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Abstract
In this paper, we consider the strategic asset allocation of an insurance company. 
This task can be seen as a special case of portfolio optimization. In the 1950s, 
Markowitz proposed to formulate portfolio optimization as a bicriteria optimization 
problem considering risk and return as objectives. However, recent developments in 
the field of insurance require four and more objectives to be considered, among them 
the so-called solvency ratio that stems from the Solvency II directive of the Euro-
pean Union issued in 2009. Moreover, the distance to the current portfolio plays an 
important role. While the literature on portfolio optimization with three objectives 
is already scarce, applications in the financial context with four and more objec-
tives have not yet been solved so far by multi-objective approaches based on sca-
larizations. However, recent algorithmic improvements in the field of exact multi-
objective methods allow the incorporation of many objectives and the generation of 
well-spread representations within few iterations. We describe the implementation 
of such an algorithm for a strategic asset allocation with four objective functions and 
demonstrate its usefulness for the practitioner. Our approach is in operative use in a 
German insurance company. Our partners report a significant improvement in their 
decision-making process since, due to the proper integration of the new objectives, 
the software proposes portfolios of much better quality than before within short run-
ning time.
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1  Introduction

Insurance companies have to manage and invest large amounts of money, both from 
their equity and from premia paid by customers. Investing this capital efficiently is 
one of the most important challenges insurers face today. Finding a good or optimal 
investment strategy is a difficult task in itself, and it is even more challenging in 
a strongly regulated industry such as (life) insurance. Investment strategies have to 
be chosen with various issues in mind, such as the insurer’s long-term liabilities, 
the regulatory environment, different kinds of investment risk and other portfolio 
properties.

Today’s low-interest rate environment is a challenge for many investors, but espe-
cially for life insurers: They have to fulfill many old contracts with guaranteed inter-
est rates that are very high compared to the current rates offered at the market. It 
is not possible to generate the revenues needed for these liabilities by investing in 
low-risk assets only. At the same time, the Solvency II directive, introduced by the 
European Union1 in the aftermath of the financial crisis to strengthen the financial 
stability of the insurance sector, stipulates higher capital requirements for invest-
ment in high-risk assets.

Since Solvency  II taking effect, insurers have to calculate their own funds and 
risks in a standardized manner to prove that their own funds are sufficient to cover 
their risks in the event of losses: The Solvency Capital Requirement (SCR) is calcu-
lated to ensure that the insurance company will be solvent over the next 12 months 
with a probability of at least 99.5%. To achieve this requirement, practitioners typ-
ically formulate a minimum value for the solvency ratio of a portfolio. However, 
they would prefer portfolios with higher solvency ratios to those with smaller ones. 
Hence, instead of incorporating solvency as a constraint, it should rather be treated 
as an objective to be maximized.

In this application-driven paper, we consider portfolio optimization with certain 
classic objectives as well as new objectives like the solvency ratio. In the following, 
we give a short overview on the vast literature on portfolio optimization. We also 
discuss portfolio optimization in the light of Solvency  II requirements and multi-
objective optimization.

Portfolio optimization The problem of portfolio optimization has been studied 
extensively and in many different contexts. The first and foremost goal in a typical 
portfolio optimization setting is to maximize either the expected utility of the return 
or the expected return directly.

The classical approach using the concept of utility is often formulated as a con-
strained maximization problem: The investor chooses a utility function, an increas-
ing function that assigns a subjective value to his or her absolute wealth, which is 

1  The Solvency II requirements are defined in the directive 2009/138/EC of the European Parliament, 
in the delegated act from 10 October 2014 and binding technical standards. They are supplemented with 
supervisory guidelines and recommendations by the national regulators (BaFin in Germany) and the 
European regulator EIOPA.
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typically concave due to risk aversion. The goal is then to maximize the expected 
value of this utility via finding the optimal admissible trading strategy.

Another fundamental approach is to choose a measure of risk and directly maxi-
mize the expected return, now constrained by the amount of risk the investor is will-
ing to accept. This method is related to the modern portfolio theory pioneered by 
Markowitz (1952).

In continuous time, the problem of finding the trading strategy that optimizes 
expected utility is often called Merton’s portfolio problem. Its solution is the famous 
Merton fraction (Merton 1969). It has since been extended to many more gener-
alized settings such as including trading costs, bankruptcy or non-constant asset 
parameters ( Karatzas et  al. (1986), Davis and Norman (1990), Shreve and Soner 
(1994), Korn (1998)).

Further approaches include, among a host of other concepts, robust portfolio opti-
mization (Kim et al. 2014), regime-switching models ( Bäuerle and Rieder (2004), 
Haussmann and Sass (2004), Krishnamurthy et  al. (2018) or worst-case portfolio 
optimization ( Korn and Wilmott (2002), Seifried (2010), Korn and Leoff (2019)). 
An overview of practical challenges and future trends is given in Kolm et al. (2014).

The effects of the Solvency II directive on optimal portfolios have also been con-
sidered in the literature recently, using different settings and concepts. Braun et al. 
(2015) consider Solvency  II requirements in a constrained portfolio optimization 
framework for an endogenously given amount of equity capital. In Kouwenberg 
(2018), the author considers a static portfolio optimization problem, where the insur-
ance company wants to maximize the expected return on its own funds. Escobar 
et al. (2019) investigate the implications of the market risk module of Solvency II on 
investment strategies in an expected utility framework. In all these approaches, the 
SCR is used as a constraint.

Multi-objective portfolio optimization In this paper we extend Markowitz’  
bicriteria portfolio optimization problem to more than two and, in particular, more 
than three objective functions. As mentioned in Qi et al. (2017), the incorporation 
of further objectives is not standard yet; however, in the last years, there has been 
growing interest in incorporating additional criteria as, e.g., dividends, liquidity or 
social responsibility. Hirschberger et al. (2013) present an algorithm that generates 
the nondominated set of a tricriteria problem that is all linear besides one of the 
minimized objectives being convex. Köksalan and Şakar (2016) consider the three 
objectives expected return, conditional Value at Risk and liquidity in a multi-period 
stochastic problem. Portfolios are generated with the help of an augmented weighted 
Tchebycheff program. Xidonas et  al. (2018) focus on a practical decision support 
tool that is able to deal with multiple objectives. In their empirical testing with data 
from Eurostoxx 50, they consider the three objectives capital return, MAD (mean-
absolute deviation) and dividend yield. The Pareto optimal solutions are generated 
by a set of �-constraint scalarizations whose right-hand side values are chosen from 
a two-dimensional grid that is defined in the beginning of the algorithm.

There are also other domains besides the financial one that require the determina-
tion of optimal portfolios. In the context of logistics, the supplier selection problem is 
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closely related. Hosseininasab and Ahmadi (2015) consider three objectives, two lin-
ear and one quadratic. When solving the problem, they compress the three objectives 
to two by combining the two linear ones to a weighted sum. In a second step, they 
apply an �-constraint method using the quadratic objective as �-constraint objective and 
incorporating the other two in a weighted sum format. Kellner et al. (2019) present a 
multi-objective optimization model with four objectives which are all linear apart from 
one that is quadratic. To solve this problem the authors reduce it to three objectives and 
compute the exact Pareto front following the approach of Hirschberger et al. (2013). In 
Kellner and Utz (2019) the authors consider a mixed-integer supplier selection problem 
with three objectives. The solution technique is an �-constraint method with a prede-
fined equidistant quadratic grid, hence similar to the approach used in Xidonas et al. 
(2018).

Our contribution In our application we consider a portfolio optimization setting 
where the aim is to decide on next year’s target portfolio. The novelty of our approach 
is the incorporation of an arbitrary number of criteria into a classic portfolio optimi-
zation problem and the use of a new efficient method to generate meaningful portfo-
lios for the practitioner. It is important to state that our method works irrespective of 
whether the objective functions are convex or non-convex, hence it goes beyond the 
approach considered, e.g., in Hirschberger et al. (2013) or Kellner et al. (2019). In our 
numerical study we limit our model to four objectives. Apart from the classic objec-
tives return and volatility, we consider the solvency ratio as well as the distance to the 
current (last year’s) portfolio as third and fourth objective. While the distance to the 
current portfolio is meant as a proxy to minimize the transaction volume, a well-known 
goal in portfolio optimization, the maximization of the solvency ratio has, to the best of 
our knowledge, not been treated as an objective function yet. Since the solvency ratio 
becomes more and more important for insurers, our approach helps to identify portfo-
lios of high practical relevance.

The rest of the paper is structured as follows. Section 2 contains the required basics 
from multi-objective optimization and explains the applied algorithm in more detail, 
including the discussion of methodological improvements with respect to a recent 
approach in multi-objective portfolio optimization. In Sect. 3 we introduce and discuss 
the considered model, including all objectives and constraints. In Sect. 4 the algorithm 
is applied to a real-world use case with four criteria. Section 5 contains the conclusion 
and further ideas.

2 � Multi‑objective and Markowitz portfolio optimization

In this section we first introduce common notions in multi-objective optimization. Then 
we speak about how to solve these problems.

Let us consider the general form

(1)min
x∈X

f (x) = (f1(x),… , fm(x))
⊤
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of a multi-objective optimization problem with feasible set X ⊆ ℝ
n and with 

m ≥ 2 objective functions fi ∶ X → ℝ, i = 1,… ,m . We assume that the functions 
fi, i = 1,… ,m , are continuous and that X is non-empty and compact. The image of 
the feasible set is denoted by f (X) ⊆ ℝ

m.
When dealing with optimization problems with more than one objective we can-

not expect to compute “an optimal solution” characterized by a solution that has 
the globally or locally smallest objective function value. Instead the single-objective 
concept of optimality is replaced by the concept of Pareto optimality (also called 
efficiency).

Definition 1  (Pareto Optimality/Efficiency) A feasible solution x ∈ X is called 
Pareto optimal or efficient if there is no x̂ ∈ X with fi(x̂) ≤ fi(x) for all i = 1,… ,m, 
and fj(x̂) < fj(x) for some j ∈ {1, ..,m}.

We denote the set of efficient solutions by XE . The image set f (XE) is called 
Pareto front or nondominated set, its elements are called nondominated. A slightly 
weaker concept is the so-called weak Pareto optimality or efficiency.

Definition 2  (Weak Pareto Optimality/Efficiency) A feasible solution x ∈ X is called 
weakly Pareto optimal or weakly efficient if there is no x̂ ∈ X with fi(x̂) < fi(x) for all 
i = 1,… ,m.

From a practical perspective, nondominated points are compromises between the 
conflicting objectives. It is then up to the decision maker to choose a compromise 
that suits his or her needs best.

2.1 � Scalarizations

A common approach to solve multi-objective optimization problems consists in the 
transformation to a so-called scalarization. This means that the vector-valued opti-
mization problem is reformulated to a scalar-valued one which then can be solved 
with the help of classic single-objective optimization methods. The easiest and most 
common scalarization is the weighted sum approach

in which each of the multiple objective functions is multiplied by a so-called weight 
λi ≥ 0, i = 1,… ,m, where 

∑m

i=1
λi = 1 . By varying the values of the parameters, dif-

ferent solutions can be found. It can be shown that for every positive weight vector, 
a nondominated point is found. However, only for convex optimization problems, it 

(2)min
x∈X

m∑
i=1

λifi(x),
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holds true that every nondominated point can be generated for some weight vector. 
If the problem is either non-convex or convexity can not be guaranteed, other sca-
larization techniques as, e.g., the �-constraint method or the weighted Tchebycheff 
method should be applied which are described in the following.

The �-constraint method was popularized by Haimes et al. (1971). In this method, 
one of the objectives fi with i ∈ {1,… ,m} is selected and minimized whereas 
bounds are imposed on all other objectives, which yields

where � ∈ ℝ
m . It is well-known that every feasible solution of  (3) is weakly effi-

cient. If the solution is unique, then it is efficient. On the other hand, for every effi-
cient solution x̄ ∈ XE, there exists a vector � ∈ ℝ

m such that x̄ solves (3) for any 
i = 1,… ,m . More precisely, every efficient solution x̄ ∈ XE is an optimal solution of 
(3) for any i = 1,… ,m and 𝜀 = f (x̄).

A scalarization with similar theoretical properties is the Weighted Tchebycheff 
method. It was introduced in Bowman (1976) and studied in detail in Steuer and 
Choo (1983). It is defined as

with w ∈ ℝ
m
>
 and z⋆ ∈ ℝ

m a reference point. If the reference point is chosen so that 
no feasible point lies in the ‘lower left part’ of the reference point, i.e. that the neg-
ative orthant attached to the reference point is empty, the absolute values can be 
dropped. Moreover, the objective function can be reformulated as

see Steuer and Choo (1983). This formulation is particularly useful when all under-
lying functions are differentiable since the overall problem becomes differentiable. 
It is well-known that every solution of (4) and (5) is weakly efficient, and efficient if 
the solution is unique. Conversely, for every efficient solution x̄ ∈ XE there is some 
z⋆ ∈ ℝ

m and w ∈ ℝ
m
>
 such that x̄ solves (4).

There are ways to assure nondominance instead of only weak nondominance for 
the �-constraint and Weighted Tchebycheff method, which are particularly impor-
tant in the discrete context where the occurrence of weakly nondominated points is 
rather frequent. We do not apply specific methods to avoid weakly nondominated 
points in the following.

(3)
min fi(x)

s.t. fk(x) ≤ �k ∀ k = 1,… ,m, k ≠ i,

x ∈ X,

(4)min
x∈X

max
i=1,…,m

wi ⋅
||fi(x) − z⋆

i
||

(5)
min t

s.t. t ≥ wi

(
fi(x) − z⋆

i

)
, i = 1,… ,m,

t ∈ ℝ, x ∈ X,
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2.2 � Representation

Continuous multi-objective optimization problems as the problem at hand typically 
have an infinite number of nondominated points. In general, the nondominated set 
can not be described analytically, thus, a finite set of points in this set is generated 
instead. This finite set is called representation or approximation of the nondomi-
nated set, where a representation typically consists of nondominated points while an 
approximation not necessarily does.

The approaches used in Xidonas et al. (2018) and Kellner and Utz (2019) gen-
erate a representation by solving a sequence of �-constraint scalarizations with 
different right-hand side values. Therefore, an equidistant two-dimensional (in 
general (m − 1)-dimensional) grid is computed in the beginning of the algorithm 
based on the ranges of the objective functions. While this approach is rather easy 
to implement, the rigid grid makes this approach inflexible in the sense that it 
cannot adapt to the shape of the Pareto front. Typically, some of the scalarized 
optimization problems are infeasible, some others yield nondominated points that 
are already known. While Xidonas et al. (2018) present certain enhancements like 
an ‘early-exit-strategy’, they can not completely avoid these undesired effects.

In contrast, our approach is flexible in the sense that the solution process con-
stantly adapts to the Pareto front. Infeasible problems or multiply generated solu-
tions do not appear as long as the invoked single-objective optimization solvers 
work reliably. Our approach refines in every iteration where it is needed most, 
i.e. where a certain approximation error is maximal. Details are given in the 
following.

2.3 � Box algorithm

In our implementation, we follow the algorithmic concept of Dächert and Teichert  
(2020) which uses a decomposition of the search region into a set of (hyper-)boxes 
B . Each box B = [l, u] is a rectangular set defined by a lower bound l ∈ ℝ

m and an 
upper bound u ∈ ℝ

m , where m denotes the number of considered objectives. At ini-
tialization an m-dimensional box B0 is created and the set of boxes is initialized by 
B = {B0} . The ranges l0 ∈ ℝ

m and u0 ∈ ℝ
m of this initial box are obtained by first 

minimizing every objective individually and then taking the minimum and maxi-
mum value with respect to every objective. This approach is also known as Payoff-
table and used, e.g., in Xidonas et al. (2018) as well. In the case of more than two 
objectives, the resulting box does not necessarily contain the entire nondominated 
set but is in most cases sufficient for the decision maker who wants to find a port-
folio that represents a good balance among all considered objectives. In each of the 
following iterations, one box is selected for refinement, i.e., a new point in this box 
is computed. The idea is to always pick a box so that a new point is added in a 
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region that is not well represented yet. Therefore, we compute the smallest edge of 
each box and select the one with the largest value, i.e., we determine

and use the resulting box for further refinement.
As scalarization we use the Weighted Tchebycheff method. The reason to use this 

scalarization is twofold. First, we can reach non-convex parts of the nondominated 
set, second we can search the selected box ‘uniformly’, i.e. the computed solution 
most probably lies on the diagonal of the box. This is different to the �-constraint 
method where priority is given to one objective function and, hence, solutions rather 
lie at the boundary of the selected box.

The lower and upper bound of the selected box are used to define the parameters 
of the Weighted Tchebycheff scalarization. More precisely, we use the lower bound l 
as the reference point and compute the weights according to (Steuer and Choo 1983) 
by

The idea is to move from the lower bound of the box along its diagonal until a point 
f (x̄) is found. If the point lies in the interior of the selected box, it must be a new 
(weakly) nondominated point. Otherwise, we can discard the box since it does not 
contain any new points. The latter case is important in the discrete context but rarely 
happens in the continuous case. Nevertheless, due to numerical issues, it might hap-
pen that the solver does not generate a point in the considered box. Then, the box is 
removed and another box is chosen.

Algorithm 1 shows the general procedure. A non-trivial step is hidden in lines 19 
and  20 within ��������������(U, f (x̄)) and ��������������(L, s) , which 
contains the update of the bounds l and u by which the boxes are defined. Proce-
dure ��������������(U, f (x̄)) consists of the following steps: First, all u ∈ U have 
to be detected, for which f (x̄) < u holds. Then, from each of these bounds, at most m 
new bounds ui, i = 1,… ,m, of the form

are created and the former bounds u are deleted. Due to redundancies not all m child 
bounds are needed. There are criteria in the literature that allow to avoid redun-
dant bounds. For details, we refer to Dächert and Klamroth (2015), Klamroth et al. 
(2015) and Dächert et al. (2017). The update of the lower bounds l ∈ L , that contain 
the current solution, works in a similar fashion. The only difference is that it is ben-
eficial to use the Tchebycheff vertex si = li + t∕wi instead of f(x) to obtain tighter 
bounds. For details we refer to Dächert and Teichert  (2020).

(6)argmaxB=[l,u]∈B min
i=1,…,m

{ui − li}

(7)wi =
1

(ui − li) ⋅
∑m

j=1

1

(uj−lj)

.

(8)ui =

{
fk(x̄), k = i

uk, k ≠ i



357

1 3

Multicriteria asset allocation in practice﻿	

2.4 � Markowitz portfolio or mean‑variance optimization

In Sect.  2.1 we presented three classical scalarization approaches. Indeed, for-
mulations of the mean-variance optimization (MVO) can be interpreted as a 
Weighted Sum or �-constraint problem. Kolm et al. (2014) present the MVO as

where λ denotes a risk aversion parameter measuring the relative importance 
between the expected portfolio return 𝜇⊤𝜔 and the portfolio risk 𝜔⊤Σ𝜔 . The set 
𝛺 ⊂ ℝ

n denotes the set of permissible portfolios, i.e. the set of portfolio weights that 
satisfy the constraints imposed on the portfolios. Details on the notation are given in 
the next section, here we only want to draw the connection to the scalarizations pre-
sented in Sect. 2.1. Formulation (9) is a Weighted Sum of the two objectives ‘maxi-
mize return’ and ‘minimize risk’. Alternative formulations of the MVO presented in 
Kolm et al. (2014) are

(9)max
𝜔∈𝛺

(
𝜇⊤𝜔 − λ𝜔⊤Σ𝜔

)
,
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and

thus, �-constraint problems. The drawback of both �-constraint formulations is that 
the solution obtained is typically close to the selected parameter, i.e. the achieved 
risk in (10) is close to �2

max
 , the obtained return in (11) is close to Rmin . By using 

the Weighted Tchebycheff scalarization, points that are balanced between the con-
sidered objectives are achieved, in general, which is the reason why we choose this 
scalarization within our algorithm.

3 � Model setting, objective functions and constraints

In this paper, we consider an asset model that distinguishes several asset classes such 
as equity, government and corporate debt, private equity, real estate and a cash posi-
tion. Some of these asset classes may be further divided according to regional (interna-
tional, German, emerging markets) or capitalization (large cap, medium cap, small cap) 
aspects. Under one such asset class (e.g., German large cap equity) we usually subsume 
several investments (such as shares in Daimler, BASF, etc.) and consider them identi-
cal. In our case, this leads to 13 asset classes, but we will more generally assume n asset 
classes.

Asset class i is characterized by its expected annual return �i , and the expected vari-
ance �2

i
 of its return, that is the expected squared deviation of �i from the true annual 

return. Moreover, different asset classes i and j are related by the expected covariance 
�i�j�ij , that is the expected product of the deviation of �i and �j from the true annual 
returns. The parameter �ij is called correlation. All these characteristics can, e.g., be 
estimated from historical time series and be adjusted by expert knowledge. For our pur-
pose, we consider these numbers as given.

We want to construct a portfolio of these asset classes that satisfies certain condi-
tions at the investment horizon T. We denote by �i the (current) weight of asset class i 
in this portfolio, e.g., the proportion of today’s value of asset class i to the value of the 
portfolio, and by � = (�1,… ,�n) the weight vector, for which 

∑n

i=1
�i = 1 holds. In 

particular, the expected annual return of the portfolio is given as

Similarly, we consider the volatility � of the portfolio, which is given as

(10)
max
𝜔∈𝛺

𝜇⊤𝜔

s.t. 𝜔⊤Σ𝜔 ≤ 𝜎2
max

(11)
min
𝜔∈𝛺

𝜔⊤Σ𝜔

s.t. 𝜇⊤𝜔 ≥ Rmin,

(12)�(�) =

n∑
i=1

�i�i.
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A typical portfolio of asset classes is given in Table 1. We will use this portfolio as a 
starting point throughout our examples.

We assume a one-period model, i.e., we can instantly rebalance our investments 
so that a proportion of �i is invested in asset class i and the expected returns �i , 
variances �2

i
 , and correlations �ij of the asset classes remain constant throughout the 

investment horizon.

3.1 � Objective functions

Return and volatility Following the concept of Markowitz, we consider return and 
volatility as given in (12) and (13). There are no assumptions on the investor’s pref-
erences such as a specific form of utility function. We only make the natural and 
standard assumption that the insurer prefers higher expected return and lower vola-
tility. Thus, return is maximized while volatility is minimized.

Solvency ratio In Sect. 1 we introduced the Solvency II regulations which include 
among others that insurers have to prove that they have enough funds to secure 
their risky assets. This is ensured by controlling that the risk to which a portfolio is 
exposed is always matched by a sufficiently high value of own funds, meaning that 
the ratio of own funds to the risk must be larger than a given threshold. The crucial 
part is the calculation of the risk, hence we give a short explanation on how it is 
done. A good motivation and derivation (in German) of the SCR formula can be 
found in Nguyen (2008, Sect. 3.5.2.1b,p. 318) .

Firstly, the allocation decision is used to determine net risks for the market risk 
defined in Solvency II. These include the following eight risk types: interest rate up, 

(13)�(�) ∶=

√√√√ n∑
i,j=1

�i�j�i�j�ij.

Table 1   Example asset classes 
with their current weights �

i
 

in the portfolio, returns �
i
 and 

volatilities �
i
 for i = 1,… , n

Asset class i �
i
 in % �

i
 in % �

i
 in %

Real estate Germany 5.87 5.30 13.00
Real estate Intl. 4.99 6.00 14.00
Equity Intl. large cap 6.22 6.50 11.18
Equity Germany large cap 12.74 5.57 14.10
Equity intl. small cap 4.32 5.95 12.72
Emerging markets equities 8.52 8.00 13.00
Private equity 3.51 8.50 18.00
Government debt 19.45 0.30 4.00
Corporate debt 14.83 1.00 3.60
Infrastructure finance 0.50 3.20 5.70
Fixed income 5.33 0.40 2.50
Asset backed securities 7.74 0.30 2.10
Cash 5.98 0.00 0.00
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interest rate down, equity type 1, equity type 2, property, spread, currency up and cur-
rency down. The net risk represents the loss in the eight scenarios compared to the most 
probable scenario (best estimate). Stress parameters assumed in the respective scenario 
(e.g., the amount of equity losses) are calibrated to the market such that the stress corre-
sponds to a 200-year event. This means that the net risk is the difference between own 
funds and value at risk for a time horizon of one year and a probability � = 1∕200 . By 
linearization and approximation one can assume that for a weight vector � ∈ [0, 1]n the 
net risk is given as A� + b , where A ∈ ℝ

n×8 and b ∈ ℝ
8 . This roughly corresponds to 

the stress definition required by the regulatory authorities, as each asset generates a risk 
factor. We denote the resulting function by

where the dimensions i = 1,… , 8 correspond to the risk types mentioned above in 
the given order. This order plays a role in the subsequent formulas since the risk 
types are aggregated differently. First, we build

(Note that the square root is well defined even in case that either x3 or x4 is negative, 
since then x2

3
+ 1.5x3x4 + x2

4
= (x3 + x4)

2 − 0.5x3x4 is positive.)
In the next step, the risk types are aggregated into one risk type, the market risk, 

by using two correlation matrices and taking the maximum of the two correlation sce-
narios. Note that an additional type of risk is added, the concentration risk, which is 
considered to be constant in the context of portfolio optimization and denoted by c1 . 
The aggregation function then reads

with

and � ∈ {0, 1∕2}. Being a correlation matrix, Pmarket(�) is positive semi-definite. Con-
sequently, the square root in fmarket is well defined.

fnetrisk ∶ [0, 1]n → ℝ
8

� ↦ A� + b,

faggregation ∶ ℝ
8
→ ℝ

5

x ↦

⎛⎜⎜⎜⎜⎜⎝

max{x1, x2}�
x2
3
+ 1.5x3x4 + x2

4

x5
x6
max{x7, x8}

⎞⎟⎟⎟⎟⎟⎠

fmarket ∶ ℝ
5
→ ℝ

+
0

x ↦

√
max{x⊤Pmarket(0) x, x

⊤Pmarket(1∕2) x} + c2
1

Pmarket(�) =

⎛
⎜⎜⎜⎜⎝

1 � � � 1∕4

� 1 3∕4 3∕4 1∕4

� 3∕4 1 1∕2 1∕4

� 3∕4 1∕2 1 1∕4
1∕4 1∕4 1∕4 1∕4 1

⎞⎟⎟⎟⎟⎠
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Market risk is then aggregated with other risks that are not affected by capital 
allocation, and the ratio of aggregated risk and own funds forms the solvency rate. 
All operations that are independent of the portfolio weights, i.e., independent of the 
optimization variables, are summarized by constants c2,… , c4 > 0 and c5 ∈ ℝ . Note 
that the risk ratio to be built is hidden in the constants c2 and c5 . Finally, we obtain 
the following simple form of aggregation:

The solvency ratio used as one of the objective functions is then obtained by com-
posing the previously introduced functions:

Distance to the current portfolio In the application at hand we consider a one-period 
model, determined once a year. Since the input data changes from year to year, there 
is a need to determine a new portfolio every year. However, due to transaction costs, 
the insurers favor new portfolios which do not deviate too much from last year’s 
portfolio. In the literature, there are different ways to model transaction costs, in 
particular very sophisticated ones involving discrete variables, which, however, turn 
the problem into a mixed-integer optimization problem. In order to keep the prob-
lem continuous, we use the distance to the current portfolio measured by an l1-norm 
here. Let � ∈ [0, 1]n be the weights of the current portfolio. To find a portfolio with 
minimal distance to this portfolio we minimize the l1-norm

Due to the absolute values, the objective function is not differentiable everywhere. It 
is well known that differentiability can be achieved by a reformulation of the abso-
lute values with the help of artificial variables and additional inequalities. However, 
nowadays most solvers can handle these sorts of functions directly.

Besides using last year’s portfolio we can also think of other special portfolios a 
user wants to relate to. Therefore, in the following, we use the notion reference port-
folio, in order to emphasize that any portfolio could be chosen instead.

3.2 � Constraints

We impose the standard assumption that all portfolio weights sum up to 1. We also 
assume that all weights are non-negative, i.e., we do not allow for short selling.

Optionally, the user can restrict the proportion of assets further by indicating 
lower and upper bounds. Besides, it is also possible to specify lower and upper 

fconstantrisks ∶ ℝ
+
0
→ ℝ

x ↦ c2

√
x2 + c3x + c4 + c5.

(14)
fsolvencyratio ∶ [0, 1]n → ℝ

� ↦ fconstantrisks(fmarket(faggregation(fnetrisk(�)))).

(15)‖� − �‖1 =
n�
i=1

��i − �i�.
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bounds for so-called asset groups which are a set of certain assets, e.g., shares or real 
estate.

3.3 � Problem formulation

We can now concisely state our four-criteria optimization problem with objective 
functions (12), (13), (14) and (15) and the constraints described above. The overall 
problem reads

where Ig ⊂ {1,… , n} , g = 1,… ,G , G ∈ ℕ , is a so-called asset group consisting of a 
subset of the given assets. Thereby, G denotes the number of the specified asset 
groups. The sum of the weights in asset group Ig is bounded by lIg , uIg ∈ (0, 1) . If 
|Ig| = 1 , i.e., if the asset group Ig contains only one asset, the constraint models lower 
and upper bounds of one specific asset.

4 � Application to the strategic asset allocation

In this section we solve the four-criteria optimization problem presented in Sect. 3 
with the help of the box algorithm described in Sect. 2. The presented test case is a 
’near-real-world’ case. As a basis we use the data of our industrial partner. However, 
for not revealing company-related secrets, we have to modify the data slightly. As a 
result, we obtain 13 exemplary assets with their individual returns and volatilites as 
given in Table 1.

Figure 1 gives an impression of all feasible portfolios, depicted in the image 
space with respect to return and volatility. Note that no additional bounds on sin-
gle assets or asset groups are active that would rule out highly unrealistic portfo-
lios as, e.g., the portfolio in the lower left corner, which has a return and volatility 
of 0% , respectively, and refers to a 100% investment into cash. The shape of the 
feasible set in the image space resembles a flame. This also holds true for the real-
world data. Note that the upper left boundary of the feasible set represents the 
image of the portfolios that are Pareto optimal with respect to the two objectives 

(MOP)

max �(�)

min �(�)

max fsolvencyratio(�)

min ‖� − �‖1
s.t.

n�
i=1

�i = 1

lIg ≤
�
i∈Ig

�i ≤ uIg ∀ g = 1,… ,G

�i ≥ 0 ∀ i = 1,… , n
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return and volatility, hence, the portfolios that would have been obtained with 
Markowitz’ bicriteria optimization.

As a third dimension, we depict the solvency ratio. Note that Fig. 1 does not show 
the result of a tricriteria optimization but that a single-objective optimization prob-
lem maximizing the solvency ratio is solved in every grid point, i.e., by restricting 
portfolio return and volatility to the respective values in the image space. We call the 
resulting portfolios ’solvency-optimal’ in the following. The attained solvency ratios 
are given by the color of the grid points. Figure 1 shows the general behavior we 
observed for the solvency ratio. The highest values are typically found in the lower 
left part, i.e., where return and volatility are rather small.

The solvency-optimal portfolios are typically extreme in the sense that they invest 
only in few asset classes. An example for this behavior is shown in Table 2, where 
the weights of the reference portfolio and a solvency-optimal portfolio with similar 
return and volatility are given. (The reference portfolio is depicted as a black trian-
gle in Fig. 1, the solvency-optimal portfolio we consider lies next to it in south-west 
direction, so it has a slightly smaller value for return and volatility, respectively.)

It turns out that the usability of such a solvency-optimal portfolio is poor: 
Although it seems to be close to the reference portfolio, its allocation in the 

Fig. 1   Based on the 13 asset classes from Table 1, a discretization of feasible return-volatility combina-
tions in the outcome space is computed. The solvency ratio is maximized in all grid points



364	 K. Dächert et al.

1 3

pre-image space differs considerably from the allocation of the reference portfo-
lio. Indeed, evaluating (15) yields a value of 111.5% for the distance between the 
two portfolios. This shows the motivation for using an additional criterion that 
takes the distance to the reference portfolio into account without imposing hard 
constraints for the asset weights. This is discussed in the following.

4.1 � Algorithmic details

In order to overcome the problem described above, we consider an optimization 
problem with four objectives: return, volatility, solvency and the distance to a 
reference portfolio.

The multi-objective optimization algorithm is implemented in Java 8. The 
scalarizations are solved by invoking NLOpt which is a library available on 
http://​github.​com/​steve​ngj/​nlopt. NLOpt offers a multitude of global and local 
optimization algorithms. We use their implementation of the Sequential Least 
Squares Programming (SLSQP) optimizer.

The graphical user interface is implemented in RShiny version 1.3.2. There, 
the user selects the objectives that should be included in the optimization. Con-
sequently, our framework also allows to consider less objective functions.

Table 2   Asset allocations of 
the reference portfolio and a 
solvency-optimal portfolio

Asset class i Reference Portfolio 
in %

Solv-opt 
Portfolio 
in %

Real estate Germany 5.98 13.26
Real estate intl. 1.20 0.00
Equity intl. large cap 2.39 14.86
Equity Germany large cap 15.55 0.00
Equity intl. small cap 0.60 0.00
Emerging markets equities 0.60 0.00
Private equity 0.12 0.00
Government debt 29.90 54.51
Corporate debt 17.94 0.00
Infrastructure finance 0.60 0.00
Fixed income 4.78 0.00
Asset-backed securities 14.35 0.00
Cash 5.98 17.37
Return 1.83 1.80
Volatility 4.27 4.20
Solvency 191.64 206.28
Distance 0.00 111.50

http://github.com/stevengj/nlopt
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4.2 � Visualization of multi‑objective portfolios

All computed portfolios are presented to the user numerically and with the help of 
dedicated visualization techniques. In particular, we choose radar plots, which are 
one of the classical visualization approaches in multi-objective optimization, see, 
e.g., Miettinen (2014) for a survey. An example is given in Fig. 2.

Each portfolio is represented by a color. Since two of the considered objective 
functions are minimized and two are maximized, we unify the representation in the 
radar plot by inverting the minimized objective function values. Hence, for all objec-
tives it holds that the more outer on the circle, the better the performance in the 
considered objective function (smaller in the minimization case and larger in the 

Fig. 2   Radar plot containing information regarding the four criteria return, volatility, solvency and dis-
tance to a reference portfolio. Portfolio 5, which is the first compromise to be generated, is emphasized. 
The sliders below show the ranges of the four criteria, respectively
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maximization case). For example, the dark blue portfolio in Fig. 2 has the largest 
return of all generated portfolios while, e.g., the light blue portfolio has the smallest 
distance measure.

Together with the radar plot we offer sliders, see also Fig. 2. By moving the slid-
ers, uninteresting portfolios can be filtered out. Visually, the filtered nondominated 
points are grayed out in the radar plot. Since the reference portfolio plays an impor-
tant role, its value in each of the considered objectives is additionally displayed in 
the title of the respective slider. Note that by definition, the reference portfolio has a 
distance measure of 0% while all other portfolios might differ by a value between 0% 
and 200% from it.

4.3 � Computational results with four objectives

In the following we present two use cases. The first shows the application of Algo-
rithm 1 to Problem (MOP) without further restrictions.

Example 1  In Fig.  2 and Table  3 we present the results of Algorithm  1 when 
applied to Problem (MOP) for the input shown in Table 1. The four additional port-
folios that are computed in the beginning to determine the bounds of the starting 
box are also depicted and denoted as Portfolios  1–4. Here, the initial bounds are 
l0 = (0%, 0%, 95.31%, 0%) and u0 = (8.5%, 18%, 226.6%, 199.76%) . Portfolio  5 is 
the first that is computed in the initial search box. We emphasize this portfolio in 
Fig.  2 to highlight that it roughly lies in the middle of the bounds of all criteria. 
This shows the advantage of using a weighted Tchebycheff scalarization which typi-
cally generates solutions lying in the middle of the considered box. The algorithm 

Table 3   Results of Algorithm 1 
when no further restrictions are 
active. The first four portfolios 
refer to the solutions defining 
the bounds of the initial 
box. The first portfolio is the 
reference portfolio

PF Return 
in %

Volatility 
in %

Solvency  
in %

Distance 
in %

[0, 8.5%] [0, 18%] [95.31, 226.6%] [0, 199.76%]

1 1.83 4.27 191.64 0.00

2 8.50 18.00 95.3 199.76

3 0.00 0.00 224.37 188.04

4 0.12 1.58 226.60 128.23

5 4.29 8.31 161.57 98.95

6 5.79 10.60 142.04 163.87

7 2.37 4.59 197.54 89.27

8 3.99 8.04 151.43 52.97

9 2.57 4.54 148.70 50.35

10 3.49 6.08 182.91 125.88

11 5.93 11.90 122.15 100.05

12 5.54 7.44 109.24 170.04

13 4.88 12.09 151.85 171.60

14 7.07 13.32 116.01 155.60
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now proceeds in decomposing the initial search box with respect to this point into 
new hyperboxes. It selects one of the boxes according to (6), i.e., it refines the box 
with the largest minimal edge, and searches for a solution in it. In our example, this 
results in Portfolio 6. The algorithm ends with the generation of Portfolio 14.

When considering the outcomes depicted in Fig. 2 and Table 3, we notice that 
already the ten generated intermediate portfolios 5 − 14 cover the initial search 
region [0%, 8.5%] × [0%, 18%] × [95.31%, 226.6%] × [0%, 199.76%] entirely, in the 
sense that the intermediate portfolios have different well-distributed values over 
all components. This is one of the main advantages of Algorithm  1 over existing 
approaches like the one used in Xidonas et al. (2018): We can specify any desired 
number of iterations (and, thus, portfolios to be generated) and for any such input 
the algorithm will produce a representation covering the entire initial search region 
’uniformly’. In contrast, grid-based approaches only allow to specify the num-
ber of intervals qi , into which the range of each objective i = 2,… ,m is equally 
divided. The qi intervals result in qi − 1 intermediate equidistant grid points, in total 
(q2 + 1) ⋅ (q3 + 1)… (qm + 1) scalarizations are solved. For having a representation 
of approximately 10 portfolios for the given four-criteria problem, the user would 
have to choose qi ∈ {1, 2} for i = 2, 3, 4 , resulting in 8, 12, 18 or 27 iterations. Note 
that in the first case, no intermediate grid point would be generated at all, in the 
second case only one intermediate grid point would have been generated in only one 
objective. This demonstrates that for an increasing number of objectives, many more 
iterations are required to achieve a similar representation than with our approach.

So far, we have not restricted Problem (MOP) further. However, as discussed 
in the beginning of Sect. 4, the user typically has a strong interest in low transac-
tion costs. There are two ways to achieve this goal. One is to use hard bounds on 
assets or asset groups. This approach requires a lot of additional input and prob-
ably also a lot of fine-tuning until a satisfying setting is found. Here, we propose 
another way which only needs one figure to be specified, namely the maximum 
distance from the reference portfolio.

Example 2  We restrict now the distance measure to 50% . Furthermore, we 
bound the other criteria to enforce that the generated outcomes are better 
than the reference portfolio. In particular, we impose the additional constraint 
that return has to be larger than 1.83% , volatility smaller than 4.27% and sol-
vency larger than 191.64% . The generated portfolios are depicted in Fig.  3, their 
objective values are given in Table  4. Note that the new restrictions have fur-
ther effects on the bounds of the other criteria, as can be seen from the first 
four generated portfolios. Hence, the initial search region is now given by 
[1.83%, 2.33%] × [3.37%, 4.27%] × [191.64%, 201.57%] × [0%, 50%] . Again, we set 
the number of iterations to 10. The algorithm generates 10 intermediate portfolios 
that are, as shown in Table 4, distributed over the initial search region.

We now come back to the issue discussed at the beginning of Sect. 4, where we 
selected a portfolio close to the reference portfolio with respect to return and volatil-
ity and maximized solvency. As shown in Table 2, the solvency-optimal portfolio 
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turned out to have an unexpectedly high distance measure of 111.5% . Since we now 
take the distance to the reference portfolio as one of the objectives into account, we 
expect that the allocations of the resulting portfolios differ much less from the refer-
ence portfolio. As an example, we have a closer look at Portfolio 4 from Table 4, 
which has the same return and a similar volatility and solvency as the reference port-
folio. In Table 5 we show the corresponding allocation variables and compare them 
to the ones of the reference portfolio. A graphical version of the same information is 
provided in Fig. 4. While Portfolio 4 still invests into less assets than the reference 
portfolio, its diversity is considerably better than the portfolio generated without the 
distance criterion. In this way, the user can direct the search quickly to interesting 
portfolios without the burden to find good bounds for the individual assets.

Fig. 3   Visualization of Example  2: The sliders corresponding to return, volatility and solvency are 
restricted to values that are all at least as good as the reference portfolio. The distance measure is addi-
tionally limited to 50%
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Table 4   Results of Algorithm 1 
when distance is restricted to 
50% and all other criteria are 
restricted to the values of the 
reference portfolio. The first 
four portfolios refer to the 
solutions defining the bounds of 
the initial box. The first portfolio 
is the reference portfolio

PF Return  
in %

Volatility 
in %

Solvency  
in %

Distance 
in %

[1.83, 2.33%] [3.37, 4.27%] [191.64, 201.57%] [0, 50%]

1 1.83 4.27 191.64 0.00

2 2.33 4.27 191.64 50.00

3 1.83 3.37 191.64 50.00

4 1.83 3.96 201.57 50.00

5 2.00 3.97 194.98 33.25

6 1.98 4.00 192.66 23.18

7 2.11 3.96 192.79 40.77

8 2.12 4.15 192.90 34.13

9 1.94 3.74 192.91 34.10

10 1.98 4.11 198.29 41.59

11 1.97 4.13 196.55 32.83

12 1.99 3.91 196.82 40.66

13 1.93 3.61 193.44 44.49

14 2.01 3.78 193.87 43.17

Fig. 4   Graphical comparison of the composition of the reference portfolio and Portfolio 4 of Table 4
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4.4 � Advantages from a practical point of view

The process of determining next year’s portfolio can be a challenging task for a big 
company with many stakeholders to consider. Expectations of different parties with 
possibly contradicting interests have to be integrated and met as best as possible. 
Additionally, regulations for banks and insurance companies have grown consider-
ably over the last 10 to 20 years, which induce further limitations on the portfo-
lio choice. This leads to a need for more complex procedures to choose a portfolio 
which satisfies all regulatory requirements as well as the expectations of the stake- 
and shareholders.

However, current procedures can not respond appropriately to these new requests. 
Typically, investors either use a bicriteria Markowitz approach and try to meet the 
other criteria by some heuristic approach or collect, evaluate and filter interesting 
possible variants to get a final portfolio. Both ideas are not satisfying and tend to be 
time-consuming and demanding for the underlying decision processes. Multicriteria 
approaches are able to better cope with the new requests compared to traditional 
techniques. In particular, the following aspects have been reported as being useful 
by the investors.

Gain in objectivity and time savings Because all relevant criteria can be inte-
grated in the model, a common basis exists satisfying the standards of the different 

Table 5   Asset allocations of 
the reference portfolio and a 
portfolio with distance restricted 
to 50%

Asset class i Reference portfo-
lio in %

Portfolio 4 
of Table 4 
in %

Real estate Germany 5.98 11.79
Real estate Intl. 1.20 0.00
Equity intl. large cap 2.39 14.30
Equity Germany large cap 15.55 0.00
Equity intl. small cap 0.60 0.00
Emerging markets equities 0.60 0.00
Private equity 0.12 0.12
Government debt 29.90 29.90
Corporate debt 17.94 16.27
Infrastructure finance 0.60 0.00
Fixed income 4.78 0.00
Asset-backed securities 14.35 14.35
Cash 5.98 13.27
Return 1.83 1.83
Volatility 4.27 3.96
Solvency 191.64 201.57
Distance 0.00 50.00
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portfolio managers. Hence, less heuristic approaches need to be used to identify the 
most preferred portfolio. The impact of a change in portfolio allocation on the vari-
ous criteria is immediately visible and can be taken into account directly. This leads 
to a much more transparent portfolio allocation process and results in considera-
ble time-savings during the whole decision process. The final portfolio selection is 
substantiated by actual optimization rather than intuition. This also helps different 
investors to better agree on a portfolio allocation that is commonly accepted.

Better detailing by user interaction The sliders together with the possibility to 
narrow the search space allow the investor to inspect parts of the outcome space 
that are of particular interest more closely. While this concept is rather standard in 
interactive multi-objective optimization, it is not present in currently used decision 
support tools of insurance companies. Hence, compared to other procedures, this 
feature offers the new ability to better fine-tune trade-offs.

5 � Conclusion

In this paper, we apply a recent multi-objective optimization algorithm based on 
Tchebycheff scalarizations to a real-world portfolio optimization problem with four 
objectives. More precisely, we tackle the problem known as strategic asset allocation 
in the context of insurance companies. Apart from the classic objectives of maxi-
mizing return and minimizing risk, a solvency ratio is maximized and the distance 
to a specified portfolio is minimized. The incorporation of these additional objec-
tives allows the generation of portfolios that are much closer to the expectations 
of the involved investors compared to portfolios generated with other approaches. 
The described concept has led to a decision support tool that is in operative use 
in a German insurance company. The tool is flexible and allows the incorporation 
of further objectives. In the future, the model could be improved by adding further 
constraints. For example, the model would be more realistic if an asset weight was 
either zero or greater than a certain minimum value. The incorporation of such con-
straints would, however, turn the problem into a mixed-integer one. While our multi-
objective framework can also be used for mixed-integer problems in general, a dif-
ferent single-objective solver for the scalarized problems would be required. Further 
challenges include questions on how to present results with many objectives to the 
investors and how to support them even more to find a final compromise decision.
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