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Abstract
Market risk management of financial derivatives requires the efficient calculation of 
their price sensitivities with respect to changes in market factors. This paper shows 
how a deep feed-forward neural network which has been trained for pricing deriva-
tive instruments can be efficiently used to calculate these sensitivities as well. The 
proposed method is a fast and easily implementable alternative approach to auto-
matic differentiation, and it simultaneously calculates all the first- and second-order 
derivatives of a multilayer feed-forward neural network with respect to its input fea-
tures. The paper quantifies the performance improvement of the proposed method 
over a recent, publicly available implementation of automatic differentiation for a 
wide range of network sizes. The number of input parameters in these networks cor-
responds to those of commonly used financial models with stochastic volatility. The 
numerical accuracy of the proposed sensitivity calculations is demonstrated with a 
case study, calculating price sensitivities of European options under stochastic vola-
tility. While the paper focuses on financial applications, the results presented herein 
are applicable to all deep feed-forward neural networks with sufficiently smooth 
activation functions.
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1  Introduction

The financial community has increasingly embraced the use of artificial intelli-
gence for pricing and hedging derivative instruments. Although these two prob-
lems are closely related to each other from a financial perspective, the artificial 
intelligence methods used to tackle them are usually very different. On the one 
hand, the recent research around hedging derivatives mainly focuses on deriving 
an optimal strategy using recurrent neural networks and reinforcement learning 
(see, e.g., Buehler et  al. (2019) and Kolm and Ritter (2019), respectively). On 
the other hand, the pricing problem is usually tackled by using deep feed-forward 
neural networks to replace computationally expensive pricing models. This paper 
positions itself between these two areas and shows how a deep feed-forward neu-
ral network that has been trained for pricing can also be used for the efficient 
calculation of first- and second-order price sensitivities, which are essential for 
model-based hedging decisions.

The benefit of using deep feed-forward neural networks for pricing problems 
lies in their universal approximating capability (Hornik et  al. (1989)): after being 
trained with the help of supervised learning, such networks are able to approximate 
the original pricing function with arbitrary accuracy. Furthermore, the simple math-
ematical operations involved in calculating the network’s output enable a significant 
speed-up in computation times compared to the original pricing problem. Not sur-
prisingly, the associated performance improvement is the most obvious for financial 
models which require either Monte Carlo simulations or computationally expensive 
numerical integration to arrive at the price of the derivative instrument.

The applicability of neural networks to replace derivatives pricing functions has 
been demonstrated for a wide range of commonly used financial models. As some 
of the very first research contributions in this field, Hutchinson et  al. (1994) and 
Anders et  al. (1998) use neural networks for option pricing in the Black-Scholes 
world. More recently, Liu et  al. (2019) and Horvath et  al. (2020) show that feed-
forward neural networks can even be used in financial models which assume sto-
chastic or rough volatility. Even though most of the research articles are concerned 
with pricing European style options on equity indexes, the same techniques are also 
applicable to other derivative instruments, such as American options on single name 
instruments (see, e.g., Gaspar et al. (2020)). For a comprehensive overview of litera-
ture using neural networks for options pricing, see Ruf and Wang (2020).

In practical applications, determining the fair price of a derivative instrument 
is usually only one part of the pricing problem. After a derivative has been traded, 
its value might be sensitive to changes in a wide range of market factors, result-
ing in potentially unwanted market risk exposures. Therefore, it is often necessary 
to calculate and monitor the price sensitivities of the instrument with respect to 
these market parameters. The first-order price sensitivities imply how the value of 
the instrument would change when market parameters evolve in isolation. At the 
same time, the second-order price sensitivities are essential to judge the effect of 
larger movements in market parameters, as well as the joint impact of a simulta-
neous move in multiple market factors.
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Given the increasing speed of trading, a growing number of financial use-cases 
require that these sensitivities are not only calculated accurately, but also as fast 
as possible. For instance, monitoring the market risk exposures of a continuously 
changing trading book in real-time, or performing large scale scenario analyses on 
derivatives portfolios are two of the many applications carried out on an ongoing 
basis at trading and quantitative portfolio management firms. For these applications, 
using neural networks can provide the required performance benefits while hardly 
sacrificing any accuracy. As proven by Hornik et al. (1990), deep feed-forward neu-
ral networks are not only capable of approximating a given function with arbitrary 
accuracy, but also its first- and higher-order derivatives. Therefore, using the tech-
niques outlined in the rest of this paper, they can be efficiently used to support real-
time risk analytics and trading decisions.

To show how to calculate the sensitivities from a neural network that has been 
trained for pricing, Sect.  2 provides analytic expressions for a multilayer feed-
forward neural network’s Jacobian and Hessian matrices with respect to its input 
parameters. The calculations in this section generalize the results of Dimopoulos 
et al. (1995) to network architectures which are commonly used for derivatives pric-
ing problems. In contrast to the widely used automatic differentiation approach for 
calculating sensitivities of neural networks, the proposed approach requires only 
common matrix operations. Therefore, it is fast, easy to implement in practical 
applications and only requires dependence on the most basic mathematical libraries. 
Furthermore, the presented methods enable the simultaneous calculation of all first- 
and second-order price sensitivities of multiple instruments, making them particu-
larly useful in risk monitoring of portfolios of derivatives.

Supporting this argument, Sect.  3 shows with numerical experiments that the 
methods outlined in Sect.  2 provide a significant performance improvement over 
the commonly used approach to calculate sensitivities of neural networks. In appli-
cations where a deep neural network is used for pricing, automatic differentiation 
would commonly be used to calculate these sensitivities with respect to the mar-
ket parameters as the network’s input features. Deep learning frameworks, such 
as PyTorch ( Paszke et al. (2019)), provide direct access to this approach given its 
widespread use for network training. Therefore, the calculation speed of the pro-
posed approach is benchmarked against a recent version of the automatic differentia-
tion implementation in PyTorch. The performance comparison focuses on networks 
whose number of input parameters corresponds to that of commonly used deriva-
tives pricing models.

At last, Sect. 4 demonstrates the practical applicability of the proposed sensitivity 
calculations with a case study. The basis of this case study is a multilayer feed-for-
ward neural network, which has been trained to approximate the pricing function of 
European options under stochastic volatility. The weights and activation functions of 
this network are used in the methods from Sect. 2 to calculate the first- and second-
order price sensitivities for a wide range of parameter combinations. The sensitivi-
ties of the network are shown to match the analytic values with a very high accuracy.

The derivations in Sect. 2 and the case study in Sect. 4 calculate the price sen-
sitivities on a single position level. In case the sensitivities of a portfolio of instru-
ments are of interest, the proposed approach can be used to calculate the sensitivities 



950	 A. Ratku, D. Neumann 

1 3

of each instrument in isolation, followed by an aggregation step to portfolio level. 
This requires weighting the sensitivities of the instruments with the corresponding 
exposures.

The primary conclusion of this paper is that the potential of feed-forward neural 
networks in replacing traditional derivatives pricing methods goes beyond simply 
determining the fair prices of derivatives. The very same neural networks can be 
used to efficiently and accurately calculate the first- and higher-order sensitivities of 
the instrument’s price, which make them appealing in performance critical real-time 
financial applications. They eliminate the performance bottleneck which is inherent 
in complex derivatives pricing models, making the dependence on sometimes unre-
alistic but computationally simple models obsolete.

2 � Jacobian and Hessian matrices of the output of feed‑forward 
neural networks

Multilayer feed-forward neural networks belong to the most elementary tools of 
deep learning. These networks take a set of input features and pass them through 
a chain of transformations to produce the network output. The transformation steps 
are most commonly organized as layers, and each layer usually consists of a lin-
ear combination of its inputs, followed by the application of a non-linear activation 
function. As the transformation steps are executed one after another, the output of 
one layer serves as the input for the following one. This ensures that the calculations 
feed forward by flowing from input features towards the output, without recurrence. 
The intermediate layers preceding the output of the network are commonly referred 
to as hidden layers.

Mathematically, let N ∶ ℝ
n
→ ℝ

m be a feed-forward neural network with L hid-
den linear layers and corresponding activation functions. Given the (row) vector of 
input features x

l−1 , the output of the lth hidden layer, xl , is a (row) vector given by

where Wl and bl are the weights and bias of the lth linear layer, respectively, and Fl is 
the corresponding activation function, applied element-wise to its input. As long as 
the selected activation functions are bounded and non-constant, such feed-forward 
network architectures are able to approximate functions and their derivatives with 
arbitrary accuracy (Hornik (1991)).

To achieve this approximation, the weights and biases of each layer need to be 
determined with the help of supervised learning. The process of finding the appro-
priate layer weights and biases is referred to as network training. For an extensive 
introduction to deep neural networks, as well as a detailed overview of the tech-
niques commonly used for their training, see Goodfellow et al. (2016).

Once a feed-forward neural network has been trained to approximate a given 
function, the evaluation of its output for a set of input features is very efficient, as 
it usually only consists of vector-matrix multiplications and elementwise applica-
tions of activation functions on vectors. This makes feed-forward neural networks 

(1)xl = Fl(xl−1W
T
l
+ bl),
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particularly attractive in use cases where computation speed is of essence, but at 
the same time it is hindered by the use of computationally expensive functions. 
Replacing these functions with their neural network approximations can provide 
arbitrary accuracy, while significantly increasing the computation performance.

As shown in this section, the layer transformations can not only be used to 
calculate the network’s output, but also can be directly applied for the calculation 
of the network’s derivatives. The feed-forward nature of the transformations ena-
bles the use of the generalized chain rule, which reduces the computation of the 
network’s derivatives to a series of elementary matrix operations. These opera-
tions allow for the calculation of the network derivatives with respect to all input 
features simultaneously, leading to the efficient calculation of the Jacobian and 
Hessian matrices.

Let x
0
 be the n-vector of input features, and xL the m-vector output of the net-

work. The first-order derivatives of the network output with respect to the input 
features at x = x

0
 are given by the network’s Jacobian as

The second-order derivatives of the output with respect to the input features at 
x = x

0
 are expressed by an n × m × n array of Hessians, whose jth slice along the 

second dimension corresponds to the n × n Hessian of the jth output variable with 
respect to the input features:

As long as the activation functions in each hidden layer l are twice differentiable, 
both the Jacobian and the Hessians at x = x

0
 can be expressed in terms of the first- 

and second-order derivatives of the activation functions, evaluated at x
0
 , as well as 

the weights of the linear layers. Dimopoulos et  al. (1995) derive the Jacobian of 
a network with non-scalar output as a matrix product, as well as the gradient and 
Hessian of a network with a single hidden layer and scalar output. The methods pre-
sented below extend these results and generalize them for networks with multiple 
hidden layers and non-scalar network outputs.

With this respect, the purpose of the following derivations overlaps with that 
of Laue et  al. (2018), who develop a framework for the efficient calculation of 
higher-order derivatives of matrix and tensor expressions using automatic differ-
entiation and Ricci calculus. At the same time, the results below are targeted spe-
cifically at feed-forward neural network architectures, and only rely on elemen-
tary matrix operations. As a consequence, they are concise, particularly easy to 
implement, and efficient to use in practical applications.
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The following derivations calculate the Jacobian and array of Hessians of a net-
work with L hidden layers and m output variables. The notation assumes that the 
output layer of the network corresponds to the Lth hidden layer.

Proposition 1  The Jacobian of the output of a single layer with respect to its inputs 
is given by

where F′
l
 is the first derivative of the activation function in layer l, applied element-

wise to the (row) vector xl−1WT
l
+ bl , Jl is a row vector of ones, whose size corre-

sponds to the size of the input vector xl−1 , and A◦B is the elementwise (Hadamard) 
product of matrices A and B of the same dimension.

Proof  Using Expression (1), the qth element of xl , x
q

l
 is given by

where 
[
WT

l

]
q
 is the qth column of the transposed weight matrix WT

l
 . Differentiating 

(3) with respect to input feature p gives

where 
[
Wl

]
q,p

 is the (q, p)th element of the weight matrix Wl . Calculating each ele-
ment of the Jacobian using Expression (4) yields

	�  ◻

Corollary 1  The Jacobian of the entire network at x = x
0
 is given by

Corollary 1 is identical up to transposition to the results of Dimopoulos et  al. 
(1995). The proof is straightforward using the chain rule and Proposition 1:

(2)
�xl

�xl−1
=

[(
F�
l

)T
Jl

]
◦Wl,

(3)
x
q

l
=
[
Fl(xl−1W

T
l
+ bl)

]
q

= Fl(xl−1
[
WT

l

]
q
+ bl),

(4)

�x
q

l

�x
p

l−1

=
(
F�
l

)
q

[
WT

l

]
p,q

=
(
F�
l

)
q

[
Wl

]
q,p
,

(5)

�xl

�xl−1
=

⎡⎢⎢⎣

�
F�
l

�
1

�
Wl

�
1,1

…
�
F�
l

�
1

�
Wl

�
1,n

⋮ ⋱�
F�
l

�
m

�
Wl

�
m,1

�
F�
l

�
m

�
Wl

�
m,n

⎤⎥⎥⎦
=

��
F�
l

�T
Jl

�
◦Wl.

(6)�N(x)||x=x
0

=

↷

L−1∏
l=0

{[(
F�
L−l

)T
JL−l

]
◦WL−l

}
.



953

1 3

Derivatives of feed‑forward neural networks and their…

Proof  Let x
0
 and xL be the vector of input features and outputs of network N. Then

	�  ◻

Corollary 1 can be used in a straightforward way to calculate the Jacobian of 
sub-networks:

Corollary 2  The partial derivatives of the outputs of layer q with respect to the 
inputs of layer p, with 1 ≤ p ≤ L and p ≤ q ≤ L , are given by

Proof  This follows from the proof of Corollary 1. 	�  ◻

For 1 ≤ p ≤ L , define �Np,p−1(x)||x=x
0

= Ip−1 and �NL+1,L(x)||x=x
0

= IL , where Ip−1 
and IL are identity matrices, whose sizes are equal to the sizes of the input vector 
to layer p, xp−1 , and the output vector xL , respectively. Otherwise, �Np,q(x) is 
undefined.

The second-order derivatives of the network’s output at x = x
0
 are expressed as 

an n × m × n array, whose (a, b, c) element corresponds to �Nb(x)

�xa�xc
 . The jth slice of 

this array along the first dimension is given by

Proposition 2  The matrix of partial derivatives in Expression (9) can be expressed 
as
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with

�Post
l

= �Nl+1,L(x)|x=x
0

,
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l
= �N1,l−1(x)|x=x
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F��
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Pre
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Proof  Observe that �jN(x)

||x=x
0

=
�

�xj
�N(x)||x=x

0

 . Applying the generalization of the 
product rule to �N(x)||x=x

0

 , the form of Expression (10), as well as the definitions of 
�Post

l
 and �Pre

l
 are trivial.

The term �l,j stands for the differentiated term of the summand l:

	�  ◻

As long as the activation functions in each hidden layer l of the network N are 
twice differentiable, and the first- and second-order derivatives are available in ana-
lytic form, Expressions (6) and (10) can be evaluated using a single forward pass 
on the network. This evaluation yields the neural network’s representation of the 
originally approximated function’s derivatives with respect to its input parameters. 
If the neural network’s activation functions satisfy the smoothness requirements by 
Hornik (1991), these representations can be made arbitrarily accurate by training an 
appropriately wide and deep network architecture.

Using a piecewise linear activation function in some of the hidden layers should 
generally not impact the calculation of Expressions (6) and (10). For instance, even 
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though the derivatives of the ReLU activation function are not defined at x = 0 , they 
are commonly treated as 0 by convention, which can also be applied in the calcula-
tions of F′

l
 and F′′

l
 above.

Nevertheless, the usage of piecewise linear activation functions might impact the 
abilities of the neural network to accurately approximate the derivatives of the func-
tion. This is easy to recognize when using Expression (10) to calculate the Hessian 
of a neural network with ReLU activation functions in each layer. Treating the sec-
ond derivative of ReLU at x = 0 as zero by convention, the second derivative of the 
activation function is zero for every input. Therefore, in the network under consid-
eration �l,j from Expression (10) is a zero matrix for every layer l, and consequently 
the Hessian of the network is also zero for every input, irrespective of the function 
approximated by the network.

3 � Performance comparison with automatic differentiation

Automatic differentiation and the derivations in Sect.  2 can both be used to cal-
culate the analytic derivatives of feed-forward neural networks. However, the two 
approaches arrive at the derivatives in largely different ways, making them appeal-
ing for different use cases. As automatic differentiation most frequently represents 
the mathematical expressions as directed graphs, it keeps track of the operations 
performed at every node, as well as their derivatives. Therefore, it can be conveni-
ently used in applications where the derivatives at every network node need to be 
calculated, such as during network training. On the contrary, the approach in Sect. 2 
focuses purely on calculating the derivatives of the network output with respect to 
its input parameters. As a consequence, it is appealing to use with calibrated neural 
networks in applications where the derivatives of the approximated function are of 
interest. The dependence on only elementary matrix operations make this method 
easy to implement and fast to evaluate and therefore useful in performance criti-
cal calculations. This section focuses on the performance aspect of calculating the 
Jacobian and Hessians of the network outputs with respect to its input features, and 
shows the improvements of computation time from using Expressions (6) and (10) 
over the automatic differentiation approach for selected network architectures.

Table  1 compares the median computation time of the network Jacobian using 
Corollary 1 with the standard autograd implementation in PyTorch v.1.7.0 ( Paszke 
et al. (2019)). These median computation times (in milliseconds) are calculated on 
the CPU based on 10 000 random initializations for each of a variety of network 
sizes (I,  H,  O), where I ∈ {8, 9, 11, 14, 19} is the size of the input feature vector, 
O ∈ {4, 16} is the size of the network output vector, and H ∈ {32, 64, 128, 256} is 
the size of the output vectors of the four fully connected internal hidden layers. The 
activation functions in the four internal and one output layers are sigmoid, tanh, sig-
moid, tanh and sigmoid, respectively.

The selected sizes of the input feature vector correspond to the number of param-
eters in widely used financial mathematical models for derivatives pricing. 8 and 9 
parameters are frequently used in the Heston model ( Heston (1993)), without and 
including a continuous dividend yield, respectively. Different variations of stochastic 
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volatility models with jumps in the underlying and the volatility processes com-
monly use 11, 14 or 19 input parameters (e.g., Duffie et al. (2000)).

Analogous to the comparisons in Table  1, Table  2 compares the median CPU 
computation times of the network Hessians using Proposition 2 with the standard 
PyTorch autograd implementation. The calculations for Proposition 2 leverage the 
efficient tensor operations implemented in PyTorch and calculate all slices of the 
array of Hessians simultaneously.

Given that the Hessian calculation using the PyTorch autograd method is limited 
to scalar functions, only O = 1 is used for the comparison. Further, the networks in 
the Hessian computations contain only two internal hidden layers, with activation 

Table 1   Median Jacobian computation times (in milliseconds) on the CPU for selected network architec-
tures using PyTorch v.1.7.0 (PT) and Expression (6)

I represents the number of the network’s input features. O shows the size of the network’s output vector. 
H stands for the size of the output vectors of the fully connected internal hidden layers

In I Out O Internal Layer Output Sizes H

32 64 128 256

PT (6) PT (6) PT (6) PT (6)

8 4 1.420 0.797 1.441 0.802 1.933 1.136 2.123 1.517
16 4.520 0.860 4.494 0.974 6.255 1.217 7.254 1.610

9 4 1.720 0.948 1.547 0.880 2.242 1.282 2.489 1.639
16 4.401 0.826 4.500 0.995 6.655 1.243 7.612 1.712

11 4 1.516 0.822 1.490 0.812 2.034 1.248 2.331 1.621
16 4.497 0.849 4.616 0.994 6.755 1.262 7.725 1.690

14 4 1.451 0.842 1.493 0.854 2.066 1.234 2.338 1.618
16 4.497 0.856 4.569 0.994 6.578 1.247 7.624 1.670

19 4 1.482 0.828 1.491 0.846 2.064 1.226 2.360 1.638
16 4.612 0.833 4.578 1.000 6.671 1.258 7.773 1.680

Table 2   Median Hessian computation times (in milliseconds) on the CPU for selected network architec-
tures using PyTorch v.1.7.0 (PT) and Expression (10)

I represents the number of the network’s input features. O shows the size of the network’s output vector. 
H stands for the size of the output vectors of the fully connected internal hidden layers

In I Out O Internal Layer Output Sizes H

32 64 128 256

PT (10) PT (10) PT (10) PT (10)

8 1 3.481 1.887 3.623 1.979 4.893 2.265 5.298 3.190
9 1 3.897 1.888 3.994 1.979 5.394 2.441 5.953 3.349
11 1 4.653 1.938 4.661 2.017 6.685 2.444 6.997 3.529
14 1 5.777 1.966 5.811 2.003 8.053 2.806 8.972 3.914
19 1 7.644 1.972 7.636 2.081 11.005 2.948 11.696 4.248
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functions sigmoid and tanh, respectively. The activation function in the output layer 
is sigmoid.

While Tables 1 and 2 present the performance comparisons on the CPU, Tables 3 
and 4 show the results for the respective comparisons on the GPU.

The calculations for the performance comparisons in Tables 1, 2, 3  and 4 were 
run on a commercial notebook with Intel Core i7 CPU (2.8GHz), 32GB of memory 
and NVIDIA GeForce GTX 1050 Ti GPU, running Windows Subsystem for Linux 
with Ubuntu 20.04 Linux distribution. A reference implementation for the perfor-
mance comparisons and the application of Expressions (6) and (10) can be found 
under https://​github.​com/​antal​ratku/​nn_​deriv.​git.

Table 3   Median Jacobian computation times (in milliseconds) on the GPU for selected network architec-
tures using PyTorch v.1.7.0 (PT) and Expression (6)

 I represents the number of the network’s input features. O shows the size of the network’s output vector. 
H stands for the size of the output vectors of the fully connected internal hidden layers

In I Out O Internal Layer Output Sizes H

32 64 128 256

PT (6) PT (6) PT (6) PT (6)

8 4 4.852 2.025 4.833 1.980 4.803 1.897 4.322 2.113
16 14.134 1.654 13.096 1.521 13.718 1.778 14.483 2.102

9 4 4.106 1.759 4.304 1.795 4.312 2.003 4.395 2.272
16 14.268 1.778 14.496 1.813 13.660 1.320 14.386 2.188

11 4 4.112 1.763 4.169 1.856 4.328 1.896 4.693 2.133
16 15.587 1.804 14.442 1.766 13.638 2.020 14.490 2.209

14 4 4.289 1.903 4.158 1.771 4.187 1.794 4.283 2.277
16 14.717 1.751 14.283 1.834 13.965 1.931 15.073 2.288

19 4 4.387 1.801 4.373 1.832 4.491 1.893 4.772 2.191
16 14.562 1.740 13.780 1.204 14.841 1.532 15.912 2.334

Table 4   Median Hessian computation times (in milliseconds) on the GPU for selected network architec-
tures using Expression (10) and PyTorch v.1.7.0 (PT)

 I represents the number of the network’s input features. O shows the size of the network’s output vector. 
H stands for the size of the output vectors of the fully connected internal hidden layers

In I Out O Internal Layer Output Sizes H

32 64 128 256

PT (10) PT (10) PT (10) PT (10)

8 1 10.875 5.793 10.633 5.408 10.929 6.079 11.112 6.790
9 1 12.641 5.441 11.699 5.099 12.075 5.754 11.154 6.396
11 1 14.252 5.982 14.847 5.758 15.267 5.420 13.503 6.976
14 1 16.735 5.806 18.620 5.720 18.445 5.564 17.847 6.066
19 1 22.692 5.841 23.163 6.099 22.632 6.146 22.908 5.930

https://github.com/antalratku/nn_deriv.git
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Given that both automatic differentiation as well as Expressions (6) and (10) cal-
culate the analytic derivatives of the network, their output should be theoretically 
identical. However, due to the rounding errors arising from machine precision, one 
could expect to observe very slight differences. In the calculations above, the Jaco-
bian and Hessian values calculated with Expressions (6) and (10) are equal to those 
calculated with PyTorch up to an absolute precision of 1.4e-9.

The analysis in this section refrains from using the finite differences methods 
for the calculation of the network sensitivities due to two practical reasons. Firstly, 
while both of the presented methods give the exact derivative of the neural network, 
the finite differences method only approximates it with the help an arbitrarily chosen 
step size � . This can lead to significant numerical instabilities, especially in case of 
the second-order network derivatives. Secondly, to calculate the network sensitivi-
ties with respect to all input features, the finite differences method requires at least 
two forward-passes on the network for each input parameter, making it computation-
ally expensive for networks with many input features.

The comparisons in Tables  1, 2, 3, 4 show that Expressions (6) and (10) can 
significantly speed up the sensitivity calculations compared to the automatic dif-
ferentiation approach. The performance benefits are the most obvious for the Hes-
sian calculations, where using Expression (10) yields very consistent computation 
times across input feature counts. A further benefit of using Expressions (6) and 
(10) is that they are not restricted to scalar functions, but are applicable to a generic 
deep feed-forward neural network N ∶ ℝ

n
→ ℝ

m with twice differentiable activation 
functions.

Comparing the performance figures across the CPU and the GPU makes it appar-
ent that the GPU does not provide a clear performance benefit over the CPU for 
the selected network architectures. This can be explained on the one hand by the 
network dimensions, and on the other hand by the performance comparison meth-
odology. First, the networks have relatively few input features, and the dimensions 
of their hidden layers are rather small. While these network dimensions are gener-
ally sufficient to accurately approximate derivatives pricing functions, they do not 
justify the need for large-scale parallelization provided by the GPU. Second, during 
each of the 10 000 iterations of the performance comparison only one realization of 
the input vector was fed into the neural network. This approach is largely consistent 
with derivatives pricing models, where one common set of model parameters is used 
for determining the price of multiple instruments. Therefore, the practical require-
ments somewhat counteract the parallelization capabilities of the GPUs, which usu-
ally excel at operating on large batches of input data, consisting of multiple, inde-
pendent input vectors.

4 � Case study of numerical accuracy

The efficient calculation of the price sensitivities of financial derivative instruments 
is essential in applications such as market risk monitoring, the continuous super-
vision of trading limits, large-scale scenario analysis of a portfolio of derivatives, 
or the implementation of quantitative trading strategies. These sensitivities not only 
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help the trader identify potentially unwanted sources of market risk, but can also 
provide an estimate of how the market risk exposure would change with regards to 
changes in market parameters. Only with the help of such information can the trader 
decide, how and when to hedge a certain exposure to market factors.

Traditionally, when complex financial models are applied to price derivative 
instruments, the sensitivity calculations can pose a computational bottleneck for 
large trading books. Therefore, often rather simple pricing models are preferred for 
such calculations, even though they might not capture the dynamics and stylized 
facts of the market factors accurately. This dependence on overly simplistic mod-
els can be significantly reduced by approximating more complex ones with deep 
feed-forward neural networks. By relying on the approximation capabilities and 
evaluation simplicity of these networks, one can largely eliminate the computational 
burden of the more complex pricing models that use Monte Carlo simulations or 
numerical integration, while maintaining a very high pricing accuracy. As outlined 
in Section 2, the usability of this pricing approach can be further enhanced by com-
bining the feed-forward neural network with Eqs. 6) and (10) for efficient price sen-
sitivity calculations.

The following case study demonstrates how accurately a feed-forward neural net-
work can approximate the price sensitivities of European options, while providing 
the performance improvements described in Sec. 3.

4.1 � Accuracy of sensitivity approximations

As the basis of the case study, a deep feed-forward neural network is trained to 
approximate the pricing function of the Heston model ( Heston (1993)) for a Euro-
pean call option. The output of the network is the option premium, expressed as 
a percentage of the underlying value S. The input features to the network are the 
five parameters of the Heston model that describe the dynamics of the volatility, {
�, �, �, �, v

0

}
 , the continuously compounded risk-free and dividend rates, r and 

d, respectively, the remaining time-to-expiry � of the option, as well as its spot 
moneyness m. The spot moneyness of a call option with strike price K and underly-
ing value S is defined as m =

K

S
 . Accordingly, in the money call options with strike 

price K < S have a spot moneyness below 1, while out of the money call options 
have a spot moneyness above 1.

As shown in Sect. 2, the same neural network that has been trained to approxi-
mate the price of a call option given some input parameters can also be used to 
calculate the sensitivities of the option price with respect to these parameters. It is 
worth noting that, similarly to the approximated option price, the price sensitivi-
ties calculated from the neural network are also only approximations of those from 
the original pricing model. However, the accuracy of these approximations can be 
largely controlled for by selecting an appropriate network architecture and training 
method.

The neural network selected for the following demonstration contains three 
internal hidden layers of 128 nodes each, with activation functions tanh, sig-
moid, tanh, respectively. The output layer contains a single node with a sigmoid 
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activation function. The network is trained on 16 million randomly selected 
parameter combinations as inputs. Each parameter is sampled from a uniform 
distribution with lower and upper bounds as presented in Table 5, and for each 
parameter combination the satisfaction of the Feller condition is ensured. The tar-
gets are the call option premia corresponding to each parameter combination, cal-
culated with the Heston pricing function.

Following the network training step, 10 000 combinations of Heston parameters 
as well as risk-free and dividend rates are selected at random. The parameters 
are sampled uniformly, with the same lower and upper bounds as in Table 5, and 
ensuring the satisfaction of the Feller condition. For each parameter combination, 
the first- and second-order sensitivities are calculated using Expressions (6) and 
(10) for a range of options with spot moneyness m spanning from 0.6 to 1.4, and 
remaining time-to-expiration � from 0.25 to 2 years.

Figures 1, 2, 3 and 4 compare the sensitivities calculated from the trained neu-
ral network using Expressions (6) and (10) with the analytic sensitivities for the 
same parameter combinations and same options. For the calculation of the ana-
lytic sensitivities, see Rouah (2013).

In each of the figures, subplot (a) presents the average Heston sensitivities by 
moneyness and time-to-expiry with respect to selected market factors over the 
10 000 random parameter combinations. Subplot (b) shows the average difference 
between the Heston sensitivities calculated from the neural network and the ana-
lytic sensitivities. At last, subplot (c) presents the standard deviation of the dif-
ferences between the Heston sensitivities calculated from the neural network and 
their analytic counterparts by moneyness and time-to-expiry.

Table 5   Lower and upper bounds for the uniformly sampled input parameters

� � � � v
0

m � r d

Lower bound 0.1 0.01 0.1 −1.0 0.0015 0.1 0.0027 −0.1 0.0
Upper bound 10.0 1.0 2.0 1.0 1.5 2.4 3.0 0.1 0.2

Fig. 1   Delta approximation. a average Heston deltas. b average difference between the neural network 
deltas and the analytic deltas. c standard deviation of the differences between the neural network deltas 
and the analytic deltas
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Figure 1 presents the approximation results for the option delta. As the delta 
of a call option shows how the price of the option would change for a small move 
in the option’s underlying, it is often considered one of the most important first-
order sensitivities of the option price. For instance, an option delta of 0.3 means 

Fig. 2   Theta approximation. a average Heston thetas. b average difference between the neural network 
thetas and the analytic thetas. c standard deviation of the differences between the neural network thetas 
and the analytic thetas

Fig. 3   Vega approximation. a average Heston vegas with respect to v
0
 . b average difference between the 

neural network vegas and the analytic vegas. c standard deviation of the differences between the neural 
network vegas and the analytic vegas

Fig. 4   Gamma approximation. a average Heston gammas. b average difference between the neural net-
work gammas and the analytic gammas. c standard deviation of the differences between the neural net-
work gammas and the analytic gammas
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that a 1 unit increase in the underlying’s value would lead to an approximately 0.3 
unit increase in the option’s price.

Subplot (a) of Figure  1 shows the average call option deltas by time-to-expiry 
and moneyness over the 10 000 randomly selected Heston parameter combinations. 
As shown on this subplot by the yellow area, deep in the money call options with 
short time-to-expiry behave very much like the underlying itself, and therefore have 
a delta close to 1. On the other hand, deep out-of-the-money call options with short 
time-to-expiry have a lower probability of becoming in-the-money at expiration, and 
therefore react with much less sensitivity to moves in the underlying instrument, 
resulting in low delta values.

Subplot (b) of the same figure presents the average difference between the option 
deltas calculated using the neural network and the analytic option deltas, over the 
10 000 randomly selected Heston parameter combinations. The average differences 
between the two sensitivity calculation methods for most combinations of time-to-
expiry and moneyness are below 0.003 in absolute terms, which demonstrates the 
very high accuracy of the network approximations. This is further supported by sub-
plot (c) of Fig.1, which shows that not only the average of the delta differences, but 
also their standard deviations are generally very low. This suggests that the neural 
network can accurately approximate the semi-analytic pricing function’s derivatives 
for a wide range of input parameters, and therefore generalizes well for the Heston 
model. The highest standard deviations of the delta differences are shown for the 
in-the-money call options with very short time-to-expiry, which is consistent with 
the high level of the option delta itself for these combinations of moneyness and 
time-to-expiry.

Figure  2 compares the theta of the option calculated from the neural network 
with the analytic theta. The theta of an option shows its first-order price sensitivity 
with respect to the passage of time, and the corresponding shortening of the option’s 
time-to-expiry. While subplot (a) of Fig. 2 shows the well-known pattern that out-of-
the-money call options with very short time-to-expiry are the most exposed to a loss 
of value due to the passage of time, subplots (b) and (c) demonstrate that the theta 
approximations with neural networks are highly accurate across all time-to-expiry 
and moneyness combinations.

Similarly, accurate approximations of the option vega are shown on Fig.  3. In 
this analysis, the vega of the option is defined with respect to the Heston parameter 
v
0
 , and it represents the sensitivity of the option price with respect to changes in the 

instantaneous volatility.
While Figs.  1, 2 and 3 focus on first-order price sensitivity approximations, 

Figure 4 presents the same analysis for the option gamma, which is the second-
order option price sensitivity with respect to changes in the underlying. As a con-
sequence, gamma can also be interpreted as the sensitivity of the option delta 
with respect to changes in the underlying, and therefore it is often used to judge 
how frequently a trader would need to adjust an option portfolio to keep its over-
all delta close to a target level. In general, at-the-money options with short time-
to-expiry show the highest gammas, which is also demonstrated in subplot (a) 
of Fig. 4. Subplots (b) and (c) present the means and the standard deviations of 
the differences between the option gammas calculated using the neural network, 



963

1 3

Derivatives of feed‑forward neural networks and their…

as well as the analytically calculated gammas over the 10 000 randomly selected 
Heston parameter combinations. Both of these subplots highlight how accurately 
a neural network is able to approximate even higher-order price sensitivities.

The analyses presented in Figs.  1, 2, 3 and 4 underscore the applicability of 
feed-forward neural networks for the efficient and accurate calculation of option 
price sensitivities. Even though the neural network used for these examples was 
trained to approximate only the pricing function of the option, the same network 
can also be used to accurately approximate the first- and higher-order derivatives 
of this function. Combining these approximation capabilities with the perfor-
mance benefits from using Expressions (6) and (10) can enable the use of realistic 
but complex derivatives pricing models in performance critical applications, by 
eliminating the computational bottleneck inherent in them.

5 � Conclusion

This article explores the use of deep feed-forward neural networks for efficiently 
calculating price sensitivities of financial derivatives. The analytic results pro-
posed for this purpose are straightforward to implement for a network that has 
been trained to approximate a derivatives pricing function.

Besides providing very accurate approximations of the price sensitivities with 
respect to market factors, the proposed approach also delivers all the first- and 
second-order sensitivities simultaneously within milliseconds. The approach is 
even faster than a recent implementation of automatic differentiation, which is 
demonstrated by numerical experiments for calculating the Jacobian and Hessian 
matrices of different network architectures.

The approximation accuracy and high performance evaluation make the pro-
posed approach particularly appealing in time-critical use-cases, such as real-time 
risk monitoring of derivatives portfolios or high-frequency trading strategies. 
Future research could apply the proposed sensitivity calculations not only to man-
aging the risk of derivatives, but also to improve the calibration of financial math-
ematical models to observed market prices of derivatives. Advances in this area 
would enable trading firms to determine the fair value of financial instruments 
in a more accurate way and thereby contribute to the overall efficiency of capital 
markets.
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