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Abstract 

Sewer networks are mainly composed of pipelines which are in charge of transporting sewage 
and rainwater to wastewater treatment plants. Breakages of sewer pipes may have many 
negative consequences, such as accidents, flooding, pollution or extra costs. Machine learning 
arises as a very powerful tool to predict these incidents when the amount of available data is 
large enough. In this study, a real-coded genetic algorithm is implemented to estimate the 
optimal weights of a logistic regression model whose objective is to forecast pipe failures 
within a wastewater network. On the one hand, logistic regression has a great applicability to 
classification problems, specifically for those whose output variable is binary. On the other 
hand, the genetic algorithm is a bio-inspired technique which explores the search space to find 
the optimal or near-optimal solution. 

Firstly, the historical database is transformed to a yearly basis and the model is estimated with 
a set of years (training data). Thus, the classifier can assign a probability of failure to each 
network pipe, which will allow distinguishing those pipes more prone to fail. Finally, the 
performance of the model is assessed with unseen data (test data). 

To check its performance, the methodology is applied to a real database of a Spanish city. 
Results demonstrate that if 3% of pipe segments had been replaced, whose failure 
probabilities were higher than 0.75, more than 25% of unexpected pipe failures could have 
been prevented.  

 

Keywords: Logistic regression; Binary classifier; Pipe failures; Genetic Algorithm; Sewer 
networks 

 

1. Introduction 

Once water is used by humans or industries, it needs to be adequately drawn and treated in 
order to close the water cycle. A sewer network ensures the collection of wastewater and 
transports it to wastewater treatment plants. 

In general, sewer networks require two types of actions according to their nature: preventive 
and corrective actions. Preventive actions are mainly cleanings while corrective actions are 
unblocking or pipe replacements due to defects or breakages. The cost of corrective actions 
can be two to ten times higher than preventive actions (Anbari, Tabesh, & Roozbahani, 2017). 
Consequently, if these unexpected incidences, which induce corrective actions, were 
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forecasted, significant costs would be saved. Moreover, an unexpected pipe breakage in a 
sewer network can cause environmental damage, such as pollution or flooding. 

Monitored visual inspections have commonly been carried out to detect incidents inside sewer 
pipes. Nowadays, sophisticated techniques are emerging to automatically identify these 
defects through image processing. Artificial intelligence methods, as deep convolutional neural 
networks (Hassan et al., 2019; Li, Cong, & Guo, 2019) or support vector machines (Halfawy & 
Hengmeechai, 2014; M. Der Yang & Su, 2009; M. D. Yang & Su, 2008), are used for image 
classification in order to determine defects or incidences. However, visual inspections are 
time-consuming and networks usually have an extensive total length. Therefore, it is only 
possible to make daily tracking of certain network pipes. For this reason, it is important to 
know in advance which parts of the network are more vulnerable in order to prioritise the 
inspections of these areas. Logistic regression arises as a method capable of determining the 
probability of suffering a defect of each pipe. Therefore, it might be a starting point for an 
efficient inspections’ planning. One previous work (Sousa, Matos, & Matias, 2014) already used 
this model for the same purpose, obtaining fairly accurate predictions for a small size network. 
Furthermore, studies whose objective is to predict pipe failures of water supply networks can 
also be found, as (Kleiner & Rajani, 2012; Yamijala, Guikema, & Brumbelow, 2009). 

Other applied methodology is evolutionary polynomial regression (EPR) whose solutions are 
mathematical equations that represent variables’ relations (Kleiner & Rajani, 2001; Savic et al., 
2006; Ugarelli, Kristensen, Røstum, Sægrov, & Di Federico, 2009). This method only has sense 
when the number of explanatory variables is limited. Its purpose is usually descriptive rather 
than predictive, focusing on the physical properties’ influence on pipe failures. Both neural 
networks and support vector machines are well-known to make precise predictions, it has 
been demonstrated in various researches (Khan, Zayed, & Moselhi, 2009; Mashford, Marlow, 
Tran, & May, 2011). The major disadvantage of these techniques is that they do not allow 
users to analyse the role that each variable has in the predictions. In fact, they are usually 
referred to as black box techniques. 

For training a predictive model, historical data is necessary and it must be reliable. Most failure 
predictive researches in the area have been focused on water supply network while there are 
fewer studies focused on analysing pipe failures of sewer networks. This entails the 
information about which factors are the most influential in sewer pipe failures to be scarce. In 
(Anbari et al., 2017), incomplete data is combined with expert opinions for risk assessment of 
sewer networks using Bayesian Networks. In (Kuliczkowska, 2016), eleven factors are identified 
which affect failures caused by internal corrosion in concrete pipes: pipe diameter, depth of 
the pipe, type of soil, sewer function, road type, traffic and several consequence factors as the 
environmental impact. Actually, in (Younis & Knight, 2010), it was found that the deterioration 
of reinforced concrete pipes is age-related due to the corrosion. On the contrary, it does not 
happen in vitrified clay pipes.  

It is commonly accepted that most incidences are caused by blockages (Bailey et al., 2015). 
According to (Savic et al., 2006), these have a direct correlation with pipe diameter and an 
inverse correlation with the pipe’s length. The factors pipe age and type of water were also 
identified by (Ugarelli et al., 2009) as the most important factors for the appearance of 
blockages. 

This paper provides a useful and self-explanatory methodology to determine the risk of failure 
of sewer pipes, such as blockages and breakages. The parameters of a logistic regression 
model are estimated using the well-known genetic algorithm. Moreover, the proposed 
methodology is tested with real network data. In section 2, a detailed explanation of the two 
methods employed is presented. Section 3 describes the case study and, specifically, those 
explanatory variables which have been included in the model. Section 4 shows and discusses 
the obtained results. Finally, conclusions are presented in section 5. 
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2. Proposed methodology 

Logistic regression (LR) is the model used in this study to predict pipe failures in sewer 
networks. Its training consists of estimating certain weights to maximise the log-likelihood 
function. To achieve such goal, a non-linear model must be solved. There are several methods 
capable to solve this type of model, such as the Newton-Rapson method or the gradient-
descent algorithm. Both of them update the weights iteratively, using derivatives, until a 
minimum or maximum is found. The major disadvantage is that they are computationally 
expensive when the objective function is complex, and, in addition, for those cases with 
multiple extrema, they may not converge to the optimum. Other approach could be to 
estimate the weights using the binomial boosting algorithm which seems to be more 
appropriate when there are several covariables and noisy data (de Menezes, Liska, Cirillo, & 
Vivanco, 2017). 

Genetic algorithms (GAs) arise as bio-inspired techniques which enable to explore the search 
space, increasing the chances of finding the optimal or near-optimal solution. These algorithms 
have broadly demonstrated its robustness solving problems of diverse characteristics. Actually, 
they have been used to estimate the parameters of various models as the least squares 
optimisation model (Lee, Park, & Chang, 2006; Wu et al., 2017; L. Yang, Chen, Rytter, Zhao, & 
Yang, 2019) to make accurate predictions of diverse problems. 

In our research, we implemented a genetic algorithm designed specifically to estimate the 
optimal weights of a logistic regression model. The next sub-sections give a 
detailed explanation on both methodologies. 

2.1. Logistic Regression 

Logistic regression (Cox & Snell, 1989) is used for solving problems whose output variable is 
qualitative. Therefore, it has great applicability when the goal is to predict the appearance or 
not of a certain failure. The model establishes a probability of belonging to a class as a linear 
logistic expression (eq. 1). 

𝑝𝑖 =
1

1 + 𝑒−𝑤𝑥𝑖
 (1) 

Where 𝑝𝑖, the probability of occurrence of a success of interest, is a function of 𝑥𝑖, the vector 
of explanatory variables, and 𝑤, their respective weights. The subscript 𝑖 refers to each 
observation of the sample; 𝑖 = 1, … , 𝑁. The model response is symmetrical as shown in 
equations (2- 4). 

𝑃(𝑦 = 1|𝑥 = 𝑥𝑖) = 𝑝𝑖 ;  𝑃(𝑦 = 0|𝑥 = 𝑥𝑖) = 1 − 𝑝𝑖  (2) 

1 − 𝑝𝑖 =
𝑒−𝑤𝑥𝑖

1 + 𝑒−𝑤𝑥𝑖
=

1

1 + 𝑒𝑤𝑥𝑖
 (3) 

𝑝𝑖(𝑥𝑖) = 1 − 𝑝𝑖(−𝑥𝑖) (4) 

Weights, which are the parameters to be determined, are common for all instances i. They are 
usually estimated by maximising the log-likelihood function (eq. 7). The aim of the model is the 
assignment of a high probability of having the characteristic of interest to the observations 
with 𝑦𝑖 = 1, and a low probability to those with 𝑦𝑖 = 0. This function is obtained from the 
probability of a response, 𝑦𝑖(0,1), (eq. 5).  

𝑃(𝑦𝑖) = 𝑝𝑖
𝑦𝑖(1 − 𝑝𝑖)1−𝑦𝑖 (5) 

Assuming independence between observations, the likelihood function is obtained by (eq. 6). 
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𝑙 = 𝑃(𝑦1, … , 𝑦𝑁) = ∏ 𝑝𝑖
𝑦𝑖(1 − 𝑝𝑖)1−𝑦𝑖

𝑁

𝑖=1

 (6) 

Then, the use of the logarithm enables the conversion of the multiplication into a sum in order 

to make the resolution of the model easier. Finally, 𝑙𝑛 (
𝑝𝑖

1−𝑝𝑖
) = 𝑤𝑥𝑖  and equation (4) are 

introduced in the function (eq. 6) which makes the form of the final log-likelihood function (eq. 
7). 

𝐿𝑜𝑔(𝑙) = ∑ 𝑦𝑖𝑤𝑥𝑖

𝑁

𝑖=1

− 𝑙𝑜𝑔(1 + 𝑒𝑤𝑥𝑖) (7) 

Once the weights have been estimated, the prediction of a new observation can be done by 
substituting its explanatory variables in equation (1). The obtained probability together with a 
pre-established risk threshold will determine the sample class (eq. 8). Although the threshold 
value is usually set to 0.5, it might be modified depending on the requirements of the problem.  

𝑦𝑖 = {
0 𝑖𝑓 𝑝𝑖 ≤ 0.5
1 𝑖𝑓 𝑝𝑖  > 0.5

 (8) 

2.2. Genetic algorithms 

Genetic algorithm (Holland, 1992) is a based on population metaheuristic which emulates 
Darwin’s Theory of Evolution. This theory defends a process called natural selection; species 
that are better adapted to the environment are more likely to survive over time.  

The designed GA seeks the optimal value of a group of real parameters. Although individuals 
are commonly codified as binary chromosomes, in this study each gene is a float between -1 
and 1 representing explanatory variable’s weights. Figure 1 shows the main steps of the 
applied GA: (i) selection of parent individuals from the population; (ii) crossover and mutation 
operators applied to these selected individuals; (iii) and the replacement on the population of 
the two new individuals. 

 
Fig 1 A visual illustration of the designed genetic algorithm (figure created with MSOffice) 

Firstly, the algorithm starts with a set of individuals which is called population. Each individual 
is a solution to the problem and it is defined as a list of floats. The number of elements of the 
list must be equal to the number of explanatory variables plus one, the intercept. The 
population is randomly initialised, and its size is a control parameter which is obtained on the 
calibration phase.  
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Secondly, two individuals are randomly selected from the population because the elitist is 
introduced in the replacement phase. Moreover, if both parent individuals were equal, a new 
random individual would be generated to extend the search space. 

Thirdly, the population is probabilistically modified by crossover and mutation operators. One-
point crossover is applied because, in this problem, individuals are not too long. Regarding 
mutation, one weight of the individual is replaced by a new random one.  

Finally, in order to maintain the best individuals of the population, a tournament replacement 
has been used. The two worst individuals, whose fitness functions are the lowest, of a group of 
individuals previously selected are replaced by the two new ones. The algorithm stops after a 
pre-fixed number of iterations. 

3. Data description 

We take data from a Spanish city. The analysed network has a total of 3,020km of sewer pipes. 
The historical database is composed of seven consecutive years (from 2012 to 2018), and it 
includes 3,917 failures. In this work, the output variable represents an incidence in the pipe, 
which requires some intervention in it. The incidents embrace both blockages and pipe 
breakages. 

As previously mentioned, it is difficult to know in advance which factors are the most 
influential in the appearance of failures in sewer networks. Therefore, it is decided to add to 
the study every factor for which reliable data is available. The explanatory variables (𝑥𝑖) 
together with the output variable (𝑦) are listed in table 1. A number is assigned to each 
category of categorical variables starting by 0. Additionally, the percentage of network’s length 
represented by each category (for categorical variables) or by ranges (for numerical variables) 
is shown in figure 2. 

Table 1 Description of variables 

Variable Type Mean Std Min Max 

𝑥1 Material Categorical 2.593 1.1E+00 0 4 

𝑥2 Network type Categorical 0.897 3.0E-01 0 1 

𝑥3 Soil type Categorical 1.133 5.1E-01 0 2 

𝑥4 Water type Categorical 1.904 3.0E-01 0 2 

𝑥5 Section type Categorical 3.813 6.8E-01 0 4 

𝑥6 Diameter (mm) Numerical 513.483 5.0E+02 75 6500 

𝑥7 Length (m) Numerical 24.752 2.2E+01 0.3 2523 

𝑥8 Age (years) Numerical 27.282 1.8E+01 -1 118 

𝑥9 Exp. Sulphide Numerical 0.066 1.1E-01 0 0.4 

𝑥10 Previous failures Numerical 0.033 2.3E-01 0 9 

𝑦 Pipe failure Numerical 0.004 6.6E-02 0 1 

Four materials compose 97% of the network length: reinforced concrete (RC), concrete (CON), 
polyvinyl chloride (PVC) and vitrified clay (VC) (figure 2-a). Most pipelines are made of CON 
(68.7%) followed by RC (15.9%). The rest of the materials are joined in one only group named 
‘others’. There are two network types: the main collectors and the secondary network. The 
latter represents more than 85% of the network. The variable soil type differs between pipes 
under land, roadway or sidewalk. This can influence the loads they support. The variable water 
type informs about the origin of the water transported by each pipe which can be rainwater, 
sewage or both. As it can be seen in figure 2-d, most pipes conduct a combination of both, so 
this is a combined sewer system. 

Unlike supply network pipes, which are usually circular, wastewater pipes’ sections can have 
various shapes (figure 2-e). The diameter of non-circular sections, like oval or rectangular, is 
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estimated by equation (9), being h the height and w the width. Figure (2-f) shows that most of 
the network’s pipes have an estimated diameter between 0.25 and 0.50 metres. 

𝐷𝑒𝑞 = √
4

𝜋
ℎ𝑤 

(9) 

More than 96% of the network is composed by segments of a length lower than 100 metres. 
Both variables, Diameter and Length, have a much greater range than the rest as it can be 
appreciated in table 1. Therefore, they have been logarithmic transformed. The average age of 
the network is 27 years, being 14.9% of the network very new (less than 10 years). The 
exposure to hydrogen sulphide (Exp. Sulphide) takes into account the deterioration that 
wastewater can provoke on cementitious pipes, as internal corrosion. This variable is 
estimated based on the slope of the pipe segment. 

The last figure (2-j) exhibits that more than 97% of the network has not suffered any prior 
failure, which implies that the database is totally unbalanced. 

 

Fig 2 Percentage of the network’s length represented by each category of categorical variables, and by ranges of 
numerical variables (figure created with MSOffice) 

Figure 3 depicts the total number of failures, blockages and breakages of pipes, recorded in 
the available database. Despite the last year data, an increasing tendency over the years can 
be appreciated. 
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Fig 3 Total recorded failures per year (figure created with MSOffice) 

4. Results and discussion 

One of the main goals of a good classifier is to have good generalisation capabilities. For this 
purpose, not only should training data be representative, but overfitting must also be avoided 
(Flach, 2012). Five years from the historical database are used to train the model, which seems 
to be reasonably representative. Consequently, the test data, which assesses the performance 
of the estimated model, is composed by the remaining two years. 

Data has a majority class of pipes which do not suffer any failure. However, it is more 
interesting to make the right predictions for those pipes which do fail, the minority class. For 
this reason, an under-sampling technique is implemented for the training set, so the algorithm 
can learn to make right predictions of both classes. Furthermore, missing data has been filled 
with the median of the variable. 

To measure the methodology performance, two aspects should be considered: the GA 
convergence and the generalisation capabilities of the LR model. The former implies that the 
likelihood function of the best individual must increase over time which can be assessed by 
visualising this evolution. The latter, that the final estimated model must make right 
predictions. The confusion matrix and the receiver operational curve (ROC) are specific metrics 
to measure the performance of the binary classifier.  

4.1. Calibration of the algorithms 

Firstly, GA control parameters are calibrated together with the data scaling. A total of 24 
simulations of 1,000 iterations (table 2) are carried out varying the population size (Pop size) 
and, the crossover and mutation probabilities (CXPB and MUTPB). Moreover, two different 
rescaling processes are applied to the input data: normalisation (eq. 10) and standardisation 
(eq. 11). The importance of data scaling lies in the diversity of variables’ unit of measurements 
and the fact that weights are established in a range between -1 and 1. 

𝑥𝑖 =
𝑥𝑖 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
 (10) 

𝑥𝑖 =
𝑥𝑖 − 𝑥𝑚𝑒𝑎𝑛

𝑥𝑠𝑡𝑑
 (11) 

On the one hand, normalisation reduces or extends the values of a variable to certain limits 
with respect to its minimum and maximum. If there was noise, this would be augmented with 
this transformation. On the other hand, standardisation converts data to a range of -1 to 1, 
making the new data to have a mean equal to 0 and a variance equal to 1. 
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Table 2 Algorithm's calibration 

Sim. 1 2 3 4 5 6 7 8 9 10 11 12 

MUTPB 0.2 0.2 0.2 0.3 0.3 0.3 0.4 0.4 0.4 0.5 0.5 0.5 

CXPB 0.8 0.8 0.8 0.7 0.7 0.7 0.6 0.6 0.6 0.5 0.5 0.5 

Pop size 100 200 1000 100 200 1000 100 200 1000 100 200 1000 

Scaling Stand Stand Stand Stand Stand Stand Stand Stand Stand Stand Stand Stand 

OF -3188 -3225 -3330 -3183 -3211 -3290 -3187 -3195 -3377 -3213 -3257 -3338 

Acc. 0.685 0.628 0.547 0.679 0.671 0.573 0.684 0.698 0.567 0.754 0.585 0.645 

Recall 0.651 0.752 0.755 0.717 0.690 0.799 0.680 0.638 0.736 0.585 0.748 0.693 

Sim. 13 14 15 16 17 18 19 20 21 22 23 24 

MUTPB 0.2 0.2 0.2 0.3 0.3 0.3 0.4 0.4 0.4 0.5 0.5 0.5 

CXPB 0.8 0.8 0.8 0.7 0.7 0.7 0.6 0.6 0.6 0.5 0.5 0.5 

Pop size 100 200 1000 100 200 1000 100 200 1000 100 200 1000 

Scaling Norm Norm Norm Norm Norm Norm Norm Norm Norm Norm Norm Norm 

OF -3375 -3425 -3442 -3369 -3416 -3478 -3421 -3403 -3421 -3412 -3393 -3457 

Acc. 0.558 0.606 0.566 0.495 0.613 0.557 0.606 0.536 0.708 0.481 0.651 0.612 

Recall 0.766 0.694 0.721 0.847 0.706 0.686 0.676 0.741 0.610 0.798 0.682 0.625 

Looking at the objective function’s values (OF) from table 2, it can be assumed that better 
results are obtained when GA control parameters are: a population size of 100 individuals, a 
high crossover probability of 0.7 and a mutation probability of 0.3. OF represents the log-
likelihood function (eq. 7). To compare standardisation and normalisation, the value of OF is 
not relevant because each one generates different values of input variables. So, in this case, 
accuracy and recall of the test data are analysed.  

Accuracy measures the percentage of well-classified instances, both 0 and 1. Despite being an 
important metric to quantify the quality of a classifier, for such data with unbalanced classes 
this can lead to confusion. For this reason, it is also essential to study the recall, which is the 
percentage of well-predicted instances from class 1 (𝑦𝑖 = 1). It can be appreciated that 
standardised data reaches more compensated values of accuracy and recall. Hence, this 
transformation seems to be more suitable. 

4.2. Final results and quality metrics 

Once control parameters are set, a new series of simulations is implemented in order to check 
the algorithm performance. Ten different simulations have been carried out, all of them with 
10,000 iterations of the genetic algorithm. Table 3 shows the mean and the standard deviation 
of these simulations and the best attained solution. Control parameters are: a population of 
100 individuals and a crossover and mutation probabilities of 0.7 and 0.3, respectively. 
Regarding data scaling, they have been standardised. According to test data results, it can be 
concluded that the algorithm generalises and the training data is representative. 

Table 3 Fitness function and quality metrics of the final solution 

 Training data Test data 

  OF Acc. Recall AUC Acc. Recall AUC 

Best 
sol. 

-3154.08 0.669 0.681 0.738 0.674 0.690 0.765 

Mean -3154.23 0.668 0.683 0.738 0.671 0.690 0.765 

Std dv 1.0E-04 9.2E-13 3.0E-11 5.6E-16 1.7E-11 1.3E-12 8.0E-14 

The 67.4% of pipes are well-predicted and the rate of possible prevented failure with a 
threshold of 0.5 is 0.69. It can be noted that accuracy and recall are again really compensated. 
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Figure 4 shows the evolution of the log-likelihood function (OF) of the population’s best 
individual in a simulation. It can be observed that it increases over time and, after 
approximately 6,000 iterations, it becomes stable. With this figure, the convergence of the GA 
is demonstrated. 

 
Fig 4 Evolution of the best solution's likelihood function - 10,000 iterations (figure created with Python 3.7) 

The model estimated by the best solution achieves to predict a great number of pipe failures. 
In fact, replacing 3% of pipe segments, more than 25% of unexpected pipe failures could have 
been prevented in years 2017 and 2018 (test data). These are the segments whose probability 
is higher than 0.75 (see figure 5). 

 
Fig 5 Percentage of prevented failures and percentage of total pipes for different ranges of 𝒑𝒊 (figure created with 

MSOffice) 

AUC is another quality metric which represents the ability of a classifier to avoid erroneous 
predictions (Fawcett, 2006). In figure 4, the ROC curve can be seen and its corresponding AUC 
for the test data of the best obtained solution of table 3. A perfect classifier would have an 
AUC of 1 while a random classifier would have AUC equal to 0.5. Our classifier demonstrates 
good capabilities of predicting if a pipe will or will not suffer a failure based on this case study. 
Every simulation reaches AUCs over 0.760 for the test data. 



10 

 

 
Fig 6 ROC curves of the test and training data from the simulation of the best attained solution (figure created with 

Python 3.7) 

Finally, table 4 shows the optimised weights which inform us that the most influential variables 
causing failures are diameter, water type and pipe age. On the basis of weight sign analysis, it 
is concluded that smaller diameter pipes are more prone to fail. However, the weight of the 
variable type of network (-0.12) states that there is a greater risk of failure for pipes within the 
principal network which usually presents bigger diameters. 

Table 4 Logistic regression’s weights obtained with the GA 

Variable Weight Best sol. Mean Std dv 

Intercept 𝑤0 -0.45 -0.45 2.6E-10 

Mat 𝑤1 0.18 0.18 2.2E-08 

N_type 𝑤2 -0.12 -0.12 1.4E-08 

Location 𝑤3 0.15 0.15 8.4E-10 

Wat_type 𝑤4 0.37 0.38 1.9E-09 

Sec_type 𝑤5 0.00 0.00 2.2E-08 

log(DIA) 𝑤6 -0.70 -0.70 4.4E-08 

log(LEN) 𝑤7 0.08 0.08 3.7E-09 

Age 𝑤8 0.36 0.36 5.8E-10 

Exp_sulf 𝑤9 0.09 0.09 1.7E-09 

NOPF 𝑤10 0.22 0.22 4.1E-09 

5. Conclusions 

This study attains satisfactorily the proposed objective which was to predict pipe failures in 
sewer systems using a logistic regression model. Logistic regression was successfully used as a 
machine-learning classifier. The model was trained with reliable data from a high-dimensional 
network and the results were accurate. In this work, the unknown parameters of the model 
were estimated by a real-coded genetic algorithm. First of all, raw data was processed and, 
then, GA control parameters and data scaling were calibrated by several simulations. The 
importance of data pre-processing and the correct calibration of the algorithms was entirely 
verified. Once the model is trained, a probability of occurrence of the success of interest is 
assigned to each pipeline. It enables to follow different criteria depending on the available 
budget or the system’s requirements. For instance, inspecting or replacing only those pipes 
whose probability was above a threshold. Moreover, results are very self-explanatory by non-
statistics-experts, which facilitate its implementation in real world systems.  
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Final results demonstrate the algorithm convergence and the efficacy of the logistic regression 
model. 25.2% of incidents could have been prevented by inspecting 3% of the pipelines. It 
would suppose a great reduction of unexpected failures. Therefore, service quality would 
increase and the institution in charge could save significant costs.  

A direct application of the developed methodology might be the optimisation of pipe’s visual 
inspections schedules and maintenance tasks. Additionally, it allows obtaining information 
about the network conditions and the factors which play the most significant roles in the 
appearance of pipe’s defects. On the contrary to previously suggested by (Savic et al., 2006), 
the weights of the logistic model inform that pipe diameter is the most influential variable and 
it has an inverse correlation with failure. Moreover, these pipes are more difficult to inspect 
directly by humans. Therefore, it would be interesting to prioritise the visual inspections of 
small pipes instead of the bigger ones. The type of transported water inside pipes is also a 
relevant variable. Pipes transporting combined water, which represent most of the network, 
have a higher risk of failure. As expected, older pipes are more prone to fail. However, it would 
be interesting to independently analyse which materials are more vulnerable to deterioration 
over time. 

Future lines of research could combine the proposed methodology with the processing of 
images obtained from visual inspections. Definitively, it would improve the model accuracy. 
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