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Abstract
In this paper, we study the recently introduced time-constrained maximal covering 
routing problem. In this problem, we are given a central depot, a set of facilities, 
and a set of customers. Each customer is associated with a subset of the facilities 
which can cover it. A feasible solution consists of k Hamiltonian cycles on subsets 
of the facilities and the central depot. Each cycle must contain the depot and must 
respect a given distance limit. The goal is to maximize the number of customers 
covered by facilities contained in the cycles. We develop two exact solution algo-
rithms for the problem based on new mixed-integer programming models. One algo-
rithm is based on a compact model, while the other model contains an exponential 
number of constraints, which are separated on-the-fly, i.e., we use branch-and-cut. 
We also describe preprocessing techniques, valid inequalities and primal heuristics 
for both models. We evaluate our solution approaches on the instances from litera-
ture and our algorithms are able to find the provably optimal solution for 267 out 
of 270 instances, including 123 instances, for which the optimal solution was not 
known before. Moreover, for most of the instances, our algorithms only take a few 
seconds, and thus are up to five magnitudes faster than previous approaches. Finally, 
we also discuss some issues with the instances from literature and present some new 
instances.
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1 Introduction

Vehicle routing problems and covering problems are important and fundamental 
problems in Operations Research and Logistics. In this paper, we study the recently 
introduced time-constrained maximal covering routing problem (TCMCRP), which 
is a generalization of well-known routing problems such as the orienteering problem 
(see, e.g., Golden et al. (1987); Gunawan et al. (2016)), and in particular the team 
orienteering problem (see, e.g., Chao et al. (1996)), and the maximal covering loca-
tion problem (see, e.g., Church and Velle (1974)). The problem was introduced in 
Amiri and Salari (2019), and applications in health care were discussed.

In the TCMCRP, we are given a directed graph G = (V ,A) , where V = 0 ∪ F ∪ C 
is the set of vertices. The vertex 0 represents the central depot, F the set of facilities 
and C the set of customers. The arc set A = A0F ∪ AFC is defined as set of routing 
arcs A0F = {(i, i�) ∶ i, i� ∈ 0 ∪ F} (i.e., the complete directed graph on 0 ∪ F ) and 
assignment arcs AFC ⊆ {(i, j) ∶ i ∈ F, j ∈ C} (i.e., the assignment arcs are a subset 
of all possible facility/customer connections). Each arc (i, i�) ∈ A0F has a travel dis-
tance dii′ > 0 associated with it. Moreover, let P represent the set of k = |P| available 
vehicles, and let Lp be a distance limit for each p ∈ P . A feasible solution consists 
of one Hamiltonian cycle on a subset of 0 ∪ F for each p ∈ P . Each of these cycles 
must contain 0 and respect the distance limit Lp . A facility F can only appear in at 
most one cycle. We will also refer to these cycles as tours T1,… , Tk . A customer is 
covered by a solution if there exists an assignment arc in AFC between the customer 
and a facility visited in one of the tours. The goal is to find a feasible solution which 
maximizes the number of covered customers.

Note that in the instances from literature, Lp is the same for all vehicles, and the 
distance function is Euclidean. Both are common assumptions in vehicle routing 
problems. Moreover, the mixed-integer programming (MIP) formulation presented 
in Amiri and Salari (2019) implicitly assumes that the distance function satisfies 
the triangle inequality1. In this work, we present two new MIP formulations for the 
problem. The first formulation assumes that the distance function satisfies the tri-
angle inequality and Lp is the same for all vehicles. The second formulations do not 
need these assumptions. Figure 1 shows an exemplary instance graph of the TCM-
CRP and its optimal solution for four vehicles and a given distance limit.

Contribution and paper outline The TCMCRP was recently introduced in Amiri 
and Salari (2019), where the authors presented a flow-based MIP model, an iterated 
local search, a tabu search and a variable neighborhood search for it. They evaluated 
their algorithms on instances derived from the well-known TSPLIB (Reinelt 1991). 
In this paper, we develop two exact solution algorithms for the problem based on 
new MIP-models. One algorithm is based on a compact model, i.e., a model with 
a polynomial number of variables and constraints. The other model contains an 
exponential number of constraints. We also describe preprocessing techniques, valid 

1 cf. constraint (12) in their formulation and the associated explanation.
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inequalities and primal heuristics for both models. Since for the compact model the 
presented set of valid inequalities has exponential size, we use branch-and-cut (see, 
e.g., Conforti et al. (2014)) in both solution algorithms.

In a computational study, we evaluate our solution approaches on the instances 
from Amiri and Salari (2019). The study reveals that our algorithms are able to find 
the provably optimal solution for 123 instances, where the optimal solution was 
not known before, and only 3 instances remain unsolved. Moreover, for most of the 
instances, our algorithms only take a few seconds, and thus are up to five magnitudes 
faster than the algorithms presented in Amiri and Salari (2019). Finally, we also dis-
cuss some issues with the instances used in Amiri and Salari (2019) (e.g., not all 
customers have a facility associated with it, and the optimal solution often contains 
just all reachable customers; the calculation of Lp is not the same as described in the 
paper), and introduce a set of new and more difficult instances.

The paper is organized as follows: In the remainder of this section, we give an 
overview of related work. In Sect. 2, we present our two new MIP-models, together 
with preprocessing/variable-fixing procedures and valid inequalities. In Sect. 3, we 
discuss additional details about the developed branch-and-cut framework, such as 
separation procedures for the valid inequalities and primal heuristics. Section 4 con-
tains the computational study, and Sect. 5 concludes the paper.

Related work As the studied problem is a quite general routing/covering problem, 
there is naturally a vast number of related work; the paper introducing the TCMCRP 
(Amiri and Salari 2019) contains a quite exhaustive and up-to-date discussion of 
related problems. We thus focus the discussion about related work on the team ori-
enteering problem (TOP), since both of our models are extensions of models for the 
TOP. For a general overview on routing problems, we refer to, e.g., Toth and Vigo 
(2014) and for a general overview on facility location/covering problems, we refer 
to, e.g., Laporte et al. (2015) (Chapter 5).

Instance-graph. Optimal solution.(a) (b)

Fig. 1  Exemplary instance graph of the TCMCRP and its optimal solution for four vehicles and a given 
distance limit. The blue circle is the central depot, orange boxes are facilities and green triangles are 
customers. The gray edges in 1a between facilities and customers denote which customers are covered by 
each facility. For better readability, the arcs between facilities, and facilities and the central depot are not 
displayed. In the solution 1b, the arcs of the optimal solution are indicated in black, and all facilities and 
customers not in the solution are grayed out
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The TOP is an extension of the orienteering problem (OP) to multiple vehicles. 
The OP was first introduced in Tsiligirides (1984). In the OP, we are given a central 
depot, a set of profitable customers which can be visited, and a distance limit. The 
goal is to find the most profitable Hamiltonian cycle on a subset of the customers, 
the cycle must also contain the depot and respect a given distance limit. Sometimes 
the OP is defined with a start depot and an end depot, and a Hamiltonian path on a 
subset of the customers from start to end is searched. Moreover, there is a variant 
of the OP called selective traveling salesman problem (see Gendreau et al. (1998); 
Laporte and Martello (1990)), with additional compulsory vertices, which must be 
in any feasible cycle/path. There exist also many other variants with additional side-
constraints (such as capacities or time-windows), for more details, see, e.g., the sur-
vey Gunawan et al. (2016). Regarding successful exact approaches for the OP, there 
are several papers (Fischetti et al. 1998; Gendreau et al. 1998; Leifer and Rosenwein 
1994) using branch-and-cut approaches based on models with generalized subtour 
elimination constraints (GSECs)/connectivity cuts(CCs). Similar GSECs/CCs will 
also be used in our approaches.

The TOP was introduced in Chao et al. (1996), where a heuristic was proposed. 
The TOP extends the OP by introducing k (homogeneous) vehicles, i.e., the goal 
is now to find k Hamiltonian cycles/paths containing the depot and respecting the 
distance limit, instead of a single one. Note that the TOP can be seen as a special 
case of the TCMCRP, with a one-to-one-correspondence between facilities and cus-
tomers. A variant of the TOP with heterogeneous vehicles (denoted as multiple tour 
maximum collection problem) was considered in Butt and Ryan (1999). Several col-
umn generation, and branch-and-price(-and-cut) approaches were proposed for the 
TOP (Boussier et al. 2007; Butt and Ryan 1999; Keshtkaran et al. 2016; Poggi et al. 
2010). An exponential size formulation using GSECs and solved by branch-and-
cut was developed in Dang et al. (2013); El-Hajj et al. (2016). In Bianchessi et al. 
(2018), the authors presented a compact model for the TOP based on a formula-
tion of Maffioli and Sciomachen (1997) for the sequential ordering problem. They 
strengthen the model by separating CCs and were able to solve additional instances 
to optimality.

Aside from the TOP, another strongly related problem to the TCMCRP is the 
time-constrained maximal covering salesman problem (TCMCSP), which was intro-
duced in Naji-Azimi and Salari (2014). The TCMCSP is the single-vehicle variant 
of the TCMCRP. In Naji-Azimi and Salari (2014), the authors presented a flow-
based MIP model and some heuristics for the TCMCSP ( Amiri and Salari (2019) 
is basically the extension of the approaches in Naji-Azimi and Salari (2014) to the 
TCMCRP). In Ozbaygin et al. (2016), an exact solution algorithm based on GSECs 
for a variant of the TCMCSP was proposed.

2  Mixed integer programming models and valid inequalities

We first present the compact model, together with its associated preprocessing and 
valid inequalities, and then the exponential-sized model, together with its associated 
preprocessing and valid inequalities. Note that for the compact model the presented 
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set of valid inequalities has exponential size. Thus, we also use branch-and-cut in 
the algorithm based on the compact model. For later use, for a subset S ⊆ 0 ∪ F , let 
�+(S) = {(i, i�) ∈ A0F ∶ i ∈ S, i� ∉ S} and �−(S) = {(i, i�) ∈ A0F ∶ i ∉ S, i� ∈ S} be 
the set of outgoing, resp., incoming arcs of the cut induced by S. In both models, we 
allow solutions using less than k vehicles, as we present some valid inequalities based 
on optimality-arguments, namely constraints (C-FD). These inequalities may cut off 
some optimal solutions, if an instance has multiple optimal solutions, and the remain-
ing optimal solutions may use less than k vehicles. This situation is detailed below in 
Example 1.

2.1  Compact model

This formulation follows the approach proposed for the TOP in Bianchessi et  al. 
(2018). For this formulation and its associated valid inequalities, we assume that the 
distance function fulfills the triangle inequality and that the vehicles are homogene-
ous. Let L denote the homogeneous distance limit, i.e., Lp = L for p ∈ P . Let binary 
variables xii� = 1 , for (i, i�) ∈ A0F , iff arc (i, i�) is traveled by a vehicle in the solution. 
Let binary variables yi = 1 , i ∈ F , iff facility i is visited in the solution, and binary 
variables zj = 1 , j ∈ C , iff customer j is covered by the solution. Moreover, let con-
tinuous variables fii′ for (i, i�) ∈ A0F indicate the traveled distance from the central 
depot at facility i′ for a vehicle arriving from i. Let integer variable w ∈ {1,… , k} 
indicate the number of vehicles used in the solution. The compact model, denoted 
by (C), is as follows.

(C-OBJ)max
∑

j∈C

zj

(C-LINK)s.t.
∑

(i,j)∈AFC

yi ≥ zj ∀j ∈ C

(C-OUT)
∑

(i,i�)∈A0F

xii� = yi ∀i ∈ F

(C-IN)
∑

(i�,i)∈A0F

xi�i = yi ∀i ∈ F

(C-OUT0)
∑

(0,i)∈A0F

x0i = w

(C-IN0)
∑

(i,0)∈A0F

xi0 = w

(C-FLOW0)f0i = d0ix0i ∀i ∈ F
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The objective function (C-OBJ) and constraints (C-LINK) ensure that a customer 
is only counted in the objective function, if a facility covering it is visited in the 
solution. Constraints (C-IN) and (C-OUT) ensure that each visited facility has one 
incoming and one outgoing arc. Constraints (C-OUT0) and (C-IN0) make sure that 
there are exactly w vehicles leaving and entering the depot. The solution defined 
by the previous four set of constraints (plus integrality of the variables) will con-
sist of w or more cycles, with w of these cycles containing the central depot, i.e., 
subtours are possible. Potential subtours are prohibited using flow-conservation 
constraints (C-FLOW0) and (C-FLOW). These constraints ensure that the flow-
variables fii′ encode the distance traveled from the depot to facility i′ . We note that 
there is no feasible way to set the values of the flow-variables of arcs contained in a 
potential subtour, as the total traveled distance can only increase along any selected 
path. Thus, these constraints forbid subtours. Moreover, together with constraints 
(C-DIST), these constraints also model the distance limit of a tour: For any facil-
ity i in the solution, the traveled distance must allow to go back from i to the cen-
tral depot within the distance limit. Note that constraints (C-DIST) need that the 
distance function fulfills the triangle inequality, otherwise there could be a shorter, 
non-direct connection from i′ to the central depot, and the constraints would be too 
restrictive. Constraints (C-DIST) also link the flow-variables and the arc-variables, 
i.e., flow is only allowed on an arc, if the arc is selected in the solution. Finally, con-
straints (C-Y) to (C-W) define the variables.

Valid Inequalities Next, we present some valid inequalities for (C), including var-
iable-fixing procedures, which can be applied in a preprocessing step.

The first set of inequalities is concerned with dominance between facilities. The 
inequalities use optimality-arguments, i.e., they may cut off some feasible solutions, 
but there is at least one optimal solution fulfilling all of them.

Theorem  1 Let i, i� ∈ F , and C(i��) = {j ∈ C ∶ (i��, j) ∈ AFC} for i�� = i, i� . Suppose 
C(i�) ⊆ C(i) . Then, the following facility dominance inequalities

(C-FLOW)
∑

i�∈�+(i)

fii� −
∑

i�∈�−(i)

fi�i =
∑

(i,i��)∈A0F

dii��xii�� ∀i ∈ F

(C-DIST)fii� ≤ (L − di�0)xii� ∀(i, i�) ∈ A0F, i
� ≠ 0

(C-Y)yi ∈ {0, 1} ∀i ∈ F

(C-Z)zj ∈ {0, 1} ∀j ∈ C

(C-X)xii� ∈ {0, 1} ∀(i, i�) ∈ A0F

(C-F)fii� ≥ 0 ∀(i, i�) ∈ A0F

(C-W)w ∈ {1,… , k}
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are valid for (C) , i.e., there exists at least one optimal solution fulfilling all of them. 
Moreover,

is also valid.

Proof As i covers at least the same customers also covered by i′ , there is no improve-
ment in the objective function by including i′ in any solution containing i. Moreover, 
as the distance function fulfills the triangle inequality, any tour containing both i and 
i′ will never be shorter than a tour just containing i. Thus, for each solution contain-
ing both i and i′ , another solution just containing i with the same objective, and same 
or shorter tour-lengths can be constructed.   ◻

We note that inequalities (C-FD) may cut off all optimal solutions using exactly k 
vehicles, as shown in the following example.

Example 1 Let k = 3 , F = {i1, i2, i3} , C = {j1, j2, j3} and AFC = {(i1, j1), (i1, j2),

(i2, j1), (i3, j3)} . Moreover, suppose that due to the distances and the given distance 
limit, each tour can only visit one facility. We have two optimal solutions: (i) using 
two vehicles, with one visiting i1 and one visiting i3 , (ii) using three vehicles, and 
each vehicle visits one facility. As facility i1 dominates facility i2 , facility dominance 
inequalities (C-FD) only allow solution (i).

The following variable fixing exploits the distance limit L, similar ideas have 
been used in Bianchessi et al. (2018); Dang et al. (2013); El-Hajj et al. (2016) for 
the TOP and in Ozbaygin et al. (2016) for the TCMCSP, they can be seen as special-
case of the path inequalities for the OP proposed in Fischetti et al. (1998).

Theorem 2 Let i ∈ F with d0i + di0 > L . Then

is valid for (C).

Let i, i� ∈ F with d0i + dii� + di�0 > L . Then

is valid for (C).

Let F(j) = {i ∈ F ∶ (i, j) ∈ AFC} for j ∈ C . If for all i ∈ F(j) , we have 
d0i + di0 > L , then

(C-FD)yi + yi� ≤ 1

(C-FDA)xii� = 0 and xi�i = 0

(C-FIXF)yi = 0

(C-FIXA)xii� = 0

(C-FIXC)zj = 0
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is valid for (C).

Proof Obvious, as the distance limit does not allow the shortest cycle containing 
(i, i�) , resp., i. Moreover, if no facility covering j can be reached given the distance 
limit, j cannot be in any solution.  ◻

The following global constraint (C-DISTG) on the length of all tours can also be 
added, as well as constraints (C-FLOWER) which impose lower bounds on the flow-
variables fii′ (see Bianchessi et al. (2018)).

While the inequalities in the model already ensure that the solution is connected 
(and hence, consists of k cycles containing the central depot), the model can be 
strengthened by adding connectivity cuts (C-CC) (see, e.g., Bianchessi et al. (2018)).

The inequalities ensure that there is at least one arc going from (F ⧵ S) ∪ 0 to S, if 
a facility i in S is chosen in a solution. While these inequalities would also ensure 
that the solution is connected, we cannot replace the flow-conservation constraints 
(C-FLOW) with them, as the flow-conservation constraints are also needed for mod-
eling the distance limit. As there are exponentially many inequalities (C-CC), we 
separate them on-the-fly in a branch-and-cut, see Sect. 3.1 for the separation. In the 
following, we present various liftings of these inequalities.

Theorem  3 Let S⊆F with |S| ≥ 2 and F ⊆ S with d0i + dii� + di�0 > L for all pairs 
i, i� ∈ F  . Then, the following inequality is valid

Proof If any of the facilities in F  is in a solution, at least one of the arcs associated 
with the variables on the left-hand-side must be taken to ensure connectivity to the 
central depot. Moreover, each tour in a solution can only contain at most one of the 
facilities in F  , due to the condition defining F  . Thus, each yi with value one on the 
right-hand-side needs its own tour. This implies that at least as many arcs associated 
with variables on the left-hand-side must be in a solution as there are facilities from 
F  in this solution.   ◻

Let LB be a given lower bound for the objective value, e.g., the value of the cur-
rent incumbent solution during branch-and-cut. Using LB, an optimality-based lift-
ing of (C-CC) may be possible.

(C-DISTG)
∑

(i,i�)∈A0F

dii�xii� ≤ wL,

(C-FLOWER)fii� ≥ (d0i + dii� )xii� .

(C-CC)
∑

(i��,i�)∈𝛿−(S)

xi��i� ≥ yi ∀S⊆F, i ∈ S ∶ |S| ≥ 2

(C-CC-FIXA)
∑

(i��,i�)∈�−(S)

xi��i� ≥
∑

i∈F

yi.
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Theorem 4 Let S⊆F with |S| ≥ 2 . Let Z(S) = |{j ∶ (i, j) ∈ AFC, i ∉ S}| , i.e., the num-
ber of customers, which can be served by facilities not in S. Suppose Z(S) ≤ LB , 
then the following inequality is valid

Proof As Z(S) ≤ LB , facilities outside of S cannot serve enough customers to pro-
vide an improved solution, thus, at least one tour must visit facilities in S to provide 
a solution with value better than LB.   ◻

Another lifted version of (C-CC) can be obtained using the facility dominance 
inequalities (C-FD).

Theorem 5 Let i, i� ∈ S ⊆ F , and C(i��) = {j ∈ C ∶ (i��, j) ∈ AFC} for i�� = i, i� . Sup-
pose C(i�) ⊆ C(i) . Then, the following inequality is valid

Proof Both i, i′ are in S and there exists an optimal solution, where at most one of 
them will be visited, following from the same arguments as in the proof of Theo-
rem 1.   ◻

Finally, there is also a version of inequalities (C-CC), which use the customer 
variables on the right-hand-side.

Theorem  6 Let j ∈ C and F(j) = {i ∈ F ∶ (i, j) ∈ AFC} . Let S ⊆ F and suppose 
F(j) ⊆ S . Then, the following inequality is valid

Proof If zj is one, customer j is covered in the solution. Thus, at least one of the 
facilities in F(j) must be in the solution. As F(j) ⊆ S , at least one arc must go into S 
to allow at least one of the facilities in F(j) to be connected to the central depot.   ◻

Note that in any LP-relaxation solution (x∗, y∗, z∗, f ∗,w∗) of (C), z∗
j
≥ y∗

i
 for 

(i, j) ∈ AFC , as the objective function maximizes 
∑

j∈C zj . Thus, whenever there is a 
violated inequality (C-CC) with S fulfilling the conditions of (C-CC-CUST), there is 
an inequality (C-CC-CUST) with at least the same violation.

2.2  Exponential model

This model follows the formulation of Dang et al. (2013) and El-Hajj et al. (2016) 
for the TOP and allows for heterogeneous vehicles, i.e., different distance limits Lp 
for each p ∈ P . Binary variables zj , j ∈ C have the same meaning as in model (C). 

(C-CC-OPT)
∑

(i��,i�)∈�−(S)

xi��i� ≥ 1

(C-CC-FD)
∑

(i���,i��)∈�−(S)

xi���i�� ≥ yi + yi�

(C-CC-CUST)
∑

(i�,i)∈�−(S)

xi�i ≥ zj
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Let binary variables yp
i
= 1 , i ∈ F , p ∈ P , iff facility i gets visited by the tour of 

vehicle p ∈ P . Moreover, let binary variables xp
ii�
= 1 , for (i, i�) ∈ A0F , iff arc (i, i�) is 

traveled by vehicle p ∈ P in the solution. Let binary variable wp = 1, p ∈ P iff vehi-
cle p is used in the solution. The model, denoted by (E), is as follows.

(E-OBJ)max
∑

j∈C

zj

(E-LINK)s.t.
∑

p∈P

∑

(i,j)∈AFC

y
p

i
≥ zj ∀j ∈ C

(E-ONEF)
∑

p∈P

y
p

i
≤ 1 ∀i ∈ F

(E-OUT)
∑

(i,i�)∈A0F

x
p

ii�
= y

p

i
∀i ∈ F, p ∈ P

(E-IN)
∑

(i�,i)∈A0F

x
p

i�i
= y

p

i
∀i ∈ F, p ∈ P

(E-OUT0)
∑

(0,i�)∈A0F

x
p

0i�
= wp ∀p ∈ P

(E-IN0)
∑

(i�,0)∈A0F

x
p

i�0
= wp ∀p ∈ P

(E-CC)
∑

(i��,i�)∈𝛿−(S)

x
p

i��i�
≥ y

p

i
∀S⊆F, i ∈ S ∶ |S| ≥ 2, p ∈ P

(E-DIST)
∑

(i,i�)∈A0F

dii�x
p

ii�
≤ Lpwp ∀p ∈ P

(E-Y)y
p

i
∈ {0, 1} ∀i ∈ F, p ∈ P

(E-Z)zj ∈ {0, 1} ∀j ∈ C

(E-X)x
p

ii�
∈ {0, 1} ∀(i, i�) ∈ A0F, p ∈ P

(E-W)wp ∈ {0, 1} p ∈ P
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The objective function (E-OBJ) and constraints (E-LINK) are the same as in model 
(C). Constraints (E-ONEF) make sure that each facility is only visited by one vehicle 
(in case of distances satisfying the triangle inequality, these constraints are redun-
dant, as using a facility in more than one tour will only result in larger distances). 
For each vehicle p ∈ P , constraints (E-OUT) and (E-IN) ensure that if a facility is 
visited by vehicle p, the vehicle enters and leaves the facility. Moreover, constraints 
(E-OUT0) and (E-IN0) ensure that each used vehicle enters and leaves the depot. 
Thus, the previous four sets of constraints make sure that the solution for each used 
vehicle consists of one or more cycles, and one of these cycles starts and ends at 
the depot. Connectivity cuts (E-CC) ensure that a facility i visited by a vehicle p 
must be connected to the central depot: For any set S containing i, at least one arc 
going from (F ⧵ S) ∪ 0 to S must be taken by vehicle p. Thus, the solution contains 
exactly one cycle for each vehicle, and this cycle must contain the central depot. As 
the set of inequalities (E-CC) is of exponential size, we separate them on-the-fly, 
when they are violated. Separation of the inequalities is discussed in Sect. 3.1. The 
distance limit is enforced by constraints (E-DIST). The variables are defined by con-
straints (E-Y) to (E-W).

Valid Inequalities Similar to model (C), several valid inequalities and variable-fixing 
procedures can be defined. Some of these inequalities are adaptions of the inequali-
ties for (C); however, there are also additional inequalities. While formulation (E) 
makes no assumption on the distance function, all of the valid inequalities need that 
the distance function is symmetric and fulfills the triangle inequality.

Facility domination inequalities (C-FD) can be adapted as follows for facilities 
i, i� ∈ F to obtain inequalities (E-FD)

Adaption of the variable fixings (C-FDA), (C-FIXF), (C-FIXA) and (C-FIXC) are 
straightforward. We denote them as (E-FDA), (E-FIXF), (E-FIXA) and (E-FIXC). 
Moreover, the following conflict-constraints (E-CLQ) can be derived (see also the 
incompatibility clique cuts for the TOP in Dang et  al. (2013) and  El-Hajj et  al. 
(2016))

Theorem  7 Let p ∈ P and F ⊆ F with d0i + dii� + di�0 > Lp for all pairs i, i� ∈ F  . 
Then, the following inequality is valid.

Proof Due to the assumption that the distances fulfill the triangle inequality and the 
condition d0i + dii� + di�0 > Lp holds for all pairs i, i� ∈ F  , at most one of the facili-
ties i ∈ F  can be visited by vehicle p.   ◻

There is an exponential number of inequalities (E-CLQ). We thus do not use 
all of them in our solution framework, but only a subset, resp., we separate them 

(E-FD)
∑

p∈P

(y
p

i
+ y

p

i�
) ≤ 1.

(E-CLQ)
∑

i∈F

y
p

i
≤ wp.
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on-the-fly, for more details on this see Sect.  3.1. Inequalities (E-CLQ) can be 
used for lifting (E-CC) as shown in the following.

Theorem 8 Let S⊆F with |S| ≥ 2 . Let p ∈ P and F ⊆ S with d0i + dii� + di�0 > Lp for 
all pairs i, i� ∈ F  . Then, the following inequality is valid

Proof Only at most one of the variables yp
i
 on the right-hand-side can be one in a 

feasible solution, due to the assumption that the distances fulfill the triangle inequal-
ity and the condition d0i + dii� + di�0 > Lp holds for all pairs i, i� ∈ F  .   ◻

Moreover, a lifted version of (E-CC) using facility dominance, similar to 
(C-CC-FD) can also be defined.

Theorem  9 Let p ∈ P , i, i� ∈ S ⊆ F , and C(i��) = {j ∈ C ∶ (i��, j) ∈ AFC} for 
i�� = i, i� . Suppose C(i�) ⊆ C(i) . Then, the following inequality is valid

Proof Similar to the proof of Theorem 5.  ◻

Symmetry Breaking Inequalities In case Lp = L, p ∈ P , there can be symmetric solu-
tions. In order to break these symmetries, the following set of inequalities (E-SYM) 
can be used. Let p1, p2,… , pk denote an arbitrary ordering of the vehicles. Inequali-
ties (E-SYM) impose that a vehicle with lower index needs to visit at least as many 
facilities in its tour than a vehicle with a higher index (see also Dang et al. (2013) 
and El-Hajj et al. (2016) for similar inequalities for the TOP)

3  Algorithmic frameworks

In this section, we discuss further details of our solution frameworks based on 
models (C), resp., (E). The solutions frameworks were implemented in C++ 
using CPLEX 12.9 as MIP solver. In Sect. 4, we report results obtained by sev-
eral combinations of the ingredients presented in this section.

(E-CC-CLQ)
∑

(i��,i�)∈�−(S)
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i��i�
≥
∑
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(E-CC-FD)
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, 1 ≤ � ≤ k − 1.
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3.1  Separation algorithms

Model (C) has polynomial size, however, the family of valid inequalities (C-CC) is 
of exponential size. Thus, we do not add all of them in the beginning, but sepa-
rate them on-the-fly, when they are violated, i.e., we use branch-and-cut. The same 
holds for inequalities (E-CC) of model (E). In fact, the separation procedure for both 
families of inequalities is the same, the only difference is that inequalities (C-CC)are 
defined on variables x, y, and (E-CC) on xp, yp , p ∈ P . Naturally, all the lifted ver-
sions/variants of (C-CC) and (E-CC) are also families of inequalities with exponen-
tial size. Finally, the family of inequalities (E-FD) of (E) is also of exponential size.

For separation, we used the LazyConstraintCallback, which gets 
called by CPLEX to check integer solutions and the UserCutCallback, which 
gets called by CPLEX to check fractional solutions. When using cuts which 
remove integer solutions, nonlinear reductions and dual presolve reductions of 
CPLEX must be deactivated. CPLEX does this automatically, when the Lazy-
ConstraintCallback is used CPLEX (2020a, 2020b).

Separation of (C-CC) and (E-CC) for fractional solutions In case (x∗, y∗) is fractional, 
it is well-known that connectivity cuts like (C-CC) can be separated using maxi-
mum flow computations on a graph, where the arc capacities are set to x∗ (see, e.g., 
Bianchessi et al. (2018) and Fischetti et al. (1998)). A connectivity cut with facility i 
on the right-hand-side is violated if the maximum flow from the central depot 0 to i is 
less than the value of y∗

i
 . Let S be the set containing i in such a minimum cut. The set S 

is giving a violated constraint (C-CC). In order to speed up the separation, we sort the 
facilities in decreasing order by the values of y∗

i
 and separate in this order. Whenever 

we find a violated inequality, we remove all facilities in S for separation of further 
inequalities. The maximum flow/minimum cut computation is done using the algo-
rithm of Cherkassky and Goldberg (1995). This algorithm may also return a second 
minimum cut S′ , and in such a case, we also add the violated constraint induced by S′ . 
Moreover, we add a small � = 10−5 to all capacities before separation to favor the sep-
aration of minimal cardinality cuts, see, e.g., Koch and Martin (1998) for more details 
on the last two techniques. Separation of inequalities (E-CC) is done in a similar way.

Separation of  (E-CC) for integer solutions As the flow-conservation constraints 
(C-FLOW) already ensure connectivity of the solution in model (C), inequalities 
(C-CC) will never be violated when (x∗, y∗) is integer. In model (E), when (xp∗, yp∗) 
is integer, the induced solution will consist of one or more cycles for each vehicle 
p. For each cycle S not containing the central depot 0, a constraint (E-CC) is added. 
These cycles can be found by finding the connected components of the induced 
solution using, e.g., a breadth-first search. Each component not containing the cen-
tral depot is such a cycle S. For i on the right-hand-side of (C-CC), we take a facility 
with the largest number of associated customers, ties are broken by taking the one 
with smallest index.

Separation of Inequalities (E-CLQ) The set F  of facilities on the left-hand-side of 
inequalities (E-CLQ) for a given vehicle p is a clique in the graph with edge set 
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E = {{i, i�} ∈ F × F ∶ d0i + dii� + di�0 > Lp} . Thus, for exact separation of these ine-
qualities, we would need to solve the NP-hard maximum weighted clique problem 
(see, e.g.,(Bomze et al. 1999)) with LP-values (yp∗) as vertex weights. To allow for 
fast separation, we have implemented a greedy heuristic for separating these ine-
qualities. Let deg(i) be the degree of a vertex in the graph defined by (F, E). The 
heuristic is described in Algorithm 1.

In some of our tested settings, we initialize the model with a subset of the ine-
qualities of family (E-CLQ). This subset is constructed by a modified version of the 
separation heuristic. In this modified version, we use deg(i) + deg(i�) in line 5 and 
deg(i��) in line 14 as of course there are no LP-values available at initialization.

Separation of Lifted Inequalities (C-CC-FIXA), (C-CC-OPT), (C-CC-FD), 
(C-CC-CUST), (E-CC-CLQ), (E-CC-FD)

We do not explicitly separate the lifted inequalities, but instead try to lift inequalities 
(C-CC) (resp., (E-CC)) when they are found by the separation routine. As discussed in 
the previous paragraph, inequalities (C-CC) can only be violated by fractional solu-
tions. Thus, when only using them, it would be enough to use the UserCutCall-
back of CPLEX. However, in their lifted versions, these inequalities may cut off 
integer solutions, as some of the liftings are optimality-based. Thus, for settings using 
the liftings of (C-CC), we install an empty LazyConstraintCallback so that 
CPLEX deactivates its nonlinear reductions and dual presolve reductions.

For lifting a violated inequality (C-CC) given by some S ⊆ F and i ∈ F , we proceed 
with the following steps. We only move to the next step, if none of the previous steps 
was successful. A lifting is deemed successful, if the (LP-)value of the variables on 
right-hand-side is larger than y∗

i
 . 
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1. Try to lift it to an inequality (C-CC-FIXA). This means, we have to find a set 
F ⊆ S fulfilling the same conditions as in the separation of inequalities (E-CLQ). 
We use a modified version of the heuristic presented for separating (E-CLQ) (on 
the subset S) for finding F  . In this modified version, we do not construct E′ , but 
only try to grow a single set F  . This set is initialized with i, and vertex 
i� = arg max

i��∈F∩S∶d0i+dii�� +di��0

deg(i��)y∗
i��
 . If no i′ exists (due to i�� ∈ F ∩ S ∶ d0i + dii�� + di��0 

being an empty set), we do not proceed with the lifting, and go to the next step.
2. Try to lift it to an inequality (C-CC-OPT). This is done by checking, if Z(S) ≤ LB 

for the detected set S and the current incumbent objective value LB.
3. Try to lift it to an inequality (C-CC-FD). This is done by checking all candidates ful-

filling the facility dominance condition. If there is more than one candidate, we take 
the one with largest LP-value, ties are broken by taking the one with smallest index.

4. Try to lift it to an inequality (C-CC-CUST), if there are any j ∈ C with F(j) ⊆ S . 
If yes, let j∗ be the customer with maximum z∗

j
-value among the customers fulfill-

ing the condition, ties are broken by taking the one with smallest index. If z∗
j∗
> y∗

i
 , 

we do the lifting.

In case of a violated inequality (E-CC), we proceed with the following steps. Again, we 
only move to the next step, if none of the previous steps was successful. 

1. Try to lift it to an inequality (E-CC-CLQ). This is done in a similar way as the 
lifting of (C-CC) to (C-CC-FIXA).

2. Try to lift it to an inequality (E-CC-FD). This is done in a similar way as the lift-
ing of (C-CC) to (C-CC-FD).

Additional details of the separation routine In order to avoid spending too much time 
in the separation routines, we limit the number of rounds of the separation-loop to 20 
in the root node of the branch-and-cut, and to five in all other nodes. Moreover, when 
using formulation (C) we initialize our model with xii� + xi�i ≤ yi for each i ∈ F and the 
five nearest i� ∈ F to i, these constraints are a special case of (C-CC) for |S| = 2 . The 
corresponding inequalities in case of formulation (E) are xv

ii�
+ xv

i�i
≤ yv

i
 . These inequal-

ities forbid subtours of size two. Note that they do not involve the central depot 0 as one 
of the vertices, as a tour going to a single facility is feasible, and would be forbidden by 
a constraint x0i + xi0 ≤ yi.

3.2  Branching priorities

Due to the structure of our models, branching on different set of variables will have 
different impacts on the structure of the solutions obtainable in the nodes of the 
branch-and-bound/branch-and-cut tree. CPLEX, which is the branch-and-cut solver 
we use, allows to give branching priorities to variables. In our implementation, we 
give the highest branching priorities to the facility variables y (resp., yv ), as for fixed 
facility variables, the customers covered in the solution can be found by inspection, 
and fixed facility variables have also implications on the arcs in the solution.
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3.3  Primal heuristics

We implemented primal heuristics to construct feasible solutions guided by the 
LP-solutions for (C) and (E) using the HeuristicCallback of CPLEX. The 
heuristics consist of a construction phase, which is slightly different for (C) and 
(E), and an improvement phase, which does not use the LP-solutions, and thus is 
the same for both underlying models.

Construction heuristic guided by the LP-solution of (C) The heuristic itera-
tively constructs k cycles in a greedy fashion using a modified distance function 
d̄ii� = dii� (1 − x∗

ii�
+ 𝜖) , where x∗ is the LP-solution and � = 10−5 . We refer to a (partial) 

solution S as (T,F, C) , where T = {T1,… , Tk} is the set of tours of the solution, F  is 
the set of facilities visited in the solution, and C is the set of customers covered. Tours 
will be indicated by the ordered set of facilities (and central depot 0) visited in the tour. 
For a facility i and a subset F′ ⊂ F of facilities, let C(i,F�) be the set of customers cov-
ered by i, but not by any facility in F′ . The heuristic is described in Algorithm 2.

Construction Heuristic Guided by the LP-solution of (E) The construction heuris-
tic in this case is similar to the one used with (C); the only difference is the modified 
distance function d̄ . As we have LP-values (xp∗) for each p ∈ P , we use a modified 
distance function d̄p for each vehicle p where d̄p

ii�
= dii� (1 − x

p∗

ii�
+ 𝜖) for � = 10−5.
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Improvement heuristic The improvement heuristic tries to improve a constructed 
solution (T,F, C) by inserting facilities covering customers, which are not yet cov-
ered by facilities in the solution. The heuristic is detailed in Algorithm 3.

First, all facilities, which are dominated by another facility in the solution 
are removed, and the tours are updated. Let candidateF be a list of all facili-
ties not in the current solution, and which cover at least one customer not cov-
ered by the current solution. We sort the facilities in candidateF in descend-
ing order based on the number of uncovered customers they would cover. This 
sorted list is denoted as sortedCandidateF. We then iterate through facilities 
i ∈ sortedCandidateF and try insertion of i in each tour T1,… , Tk at each pos-
sible position. Let i∗ be the first facility on the list sortedCandidateF, which can 
be inserted in a tour. We insert i∗ at the position and tour, which leads to the 
smallest increase in tour length. Then, the whole procedure is restarted from 
the beginning, as adding i∗ to the solution may lead to some new facilities in 
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the solution being dominated. The algorithm terminates when there is no more 
improving facility i∗ found.

4  Computational results

The runs were carried out on an Intel Xeon E5-2670v2 machine with 2.5 GHz and 
3GB of memory using a single thread, and all CPLEX parameters (except branching 
priorities) are left at their default values.

4.1  Comparison with the MIP Approach of Amiri and Salari (2019)

In this section, we compare our approaches with the MIP approach presented 
in Amiri and Salari (2019) using the instances introduced in the same paper. We 
obtained these instances on request from the authors and made them available at 
https:// msinnl. github. io/ pages/ insta ncesc odes. html. These instances are denoted as 
AMSAL in the following. For the runs in this section, we used a timelimit of 600 
seconds.

The instances are based on TSPLIB-instances with 52, 76, 100, 150, 200, 318, 
417, 575, 657 and 724 vertices. For each underlying TSPLIB-instance, three differ-
ent instances were created by taking 50%, 60% and 70% of the vertices as customers, 
and the remaining vertices except one as facilities and one vertex as central depot. 
For each facility, the customers it can cover are randomly chosen from the five near-
est ones. Here, we discovered an issue with the instances, namely there are often 
some customers which cannot be covered by any facility, and thus are useless (this 
can affect up to 90% of the customers of an instance in some cases). For most of the 
instances, this even led to the situation that all customers which could be covered 
by some facility in the instance were in the optimal solution (especially after taking 
account also customers unreachable due to the distance limit as described in Theo-
rem 2). Figure 2 depicts two instances to illustrate this issue (we refer to instances by 
|�| − |�| − � − � ). The issue is extremely pronounced, as the facility–customer-split 
is not chosen randomly among the vertices of the underlying TSPLIB-instance, but 
the first 50% (resp., 40%, 30%) of vertices in the TSPLIB-instance are taken as facil-
ities. From the figures, it can be seen that these vertices are clustered by location.

Three different values for the number of vehicles (k) are considered, namely 
k = 2, 3, 4 . In Amiri and Salari (2019), the following formula, for � ∈ {1, 0.9, 0.8} is 
given to define the value for L:

However, when verifying this formula, we noticed that it does not give the correct 
value, which could be obtained with the following formula instead:

L =
�

k
⋅ �F� ⋅

∑
i∈F∪0

∑
i�∈F∪0 dii�

(�F� ⋅ (�F� + 1))∕2

https://msinnl.github.io/pages/instancescodes.html
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The formula could be verified, as the respective values of L are also written explic-
itly in the obtained instance files and in the result tables in Amiri and Salari (2019). 
However, in some of the instance files, there were wrong values, and also some 
entries in the tables in Amiri and Salari (2019) have wrong entries, in particular in 
Table 3 containing the so-called large instances containing 318 vertices and more. 
We discuss this in more detail later. We corrected these errors in the instance files 
for our computational study and our uploaded instances also consist of the corrected 
instances. In total, this set contains 10 ⋅ 3 ⋅ 3 ⋅ 3 = 270 instances (ten underlying 
graphs, and the different parameters for |C|, k and L). From the discussion above, 
one can already see that these instances are maybe not too meaningful for bench-
marking. However, as they are the only instances from literature for the problem, we 
still consider them, but also introduce new instances to evaluate our approaches in 
Sect. 4.2.

Comparison of framework ingredients First, we are interested in the effect of the dif-
ferent models, valid inequalities, branching priorities and the primal heuristic. We 
compare the following settings:

• C: Model (C) without any variable fixing and valid inequalities. The primal heu-
ristic is not used and branching priorities are left at default.

• C+: C with variable fixing ((C-FDA), (C-FIXA),(C-FIXC),(C-FIXF)) and valid 
inequalities (C-FD), (C-DISTG), (C-FLOWER) added at initialization. Note that 
the resulting model is still compact.

• C++: C+ with the separation of connectivity cuts (C-CC) (and the liftings 
(C-CC-OPT), (C-CC-FD), (C-CC-CUST), (C-CC-FIXA)) and also branching 
priorities as described in Sect. 3.2.

• C++H: C++ with the primal heuristic as described in Sect. 3.3.

L = ⋅
�

k
⋅ �F� ⋅

∑
i∈F∪0

∑
i�∈F∪0 dii�

(�F� ⋅ (�F� + 1))∕4
.

Instance 125-291-2-9372.69. Instance 172-402-2-1732.68.(a) (b)

Fig. 2  Two instance graphs of the TCMCRP from the set AMSAL from Amiri and Salari (2019). The 
blue circle is the central depot, orange boxes are facilities, and green triangles are customers. The gray 
edges between facilities and customers denote which customers are covered by each facility
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• C++HS: C++H, where some of the polynomial-sized families of inequalities are 
separated by enumeration instead of adding it at initialization. The separated 
inequalities are (C-FD), (C-DIST) and (C-FLOWER). Moreover, explicit upper 
bounds fii� ≤ max(L − di�0, 0) are added at initialization to provide an initial 
upper bound on the fii′-variables, as constraints (C-DIST), which upper-bound fii′ 
in connection with xii′ , are now separated.

• E: Model (E) without any variable fixing and valid inequalities and lifting. The 
primal heuristic is not used and branching priorities are left at default.

• E+: Setting E with variable fixing ((E-FDA),(E-FIXA),(E-FIXC),(E-FIXF)) and 
symmetry breaking inequalities (E-SYM) added at initialization. Valid inequali-
ties (E-FD) are separated by enumeration. Moreover, a subset of inequalities 
(E-CLQ) is also added at initialization as described in Sect. 3.1.

• E++: Model (E) with variable fixing ((E-FDA),(E-FIXA),(E-FIXC),(E-FIXF)), 
and symmetry breaking inequalities (E-SYM) added at initialization. Valid 
inequalities (E-FD) are separated by enumeration. Inequalities (E-CLQ) are 
separated, and liftings ((E-CC-CLQ) and (E-CC-FD)) of the connectivity cuts 
(E-CC) are used. Moreover, branching priorities as described in Sect.  3.2 are 
also used.

• E++H: E++ with the primal heuristic as described in Sect. 3.3.
• E++H2: E++H, where inequalities (E-CLQ) are not only separated, but a subset 

of them is also added at initialization as described in Sect. 3.1.

Figures 3 and 4 give plots of the runtime to optimality for the instances from set 
AMSAL for these settings.

Looking at Figs. 3 and 4, the approaches based on model (E) seem more promis-
ing, as all settings except E manage to solve nearly all of the instances to optimality 
within the given timelimit (E++H2 and E++H solver more than 85% of the instances 
within 25 seconds). The situation for settings based on (C) is more diverse, C++HS 
and C++H also manage to solve nearly all of the instances to optimality, but the 
runtime is worse. C+ and E have nearly identical performance (solving about 75% 
of the instances), and both are considerably better than C (solving about 50% of the 
instances) and C++ (solving about 62.5% of the instances). Thus, it seems the vari-
able fixing and the valid inequalities are quite helpful regardless of the model, while 
connectivity cuts (C-CC) are actually hurting the performance for the approach 
based on (C). Potential explanations for this could be that (i) separation takes too 
long (leading to a slow node-throughput in the branch-and-bound), (ii) the internal 
CPLEX heuristics are less effective in finding feasible solutions due to the presence 
of separated inequalities, (iii) the upper bounds of the LP-relaxation after adding the 
variable fixing and the valid inequalities are already quite good due to the particular 
structure of the AMSAL instances. Interestingly, settings C++HS and C++H, which 
also use the connectivity cuts (C-CC), work better than C+. Both these settings are 
based on C++, but (i) additionally use the primal heuristic (C++H), resp., ii) also 
separate some inequalities (C++HS) instead of initializing with them, which leads to 
a smaller initial model and a faster node-throughput in the branch-and-bound.
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Detailed results Next, we give a detailed overview of the results for the instance 
AMSAL and settings C+, C++HS, and E++H2. Settings C++HS, and E++H2 are the 
best settings based on (C) and (E), respectively. We also include C+ in the tables 
as the model used in this setting is compact and the setting uses no heuristic. Thus, 
it can be given directly to a MIP-solver without the need of implementing separa-
tion procedures or heuristics. This could make it an attractive choice for a practi-
tioner. We also compare our results with the ones reported by the MIP approach 
of Amiri and Salari (2019). The results in Amiri and Salari (2019) were obtained 
using CPLEX 12.3 on an Intel Core i7 2.93 GHz processor with 3.49 GB of RAM. 
Tables 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 gives the results for these instances. In the tables, 
we report for each instance the number of vertices (|V|), the number of facilities (|F|), 
the number of customers (|C|), the number of vehicles (k), the distance limit (L), 
the number of customers covered by at least one facility which is reachable from 
the central depot ( |CR| “reachable customers,” i.e., following Theorem 2). For each 
setting, we report the runtime (t[s]), value of the best solution found ( z∗ ), optimality 
gap ( g[%] , calculated as 100 ⋅ ((UB − z∗)∕z∗) , where UB is the value of the upper 
bound found by the setting), and number of branch-and-bound nodes ( #nBBn ; only 
for our settings, as these are not reported in Amiri and Salari (2019)). A bold entry 
in z∗ indicates that optimality has be proven (as can also be seen by the optimality 
gap g[%] being zero). An entry of “-” in z∗ and g[%] indicates that no feasible solu-
tion could be found within the timelimit. A bold entry in |CR| indicates, that the opti-
mal solution consists of all reachable customers. An italic entry in the column z∗ for 
the results of Amiri and Salari (2019) indicates that the reported solution value has 
some issues, which are discussed in detail in the following paragraph.

Note that for instances with up to 200 vertices, the facility–customer cover-
age allocation is the same for each underlying graph and facility/customer split. 
This means that for the same |F|-|C|-p, the optimal value of instances with 
larger L always gives an upper bound to the optimal value of instances with 
smaller L. The following instances files contained wrong values for L, and 
accordingly, there were also wrong results reported for these instances in Amiri 
and Salari (2019): instance 15-36-2-1090.05 was the same as instance 

Fig. 3  Runtime to optimality for instance set AMSAL and different settings based on (C)
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15-36-2-1368.07, and instance 59-140-4-5005.31 was the same as 
instance 59-140-4-5630.98. With regard to instance 15-36-2-1368.07, 
the value in the instance file and in the result table in Amiri and Salari (2019) is 
also not the same, it is 1386.07 versus 1386.03, with the former being the correct 
value when verified using the formula mentioned in the beginning of the sec-
tion. For 15-36-2-1090.05, the value of L in the table is also not the same 
as the one obtained by calculation with the formula, the correct value is 1094.46. 
Moreover, for instances 29-70-2-5574.4, 29-70-2-4955.06, 29-70-3-
4129.21, 29-70-3-3716.29 the table in Amiri and Salari (2019) reports an 
optimal value of 36, while we found different (lower) optimal values. The (opti-
mal) results for instances 25-26-4-894.71 and 25-26-4-795.30 also 
seem wrong compared to our results, and also conflict with the construction of 
the instances, as the optimal solution value reported for the instance with lower 
distance limit is larger than the one for the instance with larger distance limit 
Finally, in Table 3 in Amiri and Salari (2019) (containing the instances with 318 
vertices and more), there are many wrong combinations of |F|-|C|-p-L (i.e., 
not as occurring in the instance files). Moreover, L = 1061.21 in the table should 
read 51061.21, and L = 7243.53 is occurring twice in the table, while 6699.96 
is occurring in an instance file, but missing in the table. As the values of L are 
unique in the instances, the result of Table 3 could still be useful for comparison 
by assuming that the best objective value reported for a given L gives a correct 
value and only |F|, |C| and k was mixed up in the table. However, when we com-
pared the reported solution values for a given L with our obtained solution values 
for the instance with this L, it was often larger than the optimal value we found 
and even larger than the number of true customers of the instance. Thus, it is not 
clear to us how to directly compare the results, resp., which of the solution values 
in Table 3 of Amiri and Salari (2019) correspond to which instance. Hence we do 
not report the detailed results of Amiri and Salari (2019) for instances of AMSAL 
with 318 vertices or more, but just note, that for only 38 of these 135 instances, 
the MIP approach of Amiri and Salari (2019) managed to find a feasible solution 
within the given timelimit of 18000 seconds, and for 32 of them, optimality is 

Fig. 4  Runtime to optimality for instance set AMSAL and different settings based on (E)
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reported (and for 112 of the other instances, leading to a total number of 144 out 
of 270, for which optimality is reported in Amiri and Salari (2019)).

The results show that E++H2 manages to solve 266 out of 270 instances to 
optimality, C++HS 255 instances and C+ 216 instances. For one of the four 
instances not solved to optimality by E++H2, instance 200-79-120-4-
6669.35, C++HS find the optimal solution. We note that for the larger instances, 
C+ often does not manage to leave the root node (see, e.g., Table 10) within the 
given timelimit, as the size of the model likely becomes prohibitive. This means 
CPLEX may take a very long time for solving the initial LP-relaxation and also 
for its internal heuristics, which rely on the LP-relaxation.

For smaller instances, the performance is quite similar to E++H2 and C++HS. 
Moreover, for 239 instances of the 270 instances, the value of the optimal solution 

Table 6  Detailed results for instance set AMSAL for instances with 318 vertices

|F| |C| k L |CR| C+ C++HS E++H2

t[s] z∗ g[%] #BB t[s] z∗ g[%] #BB t[s] z∗ g[%] #BB

95 222 2 10719.94 43 9 43 0.00 0 0 43 0.00 0 0 43 0.00 0
95 222 3 7146.63 43 16 43 0.00 0 0 43 0.00 0 1 43 0.00 0
95 222 4 5359.97 36 7 36 0.00 0 1 36 0.00 0 1 36 0.00 0
95 222 2 12059.93 40 11 40 0.00 0 0 40 0.00 0 0 40 0.00 0
95 222 3 8039.95 39 8 39 0.00 0 0 39 0.00 0 0 39 0.00 0
95 222 4 6029.97 40 14 40 0.00 0 0 40 0.00 0 1 40 0.00 0
95 222 2 13399.92 43 19 43 0.00 40 0 43 0.00 0 0 43 0.00 0
95 222 3 8933.28 39 4 39 0.00 0 0 39 0.00 0 0 39 0.00 0
95 222 4 6699.96 41 21 41 0.00 0 0 41 0.00 0 1 41 0.00 0
127 190 2 17407.31 36 20 36 0.00 0 0 36 0.00 0 1 36 0.00 0
127 190 3 11604.87 41 8 41 0.00 0 0 41 0.00 0 1 41 0.00 0
127 190 4 8703.65 37 5 37 0.00 0 0 37 0.00 0 1 37 0.00 0
127 190 2 19583.22 39 18 39 0.00 0 0 39 0.00 0 0 39 0.00 0
127 190 3 13055.48 43 35 43 0.00 11 0 43 0.00 0 1 43 0.00 0
127 190 4 9791.61 44 22 44 0.00 0 0 44 0.00 0 1 44 0.00 0
127 190 2 21759.13 40 13 40 0.00 0 0 40 0.00 0 0 40 0.00 0
127 190 3 14506.09 40 10 40 0.00 0 0 40 0.00 0 1 40 0.00 0
127 190 4 10879.57 38 7 38 0.00 0 0 38 0.00 0 1 38 0.00 0
158 159 2 22073.87 40 21 40 0.00 0 1 40 0.00 0 1 40 0.00 0
158 159 3 14715.91 37 80 37 0.00 0 1 37 0.00 0 2 37 0.00 0
158 159 4 11036.93 37 34 37 0.00 0 1 37 0.00 0 3 37 0.00 0
158 159 2 24833.10 41 30 41 0.00 0 1 41 0.00 0 1 41 0.00 0
158 159 3 16555.40 42 8 42 0.00 0 1 42 0.00 0 2 42 0.00 0
158 159 4 12416.55 39 30 39 0.00 0 1 39 0.00 0 2 39 0.00 0
158 159 2 27592.33 40 19 40 0.00 0 1 40 0.00 0 1 40 0.00 0
158 159 3 18394.89 39 9 39 0.00 0 1 39 0.00 0 1 39 0.00 0
158 159 4 13796.17 39 6 39 0.00 0 1 39 0.00 0 3 39 0.00 0
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is identical to the number of reachable terminals |CR| . In particular, for all instances 
with 318 vertices or more, this is happening.

4.2  Evaluating our MIP approaches on new instances

As the previous section has shown, due to the structure of the instances from 
AMSAL, it is quite easy to find tight upper bounds. Thus, the main difficulty to solve 
these instances to optimality is to find the optimal solutions and our approaches 
seem quite effective also for this purpose. In this section, we introduce a new set of 
instances, denoted as NEW. The instances are designed in such a way, that for all cus-
tomers, there are at least two facilities covering it in the underlying graph. Note that 

Table 7  Detailed results for instance set AMSAL for instances with 417 vertices

|F| |C| k L |CR| C+ C++HS E++H2

t[s] z∗ g[%] #BB t[s] z∗ g[%] #BB t[s] z∗ g[%] #BB

125 291 2 9372.69 75 600 74 1.35 540 0 75 0.00 0 1 75 0.00 0
125 291 3 6248.46 72 15 72 0.00 0 0 72 0.00 0 1 72 0.00 0
125 291 4 4686.35 75 198 75 0.00 300 0 75 0.00 0 2 75 0.00 0
125 291 2 10544.28 73 11 73 0.00 0 0 73 0.00 0 1 73 0.00 0
125 291 3 7029.52 73 56 73 0.00 50 0 73 0.00 0 1 73 0.00 0
125 291 4 5272.14 71 9 71 0.00 0 0 71 0.00 0 2 71 0.00 0
125 291 2 11715.87 75 12 75 0.00 0 0 75 0.00 0 1 75 0.00 0
125 291 3 7810.58 72 18 72 0.00 0 0 72 0.00 0 1 72 0.00 0
125 291 4 5857.93 67 600 21 219.05 400 0 67 0.00 0 2 67 0.00 0
166 250 2 12877.39 63 38 63 0.00 0 1 63 0.00 0 1 63 0.00 0
166 250 3 8584.93 64 69 64 0.00 0 1 64 0.00 0 2 64 0.00 0
166 250 4 6438.69 65 62 65 0.00 0 1 65 0.00 0 2 65 0.00 0
166 250 2 14487.06 63 18 63 0.00 0 1 63 0.00 0 1 63 0.00 0
166 250 3 9658.04 61 64 61 0.00 0 1 61 0.00 0 2 61 0.00 0
166 250 4 7243.53 65 600 28 132.14 160 1 65 0.00 0 2 65 0.00 0
166 250 2 16096.74 58 13 58 0.00 0 1 58 0.00 0 1 58 0.00 0
166 250 3 10731.16 62 13 62 0.00 0 1 62 0.00 0 1 62 0.00 0
166 250 4 8048.37 63 17 63 0.00 0 1 63 0.00 0 2 63 0.00 0
208 208 2 17827.96 58 77 58 0.00 0 1 58 0.00 0 2 58 0.00 0
208 208 3 11885.31 54 20 54 0.00 0 1 54 0.00 0 3 54 0.00 0
208 208 4 8913.98 58 53 58 0.00 0 1 58 0.00 0 7 58 0.00 0
208 208 2 20056.46 58 31 58 0.00 0 1 58 0.00 0 1 58 0.00 0
208 208 3 13370.97 58 36 58 0.00 0 1 58 0.00 0 2 58 0.00 0
208 208 4 10028.23 57 118 57 0.00 0 1 57 0.00 0 5 57 0.00 0
208 208 2 22284.96 57 31 57 0.00 0 1 57 0.00 0 2 57 0.00 0
208 208 3 14856.64 59 80 59 0.00 0 1 59 0.00 0 2 59 0.00 0
208 208 4 11142.48 60 29 60 0.00 0 1 60 0.00 0 4 60 0.00 0
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due to the nature of the problem, it can still happen, that after applying the distance 
limit-based variable fixing/preprocessing as described in Theorem 2 that some cus-
tomers cannot be reached for some values of L. For the runs in this section, we used 
a timelimit of 1800 seconds.

The instances are made available at https:// msinnl. github. io/ pages/ insta ncesc 
odes. html and are constructed as follows: |F| facilities and |C| customers are picked 
by taking random integers within [0, 1000] as the location of them in the Euclidean 
plane. The central depot is placed at point (500, 500). This is done for the follow-
ing pairs of (|F|,  |C|): (75, 225),  (100, 300),  (125, 375), for each pair three graphs 
are constructed. For the facility-customer coverage, we randomly pick between 
two and five of the nearest facilities for each customer. With this we ensure, that 
each customer can be covered (and also no trivial one-to-one relationship between 

Table 8  Detailed results for instance set AMSAL for instances with 575 vertices

|F| |C| k L |CR| C+ C++HS E++H2

t[s] z∗ g[%] #BB t[s] z∗ g[%] #BB t[s] z∗ g[%] #BB

172 402 2 1732.69 27 24 27 0.00 0 1 27 0.00 0 1 27 0.00 0
172 402 3 1155.12 26 17 26 0.00 0 1 26 0.00 0 1 26 0.00 0
172 402 4 866.34 30 14 30 0.00 0 1 30 0.00 0 2 30 0.00 0
172 402 2 1949.27 30 24 30 0.00 0 1 30 0.00 0 1 30 0.00 0
172 402 3 1299.51 27 9 27 0.00 0 1 27 0.00 0 1 27 0.00 0
172 402 4 974.64 28 7 28 0.00 0 1 28 0.00 0 2 28 0.00 0
172 402 2 2165.86 26 10 26 0.00 0 1 26 0.00 0 1 26 0.00 0
172 402 3 1443.91 29 6 29 0.00 0 1 29 0.00 0 1 29 0.00 0
172 402 4 1082.93 28 6 28 0.00 0 1 28 0.00 0 2 28 0.00 0
229 345 2 2589.77 27 70 27 0.00 0 2 27 0.00 0 2 27 0.00 0
229 345 3 1726.51 27 16 27 0.00 0 2 27 0.00 0 3 27 0.00 0
229 345 4 1294.88 30 19 30 0.00 0 2 30 0.00 0 4 30 0.00 0
229 345 2 2913.49 28 75 28 0.00 0 2 28 0.00 0 2 28 0.00 0
229 345 3 1942.32 29 10 29 0.00 0 1 29 0.00 0 3 29 0.00 0
229 345 4 1456.74 27 24 27 0.00 0 2 27 0.00 0 4 27 0.00 0
229 345 2 3237.21 26 13 26 0.00 0 2 26 0.00 0 2 26 0.00 0
229 345 3 2158.14 30 16 30 0.00 0 2 30 0.00 0 3 30 0.00 0
229 345 4 1618.60 29 11 29 0.00 0 1 29 0.00 0 3 29 0.00 0
287 287 2 3624.82 27 17 27 0.00 0 3 27 0.00 0 3 27 0.00 0
287 287 3 2416.55 29 17 29 0.00 0 3 29 0.00 0 5 29 0.00 0
287 287 4 1812.41 28 72 28 0.00 0 3 28 0.00 0 8 28 0.00 0
287 287 2 4077.93 30 374 30 0.00 30 3 30 0.00 0 3 30 0.00 0
287 287 3 2718.62 31 49 31 0.00 0 3 31 0.00 0 4 31 0.00 0
287 287 4 2038.96 30 18 30 0.00 0 3 30 0.00 0 7 30 0.00 0
287 287 2 4531.03 30 20 30 0.00 0 2 30 0.00 0 3 30 0.00 0
287 287 3 3020.69 30 61 30 0.00 0 3 30 0.00 0 5 30 0.00 0
287 287 4 2265.51 30 15 30 0.00 0 3 30 0.00 0 6 30 0.00 0

https://msinnl.github.io/pages/instancescodes.html
https://msinnl.github.io/pages/instancescodes.html


532 M. Sinnl 

1 3

some facility and customer can occur). Based on these underlying graphs, instances 
are created by choosing k ∈ {2, 3, 4} , and setting L using the following scheme for 
� = {0.1, 0.15, 0.2, 0.25, 0.3} : Let L(�) be the sum of the distances of the ⌈��F�⌉ 
nearest facilities to the central depot. The value of L is set as L(�)∕l . In total, this set 
contains 3 ⋅ 3 ⋅ 3 ⋅ 5 = 135 instances (three underlying graphs for each (|F|,  |C|) and 
the different parameters for k and L).

Again, we first analyze the effect of our different settings for the algorithms. Fig-
ures 5 and 6 give plots of the runtime to optimality and Figs. 7 and 8 gives plots of 
the optimality gap for the instances from set NEW and our settings.

From Figures 5 and 6, we can see that these instances seem much more difficult 
to solve to optimality than the ones from set AMSAL. The best performing settings, 
namely C++HS, C++H, E++H2 and E++H, only manage to solve about 45% of the 

Table 9  Detailed results for instance set AMSAL for instances with 657 vertices

|F| |C| k L |CR| C+ C++HS E++H2

t[s] z∗ g[%] #BB t[s] z∗ g[%] #BB t[s] z∗ g[%] #BB

197 459 2 14375.04 63 297 63 0.00 12 1 63 0.00 0 2 63 0.00 0
197 459 3 9583.36 67 68 67 0.00 0 1 67 0.00 0 5 67 0.00 0
197 459 4 7187.52 68 600 – – 0 1 68 0.00 0 9 68 0.00 0
197 459 2 16171.92 65 116 65 0.00 0 1 65 0.00 0 2 65 0.00 0
197 459 3 10781.28 67 245 67 0.00 0 1 67 0.00 0 8 67 0.00 0
197 459 4 8085.96 68 600 – – 0 1 68 0.00 0 8 68 0.00 0
197 459 2 17968.80 68 62 68 0.00 0 1 68 0.00 0 1 68 0.00 0
197 459 3 11979.20 66 76 66 0.00 0 1 66 0.00 0 3 66 0.00 0
197 459 4 8984.40 67 136 67 0.00 0 1 67 0.00 0 6 67 0.00 0
262 394 2 22208.68 76 78 76 0.00 0 2 76 0.00 0 3 76 0.00 0
262 394 3 14805.79 76 600 – – 0 2 76 0.00 0 7 76 0.00 0
262 394 4 11104.34 78 600 1 7699.92 0 2 78 0.00 0 16 78 0.00 0
262 394 2 24984.76 77 68 77 0.00 0 2 77 0.00 0 3 77 0.00 0
262 394 3 16656.51 78 600 2 3799.98 0 2 78 0.00 0 7 78 0.00 0
262 394 4 12492.38 77 513 77 0.00 0 2 77 0.00 0 17 77 0.00 0
262 394 2 27760.85 76 52 76 0.00 0 3 76 0.00 0 3 76 0.00 0
262 394 3 18507.23 73 343 73 0.00 0 3 73 0.00 0 7 73 0.00 0
262 394 4 13880.42 81 33 81 0.00 0 2 81 0.00 0 15 81 0.00 0
328 328 2 30838.17 83 283 83 0.00 0 4 83 0.00 0 4 83 0.00 0
328 328 3 20558.78 84 600 – – 10 3 84 0.00 0 20 84 0.00 0
328 328 4 15419.08 83 106 83 0.00 0 4 83 0.00 0 26 83 0.00 0
328 328 2 34692.94 82 440 82 0.00 0 4 82 0.00 0 6 82 0.00 0
328 328 3 23128.62 83 224 83 0.00 0 4 83 0.00 0 10 83 0.00 0
328 328 4 17346.47 80 600 – – 0 5 80 0.00 0 29 80 0.00 0
328 328 2 38547.71 78 139 78 0.00 0 4 78 0.00 0 5 78 0.00 0
328 328 3 25698.47 82 600 50 64.00 1 5 82 0.00 0 9 82 0.00 0
328 328 4 19273.85 81 600 – – 0 3 81 0.00 0 38 81 0.00 0
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Fig. 5  Runtime to optimality for instance set NEW and different settings based on (C). For better readabil-
ity, the y-axis only goes up to 60% of the instances

Fig. 6  Runtime to optimality for instance set NEW and different settings based on (E). For better readabil-
ity, the y-axis only goes up to 60% of the instances

Fig. 7  Optimality gap for instance set NEW and different settings based on (C). For better readability, the 
x-axis only goes up to 20% gap
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instances to optimality within the timelimit. In general, all settings based on (E), 
except E, have a quite similar performance. For settings based on (C), the basic set-
ting C has the worst performance. Thus, as already seen in the results for set AMSAL, 
the variable fixings seem quite effective. However, differently to the results for set 
AMSAL, C++ now performs better than C+. Looking also at the optimality gaps 
given in Figs. 7 and 8, the settings based on (C) seem to performance a little better 
than the settings based on (E). Moreover, the performance difference of the settings 
becomes more pronounced.

Tables 11, 12, 13 give detailed results for the instances of set NEW and settings 
C+, C++HS and E++H2. In the tables, we report for each instance the number of 
vehicles (k), the distance limit (L) and the number of customers covered by at least 
one facility which is reachable from the central depot within the given distance limit 
( |CR| “reachable customers,” i.e., following Theorem 2). For each setting, we report 
the runtime (t[s]), value of the best solution found ( z∗ ), optimality gap ( g[%] ), and 
number of branch-and-bound nodes ( #nBBn ). A bold entry in z∗ indicates that opti-
mality has be proven (as can also be seen by the optimality gap g[%] being zero). 
A bold entry in |CR| indicates, that the optimal solution consists of all reachable 
customers.

In the tables, we can see that the instances with smaller distance limit seem to 
be easier, as more of them can be solved to optimality compared to instances with 
larger distance limit. This is not too surprising, as with smaller distance limit, the 
feasible region of the problem becomes smaller, and a smaller number of facilities 
are reachable within the distance limit. In general, the instances seem to become 
harder when the number of nodes is larger. The number of vehicles does not seem 
to influence the performance much. There are 18 out of 135 instances, where the 
optimal solution value is equal to |CR| . Setting C+ manages to solve 51 instances to 
optimality, C++HS manages to solve 61 instances to optimality and E++H2 manages 
to solve 59 instances to optimality.

Fig. 8  Optimality gap for instance set NEW and different settings based on (E). For better readability, the 
x-axis only goes up to 20% gap
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Table 11  Detailed results for instance set NEW for instances with 301 vertices

k L |CR| C+ C++HS E++H2

t[s] z∗ g[%] #BB t[s] z∗ g[%] #BB t[s] z∗ g[%] #BB

2 422.52 45 0 36 0.00 55 0 36 0.00 0 0 36 0.00 0
2 465.91 58 0 49 0.00 17 1 49 0.00 21 1 49 0.00 40
2 538.19 56 0 46 0.00 47 0 46 0.00 9 1 46 0.00 3
2 824.88 145 47 78 0.00 4460 158 78 0.00 5375 49 78 0.00 366
2 900.85 206 1800 99 2.02 86072 547 99 0.00 12676 279 99 0.00 2237
2 1048.14 224 1800 135 9.15 25743 104 135 0.00 267 506 135 0.00 1445
2 1188.67 225 1800 130 26.36 20773 227 135 0.00 1144 1205 135 0.00 3492
2 1277.91 225 1800 146 22.23 19684 1800 148 4.52 3999 1800 146 28.88 3808
2 1461.77 225 1800 175 17.98 11649 1800 181 4.29 3901 1800 181 12.98 2918
2 1712.49 225 1800 175 23.51 10258 1800 194 3.04 2400 1800 184 19.96 2533
2 1801.24 225 1800 184 19.36 9185 1800 205 2.40 2223 1800 187 18.72 2308
2 2047.24 225 1800 203 10.84 3091 799 224 0.00 164 1800 211 6.64 422
2 2336.58 225 1800 219 2.74 2814 1055 225 0.00 800 1800 217 3.69 224
2 2374.58 225 1800 221 1.81 3891 1800 224 0.45 5341 1800 220 2.27 226
2 2664.08 225 445 225 0.00 524 5 225 0.00 0 33 225 0.00 10
3 258.17 39 0 34 0.00 0 0 34 0.00 0 0 34 0.00 0
3 285.40 27 0 27 0.00 0 0 27 0.00 0 0 27 0.00 0
3 349.69 45 0 45 0.00 0 0 45 0.00 0 0 45 0.00 0
3 448.37 63 0 58 0.00 40 1 58 0.00 3 1 58 0.00 3
3 552.02 78 1 61 0.00 440 1 61 0.00 7 1 61 0.00 2
3 598.50 121 4 93 0.00 1728 34 93 0.00 1678 42 93 0.00 434
3 641.46 136 12 100 0.00 2141 157 100 0.00 6334 43 100 0.00 502
3 789.53 179 15 104 0.00 1567 11 104 0.00 85 202 104 0.00 747
3 816.54 192 311 138 0.00 35957 1800 138 1.45 39070 241 138 0.00 1314
3 959.52 213 1800 151 3.66 52735 1800 151 3.31 18594 1800 150 8.02 3904
3 1145.94 224 1800 175 5.18 23560 376 177 0.00 1445 1800 171 17.59 1483
3 1151.62 225 1800 192 7.50 24894 1800 192 3.41 7940 1800 191 11.04 1840
3 1319.82 225 1800 195 10.49 20878 1800 198 5.84 5952 1800 196 13.11 1309
3 1522.41 225 1800 220 2.27 4077 1800 223 0.90 3646 1800 200 12.50 121
3 1574.57 225 1800 213 5.63 3705 1800 215 3.84 3375 1800 203 10.84 1001
4 211.30 23 0 23 0.00 0 0 23 0.00 0 0 23 0.00 0
4 219.33 20 0 20 0.00 0 0 20 0.00 0 0 20 0.00 0
4 241.75 17 0 17 0.00 0 0 17 0.00 0 0 17 0.00 0
4 401.70 54 0 50 0.00 5 2 50 0.00 178 2 50 0.00 9
4 415.60 59 0 58 0.00 5 3 58 0.00 293 1 58 0.00 12
4 449.44 44 0 43 0.00 0 2 43 0.00 112 0 43 0.00 0
4 556.82 90 8 78 0.00 2369 285 78 0.00 15876 50 78 0.00 499
4 604.39 121 39 96 0.00 17840 289 96 0.00 18182 11 96 0.00 104
4 644.47 123 5 94 0.00 1070 2 94 0.00 45 0 94 0.00 0
4 777.57 163 229 130 0.00 28517 1800 130 0.77 32484 938 130 0.00 2508
4 884.61 185 990 154 0.00 76798 1800 154 1.30 23420 1359 154 0.00 2486
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5  Conclusion

In this paper, we studied the recently introduced time-constrained maximal covering 
routing problem. The problem is a generalization of well-known problems such as 
the (team) orienteering problem and maximal covering location. In the problem, we 
are given a central depot, facilities and customers. Each customer can be served by a 
subset of the facilities. Moreover, we are given distances between the facilities (and 
central depot), a distance limit L and a number of vehicles k. A feasible solution 
consists of k Hamiltonian cycles on subsets of the facilities and the central depot. 
All cycles must contain the central depot and respect the distance limit L. The goal 
is to maximize the number of customers covered by the facilities in the solution. The 
problem was introduced in Amiri and Salari (2019), where an exact mixed-integer 
programming (MIP) approach and several metaheuristics were proposed.

We introduced two new MIP formulations and presented exact solution frame-
works based on these MIP formulations. We evaluated our solution approaches on 
the instances from literature for the problem (from Amiri and Salari (2019)). The 
computational study revealed that our algorithms were able to find the provably 
optimal solution for 267 out of 270 instances, including 123 instances, for which 
the optimal solution was not known before. Moreover, for most of the instances, our 
algorithms only took a few seconds, being up to five magnitude faster than the exact 
MIP approach presented in Amiri and Salari (2019). The computational study also 
showed that the instances from Amiri and Salari (2019) have some issues, which 
potentially decrease their usefulness as benchmark instances. In particular, there are 
often many customers, which are not associated with any facility in the instance, and 
thus can never be in any feasible solution. In many instances, the value of the opti-
mal solution is then simply similar to the number of the remaining customers. We 
thus also introduced a new set of more challenging instances.

There are several avenues for further work: Naturally, similar to other rout-
ing problems, additional side-constraints based on real-life considerations can be 
added, such as multiple-depots, time-windows, capacities, or uncertainty. Moreo-
ver, weighted customers and assignment-costs for customers could also be interest-
ing extensions. To deal with more difficult instances, such as the ones introduced 
in this paper, the design and (re-)evaluation of metaheuristics could be a promis-
ing topic. We note that Amiri and Salari (2019) already proposed and tested some 
metaheuristics for the problem, however, as discussed, the instances used in their 

Table 11  (continued)

k L |CR| C+ C++HS E++H2

t[s] z∗ g[%] #BB t[s] z∗ g[%] #BB t[s] z∗ g[%] #BB

4 920.99 199 851 157 0.00 43617 1691 157 0.00 21797 1800 155 11.58 2153
4 1041.71 222 1800 175 4.19 39710 1800 176 3.49 10974 1800 173 14.24 1221
4 1176.85 225 1800 200 3.81 25538 1800 200 2.86 7930 1800 179 21.91 34
4 1219.09 224 1800 201 5.80 29762 1800 205 3.16 6979 1800 186 18.78 534
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Table 12  Detailed results for instance set NEW for instances with 401 vertices

k L |CR| C+ C++HS E++H2

t[s] z∗ g[%] #BB t[s] z∗ g[%] #BB t[s] z∗ g[%] #BB

2 486.16 91 9 53 0.00 3122 10 53 0.00 298 53 53 0.00 247
2 620.83 128 95 80 0.00 15737 9 80 0.00 61 72 80 0.00 220
2 784.34 208 1097 89 0.00 44356 202 89 0.00 1979 646 89 0.00 2135
2 927.20 262 1800 129 10.91 25332 520 129 0.00 1994 1722 129 0.00 3345
2 1086.09 294 1800 154 17.57 17713 1800 154 2.39 5510 1800 154 14.46 1786
2 1345.72 300 1800 172 39.66 5710 1800 179 7.51 845 1800 159 61.88 1162
2 1435.36 300 1800 206 22.55 4488 1800 212 1.69 1526 1800 197 33.56 939
2 1672.82 300 1800 171 66.32 4216 1800 223 10.57 580 1800 189 55.63 637
2 1973.23 300 1800 203 44.57 1565 1800 259 8.67 415 1800 218 37.36 592
2 2019.76 300 1800 215 37.21 1085 1800 265 6.63 420 1800 249 20.48 604
2 2309.20 300 1800 227 32.16 1037 1800 284 5.04 386 1800 270 11.11 159
2 2638.19 300 1800 225 33.33 927 1800 284 5.63 199 1800 273 9.89 102
2 2690.88 300 1800 253 18.58 710 1800 299 0.33 273 1800 272 10.29 107
2 3004.45 300 1800 295 1.69 1200 567 300 0.00 26 1800 289 3.81 35
2 3331.40 300 1800 294 2.04 1344 46 300 0.00 0 148 300 0.00 45
3 357.90 44 0 41 0.00 2 1 41 0.00 18 0 41 0.00 0
3 377.34 53 0 46 0.00 0 1 46 0.00 27 0 46 0.00 0
3 400.40 75 0 65 0.00 83 0 65 0.00 3 0 65 0.00 0
3 699.51 186 50 119 0.00 4736 308 119 0.00 7128 768 119 0.00 2070
3 711.49 189 494 124 0.00 41932 1504 124 0.00 25797 1605 124 0.00 2972
3 724.46 178 147 117 0.00 12124 763 117 0.00 16257 789 117 0.00 1634
3 1066.84 300 1800 190 14.03 12627 1800 191 5.99 4127 1800 170 44.69 441
3 1120.62 293 1800 199 13.94 16679 1800 201 7.45 2480 1800 183 36.94 521
3 1155.64 297 1800 202 15.45 12933 1800 212 2.36 4142 1800 189 36.45 377
3 1459.29 300 1800 213 40.85 1882 1800 251 12.14 842 1800 218 37.61 249
3 1592.28 300 1800 248 20.97 1094 1800 267 8.94 956 1800 247 21.46 193
3 1624.41 300 1800 264 12.05 3083 1800 268 9.09 1139 1800 244 22.95 173
3 1923.85 300 1800 248 20.97 1056 1054 300 0.00 152 1800 262 14.50 102
3 2100.66 300 1800 289 3.81 1015 1800 294 2.04 513 1800 287 4.53 49
3 2131.08 300 1800 276 8.70 648 1800 292 2.74 521 1800 277 8.30 26
4 260.83 44 0 44 0.00 0 0 44 0.00 0 0 44 0.00 0
4 308.07 43 0 43 0.00 0 0 43 0.00 0 0 43 0.00 0
4 331.83 44 0 44 0.00 0 0 44 0.00 0 0 44 0.00 0
4 489.73 102 10 82 0.00 2653 135 82 0.00 6363 31 82 0.00 197
4 571.59 88 6 82 0.00 1062 36 82 0.00 1103 2 82 0.00 0
4 593.91 128 3 103 0.00 1144 12 103 0.00 322 190 103 0.00 495
4 772.92 209 1800 159 2.01 86529 1800 159 4.06 17704 1800 159 8.12 1408
4 876.54 258 1800 170 7.38 65194 1800 170 2.79 10037 1800 158 28.64 488
4 909.80 266 1800 205 0.89 82819 1800 205 1.87 13004 1800 194 13.69 844
4 1097.81 289 1800 231 7.78 19192 1800 232 3.94 3190 1800 219 22.11 256
4 1235.17 300 1800 247 13.03 11241 1800 254 6.67 2149 1800 218 35.59 111
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Table 12  (continued)

k L |CR| C+ C++HS E++H2

t[s] z∗ g[%] #BB t[s] z∗ g[%] #BB t[s] z∗ g[%] #BB

4 1265.89 300 1800 260 10.08 13571 1800 262 7.53 2551 1800 220 34.93 2
4 1456.87 300 1800 274 9.49 1716 1800 289 3.50 1309 1800 251 19.52 104
4 1619.40 300 1800 202 48.51 1031 1800 298 0.67 457 1800 267 12.36 40
4 1673.74 300 1800 298 0.67 1297 1800 293 2.39 547 1800 292 2.74 53

Table 13  Detailed results for instance set NEW for instances with 501 vertices
k L |CR| C+ C++HS E++H2

t[s] z∗ g[%] #BB t[s] z∗ g[%] #BB t[s] z∗ g[%] #BB

2 670.15 175 1018 91 0.00 77176 775 91 0.00 10728 635 91 0.00 1065
2 741.09 247 1284 100 0.00 42536 220 100 0.00 1074 1704 100 0.00 2430
2 768.77 229 1301 107 0.00 48389 236 107 0.00 819 1650 107 0.00 1575
2 1246.33 375 1800 174 52.99 3176 1800 176 24.47 406 1800 168 77.70 270
2 1321.79 375 1800 165 63.45 3367 1800 198 15.87 362 1800 157 101.89 162
2 1336.87 375 1800 194 44.84 2245 1800 207 11.39 363 1800 166 86.87 199
2 1952.41 375 1800 230 57.89 493 1800 258 37.68 48 1800 247 50.72 229
2 1992.25 375 1800 216 72.84 948 1800 264 34.39 139 1800 268 38.11 289
2 2104.88 375 1800 235 59.57 309 1800 274 32.44 41 1800 263 42.59 281
2 2875.80 375 1800 298 25.84 491 1800 329 13.98 27 1800 326 15.03 97
2 2885.57 375 1800 284 32.04 363 1800 371 1.08 116 1800 365 2.74 91
2 3072.01 375 1800 336 11.61 381 1800 351 6.84 32 1800 367 2.18 86
2 3751.65 375 1800 321 16.82 1396 957 375 0.00 42 251 375 0.00 21
2 3776.04 375 1800 320 17.19 883 339 375 0.00 10 798 375 0.00 70
2 3966.92 375 1800 315 19.05 866 747 375 0.00 23 500 375 0.00 26
3 556.28 127 27 95 0.00 5962 122 95 0.00 1932 258 95 0.00 386
3 595.57 133 13 90 0.00 986 10 90 0.00 40 640 90 0.00 627
3 673.59 171 276 118 0.00 64371 1800 118 0.85 31745 1218 118 0.00 2007
3 940.28 323 1800 189 15.80 17372 1800 188 6.24 2300 1800 164 51.25 132
3 956.60 339 1800 177 15.60 21662 1800 175 8.94 2275 1800 165 44.56 384
3 1175.17 374 1800 223 30.16 5628 1800 245 9.80 852 1800 211 57.64 80
3 1355.44 375 1800 237 43.66 2662 1800 279 10.38 410 1800 225 59.89 76
3 1409.29 375 1800 251 36.78 1688 1800 289 10.44 495 1800 240 53.17 60
3 1726.52 375 1800 279 34.41 470 1800 331 10.76 49 1800 318 17.92 196
3 1959.48 375 1800 303 23.76 328 1800 343 9.33 104 1800 323 16.10 52
3 2020.80 375 1800 270 38.89 240 1800 345 8.70 95 1800 329 13.98 79
3 2423.42 375 1800 279 34.41 427 1800 365 2.74 40 1800 361 3.88 32
3 2532.45 375 1800 348 7.76 338 1800 374 0.27 81 1800 354 5.93 25
3 2598.26 375 1800 342 9.65 695 1800 373 0.54 52 1800 374 0.27 19
3 3085.30 375 1800 348 7.76 710 17 375 0.00 0 2 375 0.00 0
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work to evaluate their approaches had some issues. Investigating an exact approach 
based on a formulation with exponentially many variables (i.e., column generation/
branch-and-price) could also be a fruitful topic, as such approaches often work quite 
well for routing problems of similar type.
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