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Abstract

Due to the new carbon neutral policies, many district heating opera-
tors start operating their combined heat and power (CHP) plants using
different types of biomass instead of fossil fuel. The contracts with the
biomass suppliers are negotiated months in advance and involve many
uncertainties from the energy producer’s side. The demand for biomass
is uncertain at that time, and heat demand and electricity prices vary
drastically during the planning period. Furthermore, the optimal oper-
ation of combined heat and power plants has to consider the existing
synergies between the power and heating systems. We propose a solu-
tion method using stochastic optimization to support the biomass supply
planning for combined heat and power plants. Our two-phase approach
determines mid-term decisions about biomass supply contracts as well as
short-term decisions regarding the optimal production of the producer
to ensure profitability and feasibility. We present results based on two
realistic test cases.

Keywords: Mixed-integer programming; Stochastic programming;
Combined heat and power plants; Biomass supply planning; Operational
planning

1 Introduction

The integration of different energy systems is one step towards a fossil-free
energy system, which many developed countries target today. By integrating
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different energy systems, such us heat and power, a higher share of volatile re-
newable energies, e.g., wind energy, can be used efficiently [20]. In areas with
large district heating networks, one way to achieve this integration is using
combined heat and power (CHP) plants that produce heat and power simulta-
neously. By co-optimizing the production of both, the efficiency of the system
is increased while providing flexibility to the power grid and satisfying the heat
demand in the district heating network. Due to the neutral carbon policies im-
posed by the authorities, a shift from traditional fuels to renewable resources is
taking place. Denmark has a widespread use of district heating and CHP plants
and the government supports the use of biomass to produce heat and power.
With subsidies and tax benefits, it has become profitable for large-scale CHP
plants to change from, e.g., coal or natural gas to biomass [9].

The use of biomass as fuel for CHP plants raises some challenges in the
planning of the supply and in the operation of the plant. Many different types
of biomass are used to produce heat and power [34] but the most common type
of biomass used for large-scale CHP producers is wood pellets. Due to their high
energy content, wood pellets facilitate a more efficient transport because smaller
volumes are required. In addition, the low moisture content of wood pellets
allows a better conservation of the product resulting in a larger storage capacity
[30]. In combination with neutral carbon policy incentives for biomass, the wood
pellet is becoming a candidate to substitute coal in CHP plants. However,
comparing the supply of wood pellets, or biomass in general, with supply of
natural gas, the former has some disadvantages. First, natural gas prices have
been dropping since 2008 and, second, it exists a well-developed infrastructure
for natural gas, which allows the producer to be directly connected to the gas
network. On the contrary, biomass is transported long ways and contracts with
the supplier must be agreed beforehand for a long horizon (one to three years)
involving a high degree of uncertainty at negotiation because the final amount
is unknown. It is crucial for CHP operators to optimize their biomass contracts
to be competitive with gas-fired plants.

In this work, we propose a solution approach based on stochastic program-
ming [4] to optimize the yearly biomass contracting decisions for a CHP operator
taking into account the uncertainty at the point of negotiation. Furthermore,
the approach also determines the optimal operation of the plant to maximize
profits and satisfy the heat demand on weekly basis throughout the year.

2 Literature review

Several models for the optimal operation of CHP systems, where different as-
pects of the problem are highlighted, have been proposed. We refer for example
to [3, 27, 13, 7, 28, 24]. These solution approaches determine the optimal pro-
duction of both commodities (heat and power) at different levels of detail, but
do not consider uncertainties and supply contracts for fuel explicitly.

Since then several approaches that apply stochastic programming for the
operational planning were developed. [2] solve the operational scheduling for
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an industrial customer that owns an integrated system formed by CHP units,
conventional power production and heat only units. The method uses electricity
market sales and demand response programs to integrate the uncertainty caused
by electricity prices and load. An optimal operation of a portfolio of different
CHP systems in a district heating network is studied in [23]. The authors
consider uncertain heat demand and electricity prices and show that the system
profits from leveraging a thermal storage to handle this uncertainty. [18] present
a multi-stage stochastic program for optimizing the operation of a gas-fired
CHP plant and deriving bids for the German spot and balancing markets. The
considered uncertainty are electricity prices. [11] propose a stochastic program
including technical aspects of a extraction-condensing CHP plant for optimizing
the hourly operation under price and demand uncertainty. The authors use this
model to determine bidding curves for the day-ahead market. In [12] this model
is revisited with more focus on the joint production scheduling of two CHP
plants. The operational planning problem in our work is similar to these two
formulations, but extended with further characteristics regarding the biomass
contracts deliveries and technical constraints.

The above mentioned publications assume instantaneous fuel supply and,
therefore, do not consider fuel supply decisions. Another stream of publications
explicitly concentrates on the biomass supply chain planning for power gener-
ation considering processing of biomass, transport and logistics aspects. The
OPTIMASS model for strategic and tactical biomass supply chain planning
is presented in [10]. The formulation is based on a facility location planning
problem that includes the processing of the biomass to determine locations and
capacities of facilities in the supply chain and allocation of biomass sites to
conversion facilities. The final usage of biomass in electricity production is not
part of this study. [15] present a decision support system for a forest biomass
supply chain deciding on the locations and capacities as well as assignment of
biomass sources to power plants. [26] present a two-stage stochastic program
with chance constraints for biomass supply chain planning under biomass avail-
ability uncertainty. The demand is based on markets and not single plants. [5]
model the biomass-based energy production process, which includes deciding
the location of plants as well as flow and conversion of commodities where one
commodity is electricity. The model focuses on long-term decisions.

In this work the perspective of a power plant that receives biomass from
third party suppliers is considered. Furthermore, we investigate the integration
of long-term biomass supply decisions with the operational planning of the pro-
duction. Similar settings have been studied in the following publications. [22]
consider the fuel supply of gas for a consumer having a micro CHP and a heat
boiler. Their multi-stage stochastic program decides on how much gas to buy on
the spot or the monthly and weekly futures market, while electricity can be sold
with similar market instruments. The model has a monthly planning horizon
and abstracts from more detailed considerations regarding the operation of the
system. In [31], a general overview of the benefits of using stochastic program-
ming to incorporate the uncertainty involved in the biomass supply chain for
a power producer on a tactical planning level is given. The authors formulate
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a one year planning problem considering the amount of biomass supply from
different suppliers, storage and the expected power production on a monthly
basis. [17] consider the supply chain connected to a biogas CHP plant and use a
network flow model formulation. The model includes conversion to biogas and
production with a CHP or heat boiler as well as transportation costs. [29] ad-
dress biomass supplier selection combining an analytic hierarchy process (AHP)
with a chance constraint program to address stakeholders and uncertainties in
this setting. Their focus is ensuring the quality of the biomass by blending
biomass from different kinds and suppliers to fulfill the overall demand. The
solution approach disregards the production level and delivery times. Finally,
[6] use stochastic programming for optimal biomass contracting decisions in a
long-term planning horizon. The model decides which biomass contracts should
be settled with the suppliers. They model the contracts as well as the deliveries
and production to provide a basis for this decision. Due to the planning horizon
and short time periods, the model results in a computationally hard two-stage
stochastic program.

Our work differs from [6] regarding the modeling of contracting decisions
and the overall solution approach. Delivery times and amounts for contracts in
[6] are fixed and the decision-maker can just decide which contracts are selected.
On the contrary, our approach allows more flexibility to decide on the amount
to be supplied and the delivery time. As a consequence, the exact delivery time
and precise quantity are determined once we are getting closer to the energy
delivery. Furthermore, we reduce the computational complexity of the planning
problem by presenting a two-phase approach.

The main contributions of our work are the following:

1. We propose a two-phase solution approach that combines biomass con-
tracting decisions with the optimal operation of the CHP plant. There-
fore, it provides two models that can be used by an operator for long-term
and operational planning, respectively. The first phase concentrates on
the biomass contract selection at the beginning of the year considering
production on a weekly less detailed basis and, therefore, reducing the
complexity of the problem. The second phase optimizes the weekly op-
eration of the system on a detailed hourly basis and takes the biomass
contract decisions into account. The overall solution approach consid-
ers relevant technical requirements and resembles the planning process in
practice.

2. Our modeling of biomass contracts offers a high degree of flexibility. Com-
pletely fixed contracts can be investigated as well as more flexible contracts
regarding amounts of deliveries. We include the possibility to buy options
on the biomass amount to be able to adjust the delivery quantity during
the course of the year. This is a new feature whose benefits are worth of
investigation, at least from the standpoint of a CHP producer.

3. Furthermore, we use a receding horizon approach to improve the results of
our weekly operational planning, because it is important to take initial in-
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Figure 1: Overview of components in the planning problem

formation from previous weeks into account and have a feasible transition.
This also allows us to update the scenarios with new information.

The remainder of this papers is organized as follows. A detailed description
of the planning problem is given in Section 3. Our solution approach and the
respective model formulations are presented in Section 4. In Section 5, we
analyze two realistic case studies. The section includes a description of the data,
experimental setup and scenario generation. The numerical results are stated
in Section 6. Finally, Section 7 summarizes our work and gives an outlook.

3 Problem description

In this section, we describe the biomass supply planning problem including
used sets and parameters. For quick reference, we also provide an overview of
parameters and sets in Table 1.

An overview of the components in the planning problem is given in Fig. 1.
We consider a power and heat producer directly connected to a district heating
network. The producer operates a CHP plant fueled by biomass and an auxiliary
heat producing unit (e.g. gas boiler, electric boiler or heat pump). Both units
can supply the district heating network directly but are also connected to a
thermal storage, which can store hot water for later heat supply.

The biomass delivered by suppliers according to the contracts is unloaded
into the biomass storage and withdrawn from the storage for later use (i.e. no
direct supply to the boiler). We assume that fuel for the additional heat-only
unit is provided directly and instantaneously without storage and deliveries.
This assumption stems from the setting of a gas boiler connected to the gas
network or an electric boiler connected to the electricity grid.

In practice, biomass contracts are often agreed for a period of one year or
more, defining the amount of biomass and a preliminary delivery schedule. The
actual delivery time is revised in the course of the year. We model two different
types of contracts, namely fixed and flexible. Fixed contracts are cheaper but
offer no possibility to alter the delivery amount afterward. Flexible contracts are
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more expensive than fixed contracts, but the operator has the opportunity to
buy an option of changing the amount. In the beginning of the year, in addition
to the delivery amount, the options for up- and/or down-scaling the amount are
settled, while the producer has to pay extra for those options. The possibility of
buying options to change the biomass delivery amount is a new concept that is
studied in this paper. It provides the power producer with additional flexibility
that can be beneficial especially in the long term when the actual demand is still
uncertain. Also from the supplier’s side this could be an interesting instrument,
because it offers additional incomes from selling options while the amounts can
be shifted between different customers. However, the supplier side is not the
focus of this paper.

The input to our solution approach is a set of possible contracts J , a set
of scenarios Ω and a set of periods T = {1, . . . , |T |}. The first planning period
is always denoted with 1, so that initial values are given values for period 0
(e.g. for storage levels δ0,ω and s0,ω). Each contract j has a minimum and
maximum amount per delivery (Bj , Bj), a minimum and maximum number of

deliveries per planning horizon (N j , N j) and a minimum time between deliveries
(Fj). If contract j offers up-scaling and down-scaling options, the maximum
limitations are given by O+

j and O−j (in percent deviation from the nominal
amount), respectively. For fixed contracts these parameters are set to zero
(O+

j = O−j = 0). The cost for the fixed, up-scaling and down-scaling amount

are given by CBj , C
B+
j and CB−j , respectively. The cost are given per MWh,

because the payment in practice is determined based on the energy content
of the biomass in Gigajoule, which can be directly transformed to MWh. This
means that the payment does not depend only on the amount in tonnes but also
on the quality of the biomass, the so-called calorific value. Transportation costs
are considered only indirectly, because the supplier has to cover these and can
include them in the biomass cost per MWh. Furthermore, we assume that the
supplier has the responsibility to deliver the contracted amount. As mentioned
above, the biomass is delivered to the biomass storage, which is limited by a
minimum safety and maximum storage level (∆t,∆). The initial storage level
is given for period 0 and the outflow per period is restricted to a maximum of
∆F. To avoid congestion at the storage due to several deliveries at the same
time, the time distance between deliveries must be at least ∆W periods.

Biomass from the storage is used by the CHP plant to produce power and
heat. The production of both is limited to the feasible production region of
an extraction condensing unit depicted with the relevant parameters Θ and Ξ
[35] in Figure 2. The efficiency of a conversion from biomass to power and heat
is denoted by ECHP

P and ECHP
Q , respectively. From one hour to the next, the

power production of the CHP can be ramped up or down but only in the limits
of the parameters RU and RD. If the unit is started up or shut down it has to
be in that state for at least MU or MD time periods. Starting up and shutting
down is priced with CSU and CSD, respectively. The operation of the CHP
itself has a cost of CCHP. The power produced is sold on the electricity market
and the profit depends on the market price LEt,ω in scenario ω. In Denmark, the
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Table 1: Sets and parameters

J Set of biomass contracts j
W Set of weeks w

(
W = {1, . . . , |W|}

)
T Set of time periods t
Tw Set of time periods t in week w
Ω Set of scenarios ω

πω Probability of scenario ω
Dt,ω Heat demand in period t in scenario ω [MWt/period]
Lt,ω Negative costs, i.e. profit, for selling electricity in period t in scenario ω [e/MWe]
CAUX

t,ω Operational cost of auxiliary boiler in period t in scenario ω [e/MWt]

CCHP Operational cost of CHP plant [e/MWt]
CSU Start up cost for CHP [e/MWt]
CSD Shut down cost for CHP [e/MWt]
CI Inventory cost for biomass storage [e/MWt]
CF

t,ω Cost of fuel for auxiliary boiler in period t and scenario ω [e/MWt]

CO&M
AUX Operational cost for auxiliary boiler [e/MWt]

TEP Tax for electricity production [e/MWe]

TAUX Tax for production with auxiliary boiler [e/MWt]
TCO2 CO2 emission tax [e/MWt]
CB

j Cost for biomass in contract j [e/MWt]

CB+
j Cost for up-scaling biomass amount in contract j [e/MWt]

CB−
j Cost for down-scaling biomass amount in contract j [e/MWt]

Bj , Bj Minimum/maximum amount biomass offered per delivery by contract j [MWt]

Nj , Nj Minimum/maximum number of deliveries offered by contract j

Fj Frequency of deliveries in contract j [hours]

O+
j , O

−
j Maximum up-scaling/down-scaling option offered in contract j [pu]

∆ Maximum biomass storage level [MWt]
∆t Safety storage level of biomass in period t [MWt]
∆F Maximum outflow from biomass storage per period [MWt/period]
∆W Time distance between deliveries to biomass storage [periods]

S, S Minimum/maximum thermal storage level [MWt]
SF Maximum in/outflow to/from thermal storage per period [MWt/period]

P , P Minimum/maximum production of CHP plant per period [MWe/period]

QCHP Maximum heat production of CHP plant per period [MWt/period]
ECHP

P Electric efficiency of the CHP plant [pu]
ECHP

Q Heat efficiency of the CHP plant [pu]

EB Calorific value of the biomass [MWt/tonnes]
Θ Fraction of power reduction
Ξ Maximum heat to power ratio
MU ,MD Minimum up time / down time of CHP plant [periods]
RU , RD Ramp-up and ramp-down limits of CHP plant [MWe/period]

QAUX Maximum heat production of auxiliary boiler per period [MWt/period]
EAUX Auxiliary boiler efficiency [pu]
PB Target percentage of heat produced by biomass [pu]
φSto Penalty for excess of storage at the end of time horizon [e]
φMiss Penalty for missed heat demand [e]
φBM Penalty to fail the minimum required heat demand by biomass [e]
ψt Small incentive for concentrating biomass options in period t [e]
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Figure 2: Feasible production region of extraction-condensing unit in CHP plant

production of electricity by biomass is supported with an incentive of I, while
the production of electricity with any fuel is taxed with TEP. Thus, the overall
cost Lt,ω is given by Lt,ω = TEP − I − LEt,ω, where negative values of Lt,ω are
profits.

The auxiliary boiler has a maximum capacity of QAUX with an efficiency of
EAUX. The operational costs CAUX

t,ω of the boiler consists of several components
and is dependent on the scenario ω due to the uncertain fuel (e.g. gas or elec-
tricity) spot price CF

t,ω. Further components are the operation and maintenance

costs CO&M
AUX , taxes TAUX and CO2 taxes TCO2 . Thus, the overall operational

costs are given by CAUX
t,ω = CF

t,ω + CO&M
AUX + TAUX + TCO2 .

Both units can feed the thermal storage. In the beginning of the planning
horizon (period 0), the heat tank has a given level and the level has to be always
between S and S. The in-/outflow per period is limited to SF .

The producer is obliged to fulfill the heat demand in the district heating
network Dt,ω, which is modeled in scenarios ω. Due to regulations, the heat
production based on biomass is aimed at covering at least PB percent of the total
demand. The probability of scenario ω is given by πω. To sum the uncertain
parameters up, a scenario ω resembles the heat demand Dt,ω, the electricity
price LEt,ω and the fuel spot price for the auxiliary boiler CAUX

t,ω .
The overall objective of the solution approach is to select the portfolio of

biomass contracts and their configurations that minimizes the cost while ful-
filling the heat demand taking the technical characteristics of the plant into
account. In this paper, we consider a planning horizon of one year ranging from
summer to summer as it is done in practice. Thus, the heating seasons lies
in the middle of the planning horizon. However, in general the method can be
used with any length of the planning horizon starting and ending at an arbitrary
point in time during the year.

4 Two-phase solution approach

The time scales in the above mentioned planning problem have a broad range.
As the contracts are often agreed for up to one year, this results in a medium-
term planning problem. However, many technical characteristics of the CHP
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unit and the electricity market relate to an hourly level. Additionally, the
production does not need to be scheduled more than one week in advance, be-
cause then information especially regarding the heat demand gets more accurate.
Therefore, we divide the overall planning problem into two-phases:

Biomass contract selection: This model decides which suppliers should
be contracted for the next year and which amount of biomass they should de-
liver (including options). The model is based on heat demand scenarios and
includes the production by the CHP plant and auxiliary boiler on a weekly time
scale excluding ramping and unit commitment decisions. For this long planning
horizon the electricity and fuel prices are approximated by an expected value,
because the prices are very volatile and hard to predict for a long time horizon.
The thermal heat storage is excluded from this model, because it is not reason-
able to model the flows on a weekly scale due the small size of those storages.
Set T represents weekly periods in this model. The mathematical formulation
is presented in Section 4.1.

Operational planning problem: Here the input of biomass is fixed based
on the contracts selected in phase 1, but the amounts of contracts with agreed
options can still be altered. The model is solved week-by-week taking the input
from the previous week into account (storage levels, status of the unit) and
decides on the actual production of the CHP plant and auxiliary boiler on an
hourly basis incorporating technical requirements and scenario-based price and
demand information. Set T represents hourly periods in this model. The model
formulation is described in Section 4.2.

Based on the scenario-based representation of the uncertain parameters,
both models are two-stage stochastic programming model formulations. The
division of the planning problem into two phases not only reduces the complex-
ity of the problem, but also resembles the planning process in practice in a more
accurate way. Furthermore, solving the operational planning problem week-by-
week enables us to make use of more recent information to update the scenarios
for the next week. We do not consider an integrated problem for the entire
year in an hourly resolution because the addition of such precise information
can negatively affect the solution of the problem towards the real realization of
the uncertainty due to forecasting inaccuracies. Furthermore, preliminary ex-
periments showed that the large number of integer variables makes the problem
computationally hard and not solvable in a reasonable amount of time.

4.1 Biomass contract selection

The following model represents the biomass contract selection in phase 1. The
model has a weekly time-scale, therefore, the set T consists of weeks. The
relevant parameters like capacities and flow restrictions of the units and storage
are scaled up to weekly values accordingly.

The first-stage decision variables in this model decide on the contracts to be
selected (uj) as well as the number of deliveries in each week (dj,t) and amounts
(bj,t) including up- (b+j,t) and down-scaling (b−j,t) options for each contract j ∈ J
and period t ∈ T . Based on the second-stage variables, these amounts can be
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Table 2: Variables

uj ∈ {0, 1} Equals 1, if contract j is used, 0 otherwise
dj,t ∈ N0 Number of deliveries by contract j in period t

d̂j,t ∈ {0, 1} Equals 1, if contract j delivers in period t, 0 otherwise

bj,t ∈ R+
0 Amount of biomass contracted in contract j for period t [tonnes]

b+j,t ∈ R+
0 Up-scaling option contracted in contract j for period t [tonnes]

b−j,t ∈ R+
0 Down-scaling option contracted in contract j for period t [tonnes]

b+j,t,ω ∈ R+
0 Actual amount used of up-scaling option in contract j [tonnes]

b−j,t,ω ∈ R+
0 Actual amount used of down-scaling option in contract j [tonnes]

δt,ω ∈ R+
0 Biomass storage level [MWt]

δ+t,ω ∈ R+
0 Inflow to biomass storage [MWt/period]

δ−t,ω ∈ R+
0 Outflow from biomass storage [MWt/period]

st,ω ∈ R+
0 Thermal storage level [MWt]

s+t,ω ∈ R+
0 Inflow to thermal storage [MWt/period]

s−t,ω ∈ R+
0 Outflow from thermal storage [MWt/period]

xt,ω ∈ {0, 1} Equals 1, if CHP plant is on in period t, 0 otherwise
yt,ω ∈ {0, 1} Equals 1, if CHP plant is started up in period t, 0 otherwise
zt,ω ∈ {0, 1} Equals 1, if CHP plant is shut down in period t, 0 otherwise

pt,ω ∈ R+
0 Power production by CHP [MWe/period]

qCHP
t,ω ∈ R+

0 Total heat production by CHP [MWt/period]

qCHP,N
t,ω ∈ R+

0 Heat from CHP flowing to DH [MWt/period]

qCHP,S
t,ω ∈ R+

0 Heat from CHP to thermal storage [MWt/period]

qAUX
t,ω ∈ R+

0 Total heat production by auxiliary boiler [MWt/period]

qAUX,N
t,ω ∈ R+

0 Heat from auxiliary boiler to DH [MWt/period]

qAUX,S
t,ω ∈ R+

0 Heat from auxiliary boiler to thermal storage [MWt/period]

qMiss
t,ω ∈ R+

0 Missed heat demand [MWt/period]

qBM
t,ω ∈ R+

0 Required amount of heat not supplied with biomass [MWt/period]

δEX
t,ω ∈ R+

0 Amount of biomass above storage capacity [MWt]

δTω ∈ R+
0 Amount of biomass in excess at the end of the time horizon [MWt]

altered with the variables b+j,t,ω and b−j,t,ω within the limits of the selected
options in the first-stage. Further second-stage variables relate to the biomass
storage level (δt,ω) as well as heat (qCHP

t,ω , qAUX
t,ω ) and power production (pt,ω).

An overview of the variables and their domains is given in Table 2.

min
∑
t ∈T

[∑
j∈J

(
CB
j bj,t + CB+

j b+j,t + CB−
j b−j,t +

∑
ω∈Ω

πωC
B
j (b+j,t,ω − b−j,t,ω)

)
(1a)

+
∑
ω∈Ω

πω

(
CCHP

[
pt,ω −ΘqCHP

t,ω

]
+ L̂tpt,ω + ĈAUX

t

qAUX
t,ω

EAUX
+ CIδt,ω

)]
(1b)

+
∑
ω∈Ω

πω

(
φStoδT

ω +
∑
t∈T

(
φMissqMiss

t,ω + φBMqBM
t,ω

))
−
∑
t ∈T

∑
j∈J

ψt(b
+
j,t + b−j,t) (1c)

The objective function (1) minimizes the expected cost of the biomass contract
selection. The first part (1a) contains the costs related to the biomass supply
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and the contract selection. In (1b), operational costs of the system, profits from
electricity sales and inventory costs for biomass are modeled. Note, that the

parameters L̂t and ĈAUX
t are expected values for this tactical problem. The

third part (1c) represents penalty and virtual costs. First, we penalize leftover
biomass at the end of the planning period (φStoδT

ω ), since we try to empty the
storage at the end of the year. Second, missed heat-demand (φMissqMiss

t,ω ) is
penalized. Finally, we add a penalty for failing to meet the minimum share
of heat production by biomass (φBMqBM

t,ω ). The second sum incentivizes the
use options in certain periods with a very small profit (ψt). This allows to
concentrate options in periods with a high variance in scenarios. In preliminary
experiments it turned out, that there are equally good solutions as the price for
options is the same over the year. When the inventory costs are low, the options
and amounts can be shifted without deteriorating the objective. Therefore, we
introduce this incentive to prioritize weeks with a high variance in demand.

Njuj ≤
∑
t∈T

dj,t ≤ Njuj ∀j ∈ J (2)

t∑
τ=t−min {b

Fj
168 c,1}

dj,τ ≤ max

{
168

Fj
, 1

}
∀j ∈ J ,∀t ∈ T (3)

bj,t + b+j,t ≤ Bjdj,t ∀j ∈ J ,∀t ∈ T (4)

bj,t − b−j,t ≥ Bjdj,t ∀j ∈ J ,∀t ∈ T (5)

b+j,t ≤ O
+
j bj,t ∀j ∈ J ,∀t ∈ T (6)

b−j,t ≤ O
−
j bj,t ∀j ∈ J ,∀t ∈ T (7)

b+j,t,ω ≤ b+j,t ∀j ∈ J ,∀t ∈ T ,∀ω ∈ Ω (8)

b−j,t,ω ≤ b−j,t ∀j ∈ J ,∀t ∈ T ,∀ω ∈ Ω (9)

Constraints (2) to (9) model the selection of biomass contracts. In constraints
(2) the number of deliveries is restricted by the contract limits. Constraint
(3) restricts the number of deliveries per week to a maximum according to the
frequency of the contract. The left-hand side sums over several weeks, if the
minimum time between visits Fj is longer than one week (168 hours). The right-
hand side determines the maximum number of deliveries in that period with at
least one delivery or more if the time difference is less than 168 hours. The total
amount including up- and down-scaling options is limited by constraints (4) and
(5) and the use of options in constraints (6) and (7). In constraints (8) and (9),
it is ensured that the second-stage alterations respect the first-stage decisions.

∆t ≤ δt,ω ≤ ∆ ∀t ∈ T ,∀ω ∈ Ω (10)

δt,ω = δt−1,ω + δ+
t,ω − δ−t,ω ∀t ∈ T ,∀ω ∈ Ω (11)

δ+
t,ω =

∑
j∈J

(
bj,t + b+j,t,ω − b−j,t,ω

)
· EB ∀t ∈ T ,∀ω ∈ Ω (12)

δ+
t,ω ≤ ∆F ∀t ∈ T ,∀ω ∈ Ω (13)
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δ|T |,ω ≤ δ0,ω + δT
ω ∀ω ∈ Ω (14)

The biomass storage is modeled by constraints (10) to (14). The model ensures
that the storage level is kept within the limits (10) and calculated correctly based
on the previous level and in- and outflows (11). The initial storage level is given
by δ0,ω, which is the same for all scenarios. The inflow from supplier deliveries
is calculated in constraints (12), where the incoming biomass is converted from
tonnes to MWht using the calorific value of the biomass EB and the outflow
is restricted by constraints (13). Finally, the storage level at the end of the
planning horizon is determined in (14) for penalty cost calculations.

δ−t,ω =
pt,ω
ECHP
P

−Θ ·
qCHP
t,ω

ECHP
Q

∀t ∈ T ,∀ω ∈ Ω (15)

P ≤ pt,ω −Θ · qCHP
t,ω ≤ P ∀t ∈ T ,∀ω ∈ Ω (16)

Ξ · qCHP
t,ω ≤ pt,ω ∀t ∈ T ,∀ω ∈ Ω (17)

qCHP
t,ω ≤ QCHP ∀t ∈ T ,∀ω ∈ Ω (18)

qAUX
t,ω ≤ QAUX ∀t ∈ T ,∀ω ∈ Ω (19)

The production capacities of the CHP plant and auxiliary boiler are enforced
by constraints (15) to (19). In (15) the consumption of biomass from the stor-
age for CHP production is determined based on the corresponding efficiency.
The feasible region of the CHP, which was previously presented in Figure 2, is
modeled by constraints (16) to (18) and limits of the auxiliary boiler in (19).

Dt,ω = qCHP
t,ω + qAUX

t,ω + qMiss
t,ω ∀t ∈ T , ω ∈ Ω (20)

qCHP
t,ω ≥ PB ·Dt,ω − qBM

t,ω ∀t ∈ T , ω ∈ Ω (21)

Finally, the heat demand is ensured in constraint (20) while at least PB percent
per week have to be produced by biomass otherwise causing penalty costs (21).

4.2 Operational planning

The operational planning model relates to the second phase of the solution
approach. For the overall solution approach, the model is solved consecutively
week-by-week with a receding horizon to determine the production schedule and
to adjust the biomass deliveries, if possible. Therefore, the planning horizon is
|W| weeks with an hourly resolution. The week in focus isW1 and the remaining
weeksW2 toWw are used in the receding horizon to already include predictions
for future periods. Thus, the decisions for weeksW2 toWw can be altered again
later, when the respective week comes in focus. Set T consists of all hours in
the planning horizon, whereas Tw relates to the hours in specific week w ∈ W.

The decision variables for this model decide the amount (bj,t,ω) and up-

and down- scaling biomass (b+j,t,ω and b−j,tω) and the actual delivery times

(d̂j,t,ω) for the deliveries of contract j. Further variables are related to the
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Table 3: Input parameters from biomass contract selection

Uj,w ∈ N0 Number of deliveries of contract j in week w

Bj,w ∈ R+
0 Contracted delivery amount of contract j in week w

B+
j,w ∈ R+

0 Contracted up-scaling of delivery amount of contract j in week w

B−
j,w ∈ R+

0 Contracted down-scaling of delivery amount of contract j in week w

biomass storage level (δt,ω), the thermal storage level (st,ω), the heat and power
production (qCHP

t,ω , qAUX
t,ω and pt,ω) and the commitment status of the CHP plant

(xt,ω, yt,ω and zt,ω). The variables are also included in Table 2.
Because the first week of the receding horizon is the week in focus, the first-

stage decisions of the stochastic program are the delivery times and amounts
d̂j,t,ω, bj,t,ω, b+j,t,ω and b−j,tω for periods t in the first week T1. For all other
weeks, the decisions can be revised later and therefore are second-stage decisions.
To ensure non-anticipativity, we include specific constraints.

The selection of biomass contracts and amounts are input parameters to this
model (given in Table 3) and determined by the biomass contract selection model
in phase 1. Set J is reduced to only selected contracts for the corresponding
week to limit the number of variables.

Furthermore, the storage levels and unit status of the preceding week are
set as initial values. For example, the initial biomass storage level δ0,ω in the
current week equals the storage level in the last period of previous week.

min
∑

w∈W

∑
j∈J

(
CB
j Bj,w + CB+

j B+
j,w + CB−

j B−j,w

∑
t∈Tw

CB
j (b+j,t − b−j,t)

)
(22a)

+
∑
t∈T

∑
ω∈Ω

πω

(
CCHP

(
pt,ω −ΘqCHP

t,ω

)
−Lt,ωpt,ω + CSUyt,ω + CSDzt,ω

)
(22b)

+
∑
t∈T

∑
ω∈Ω

πω
(
CAUX
t,ω

qAUX
t,ω

EAUX
+ CIδt,ω

)
+
∑
t∈T

∑
ω∈Ω

πω
(
φStoδEX

t,ω + φMissqMiss
t,ω

)
(22c)

As in the biomass contract selection model, the objective function (22) min-
imizes the expected costs composed of biomass contract costs (22a), operational
for the CHP (22b), operational costs for the auxiliary and the biomass storage
(22c), and penalty costs (22c). However, the following changes have to be made.
First, the profit for electricity sales (Lt,ω) and operational costs for the auxiliary
boiler (CAUX

t,ω ) depend on scenarios (22b). Second, the operational cost (22b)
now includes costs for starting up and shutting down the CHP plant. Third,
the term (22c) penalizes unfulfilled heat demands and exceeding the biomass
storage capacity. Note that to resemble the total weekly cost of the system, we
keep the constant term CB

j Bj,w + CB+
j B+

j,w + CB−
j B−j,w in (22a).∑

t∈Tw

d̂j,t,ω = Uj,w ∀j ∈ J ,∀w ∈ W,∀ω ∈ Ω (23)
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∑
t∈Tw

bj,t,ω = Bj,w ∀j ∈ J ,∀w ∈ W,∀ω ∈ Ω (24)

∑
t∈Tw

b+j,t,ω ≤ B+
j,w ∀j ∈ J ,∀w ∈ W,∀ω ∈ Ω (25)

∑
t∈Tw

b−j,t,ω ≤ B−j,w ∀j ∈ J ,∀w ∈ W,∀ω ∈ Ω (26)

bj,t,ω + b+j,t,ω ≤ Bj d̂j,t,ω ∀j ∈ J ,∀t ∈ T ,∀ω ∈ Ω (27)

bj,t,ω − b−j,t,ω ≥ Bj d̂j,t,ω ∀j ∈ J ,∀t ∈ T ,∀ω ∈ Ω (28)

t∑
τ=t−Fj

d̂j,τ,ω ≤ 1 ∀j ∈ J ,∀t ∈ T ,∀ω ∈ Ω (29)

∑
j∈J

t+∆W∑
τ=t

d̂j,τ,ω ≤ 1 ∀t ∈ T ,∀ω ∈ Ω (30)

The biomass deliveries are handled in constraints (23) to (30). If deliveries
were scheduled for the weeks in the planning horizon by phase 1, the operation
model decides on the actual delivery times during the week (23). The weekly
contracted amount is split on the deliveries in constraints (24). The delivery
amount can be altered in the given limits of the options (constraints (25) and
(26)), but the total amount must be within the limits of the contract (constraints
(27) and (28)). Constraints (29) imposes a maximum frequency on the deliveries
associated with each contract, while constraints (30) ensures an elapsed time of
at least ∆W periods between two deliveries irrespective of the supplier.

d̂j,t,ω = d̂j,t,ω′ , bj,t,ω = bj,t,ω′ ∀j ∈ J ,∀t ∈ T1,∀ω, ω′ ∈ Ω, ω 6= ω′ (31)

b+j,t,ω = b+j,t,ω′ , b−j,t,ω = b−j,t,ω′ ∀j ∈ J ,∀t ∈ T1,∀ω, ω′ ∈ Ω, ω 6= ω′ (32)

As the decisions for the biomass delivery in the first week are first-stage decisions
of the stochastic program, we have to ensure that they have the same values for
each scenario. This is forced by the non-anticipativity constraints (31) to (32).

δ+
t,ω =

∑
j∈J

(
bj,t,ω + b+j,t,ω − b−j,t,ω

)
· EB ∀t ∈ T ,∀ω ∈ Ω (33)

δt,ω = δt−1,ω + δ+
t,ω − δ−t,ω ∀t ∈ T ,∀ω ∈ Ω (34)

δ−t,ω ≤ ∆F ∀t ∈ T ,∀ω ∈ Ω (35)

δt,ω ≤ ∆ + δEX
t,ω ∀t ∈ T ,∀ω ∈ Ω (36)

∆t ≤ δt,ω ∀w ∈ {2, . . . , |W|},∀t ∈ Tw,∀ω ∈ Ω (37)

0 ≤ δt,ω ∀t ∈ T1,∀ω ∈ Ω (38)

The inflow to the biomass storage in each period (33) is dependent on the
scheduled delivery and adjustments based on the options. The storage level is
given by equation (34). The outflow and capacity of the storage is limited in
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constraints (35) and (36), respectively. The safety storage for biomass is incor-
porated in constraints (37), but only for future weeks in the receding horizon.
In the current week, the storage can be used for production (38).

δ−t,ω =
pt,ω
ECHP
P

−Θ ·
qCHP
t,ω

ECHP
Q

∀t ∈ T ,∀ω ∈ Ω (39)

P · xt,ω ≤ pt,ω −Θ · qCHP
t,ω ≤ P · xt,ω ∀t ∈ T ,∀ω ∈ Ω (40)

Ξ · qCHP
t,ω ≤ pt,ω ∀t ∈ T ,∀ω ∈ Ω (41)

qCHP
t,ω ≤ QCHP · xt,ω ∀t ∈ T ,∀ω ∈ Ω (42)

yt,ω − zt,ω = xt,ω − xt−1,ω ∀t ∈ T ,∀ω ∈ Ω (43)

yt,ω + zt,ω ≤ 1 ∀t ∈ T ,∀ω ∈ Ω (44)

t∑
τ=t−MU+1

yτ,ω ≤ xt,ω ∀t ∈ T ,∀ω ∈ Ω (45)

t∑
τ=t−MD+1

zτ,ω ≤ 1− xt,ω ∀t ∈ T ,∀ω ∈ Ω (46)

pt,ω − pt−1,ω ≤ RU · xt−1,ω + P · yt−1,ω ∀t ∈ T ,∀ω ∈ Ω (47)

pt,ω − pt−1,ω ≥ −RD · xt,ω − P · zt,ω ∀t ∈ T ,∀ω ∈ Ω (48)

Constraints (39) to (42) regarding biomass consumption and feasible production
region of the CHP unit constraints are similar to constraints (15) to (18) for
the biomass selection problem. However, here the production depends also on
the status of the unit (xt,ω = 1 means the unit is on). The status of the unit
is determined by constraints (43) to (44) while constraints (45) and (46) ensure
minimum up- and down times, respectively. The change of production volume is
restricted to the ramping requirements in constraints (47) and (48). The initial
status of the CHP plant depends on the previous week and is given by x0,ω and
p0,ω as input parameters.

qAUX
t,ω ≤ QAUX ∀t ∈ T ,∀ω ∈ Ω (49)

s+
t,ω = qCHP,S

t,ω + qGB,S
t,ω ∀t ∈ T ,∀ω ∈ Ω (50)

st,ω = st−1,ω + s+
t,ω − s−t,ω ∀t ∈ T ,∀ω ∈ Ω (51)

S ≤ st,ω ≤ S ∀t ∈ T ,∀ω ∈ Ω (52)

s−t,ω ≤ SF ∀t ∈ T ,∀ω ∈ Ω (53)

s+
t,ω ≤ SF ∀t ∈ T ,∀ω ∈ Ω (54)

s−t,ω ≤ st−1,ω ∀t ∈ T ,∀ω ∈ Ω (55)

s|Tw|,ω = s0,ω ∀ω ∈ Ω (56)

Constraints (49) sets the heat production capacity of the auxiliary boiler. The
heat storage is modeled by constraints (50) to (56). The inflow is determined
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Algorithm 1 Two-phase solution approach

1: Solve the biomass contract selection model (1)-(21)
2: for each week in the overall planning horizon do
3: Select the corresponding contract decisions from line 1 and set limits
4: Generate scenarios for the current receding horizon
5: Solve the operational planning model (22)-(59)
6: end for

by the heat from the CHP unit and auxiliary boiler inserted into the storage
(50). The current storage level depends on the inflow, outflow and previous
level (51) (s0,ω for the initial value) and has to satisfy the capacity restrictions
(52). Outflow (53) and inflow (54) are limited and the inflow cannot directly
flow out again (55). To avoid emptying the storage at the end, the initial level
s0,ω must be reached again at the end of the receding horizon (56).

qCHP
t,ω = qCHP,N

t,ω + qCHP,S
t,ω ∀t ∈ T ,∀ω ∈ Ω (57)

qAUX
t,ω = qAUX,N

t,ω + qAUX,S
t,ω ∀t ∈ T ,∀ω ∈ Ω (58)

Dt,ω = qCHP,N
t,ω + qAUX,N

t,ω + s−t,ω + qMiss
t,ω ∀t ∈ T ,∀ω ∈ Ω (59)

The heat production by both units is used for filling the heat storage and cover-
ing the demand. Therefore, the production is split up into those two components
in constraints (57) and (58). For fulfilling the heat demand, heat directly fed
to the district heating network and heat from the thermal storage is used (59).
Any shortfall of heat is penalized in the objective function.

4.3 Overall solution approach

For the overall solution approach, the above mentioned stochastic programming
models are combined. To solve the planning problem for one year, we need
to perform the steps shown in Algorithm 1. First, the contract selection takes
place (line 1). Afterward, this decision is transfered to the weekly planning (line
3). The scenario generation and solution of the operational problem is carried
once every week for the next week (line 2 to 6).

5 Case studies

In the following we analyze two case studies for different municipalities in Den-
mark, named A and B, that are connected to the Aarhus district heating net-
work. The planning horizon we consider in the numerical results in Section 6 is
1st of June 2016 to 31st of May 2017.

5.1 Technical data

The heat demand data in the district heating networks is obtained from [1],
NordPools’ hourly electricity prices for DK1 zone from [14] and daily natural
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Table 4: Technical parameters of the CHP unit

P P QCHP Θ Ξ RU RD ECHP
P ECHP

Q MU MD

A 13.24 3.8 20.8 -0.18 0.55 3.7 3.7 0.62 0.31 6 4
B 35.18 5.72 47.28 -0.12 0.64 4.6 4.6 0.64 0.29 8 5

Table 5: Technical parameters of the auxiliary unit and storages

Aux. boiler Thermal storage Biomass storage

EAUX QAUX S0 SF S S ∆F ∆0 ∆W ∆ ∆t EB

A 0.97 15 5 3 7 0 35 500 24 20000 4000 (20-45) 4.9971
2000

B 0.99 30 6.5 4.5 9.5 0 70 850 24 35000 7000 (20-45) 4.9971
3500

gas prices from [25]. Extreme outlier values in electricity prices are limited to a
maximum or minimum of four standard deviations from the mean.

The technical parameters for the CHP and auxiliary units as well as the
operation costs are based on [23, 32, 19] and [9] and shown in Tables 4, 5 and
6. Both systems comprise a CHP unit and one auxiliary boiler. Municipality A
uses a gas boiler in addition to the CHP, while municipality B uses an electric
boiler. The biomass storage minimum level ∆t is divided in two values. In
weeks 20 - 45 (i.e. in the heating season), we have a higher minimum level as in
the remaining weeks of the year. The penalty costs for both case are the same
and set to ΦSto = 1000,ΦMiss = 10000 and ΦBM = 5000.

The parameters of the biomass contracts data are given in Table 7, where
they are organized from fixed contracts at the top of the table and gradually
going down to more flexible contracts. Both cases use the same set of contracts.

The very small incentive ψt for using options preferably in periods with
a high variance in heat demand scenarios is calculated as follows. As this is
a weekly value for the biomass contract selection phase only, we consider the
weekly heat demand scenarios in phase 1. This data is known before solving
the model and therefore we can use the scenario information to calculate the
incentive. We order the weeks t in descending order of difference in heat demands
in the scenarios, i.e, maxω∈Ω{Dt,ω}−minω∈Ω{Dt,ω}. The week with the largest
difference gets the highest incentive of 5.2. We reduce the incentive every week
by 0.1 resulting in an incentive of 0.1 for the week with the smallest difference.
These values are far less than the cost of the biomass options themselves and,
therefore, have barely influence on the amounts contracted in options but only
on the weeks where they are placed. Note that this incentive is not part of the
evaluation in Section 6 as it is only in the biomass contract selection and the
cost are based on the operational planning.
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Table 6: Cost parameters

CHP Aux. boiler Storage

CCHP CSU CSD TEP I CO&M
Aux TAUX TCO2 CI

A 19.85 14250 0 55.62 20.25 0.07 28.22 6.34 0.0002
B 20.32 16870 0 55.62 20.25 0.5 52.07 0 0.0002

Table 7: Biomass contract data

Contract CB
j CB+

j CB−
j O+

j O−
j Bj Bj Fj Nj Nj

1 150.8 0 0 0 0 19000 18000 2016 4 4
2 156.4 0 0 0 0 17000 12000 1344 5 2
3 170.83 0 0 0 0 15000 11000 1008 8 4
4 181.31 30.56 30.56 0.1 0.1 12000 8000 504 17 15
5 181.43 24.45 24.45 0.15 0.15 12000 8000 504 15 15
6 183.59 30.56 30.56 0.25 0.25 5100 2380 336 25 24
7 183.43 36.67 36.67 0.25 0.25 5100 2380 336 25 15
8 201.89 18.34 18.34 0.5 0.5 1200 1200 168 50 50
9 202.17 18.34 18.34 0.5 0.5 1200 1000 168 50 25
10 204.29 28.12 28.12 0.5 0.5 850 850 120 60 50
11 202.24 28.12 28.12 0.65 0.65 850 500 120 60 30
12 202.05 12.22 12.22 0.75 0.75 350 100 48 100 80
13 202.64 12.22 12.22 0.75 0.75 350 100 48 100 50

5.2 Scenario generation

Apart from the deterministic parameters mentioned in the previous section, we
have to handle uncertainty regarding heat demands, gas prices and electricity
prices to be used in the optimization. Since both municipalities are within
the same bidding region in Nordpool (DK1) and the same gas trading region,
the electricity and natural gas prices are identical. However, differences exist
regarding the heat demand. We use historical data from 1st June 2011 to 31st
May 2016 for electricity prices, natural gas prices and heat demands. Based
on this data, different techniques for scenario generation are implemented. The
resulting scenarios and expected values depend on the municipality due to the
different auxiliary boilers and heat consumption in previous years. Furthermore,
the input time series varies with the phase of the solution approach regarding
time scales and need for scenarios. The scenario generation for both phases is
described in Appendix A.

5.3 Evaluation of solution approach

To evaluate our solution approach, we have to obtain the costs under different
realizations of the uncertainty. We use 11 samples, i.e, 11 different realizations of
uncertainty, for each municipality. Sample 0 is the actual realization of the heat
demand, electricity prices and gas prices from 1st June 2016 to 31st May 2017.
The remaining 10 samples (from 1 to 11) are a composite of different real data
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sets obtained from the same sources as the previous data. The electricity and
gas prices are obtained from real data of 2015, 2016 and 2017 from other regions
in Nordpool and other European hubs, respectively. The heat consumption is
obtained from other municipalities in the Aarhus district heating system and
scaled to the size of the system capacity accordingly.

The scenarios used in the evaluations are based on a combination of past data
and time series forecasts (see description in Appendix A). To decide the biomass
supply contracts, we use expected values for electricity and gas prices based
on the last five years, while the heat demand is modeled using five scenarios
resembling the heat demand from the last five years. In the operational planning
problem, the scenarios for electricity prices and heat demand consist of a time
series forecast for the next week while the corresponding historical values of
electricity prices and heat demand in previous years are taken for the remaining
weeks of the receding horizon (denoted as method F1 ). See Appendix B for a
comparison of different scenario generation methods.

Evaluating one sample with a configuration of our method requires to extend
Algorithm 1 by one step. Each week after the operational problem is solved (line
5 in Algorithm 1), we fix the first-stage decisions and solve the model using the
realizations of the uncertainty of the first week. Thus, we obtain the real costs
for the first week and the initial status for the next week.

6 Experimental results

For the experimental evaluation, we implemented Algorithm 1 using Python
3.5.1 and Gurobi 7.0.1 (default parameters). All experiments are run on Intel
Xeon Processor X5550 with 24 GB RAM. The objective values in this section
comprise the real costs summed over all weeks in the year.

6.1 Analysis of receding horizon length

Table 8 shows the objective value and penalty costs using scenarios generated
by method F1 for different lengths of the receding horizon, namely one, two,
three and four weeks. Note that in no case, penalty costs for exceeding the
biomass storage capacity occurred and therefore those are omitted from the ta-
ble. The most important result is that the objective values drastically improves
by including at least a second week into the optimization. For the most part,
this is due to the reduction in penalty costs for not fulfilling the heat demand
(see Table 8). This can be explained by the opportunity of using of options.
Indeed, if the receding horizon already considers scenarios for weeks apart from
the current week, we make use of this information now. If the biomass contract
selection (phase 1) scheduled a delivery only in the current week, but not in
the next week, having a longer planning horizon can be beneficial. If we only
consider the current week, we may not make use of an upward option, because
it is not needed now. However, if the scenarios for the next week(s) show a
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Table 8: Objective value and penalty costs [x100,000e] for different lengths of
receding horizon

Sample Objective Penalty qmiss

1 2 3 4 1 2 3 4

M
u

n
ic

ip
a
li
ty

A

0 91.635 84.505 84.548 84.687 7.576 1.376 1.376 1.376
1 96.483 84.571 84.540 84.505 10.993 0.000 0.000 0.000
2 87.707 81.793 81.810 81.710 4.653 0.000 0.000 0.000
3 96.915 84.364 84.407 84.389 11.521 0.000 0.000 0.000
4 90.140 82.205 82.455 82.394 6.582 0.000 0.000 0.000
5 86.659 83.756 83.735 83.707 2.130 1.010 1.010 1.010
6 104.655 82.764 82.660 82.511 21.334 0.000 0.000 0.000
7 89.979 87.009 87.027 87.031 5.832 2.904 2.904 2.904
8 89.700 82.035 81.846 81.847 7.187 0.000 0.000 0.000
9 84.836 82.469 82.588 82.609 1.192 0.000 0.000 0.000

10 84.900 83.515 83.635 83.580 0.439 0.131 0.131 0.131

M
u

n
ic

ip
a
li
ty

B

0 400.734 169.017 169.186 169.682 231.804 1.297 1.297 1.297
1 246.238 174.582 175.025 175.056 71.916 0.000 0.000 0.000
2 267.247 167.181 167.022 167.371 95.517 0.000 0.0 00 0.000
3 286.542 175.332 175.059 175.059 111.651 0.000 0.000 0.000
4 318.557 169.592 169.334 168.766 147.841 0.000 0.000 0.000
5 386.050 170.939 170.776 170.597 216.553 1.335 1.335 1.335
6 171.352 170.397 170.390 171.026 0.000 0.000 0.000 0.000
7 275.865 172.744 172.742 172.672 104.186 0.000 0.000 0.000
8 169.469 168.003 167.982 167.525 0.000 0.000 0.000 0.000
9 323.960 171.312 171.693 171.845 152.953 0.000 0.000 0.000

10 397.496 169.546 169.399 168.974 225.878 0.000 0.000 0.000
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trend with a higher heat demand than expected, we can get more biomass than
scheduled now instead of running out of storage and missing the demand.

For a receding horizon of more than one week, the results are quite similar.
The maximum deviation between costs for the different lengths is 82548 for
municipality B in sample 4, which is in total approximately 0.48% higher costs.
For all other cases, the relative and absolute difference is less. In some cases,
a longer horizon can lead to slightly poorer results due to the fact, that the
heat demand is still uncertain and we may make use of an upward or downward
option that corrects the delivery amount according to the uncertain scenarios. If
the scenarios show a wrong trend in later weeks, it can be more beneficial to just
include a second week (e.g. sample 0, mun. A). The penalty cost for missing the
heat demand is φMiss = 10000 [e/MWh], which means we miss at most 29.0356
MWh of heat in sample 7 for municipality A in a whole year. In all cases with
penalty cost, the missing demand occurs in periods with an exceptionally high
demand close to the capacity of the system. Those very high demands are often
not covered by the scenarios and therefore wrong planning decisions may cause
a shortage of biomass and a penalization for not satisfying the heat demand.
Note that in practice a lack of supply in the district heating network would never
occur, because the heat producer can gradually decrease the supply temperature
or reduce the water flow to increase the demand covered. However, these cases
must be avoid and therefore we penalize them in the objective .

6.2 Stochastic programming vs. expected value solution

To show the benefit of using stochastic programming instead of using an ex-
pected value approach, we compare the results in Table 9. We limit our results
to F1 scenarios and 2 to 4 weeks of receding horizon. The first three columns in
Table 9 compare the worst case among the three lengths of receding horizon in
the stochastic approach with the best case of the expected value solution. The
worst case stochastic solution gives on average a 0.75% better solution and it
dominates in all cases except one (municipality B, sample 10). When comparing
the average objective values, the stochastic approach improved the results on
average by 0.80% for municipality A and 1.03% for municipality B. Although
the improvement is not relatively large, in absolute terms it results in saving on
average e67743 and e177583, respectively.

The improvement can be explained by the fact that the stochastic solution
makes use of options while the expected value solution does not contract any
options (see Section 6.3 for more details).

6.3 Interpretation of results for real data from 2016-2017

In this section, we describe the results of the contract selection and operational
planning in more detail. As an example, we analyze sample 0 for both munici-
palities, which contains the real data from 1st June 2016 to 31 May 2017. We
would like to point out that the conclusions drawn in this section coincides with
the observations from the other samples.
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Table 9: Comparison stochastic programming (Sto.) vs. expected value solution
(Exp.) [x100,000e]. The maximum, minimum and average values are based on
2 to 4 weeks horizon

Sample Max. Sto. Min. Exp. Delta Avg. Sto. Avg. Exp. Delta

M
u

n
ic

ip
a
li
ty

A

0 84.687 84.975 0.34% 84.580 85.117 0.63%
1 84.571 85.331 0.89% 84.539 85.343 0.94%
2 81.810 82.010 0.24% 81.771 82.208 0.53%
3 84.407 85.205 0.94% 84.387 85.315 1.09%
4 82.455 82.853 0.48% 82.352 83.008 0.79%
5 83.756 84.354 0.71% 83.733 84.462 0.86%
6 82.764 83.210 0.54% 82.645 83.253 0.73%
7 87.031 87.744 0.81% 87.022 87.769 0.85%
8 82.035 82.445 0.50% 81.909 82.501 0.72%
9 82.609 83.381 0.93% 82.556 83.475 1.10%

10 83.635 84.006 0.44% 83.577 84.072 0.59%
Avg. 83.615 84.138 0.62% 83.552 84.229 0.80%

M
u

n
ic

ip
a
li
ty

B

0 169.682 172.264 1.50% 169.295 172.264 1.72%
1 175.056 177.669 1.47% 174.888 177.694 1.58%
2 167.371 170.974 2.11% 167.191 170.986 2.22%
3 175.332 176.147 0.46% 175.150 176.183 0.59%
4 169.592 171.702 1.23% 169.231 171.720 1.45%
5 170.939 172.536 0.93% 170.770 172.546 1.03%
6 171.026 171.303 0.16% 170.604 171.328 0.42%
7 172.744 174.844 1.20% 172.719 174.844 1.22%
8 168.003 168.231 0.14% 167.837 168.234 0.24%
9 171.845 172.635 0.46% 171.617 172.641 0.59%

10 169.546 169.456 -0.05% 169.306 169.703 0.23%
Avg. 171.012 172.524 0.87% 170.783 172.558 1.03%

Figure 3 shows the selected biomass contracts for municipalities A and B in
the stochastic (Sto) and expected value solution (Exp), respectively. The con-
tracts are valid for all samples. The points show the contracted biomass amount
and the vertical lines that extent from some of the crosses are the amount of
upward and downward options bought. We see that only the solutions obtained
by the stochastic approach make use of options. As the deterministic solution
has no scenarios and assumes the expected values of uncertain parameters as
deterministic, the contracts are selected in such a way that the solution fits these
expected values. Thus, no use of options is reasonable in this case. However,
when other biomass amounts are needed in the course of the year, the options
contracted in the stochastic solution bring an advantage and reduce the overall
cost (see Table 9). From Figure 3 also the difference in the delivery patterns
for the two municipalities can be seen. The selected contract for municipality
A (contract 12) has smaller amounts but more frequent deliveries. Whereas
the selected contract for municipality B has larger amounts and less deliveries,
which relates also to the higher heat demand in municipality B.

The actual delivery amounts, i.e., after making use of options, and the
biomass storage level are depicted in Figure 4 for the real data of the year 2016
to 2017. The amounts are cumulated per week. Furthermore, the contracted
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Figure 3: Biomass contracts from 1 June 2016 to 31 May 2017
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Figure 4: Biomass storage level and deliveries for the real realization of uncer-
tainties from 1st June 2016 to 31 May 2017 (based on F1 scenarios and two
weeks of receding horizon)
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Figure 5: Heat production for real realization of uncertainties from 1st June
2016 to 31 May 2017 (based on F1 scenarios and two weeks of receding horizon)

delivery amount is depicted to show if the options are actually used in the course
of the year. For both municipalities the operational problem uses both upward
and downward options, for example, week 24 (downward) and 42 (upward) in
municipality A or week 26 (downward) and 48 (upward) in municipality B.

The heat production from June 2016 to May 2017 for municipality A and B
is shown in Figure 5. In both cases the heat demand was always fulfilled and
the production follows similar behavior. At start of the season, the demand
can be covered by the biomass-fired CHP. During the winter periods with a
high demand, the gas boiler is used in addition to the CHP to cover the heat
demand. Furthermore, at the end of the season the boiler is used more often as
in the beginning of the season due to a slightly higher demand and the biomass
contract decisions contracting less biomass in the end of the season.

6.4 Runtime analysis

Figure 6 shows the runtimes for different lengths of the receding horizon aver-
aged over the 11 samples. The corresponding MIP model sizes for the biomass
selection and the operational planning problem with different lengths of the
receding horizon are given in 10. Note that the model size for each week in
the operational planning phase is the same throughout the planning horizon.
Therefore, the model sizes depend only on the length of the receding horizon.
For most of the cases, the runtime to solve the operational model for one week
is less than 60 seconds. Also, the biomass contract selection model is solved in
less than 20 seconds for both municipalities (see week 0 in Fig. 6). The runtime
slightly increases with a longer receding horizon, but not significantly.

For the few cases with a high runtime the average lies below 400 seconds (see
6a), which is short enough for a weekly planning problem to be used in practice.
The weeks with higher runtime relate to samples where the heat demand is
higher than expected in the biomass contract selection phase, which leads to
a shortage of biomass in the subsequent weeks (in the beginning of the year
in municipality A and in the end of the year in municipality B). Due to this
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Figure 6: Average runtimes per week (week 0 corresponds to biomass contract
selection)

Table 10: Model sizes

Cont. var. Int. var. (thereof bin. var.) Constraints NZs

Biomass selection 10,878 689 (13) 1,3812 40,479
Operational - 1 week 15,125 3,360 (3,360) 39,495 152,180
Operational - 2 weeks 30,250 6,720 (6,720) 65,530 284,900
Operational - 3 weeks 45,375 10,080 (10,080) 91,615 417,620
Operational - 4 weeks 60,500 13,440 (13,440) 117,675 550,340

shortage the model tries to avoid penalties for getting below the safety storage
level while producing as much as possible with the CHP to get income from
the electricity market. As the production is not possible in all hours, the model
has to select the hours with highest expected electricity prices making it harder
for the solver to find the best solution as the electricity prices are close to each
other.

7 Summary and outlook

In this work, we propose a solution approach that optimizes the biomass supply
planning for a large-scale CHP producer using biomass. The decision-making
process is divided into two phases both using two-stage stochastic programs.
The first model, named biomass contract selection, is solved for a long-term
horizon with weekly periods and configures the contracts from a set of biomass
suppliers. Those decisions are used in the second model, named operational plan-
ning, to optimize the heat production. This solutions approach corresponds to
the planning process in practice. We evaluate our method on two case studies
with realistic requirements and historical data to create scenarios. We ana-
lyze several scenario generation possibilities to create the scenarios based on
past data and different forecasting tools. Our analysis investigates the results
obtained for 11 samples of realizations of uncertainty.

The results reflect that the use of a receding horizon improves the solution

25



obtained due to a better operation of both heat and biomass storages. How-
ever, as a result of the forecast uncertainty, very long receding horizons may not
improve the results. Furthermore, we show that applying stochastic program-
ming is required to make use of the options, yielding better results than in the
expected value case where no options are purchased.

We envision four future research directions. First, further uncertainties re-
garding the delivery of biomass such as amount and quality variations could be
included in a supply chain planning model. Second, the configuration of our
algorithm can be investigated further to determine the length of the receding
horizon in a better way and improve the results. Third, an economic analysis of
the options can be made to assess their benefit for the entire supply chain. That
is from both supplier’s and producer’s points of view. Finally, the comparison
of different long-term forecasting tools with the use of data from previous years
to create long-term scenarios is another future research direction.
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Appendix A Scenario generation

In this section, we describe the different approaches used for scenario generation
in biomass contract selection and operational planning problem, respectively.

A.1 Biomass contract selection

In phase one of the solution approach, scenarios for the heat demand and the
expected value for auxiliary boiler costs and electricity prices are part of the
model. In this tactical planning problem, we use the heat consumption of the
five previous years (i.e. 1st June 2011 - 31st May 2016) from summer to summer
of the respective community as heat demand scenarios (Dt,ω) resulting in five
scenarios. The probability for each scenario is determined based on the year
while giving a higher probability to more recent years (first three years: 0.15,
last two years: 0.275).

The expected values for electricity and natural gas prices are obtained by cal-
culating a linear combination of the observations of the last five years weighted
by the probability (x̂t =

∑5
i=1 πωi

xt,i where xt is the price for time period t ∈ T
in year i). Due to the weekly time periods, the values are averaged per week.
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Table 11: Minimum objective value [x100,000e] for each mode of scenario gen-
eration. The minimum refers to the lowest objective value of 1, 2, 3 or 4 weeks
of receding horizon

S. Municipality A Municipality B

P F1 F1+P F2 F2+P P F1 F1+P F2 F2+P

0 84.61 84.51 84.63 84.88 85.08 169.25 169.02 169.20 169.28 169.27
1 84.62 84.50 84.61 84.78 84.59 174.94 174.58 174.66 174.99 174.63
2 81.69 81.71 81.67 81.72 81.79 167.19 167.02 167.30 167.69 167.33
3 84.55 84.36 84.46 84.53 84.48 175.23 175.06 175.20 175.23 175.18
4 82.52 82.21 82.46 82.32 82.48 169.13 168.77 169.05 169.36 169.26
5 83.85 83.71 83.82 83.82 83.83 170.66 170.60 170.61 170.71 170.53
6 82.61 82.51 82.58 83.36 83.14 170.56 170.39 170.45 170.82 170.82
7 87.04 87.01 87.02 87.34 87.21 172.94 172.67 172.76 173.09 173.02
8 82.09 81.85 81.87 81.85 81.95 167.82 167.52 167.71 167.03 167.48
9 82.59 82.47 82.52 82.54 82.57 171.42 171.31 171.36 171.32 171.52
10 83.55 83.52 83.51 83.71 83.65 169.45 168.97 169.31 169.04 168.82

A.2 Operational planning problem

In the operational planning more recent information is available for the scenario
generation, because we obtain new observations after each week. Furthermore,
we are closer to actual delivery time than in the biomass contract selection
problem. Consequently, we can use time series analysis to better predict the
uncertainties by updating the models in every week.

There a different possibilities to obtain scenarios for the operational model.
We implement and analyze five different types of scenario generation:

Using past data as predictions (P) Data from previous years is used to
built scenarios analog to the biomass contract selection scenarios. The scenarios
consist of the data from the respective week(s) in previous years.

Combining time series models and past data as predictions (F1) In
this method, we use time series models to predict the first week of the reced-
ing horizon and use data from previous years for the remaining weeks of the
receding horizon. The time series model uses the most recent observations to
update the forecast for the following week. We use an ARMAX model [21] with
weekly seasonality of prices and consumption using Fourier series in the form of
exogenous parameters [33]. We use past data for the remaining weeks because
they are further into the future and the risk of inaccurate predictions is higher.
To create scenarios from the time series model, we follow the scenario genera-
tion process described in [8]. More specifically, we generate 2500 equiprobable
scenarios using Monte Carlo simulation and cluster them using the k-medoid
algorithm to obtain five representative scenarios [16]. The forecasted scenarios
for the first week have to be combined with data from previous years to get a
scenario for the entire receding horizon. Therefore, we add the data from the
most recent year to the scenario with the highest probability.
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Using time series models as predictions (F2) This method is similar to
F1, because it also uses time series models for predictions and uses Monte Carlo
simulation and clustering for generating scenarios. However, in this case we
make predictions for the entire receding horizon and do not combine with past
data. The time series models, forecasts and scenarios are obtained following the
same method as for F1.

All three above mentioned methods result in five scenarios for the operational
planning problem. As two further possibilities for scenario generation, we use
combinations of these methods. Namely, we combine the scenarios obtained
from historical data (P) with the two time-series-based methods (F1 and F2 )
resulting in ten scenarios. Note that the probabilities are normalized to result
in a sum of one again. These methods are denoted by P+F1 and P+F2.

Note that the above mentioned scenario generation is used for electricity
prices and heat demands. For the gas prices in case study A with the gas boiler,
we also use an expected value in the operational model. This is due to the fact,
that gas prices are daily prices and are not as volatile as, e.g., the electricity
price, and we deem the expected value as accurate enough for this model.

Appendix B Analysis of scenario generation meth-
ods

In this section, we compare the different methods for scenario generation. The
results show the performance of the scenario method configuration for the op-
erational planning problem presented in Section A of this Appendix.

Table 11 shows the results for each sample of both municipalities. The value
shown is the minimum overall costs per scenario generation method, where the
minimum is taken over the minimum objective value obtained for four different
lengths of the receding horizon (one, two, three or four weeks). The analysis
of different receding horizon lengths is described in Section 6.1 of the main
article. Based on Table 11, the best of the implemented scenario generation
methods is F1, i.e., updating the scenarios every week by forecasting the next
week of heat demand and using previous years for the remaining weeks of the
receding horizon. Method F1 achieves the best result in 9 out of 11 samples for
municipality A and in 8 out of 11 cases for municipality B. For the remaining 2
and 3 cases, respectively, no common favorable can be determined, as it differs
per case. However, in all cases using the scenarios of method F1 is better than
using expected values, as we show in Section 6.2 of the main article.

Based on these results, we conclude for our test cases that it is beneficial to
update the scenarios every week instead of using previous years’ data. However,
using time series models for more than the first week often leads to worse results,
which means that the scenarios are misleading the optimization. Therefore, us-
ing updated information just for the first week is a compromise and improves the
results. For application in practice, this should be evaluated individually. Fur-
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thermore, our scenario generation methods can be easily replaced with already
existing proved and tested forecasting methods of the operator.
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