for all classes only under various,
very restrictive assumptions.

4.2 Operator-specific duality theorems

As stated in Subsection 2.1, the main idea behind crisp duality theory is that variables
are transformed in constraints and vice versa (by using a uniquely defined order oper-
ator). It therefore seems straightforward to use this principle to define duality in FLP.
However, the main difference between FLP and LP is that the order operator of fuzzy
numbers is defined differently as illustrated in Subsection 2.2 and Table 2. Since the
definition of the maximization and the minimization operator is based on the defini-
tion of the order operator, this also leads to several alternatives for the definition of
the maximum and the minimum operator. This, in turn, leads to operator-specific ob-
jectives of the fuzzy primal problem and often to operator-specific constraints of the
fuzzy dual problem. This phenomenon requires interpreting fuzzy duality theorems
in the context of the particular order operator used, in contrast to crisp duality theory
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Fig. 2 Taxonomy of fuzzy order operators
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where the order operator, the objective of the primal problem and the constraints of
the dual problem are defined uniquely. As a consequence, results on duality in FLP
are fragmented.

We now analyze the different order operators with regard to their properties and
fuzzy duality theorems proven in terms of homogeneity within the operator group,
completeness of duality theorems within the operator group, consistency with crisp
duality, and complexity of application. We additionally discuss their advantages and
disadvantages. Figure 2 shows four classes of order operators, which can be classified
into two main groups: binary relations and membership functions. In the first case,
the result of comparing two fuzzy numbers is binary, i.e. either O or 1. In the second
case, the result is the degree with which a fuzzy number A is larger than or equal to
a fuzzy number B or vice versa, 1.e. the result is a real number between 0 and 1. We
first consider order operators based on binary relations, which can be further divided
into two subgroups: ranking functions [46, 50] and others [87, 28].

Ranking functions transform the decision of comparing two fuzzy numbers into
a decision of comparing two crisp numbers. This allows applying the order and the
maximum operators in a completely crisp environment, where they are uniquely de-
fined. As a result, the approaches in this group prove (or can easily be extended to
prove) all duality theorems consistently to the crisp case. The completeness of the
duality theorems, the homogeneous interpretation of duality within the group and
the simplicity of application are the main advantages of ranking functions. However,
their major disadvantage is that by transforming a decision under uncertainty into one
under certainty they fail to reflect important information about the decision situation,
which may lead to suboptimal decisions.

The group “Others” of the binary order operators contains all those operators
which result in a binary decision but which are not based on ranking functions. As
opposed to ranking functions, the order operators in this group incorporate fuzzy un-
certainty in the derivation of results. The approach by Wu [87] compares two fuzzy
numbers based on their a-cuts while the approach by Hashemi et al. [28] uses pos-
sibilistic mean and variance. Both of the approaches prove the weak duality theorem
while [87] also proves the strong duality theorem and the complementary slackness
theorem. However, the theorems are only partly consistent with crips duality theo-
rems. An advantage of the approaches in this group is that they keep considering
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the uncertainty of the decision environment during the decision process. However,
by finally outputting a binary result, this is not mirrored in the result. Moreover, the
derivation of duality theorems is not homogeneous within the group and the mathe-
matical setting tends to be complicated, which makes the methods difficult to apply.

The second major group of order operators contains approaches which are based
on membership functions. They can be further divided into two subgroups: operators
for comparing crisp numbers [3, 77,7, 44, 63, 26, 93, 25] and operators for comparing
fuzzy numbers [31, 61, 60, 62].

The operators classified in the first subgroup are developed for the fuzzy compar-
ison of crisp numbers. Naturally, such order operators tend to be relatively simple to
apply. The reason for this is that only the uncertainty of the operator has to be re-
flected but not the uncertainty of numbers. Most of the approaches in this group only
prove the weak duality theorem and do not always define duality consistently with the
crisp case. In addition, the derivation of duality theorems is generally heterogeneous
between the researchers. We identified three subgroups: 1. approaches based on the
symmetric principle by Bellman and Zadeh [4]: references [3, 63, 26, 93, 25], 2. ap-
proaches that solve a crisp parametric problem [77, 7] and 3. the approach by Liu
et al. [44]. We classified the paper by Cadenas Figueredo and Jiménez Barrionuevo
[7] in this group because no fuzzy numbers are compared (only maximization of
fuzzy objectives) and the solution method is very similar to that used by Verdegay
[77]. The main disadvantage of the approaches in this group is that they cannot be
generalized for comparing fuzzy numbers so that their applicability is limited.

The second subgroup of order operators based on membership functions are ap-
proaches derived from the concepts of t-norms, t-conorms and valued relations. They
are generally developed for the comparison of fuzzy numbers and thus reflect both
the uncertainty of the fuzzy numbers and of the fuzzy order operators. Most of the
related papers prove both the weak duality theorem and the strong duality theorem. In
addition, they follow a quite homogeneous interpretation of fuzzy duality within the
group, which however is generally not consistent with crisp duality. Moreover, they
are rather complex to apply.

To sum up, operator groups differ with regard to duality results in terms of the ho-
mogeneity of interpretation of fuzzy duality within the group (e.g., high homogene-
ity in the group “Comparison of fuzzy numbers”), completeness of duality theorems
(e.g., in the group “Others”: the weak duality theorem, the strong duality theorem
and the complementary slackness theorem are proven), consistency with crisp duality
(e.g., in the group “Linear Ranking Functions” fuzzy duality is defined analogously
to crisp duality) and complexity (e.g., high applicability in the group “Comparison of
crisp numbers”).

4.3 Future research

We see several avenues for further research in FLP duality based on the two perspec-
tives presented in this section. From a class-specific duality properties perspective,
we identified the following two research streams:
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1.

Research might strive for proving a broader set of duality theorems for selected
classes while dispensing with restrictive mathematical assumptions. More pre-
cisely, future approaches may concentrate on developing duality theory for FLP
classes where only a few components are fuzzified (such as classes 8, 16 and 24)
for the sake of making less assumptions in duality theory.

Research might look for proving a broader set of duality theorems for general
mathematical setting. If, for example, duality theorems are proven for class 31
for general mathematical conditions, researchers would have a broad portfolio
of mathematical versions available for all classes. Matching the various sets of
formal assumptions with the setting of the specific problems can then lead to the
identification and application of appropriate FLP duality results.

From an operator-specific duality properties perspective, we identified the follow-

ing three research streams:

3.

Research might concentrate on further developing duality theory for each of the
four operator groups we identified above. In particular, this implies a) striving to
achieve a homogeneous definition of duality within the group, b) proving missing
duality theorems in the group and c) reducing the complexity of application.
Research might strive for developing a unifying fuzzy duality theory. While one
could argue in favor of the diversity of requirements and results in FLP duality,
we believe that the fragmentation of research in FLP duality makes it difficult to
compare the FLP duality research results of different researchers. Furthermore,
we argue that the high degree of diversity in FLP duality makes it challenging for
those researchers who are interested in drawing on FLP duality results in their
specific application context for the purpose of interpreting their results. In the
long run, it seems attractive to strive for one unifying FLP duality theory as it
is available in crisp linear optimization. The generation of such a theory would
leverage the application of FLP duality theory and the relevance of fuzzy linear
programming in general.

We believe that a unique definition of the fuzzy order operator would provide
the basis for a unifying duality theory. The used order operator should be defined
generally enough to be applied to a large number of decision situations (e.g. fuzzy
and crisp numbers) and it should adequately reflect the uncertainty the decision-
maker faces (i.e. both in terms of operators and numbers). Moreover, the duality
theorems that are developed based on it should have a homogeneous interpretation
of duality among researchers and ideally be consistent with crisp duality theory.
Therefore, in our opinion, the order operators based on t-norms, t-conorms and
valued relations is the best candidate for a unique fuzzy order operator as a basis
for the development of a unifying duality theory. Research might thus concen-
trate on further developing the approaches in this group and deal with the related
disadvantages mentioned above.

Research in FLP might adapt approaches of duality in fuzzy non-linear program-
ming. Two such examples based on the Lagrangian function are presented in the
appendix.
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5 Concluding Remarks

In this paper we present a comprehensive overview of the literature results on duality
in FLP. We suggest a classification of FLP and use it to structure the presentation
of literature findings, including an analysis of the order operators used. We discuss
the existing approaches both from a class-specific and operator-specific perspective.
Our results show that research on FLP duality is fragmented and incomplete with
regard to both FLP classes and order operators. As duality theory (in crisp linear
programming) leverages both the mathematical strength and economic relevance of
linear programming, we argue that advances in FLP duality would support the dif-
fusion and application of FLP likewise. However, we acknowledge that researchers
have already achieved a broad set of results in FLP duality and we suggest paths on
how future research can draw upon these in order to strive for more general results in
FLP duality. Based on our analysis, we identify the following major future research
directions:

(1) Further development of existing methods within their problem class/operator group
to facilitate completeness of duality theorems for a particular type of problems,

(2) identification of approaches that are general enough to be applied to a broad set
of problem types, and

(3) consideration of alternative approaches, such as those from non-linear optimiza-
tion, which can be adapted to linear optimization.

While research direction (1) aims at providing a sound duality theory for each
group/class, research directions (2) and (3) serve as first steps towards developing a
unifying fuzzy duality theory.

We admit that our literature review has some limitations: (i) We have not system-
atically covered non-linear generalizations of FLP problems. Results in these areas
can contribute to duality theory in FLP as the appendix shows. However, covering
the literature on fuzzy non-linear optimization would have extended this lengthy lit-
erature review substantially. (i) Due to space limitations, we could only illustrate
the key ideas of the approaches but we were not able to explain all of them in detail.
Therefore, for some mathematical details, the interested reader needs to consult cited
references.
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A Literature search

In our literature search, the following literature databases and journal TOCS (table of contents) were used:

— Literature databases: INFORMS PubsOnLine, databases provided by INFORMS online (Conference

Presentation Database, ACI Bibliographic Database), ACM Digital Library, IEEE Xplore, Business
Source Premier, MLA International Bibliography, DigiBib of RWTH Aachen University. The logical
search string was (“fuzzy” AND “duality”).

Journals: Operations Research, European Journal of Operational Research, Journal on Computing,
IIE Transactions, OR Spectrum, INFORMS Journal on Computing, Annals of Operations Research,
Mathematical Programming, Fuzzy Sets and Systems, Fuzzy Optimization and Decision Making,
Fuzzy Information and Engineering

B Fuzzy non-linear optimization

B.1 Approach of Sakawa and Yano (1994)

The papers by Lee et al. [39] and Sakawa and Yano [67] follow a similar idea, with the latter one being more
extensive and more generally applicable. We therefore discuss only the second paper in this subsection.
Sakawa and Yano [67] consider large-scale multi-objective nonlinear programming problems with fuzzy
goals. The primal problem in this paper looks as follows:
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miny fi (x), .., min, fi (x)
St i(¥) S0,i= 1,.om (Pb1)
hj(xj) <0,j=1,...p

The researchers pose additional assumptions on the functions f, g;,/;. Note that this is a problem of class
16 in case the objectives and the constraints are linear and there is only one objective. min is defined for
each of the objective function f; with the help of fuzzy goals. It is specified by the membership function
U, which is assumed to be invertible on the feasible region for x.

To solve (Pbl), the researchers apply the symmetric principle by Bellman and Zadeh [4] and thus
rewrite the problem as the following single-objective crisp optimization problem:

min, g —o

st. (@) —uTN (@) <0,s€ 1.k
gi(x) <0,i=1,..,m (Pb1’)
Xj eSjy./: L..,p
oc[0,1]

Here S; := {x;|h;(x;) > 0} and S; is assumed to be a compact and convex set.

The aim of the researchers is to use a dual decomposition method to cope with the high number of variables
in (Pb1"), which makes the problem practically unsolvable for realistic applications. However, to apply the
above method, the objective function needs to be strictly convex, which is not the case for (Pbl’ ). Sakawa
and Yano [67] thus approximate the problem (Pb1’) with

miny o —a+pa2
st. (@) —uTN @) <0s€ 1,k

gi(0) <0i=1,m Pb1%)
Xj ES],J: L...p
ac0,1],

where p is a very small, positive number.
The Lagrangian of (Pb1”) is defined as

J

L(x= a,ﬂ.,ﬂ?) = Z(Zlffsj(xj) +angij(xj)) + (7(X+p062 - ZASH';I (OC)), (28)

where A and 7 are vectors of the corresponding Lagrangian multipliers. Let be

w(A, ) := miny ¢ L(x, 0, A, )
s.t. x;€8j,j=1,..,p 29)
o e[0,1].

The crisp dual problem of (Pb1”) is then

max; ;w(A,m)
st. (A,m)eU, (Db1)

where U =: {A > 0,7 > 0: w(A,7) exists}.

Strong duality The optimal solution of problem (Pb1”) coincides with the optimal solution of problem
(Db1).

To sum up, the idea of Sakawa and Yano [67] is to solve the computationally complex primal problem
using the simpler dual problem. The approach is quite interesting, but it concentrates mainly on solving
the dual problem rather than developing a fuzzy duality theory. In addition, the dual problem is not a fuzzy
problem anymore.
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B.2 Approach of Wu (2003)

‘Wu [86] considers a general fuzzy optimization problem. The primal problem in this paper is defined as

min, f(x)
st g(x) <0 (Pb2)
xeX.

Here fand g are fuzzy-valued functions and X is a convex subset of the real vector space. Note that for

the special case where f(x) = cxand g(x) =Ax — b the problem belongs to class 31. The researcher works
with convex, normal fuzzy subsets of the real numbers with upper-semicontinuous membership functions
and compact o-cut for o¢ = 0.

They define =< using necessity indices as defined by Dubois and Prade [21]. Given two fuzzy numbers
@ and b with membership functions iz and (i, the necessity index is defined as

Nece(at E) =inf, SUPy:y>y max{l - /J'E(u)“'Z(V)} (30)
Nece(ﬁ> b) =1- SuPugvmaX{ﬂa(u)»li;(V)}
Then it holds that _ _ _

d>q b Nece(d = b) > aNNece(d > b) > a,o < [0,1]. @31)

The optimal solution for (Pb2) is the feasible solution where the objective function has the lowest value
according to the definition of the fuzzy comparison operator. Note that, due to the particular definition of
>u, a feasible solution is always defined for a given o. Similarly, an optimal solution is also defined for

a given o, characterizing the comparison operator of the objective values, i.e. min® . Moreover, & may
differ from o’. Following the researcher, we call such a problem an (@', &t)-(Pb2) problem.

To define the dual problem to (Pb2), the researcher follows the same approach as in crisp nonlinear
programming. They define the fuzzy-valued Lagrangian function of an (&', &)-(Pb2) problem as follows:

— — —

O (x,u) = f(x) +u'g(x),x€X (32)

where u > 0. The fuzzy-valued Lagrangian dual function for a given min? is thus (here B may be equal to
a, but does not have to)

_  —~

Lg (u) = min® ey ¢ (x,u). (33)
The fuzzy dual problem is thus defined as
maxP', Lg(u) (Db2)
s.t. u>0.

e

As the problem depends on B and B’, we call it a (8, 8)-(Db2) problem. Note that max?’ requires a
definition that is slightly different from that of minf’. The interested reader can consult reference [86].

Weak duality (1) Let x and u respectively be feasible solutions of an (@', ¢t)-(Pb2) and a (B', &)-(Db2)
problem, where ' may also equal ¢’. Then, under some additional assumptions, it holds that

Lo (u) <o f(x),06>0.5. (34)

Weak duality (2) Let x* and u* respectively be optimal solutions of an (o, &) — (Pb2) and an (@, ) —
(Db2) problem. Then, under some assumptions, it holds that

Lo(u*) Zq f(x*),@ <0.5. 35)

Note that weak duality (2) is a special case of weak duality (1). In addition, the researcher provides
conditions for the optimality of two feasible solutions of the primal and the dual problem, respectively.
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Strong duality Under some assumptions, the problems (@, &¢)-(Pb2) and (o, &)-(Db2) have no duality
gap for a > 0.5.

To sum up, the main advantage of this approach is that it can be applied to a number of fuzzy optimization
problems (satisfying the necessary assumptions) and it applies the ideas of crisp duality theory without
defuzzifying the problems. However, the mathematical setup is rather complicated. In a follow-up paper
[88], the researcher deals with the above problem by modifying the definition of fuzzy order and explaining
the concepts with examples. Since the ideas in this paper are very similar to the one we discussed in this
section, we omit its review here.



