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Abstract
We consider the block relocation problem (BRP), a combinatorial optimization 
problem that may arise in storage systems where items are organized in stacks. The 
objective is to retrieve all items in a predefined order with a minimal number of 
relocations. It can be distinguished between a restricted and an unrestricted version 
of the BRP. While in the restricted BRP (R-BRP) only relocations of items located 
above the item to be retrieved next are permitted, in the unrestricted BRP (U-BRP) 
all possible relocations are allowed. Existing exact methods concerning the BRP are 
frequently search-based methods which appear to be very effective. Nevertheless, 
recent literature concerning the R-BRP has shown that model-based methods can be 
competitive and therefore should also be taken into consideration. In this paper, we 
propose a new model-based approach for the U-BRP. It eliminates the fact that the 
number of variables is increasing with the number of necessary relocations; a disad-
vantage most mathematical models for the U-BRP have in common.

Keywords Combinatorial optimization · Block relocation problem · Mixed integer 
linear model · Row generation

1  Introduction and problem description

In a storage system, the space available for storing items is scarce. Due to that fact, 
items are often stored in stacks, i.e., on top of each other. For example, this is a com-
mon approach for storing containers in a container terminal. Due to technical con-
ditions, items are only accessible from above, e.g., via rail mounted gantry cranes. 
Consequently, an item can be blocked by other items stored above it. If an item to be 
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retrieved is blocked, repositioning moves are necessary. Since repositioning moves 
may be very time consuming, minimizing the total number of these moves can have 
crucial impact on the efficiency of such a storing system.

An optimization problem that may arise in a storing system like this is the well-
known block relocation problem (BRP) which can be stated as follows: There is a 
given number N of items with labels 1 to N piled up in W last-in-first-out stacks with 
limited height H. The N items have to be retrieved in a predefined order 1,… ,N 
until all stacks are cleared. The item to be retrieved next is called target item and the 
stack in which it is located is called target stack. If a target item is not the topmost 
of its stack, all items located above it must be relocated to other stacks first. So there 
is a distinction between two types of moves: relocations and retrievals. A relocation 
moves an item from its current position to another position within the stacking area. 
The new position is always on top of another (possibly empty) stack. A retrieval 
removes an item from the stacking area. The objective is to retrieve all items in the 
predefined order with a minimal number of relocations. Note that the number of 
retrievals is a constant since it always equals the number N of items and therefore 
does not need to be taken into consideration within the objective.

In the top left corner of Fig. 1 (at c = 0 ), a stacking area with an initial configu-
ration consisting of W = 3 stacks (stack 3 is an empty stack) with a limited height 
H = 3 is depicted. A position within the two-dimensional stacking area is denoted 
as a slot  (i,  j) which is a 2–tuple consisting of a stack i ∈ {1,… ,W} and a tier 
j ∈ {1,… ,H} , e.g., item 1 is located in slot (1, 2). A configuration (1) each slot is 
occupied by at most one item and (2) each item is located on top of another item or 
on the floor, i.e., there are no floating items.

A solution of the BRP is a sequence of moves (relocations and retrievals). Each 
move of such a sequence leads to a transition from a configuration c − 1 to a con-
figuration c. The transition which results in configuration c is called the c-th transi-
tion. A solution is feasible if (1) the resulting configurations after each single move 
within the sequence are feasible, (2) the retrieval order is correct and (3) the stack-
ing area is cleared in the end.

Figure  1 presents an optimal solution of the unrestricted BRP (U-BRP) for an 
exemplary initial configuration. Let the occurring configurations be numbered by 

Fig. 1  Optimal solution of the U-BRP with objective function value 4 (the total number of relocations)
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c = 0,… ,C . After relocating item 5 from slot  (2, 3) to slot  (3, 1) within the first 
transition, item 2 is only blocked by one item, namely item 6. Within the second 
transition, item 4 can be relocated onto item 5 without creating a further blockage. 
Since item 1 is the topmost of its stack in configuration c = 2 it can be retrieved 
within the third transition. After two more relocations the configuration c = 5 is free 
of blockages and hence all items can be retrieved without further relocations. There-
fore, an optimal solution of the U-BRP contains four relocations to clear the stacking 
area. It can be observed that the first relocation does not originate in the target stack. 
This opportunity of presorting items characterizes the U-BRP and can be advanta-
geous with respect to the objective of minimizing the total number of relocations.

A second version of the BRP is the restricted BRP (R-BRP). It is based on an 
assumption proposed by Kim and Hong (2006) which prevents relocations of items 
not located in the target stack. This reduces the complexity of the problem since the 
decision on which item to relocate next is fixed. The only decision to make is deter-
mining the stack to which a relocation moves a blocking item. An optimal solution 
of the R-BRP for the identical example of Fig. 1 requires five relocations.

The main contribution of our paper is a new modeling approach for the U-BRP 
with a reduced number C of transitions (or configurations) that are considered. To 
the best of our knowledge, all mathematical model formulations for the U-BRP in 
the literature allow at most one relocation per transition. Thus, the size of these 
model formulations increases with the number of necessary moves. In our approach, 
the number C of transitions (or configurations) which need to be considered equals 
the number N of items, achieved by allowing multiple moves within each transition. 
We show that modifying a model formulation in such a manner may significantly 
increase its performance.

This paper is organized as follows: In Sect. 2, we give an overview of relevant 
literature. A mixed integer linear model formulation whose size is independent of 
the number of relocations required is presented in Sect. 3. In Sect. 4, a row genera-
tion framework is proposed to construct an optimal solution for the original problem 
U-BRP by means of the model formulation. Acceleration methods to speed up the 
row generation procedure are proposed in Sect. 5. In Sect. 6, the results of a com-
putational study are presented which examines if a modeling approach may benefit 
from the reduction of the number of considered configurations. Finally, a short con-
clusion is given in Sect. 7.

2  Literature review

The BRP may arise in any storage system in which items are organized in last-in-
first-out stacks, e.g., containers in a container terminal, pallets or steel plates in a 
warehouse, freight cars in a shunting yard etc. Due to the large and still increasing 
amount of cargo being shipped in containers via sea transportation, the field of con-
tainer terminal logistics is apparently one of the most relevant areas. According to 
that, the BRP is also known as the container relocation problem (CRP). For further 
insights into container terminal logistics and operations research applications see, 
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e.g., Steenken et  al. (2004), Stahlbock and Voß (2008), Caserta et  al. (2011) and 
Covic (2019).

The BRP is an NP-hard problem (see Caserta et  al. (2012)) which belongs to 
the research field of storage problems. Storage problems can be classified into stor-
age loading, unloading and premarshalling problems. Storage loading problems deal 
with incoming items which have to be assigned to locations within a storage area. 
Within storage unloading problems, in turn, items are retrieved and therefore leave 
the storage area. The BRP is a typical variant of a storage unloading problem where 
the storage area is organized in last-in-first-out stacks. Lastly, storage premarshalling 
problems deal with presorting operations without any items entering or leaving the 
storage area. Additionally, there exist combined problems, e.g., simultaneous plan-
ning of loading and unloading operations. For a detailed classification scheme of 
storage problems and a categorisation of existing literature see Lehnfeld and Knust 
(2014).

The BRP has been introduced by Kim and Hong (2006) in the restricted version. 
The authors propose an assumption called Assumption A1 which permits only relo-
cations above the target item. They develop a heuristic based on a calculation of 
the “expected number of additional relocations” caused by executed moves as well 
as an exact branch–and–bound procedure. The Assumption A1 is widely used in 
the literature and therefore a large part of subsequent studies addresses the R-BRP. 
For the R-BRP, there exist several heuristics (see Bacci et al. 2019; Caserta et al. 
2009, 2011, 2012; Jin et al. 2015; Jovanovic and Voß 2014; Jovanovic et al. 2019; 
Tang et al. 2015; Ting and Wu 2017; Ünlüyurt and Aydın 2012; Wan et al. 2009; 
Zhang et  al. 2020) and exact methods (see Bacci et  al. 2020; Expósito-Izquierdo 
et  al. 2014, 2015; Ku and Arthanari 2016; Quispe et  al. 2018; Tanaka and Takii 
2016; Tanaka and Mizuno 2018; Tanaka and Voß 2022; Ünlüyurt and Aydın 2012; 
Zhang et al. 2010, 2020; Zhu et al. 2012). Some of the most effective exact methods 
for the R-BRP are search-based algorithms, like the branch–and–bound algorithms 
proposed by Tanaka and Mizuno (2018) or Zhang et al. (2020) as well as an itera-
tive deepening A* (IDA*) algorithm proposed by Quispe et al. (2018). Nevertheless, 
Bacci et al. (2020) present a branch–and–cut algorithm and Tanaka and Voß (2022) 
propose an iterative algorithm based on binary linear models which both have 
proven to be very competitive model-based approaches for the R-BRP. In particular, 
Tanaka and Voß (2022) compared their model-based approach with the model-based 
approach of Bacci et al. (2020) and with three variants of one of the best-performing 
search-based approaches of Tanaka and Mizuno (2018) on 840 instances [test (CV) 
instances proposed by Caserta et al. (2011) and Caserta et al. (2012)]. The results 
show that the model-based approach of Tanaka and Voß (2022) outperforms all 
other investigated methods on these instances and that it is also the first algorithm 
which can optimally solve all instances of the dataset.

For the U-BRP, there exists a smaller number of heuristics (see Expósito-
Izquierdo et al. 2014; Forster and Bortfeldt 2012; Jovanovic et al. 2019; Peter-
ing and Hussein 2013; Tricoire et  al. 2018) and exact methods (see Expósito-
Izquierdo et  al. 2014; Jin and Tanaka 2023; Tanaka and Mizuno 2015, 2018; 
Tricoire et al. 2018; Zhu et al. 2012). Analogously to the literature concerning 
exact methods for the R-BRP, most existing exact methods for the U-BRP are 
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search-based algorithms, like branch–and–bound algorithms (see Jin and Tan-
aka 2023; Tanaka and Mizuno 2015, 2018; Tricoire et  al. 2018), an A* algo-
rithm (see Expósito-Izquierdo et al. 2014) and an IDA* algorithm (see Zhu et al. 
2012).

Furthermore, mathematical model formulations for the BRP have been devel-
oped. Kim and Hong (2006) and Caserta et  al. (2011) present dynamic pro-
gramming formulations for the R-BRP. Wan et al. (2009) develop a binary lin-
ear model called MRIP (Minimization of Reshuffles IP) for the R-BRP which 
is corrected and further improved by Tang et  al. (2015). Caserta et  al. (2012) 
propose another binary linear model for the R-BRP called BRP–II. For spe-
cific instances, the BRP–II falsely has no feasible solution which is corrected 
by Expósito-Izquierdo et  al. (2015) and Zehendner et  al. (2015). Furthermore, 
Zehendner et al. (2015) present a binary linear model called BRP–II–A which is 
an improved version of the BRP–II with a reduced number of binary variables. 
Zehendner and Feillet (2014) develop a reformulation of the BRP–II which is 
used within a branch–and–price framework. A further binary linear model for 
the R-BRP called CRP–I with an even lower number of binary variables than 
the BRP–II–A is proposed by Galle et  al. (2018). The authors make use of a 
binary encoding of a configuration as proposed by Caserta et al. (2009). Bacci 
et al. (2020) develop a compact binary model for the R-BRP which contains log-
ical constraints. Due to the complexity of these constraints, they are relaxed and 
the remaining model is embedded within a branch–and–cut framework. Most 
recently, Tanaka and Voß (2022) propose a binary linear model for the R-BRP 
which depends on sets of all possible relocation sequences for each individual 
item. Due to the exponential number of these sequences, the authors present a 
relaxed model which is embedded within an iterative algorithm.

For the U-BRP, Lee and Hsu (2007) formulate an integer model as a multi-
commodity flow problem. The authors actually address the premarshalling prob-
lem, but they propose model modifications which also make it applicable for 
the U-BRP. A binary linear model for the U-BRP called BRP–I is proposed by 
Caserta et al. (2012). Petering and Hussein (2013) develop a mixed binary linear 
model for the U-BRP called BRP–III which has a decreased number of binary 
variables in comparison with the BRP–I. A unified binary linear model which 
is applicable for the premarshalling problem, the R-BRP and the U-BRP, is pro-
posed by de Melo da Silva et  al. (2018). They present two variants of model 
formulations called BRPm1 and BRPm2 , whereas BRPm2 outperforms all exist-
ing model formulations for the U-BRP so far. Finally, Lu et al. (2020) develop 
a further unified binary linear model called BRPm3 which is, to the best of our 
knowledge, the state–of-the-art model formulation for the U-BRP.

A recent overview of existing literature concerning the BRP can be found in 
Lu et al. (2020). The authors propose a classification scheme which consists of 
16 variants of the BRP. Furthermore, they give a recap of existing lower bounds 
on the number of relocations and their development in the literature as well as a 
proposal for a new and stronger lower bound.
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3  Mathematical model formulation

In this section, we propose a mixed integer linear model called U-BRPmaster . The 
notation and the structure of the model formulation is similar to the BRP–I proposed 
by Caserta et  al. (2012). The BRP–I as well as the other existing mathematical 
model formulations for the U-BRP has in common that they permit at most one relo-
cation per transition. This property makes it easy to prevent infeasible relocations.

As a major difference to these model formulations, we are allowing multiple relo-
cations per transition. This provides the possibility to decrease the size of the model 
since the number of configurations which must be considered can be reduced. Even 
though there exist more efficient model formulations for the U-BRP, as presented 
in Sect. 2, we make use of the BRP–I as a basis since we can exploit some of its 
structural properties. Furthermore, it is very suitable for a reduction of the number 
of occurring configurations and therefore for an investigation if such a modification 
may involve benefits.

Note that within model formulations which ensure the configurations to be feasi-
ble after each individual move, the number C of occurring configurations needs to 
be an upper bound on the total number of moves (relocations and retrievals). In con-
trast to that, within the proposed U-BRPmaster the configurations are not ensured to 
be feasible after every move, but only after each retrieval. Therefore, the number C 
of configurations which must be considered is determined by the number of retriev-
als or items (C = N ), respectively.

The transition resulting in configuration c contains the retrieval of item n = c , i.e., 
within the c-th transition the item c is the target item. In addition, several relocations 
may take place in a transition as well. Remember the optimal solution of the U-BRP 
for our example presented in Fig. 1. Figure 2 presents the same solution adapted to 
the framework of the U-BRPmaster . Within the U-BRPmaster , e.g., the first transition 
contains the retrieval of item 1 and additionally two relocations which results in the 
feasible configuration c = 1.

A quick recap of the parameters: W is the number of stacks, H is the maximal height 
of the stacks, N is the number of items and items are numbered 1,… ,N which indi-
cates the sequence in which items are to be retrieved. Additionally, there exist binary 

Fig. 2  A feasible solution of the U-BRP
master
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parameters v̄nc which take value 1 if item n has already been retrieved and therefore 
is not anymore located within the stacking area of configuration c (0 otherwise). Note 
that we know in advance within which (c-th) transition a specific item n is retrieved and 
therefore v̄nc are not decision variables but parameters defined as follows:

Furthermore, there are four types of decision variables in the U-BRPmaster . The vari-
ables b̄ijnc take value 1 if item n is located in slot (i, j) of configuration c (0 other-
wise). Note that b̄ijn0 are parameters and define the initial configuration c = 0 . The 
value of the variables x̄ijklnc represent the number of how many times an item n is 
relocated from slot  (i,  j) of configuration c − 1 to slot  (k,  l) of configuration c (0 
otherwise), i.e., within the c-th transition. Note that usually x̄ijklnc takes values {0, 1} 
only since it is very unlikely that an optimal solution contains an identical reloca-
tion of the same item more than once within a transition. Nevertheless, we do not 
exclude this opportunity in order not to falsely cut off such an optimal solution (see 
the Appendix 1 for a feasible solution with an x̄–variable having the value 2). The 
binary variables ȳijnc take value 1 if item n is retrieved from slot (i, j) within the c-
th  transition (0 otherwise) and therefore item n is not anymore located within the 
stacking area of configuration c. The variables Bij take value 1 if slot (i, j) contains 
an item within configuration c = N −W which is blocking any of the items located 
below it (0 otherwise). Finally, the mathematical program can be stated as follows:

s.t.

(1)v̄nc ∶=

{
0, n = 2,… ,N;c = 1,… , n − 1

1, n = 1,… ,N;c = n,… ,N

(2)U-BRPmaster ∶ min

W∑
i=1

H∑
j=1

W∑
k=1

H∑
l=1

N∑
n=1

N−W∑
c=1

x̄ijklnc +

W∑
i=1

min(H,W)∑
j=2

Bij

(3)
W∑
i=1

H∑
j=1

b̄ijnc + v̄nc = 1 n = 1,… ,N; c = 1,… ,N −W

(4)
N∑
n=1

b̄ijnc ≤ 1 i = 1,… ,W; j = 1,… ,H; c = 1,… ,N −W

(5)

N∑
n=1

b̄ijnc ≥

N∑
n=1

b̄i(j+1)nc i = 1,… ,W; j = 1,… ,H − 1;

c = 1,… ,N −W

(6)
b̄ijnc = b̄ijn(c−1) +

W∑
k=1

H∑
l=1

x̄klijnc −

W∑
k=1

H∑
l=1

x̄ijklnc − ȳijnc

i = 1,… ,W; j = 1,… ,H; n = 1,… ,N; c = 1,… ,N −W
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Within the U-BRPmaster , the configuration c = N −W is of special importance. 
In configuration c = N −W , the number of remaining items equals the number 
W of stacks. Thus, each blocking item can be relocated to an individual stack and 
the problem becomes trivial for all succeeding transitions. For these transitions 
N −W + 1,… ,N , the number of relocations required equals the number of block-
ing items and therefore it is not necessary to calculate the moves of these transitions. 
As a result, most decision variables and constraints are not defined for c > N −W . 
This insight is based on a model formulation for the R-BRP called CRP–I pro-
posed by Galle et al. (2018). For illustration purposes, most figures depict all tran-
sitions 1,… ,N and its contained moves, even though the moves of the transitions 
N −W + 1,… ,N are not explicitly calculated within the U-BRPmaster.

According to that, the objective (2) minimizes the sum of the number of reloca-
tions within the transitions 1,… ,N −W and the number of blocking items within 
configuration c = N −W . Note that the number min(H,W) is the maximal height a 
stack can have within the configuration c = N −W so that blocking items cannot be 
located on a tier j > min(H,W) . Constraints (3) state that in a configuration an item 
can either be located inside or outside of the stacking area, not both. Constraints (4) 
make sure that a slot (i, j) cannot be occupied by more than one item within a con-
figuration. Constraints  (5) prevent an empty slot  (i,  j) within a configuration if an 
item is located above it in slot (i, j + 1) , i.e., there must not be floating items. Con-
straints (6) are “flow balancing constraints” which transfer the correct positions of 

(7)v̄nc =

W∑
i=1

H∑
j=1

c∑
c�=1

ȳijnc� n = 1,… ,N; c = 1,… ,N −W

(8)
x̄ijilnc = 0 i = 1,… ,W; j, l = 1,… ,H; n = 1,… ,N;

c = 1,… ,N −W

(9)
b̄ijn(N−W) +

n−1∑
n�=1

b̄ij�n�(N−W) − 1 ≤ Bij i = 1,… ,W;

j = 2,… , min(H,W); j� = 1,… , j − 1; n = N −W + 2,… ,N

(10)b̄ijnc ≥ 0 i = 1,… ,W; j = 1,… ,H; n = 1,… ,N; c = 1,… ,N −W

(11)
x̄ijklnc ∈ ℕ0 i, k = 1,… ,W; j, l = 1,… ,H; n = 1,… ,N;

c = 1,… ,N −W

(12)
ȳijnc ∈ {0, 1} i = 1,… ,W; j = 1,… ,H; n = 1,… ,N;

c = 1,… ,N −W

(13)Bij ≥ 0 i = 1,… ,W; j = 2,… , min(H,W)
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all items from a configuration c − 1 to its consecutive configuration c considering all 
possibly performed relocations and retrievals. Note that b̄ijn0 are binary parameters 
and define the initial configuration of the stacking area. Constraints (7) ensure that 
an item which is not anymore located within the stacking area of configuration c 
( ̄vnc = 1 ) must be retrieved in a preceding transition c� = 1,… , c ( ̄yijnc� = 1 ). Addi-
tionally, constraints (8) are applied to the U-BRPmaster to prohibit relocations within 
one stack since such relocations are never feasible with respect to the original prob-
lem. Actually, the variables x̄ijklnc with i = k can be omitted from the U-BRPmaster , 
but for a better readability and to go in line with the remainder of this paper, we just 
state this by (8). Constraints (9) are introduced for counting the number of blocking 
items by means of the variables Bij . If there is an item n located in slot (i, j) of con-
figuration c = N −W and there is an item n′ < n located in any of the slots below 
slot  (i,  j), then the corresponding variable Bij is enforced to take the value 1. The 
domains of the decision variables are declared by (10)–(13). Note that even though 
the variables b̄ijnc and Bij are defined continuous, the model enforces these variables 
to take values {0, 1} only ( ̄bijnc enforced by (4) + (6), Bij enforced by (2) + (9)).

A drawback of the U-BRPmaster is that it may deliver optimal solutions which 
are infeasible with respect to the original problem U-BRP. Remember that the 
U-BRPmaster does not contain a configuration after each move, i.e., there are omit-
ted configurations and therefore not every individual move is checked for feasibil-
ity. This means that even though optimally solving the U-BRPmaster delivers a solu-
tion with feasible configurations only, there might be omitted configurations which 
would be infeasible.

Note that Fig. 2 shows a feasible but not an optimal solution of the U-BRPmaster . 
An optimal solution of the U-BRPmaster for the same instance is presented in Fig. 3. 
The first and second transitions in Fig. 3 include two and three moves, respectively. 
The first transition, for example, includes one relocation ( ̄x∗

231251
= 1 ) and one 

retrieval ( ̄y∗
1211

= 1 ) leading to the feasible configuration c = 1 , but the U-BRPmaster 
does not deliver information about the order of multiple moves within a transition. 
It is obvious that a solution must lead to a feasible configuration after each single 
move to be feasible for the original problem U-BRP. In our small example it is easy 
to see that the moves of the first transition cannot be executed in any order. If the 

Fig. 3  An optimal solution of the U-BRP
master

 with objective function value 3
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relocation of item 5 is performed first, the result would be a configuration with 
slot (1, 2) being occupied by the two items 1 and 5 which is infeasible. On the other 
hand, retrieving item 1 first would lead to a configuration including floating items 
which is also infeasible. For the second transition, there does not exist any feasible 
order with respect to the original problem U-BRP, either.

To guarantee feasibility (and optimality) of the solutions, the U-BRPmaster is 
embedded within a row generation framework. Within this procedure, for each tran-
sition including multiple moves that cannot be executed in any order, a constraint is 
generated and added to the U-BRPmaster to prohibit a specific combination of moves. 
This procedure is presented in the next section.

4  A row generation framework

In the following, we propose a row generation framework to construct an opti-
mal solution for the original problem U-BRP by means of the model formulation 
U-BRPmaster . The idea is to generate and add constraints to the U-BRPmaster until the 
optimal solution of the U-BRPmaster is feasible for the original problem U-BRP. Note 
that every optimal solution of the U-BRP is feasible for the U-BRPmaster , but not vice 
versa. If a specific combination of moves cannot be part of a feasible solution of the 
U-BRP, then this combination of moves is prohibited within the U-BRPmaster by an 
additional constraint. Thus, an optimal solution of the original problem U-BRP is 
never cut off by a generated constraint.

Given an optimal solution of the U-BRPmaster , for each transition c = 1,… ,N −W 
a subproblem is to be solved. In each subproblem, it must be examined if there is 
any order for the corresponding moves leading to feasible configurations after each 
single move. Thus, if a transition contains only one move, there is no subproblem to 
be solved. Remember that within the c-th transition, the item c is the target item and 
is therefore retrieved. So if there is only one move within a transition, this move is a 
retrieval. Remember that the transitions N −W + 1,… ,N are not contained within 
the U-BRPmaster and therefore do not need to be considered.

In the next Sect. 4.1, the general outline of the row generation procedure is pre-
sented and illustrated by means of a small example and due to the small size of the 
example the subproblems are solved by just looking closely. Actually, within the 
implementation of the whole procedure, the subproblems are solved with the help of 
a model formulation. This model formulation for the subproblems (separation prob-
lems) to identify infeasible combinations of moves is given in Sect. 4.2.

4.1  General outline

Recall the optimal solution of the U-BRPmaster of our example presented in Fig. 3. 
The first subproblem corresponds to the first transition, i.e., the transition from 
configuration c = 0  to c = 1 . As already mentioned in Sect.  3, there exists no 
order for the moves of the first transition ( ̄x∗

231251
= 1 and ȳ∗

1211
= 1 ) which leads to 

a feasible configuration after each single move. Thus, this combination of moves 
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cannot be part of a feasible solution of the original problem U-BRP. To prohibit 
this combination, the model U-BRPmaster is extended by an additional constraint.

Let �c be the number of moves within the c-th transition of an optimal solution 
of the U-BRPmaster , formally defined as

Furthermore, let X ∶= {(i, j, k, l, n) ∣ i, k = 1,… ,W; j, l = 1,… ,H; n = 1,… ,N} 
be the set of 5-tuples (i,  j,  k,  l,  n) corresponding to all reloca-
tions that may or may not take place within a transition and let 
Y ∶= {(i, j, n) ∣ i = 1,… ,W; j = 1,… ,H; n = 1,… ,N} be the set of 3-tuples (i, j, n) 
corresponding to all retrievals that may or may not take place within a transition.

For all c = 1,… ,N −W  , let X∗
c
∶= {(i, j, k, l, n) ∣ (i, j, k, l, n) ∈ X ∶ x̄∗

ijklnc
≥ 1} be 

the set of the 5-tuples (i, j, k, l, n) corresponding to the relocations contained in 
the c-th  transition of the current optimal solution of the U-BRPmaster . Analo-
gously, for all c = 1,… ,N −W  , let Y∗

c
∶= {(i, j, n) ∣ (i, j, n) ∈ Y ∶ ȳ∗

ijnc
= 1} be the 

set including the 3-tuple (i,  j,  n) corresponding to the retrieval within the c-
th transition of the optimal solution and let B∗

c
∶= {(i, j, n) ∣ (i, j, n) ∈ Y ∶ b̄∗

ijnc
= 1} 

be the set of the 3-tuples (i,  j,  n) corresponding to the locations of the items 
within configuration c of the optimal solution.

For each transition c = 1,… ,N −W  containing a combination of moves which 
cannot be part of a feasible solution of the original problem U-BRP, a constraint 
of the form

is added to the U-BRPmaster . By applying a constraint of the form (15), the current 
combination of moves (left–hand side) within a transition is cut off from the solution 
space, unless (i) the combination of moves is extended by at least one further reloca-
tion ( ̄x–variables on the right–hand side), or (ii) the item locations within the related 
configurations c − 1 and c are not identical to the corresponding item locations of 
the current optimal solution ( ̄b–variables on the right–hand side). In such cases, at 
least one variable on the right–hand side of constraint (15) takes a value greater or 
equal to 1, so that the respective constraint is disabled. This ensures that a combi-
nation of moves is not falsely identified to be infeasible and therefore cut off. For 
example, a specific combination of moves which is infeasible within a c-th transition 
with the two related configurations c − 1 and c might be feasible within the same 
c-th transition if the item locations within the two related configurations c − 1 and c 
are changed.

(14)𝛾c ∶=

W∑
i=1

H∑
j=1

W∑
k=1

H∑
l=1

N∑
n=1

x̄∗
ijklnc

+

W∑
i=1

H∑
j=1

N∑
n=1

ȳ∗
ijnc

c = 1,… ,N −W

(15)

∑
(i,j,k,l,n)∈X∗

c

x̄ijklnc +
∑

(i,j,n)∈Y∗
c

ȳijnc ≤ 𝛾c − 1 +
∑

(i,j,k,l,n)∈X⧵X∗
c

x̄ijklnc +
∑

(i,j,n)∈Y⧵B∗
(c−1)

b̄ijn(c−1)

+
∑

(i,j,n)∈Y⧵B∗
c

b̄ijnc
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In our example (Fig. 3), there are two moves within the first transition and there-
fore �1 takes value 2. To prohibit the combination of moves within the first transition 
the additional constraint

is added to the U-BRPmaster . Thus, the current combination of moves ( ̄x∗
231251

= 1 and 
ȳ∗
1211

= 1 ) can only remain if at least one further relocation (different from x̄231251 ) is 
added to the first transition or if the item locations within the configuration c − 1 (or 
c) differ. Note that b̄ijn0 are parameters and the corresponding term always has the 
value 0. Thus, it could actually be omitted from constraint (15) for c = 1.

There also exists no feasible order for the moves of the second transition and 
therefore additionally the constraint

is added to the U-BRPmaster . The third transition does not need to be considered 
since it includes only one move. By generating and adding these constraints to the 
U-BRPmaster , the first iteration is finished. Iteration 2 begins with optimally solv-
ing the extended U-BRPmaster . The optimal solution of the U-BRPmaster calculated 
in iteration 2 is presented in the upper half of Fig. 4. The first and third transitions 
again contain multiple moves and therefore lead to further subproblems which must 
be solved.

For clarity reasons, let the following three points recap and define one iteration 
of the procedure: (1) Optimally solve the U-BRPmaster . (2) For each transition of the 
optimal solution of the U-BRPmaster that contains multiple moves, solve a subprob-
lem. (3) For each subproblem that detects infeasibility, generate and add a constraint 
to the U-BRPmaster.

x̄231251 + ȳ1211 ≤ 1 +
∑

(i,j,k,l,n)∈X⧵{(2,3,1,2,5)}

x̄ijkln1

+
∑

(i, j, n) ∈ Y ⧵ {(1, 1, 3), (1, 2, 1), (1, 3, 4),

(2, 1, 2), (2, 2, 6), (2, 3, 5)}

b̄ijn0

+
∑

(i, j, n) ∈ Y ⧵ {(1, 1, 3), (1, 2, 5), (1, 3, 4),

(2, 1, 2), (2, 2, 6)}

b̄ijn1

x̄112132 + x̄221162 + ȳ2122 ≤ 2 +
∑

(i, j, k, l, n) ∈ X ⧵ {(1, 1, 2, 1, 3),

(2, 2, 1, 1, 6)}

x̄ijkln2

+
∑

(i, j, n) ∈ Y ⧵ {(1, 1, 3), (1, 2, 5), (1, 3, 4),

(2, 1, 2), (2, 2, 6)}

b̄ijn1

+
∑

(i, j, n) ∈ Y ⧵ {(1, 1, 6), (1, 2, 5),

(1, 3, 4), (2, 1, 3)}

b̄ijn2
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The procedure is repeated until the optimal solution provided by the U-BRPmaster 
is also feasible for the original problem U-BRP, i.e., no subproblem detects infeasi-
bility. This basic version of the procedure needs 26 iterations (when implemented in 
AMPL/Gurobi) to find the solution which is presented in the bottom half of Fig. 4. 
Note again that this Sect. 4.1 shall explain the general outline of the procedure. Any 
existing infeasibility within the transitions of the example is identified by just look-
ing closely, so that the constraints are generated without the help of a model for-
mulation. Indeed, the detection of infeasibility and the corresponding separation of 
constraints is done by means of a model formulation which is presented in the next 
Sect. 4.2.

4.2  Separation problem

A separation of constraints of the form (15) is performed by means of a model for-
mulation called U-BRPsub(c̄) . The master problem U-BRPmaster and the subproblem 
U-BRPsub(c̄) both include configurations and transitions. For clarity reasons and 
from now on, a configuration (transition) of the U-BRPmaster is called m-configu-
ration (m-transition) and a configuration (transition) of the U-BRPsub(c̄) is called 

Fig. 4  Optimal solutions provided by the U-BRP
master

 embedded within the row generation framework in 
iteration 2 and 26, respectively. The bottom solution is optimal with respect to the original problem
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s-configuration (s-transition). In contrast to the U-BRPmaster and its m-configura-
tions, the U-BRPsub(c̄) contains an s-configuration after each single move to easily 
verify the feasibility of all moves. The U-BRPsub(c̄) is independently solved for each 
m-transition 1,… ,N −W of the U-BRPmaster whereby the U-BRPsub(c̄) corresponds 
to the c̄-th m-transition of the U-BRPmaster . Note that the notation c̄ only appears in 
connection with the U-BRPsub(c̄) and allows to distinguish between the s-transitions 
of the U-BRPsub(c̄) and the corresponding m-transition c̄ of the U-BRPmaster.

Given an optimal solution of the U-BRPmaster with N −W m-transitions and its 
contained moves. The aim of the subproblem U-BRPsub(c̄) , c̄ = 1,… ,N −W is to 
find a sequence of the moves contained in the c̄-th m-transition which leads to a fea-
sible s-configuration after each single move. An obvious approach might be to add 
the following constraints (16) to the U-BRPsub(c̄) which allow at most one move per 
s-transition:

Nevertheless, this straightforward formulation (16) would be insufficient. The avail-
able moves for the U-BRPsub(c̄) are limited to the moves which are used within the 
corresponding c̄-th m-transition of the U-BRPmaster and therefore the constraints (16) 
might cause subproblems which have no feasible solution. To guarantee feasibil-
ity of each subproblem U-BRPsub(c̄)16’, the constraints (16) are reformulated as soft 
constraints () by introducing further variables 𝜆c ≥ 0, c = 1,… , 𝛾c̄ . Within an opti-
mal solution of the U-BRPsub(c̄) , the variables �c indicate if the moves within the c̄
-th m-transition are feasible with respect to the original problem U-BRP (all �c = 0 ) 
or not (at least one 𝜆c > 0).

The number of s-configurations which must be considered within the U-BRPsub(c̄) 
(additionally to the initial s-configuration) is given by the number of moves 𝛾c̄ within 
the c̄-th m-transition, calculated as presented in (14). Furthermore, the initial s-con-
figuration c = 0 and the final s-configuration c = 𝛾c̄ of the U-BRPsub(c̄) are deter-
mined by the m-configurations c̄ − 1 and c̄ of the U-BRPmaster , respectively.

The notation used within the U-BRPsub(c̄) is like in the U-BRPmaster . For clar-
ity reasons, there is a small adjustment to clearly mark notations related to the 
U-BRPsub(c̄) or the U-BRPmaster , e.g., xijklnc is used within the U-BRPsub(c̄) and x̄ijklnc 
within the U-BRPmaster . Finally, the subproblem U-BRPsub(c̄) , c̄ = 1,… ,N −W can 
be stated as follows:

(16)
W∑
i=1

H∑
j=1

W∑
k=1

H∑
l=1

N∑
n=1

xijklnc +

W∑
i=1

H∑
j=1

N∑
n=1

yijnc ≤ 1 c = 1,… , 𝛾c̄

(17)U-BRPsub(c̄) ∶ max

𝛾c̄∑
c=1

(vc̄c − 𝛾c̄𝜆c)

(18)

s.t.

W∑
i=1

H∑
j=1

bijnc + vnc = 1 n = 1,… ,N; c = 1,… , 𝛾c̄
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(19)
N∑
n=1

bijnc ≤ 1 i = 1,… ,W; j = 1,… ,H; c = 1,… , 𝛾c̄ − 1

(20)

N∑
n=1

bijnc ≥

N∑
n=1

bi(j+1)nc i = 1,… ,W; j = 1,… ,H − 1;

c = 1,… , 𝛾c̄ − 1

(16’)
W∑
i=1

H∑
j=1

W∑
k=1

H∑
l=1

N∑
n=1

xijklnc +

W∑
i=1

H∑
j=1

N∑
n=1

yijnc ≤ 1 + 𝜆c c = 1,… , 𝛾c̄

(21)
bijnc = bijn(c−1) +

W∑
k=1

H∑
l=1

xklijnc −

W∑
k=1

H∑
l=1

xijklnc − yijnc

i = 1,… ,W; j = 1,… ,H; n = 1,… ,N; c = 1,… , 𝛾c̄

(22)vc̄c =

W∑
i=1

H∑
j=1

c∑
c�=1

yijc̄c� c = 1,… , 𝛾c̄

(23)

𝛾c̄∑
c=1

xijklnc = x̄∗
ijklnc̄

i, k = 1,… ,W; j, l = 1,… ,H;

c = 1,… ,N ∶ x̄∗
ijklnc̄

≥ 1

(24)
xijklnc = 0 i, k = 1,… ,W; j, l = 1,… ,H; n = 1,… ,N;

c = 1,… , 𝛾c̄ ∶ x̄∗
ijklnc̄

= 0

(25)
yijnc = 0 i = 1,… ,W; j = 1,… ,H; n = 1,… ,N;

c = 1,… , 𝛾c̄ ∶ ȳ∗
ijnc̄

= 0

(26)bijnc ≥ 0 i = 1,… ,W; j = 1,… ,H; n = 1,… ,N; c = 1,… , 𝛾c̄ − 1

(27)vc̄c ≥ 0 c = 1,… , 𝛾c̄

(28)
xijklnc ∈ {0, 1} i, k = 1,… ,W; j, l = 1,… ,H; n = 1,… ,N;

c = 1,… , 𝛾c̄

(29)yijnc ∈ {0, 1} i = 1,… ,W; j = 1,… ,H; n = 1,… ,N; c = 1,… , 𝛾c̄
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The constraints (18)–(22) and (24) are fundamental restrictions of the U-BRP which 
are already known from the U-BRPmaster , constraints (3)–(8).

Each subproblem U-BRPsub(c̄) corresponds to the c̄-th m-transition of an optimal 
solution of the U-BRPmaster which may contain several relocations and always con-
tains exactly one retrieval, namely the retrieval of item n = c̄ . The number of moves 
𝛾c̄ within the c̄-th m-transition determines the number of s-transitions or, respec-
tively, the number of s-configurations which are considered within the U-BRPsub(c̄) 
(additionally to the initial s-configuration c = 0 ). Thus, most decision variables and 
constraints are defined for c = 1,… , 𝛾c̄.

The objective  (17) maximizes the number of s-configurations in which the tar-
get item c̄ is no longer located within the stacking area. This expression is equiva-
lent to a minimization of the number of relocations. As already mentioned, only the 
retrieval of item n = c̄ takes place within the c̄-th m-transition and therefore within 
the U-BRPsub(c̄) , but it is unknown in which s-transition the retrieval takes place. 
Thus, vnc, n = 1,… ,N, c = 1,… , 𝛾c̄ is a variable iff n = c̄ and so, only vc̄c occurs in 
the objective (17). All items n < c̄ are already retrieved in preceding m-transitions 
and all items n > c̄ will be retrieved in later m-transitions whereby all vnc with n ≠ c̄ 
are parameters defined as follows:

The second part of the objective (17) is a penalization term which is associated with 
the constraints (16’). If the c-th s-transition of the U-BRPsub(c̄) contains more than 
one move, then the corresponding variable �c takes a value greater than 0 which, in 
turn, is penalized in the objective (17). Note that the variables �c are always integer 
since their values are determined by binary variables only. The weights within the 
penalty term (𝛾c̄𝜆c ) are set to the number of moves 𝛾c̄ . These are the minimum values 
required to ensure that an optimal solution of the U-BRPsub(c̄) violates one or more 
constraints of  (16) only if there exists no feasible solution which does not violate 
(16), i.e., if there is no feasible solution with �c = 0 for all c = 1,… , 𝛾c̄ (see the 
Appendix 2 for a proof).

Furthermore, the parameters bijn0 and bijn𝛾c̄ which determine the initial and final 
s-configuration of the U-BRPsub(c̄) are defined as follows:

Thus, the origin m-configuration of the c̄-th  m-transition (m-configuration  c̄ − 1 ) 
defines the initial s-configuration c = 0 of the subproblem U-BRPsub(c̄) (by (32)) and 
analogously the resulting m-configuration of the c̄-th m-transition (m-configuration 
c̄ ) defines the final s-configuration c = 𝛾c̄ of the subproblem U-BRPsub(c̄) (by (33)).

(30)𝜆c ≥ 0 c = 1,… , 𝛾c̄

(31)vnc ∶=

{
0, n = c̄ + 1,… ,N; c = 1,… , 𝛾c̄
1, n = 1,… , c̄ − 1; c = 1,… , 𝛾c̄

c̄ = 1,… ,N −W

(32)bijn0 ∶= b̄∗
ijn(c̄−1)

i = 1,… ,W; j = 1,… ,H; n = 1,… ,N

(33)bijn𝛾c̄ ∶= b̄∗
ijnc̄

i = 1,… ,W; j = 1,… ,H; n = 1,… ,N
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Finally, the constraints (24) and (25) enforce that only those moves can be used 
within the U-BRPsub(c̄) which are also used within the corresponding m-transition. 
Thereby, the majority of the variables xijklnc and yijnc is fixed to the value 0. Addition-
ally, the constraints  (23) ensure that each relocation of the c̄-th m-transition takes 
place within the U-BRPsub(c̄) . In most cases the constraints (23) are superfluous since 
the available relocations (those which are not prohibited by (24)) have to be used 
anyway to reach the given final s-configuration, but in a few cases the final s-con-
figuration within a subproblem can be obtained by using only a subset of these relo-
cations. In this scenario, a relaxation of constraints (23) may result in a generation 
of identical constraints within consecutive iterations and thus the procedure does 
not terminate. In turn, integrating the constraints (23) into the U-BRPsub(c̄) guaran-
tees that the procedure can find an optimal solution within a finite number of itera-
tions (see the Appendix 3 for an example in which the constraints (23) are manda-
tory as well as for a clarification that the procedure never causes deadlocks if the 
constraints  (23) are enabled). Similar constraints for the retrievals are not needed. 
Within each subproblem the given final s-configuration always includes one item 
less than the given initial s-configuration and there is always exactly one retrieval 
permitted. Thus, the final s-configuration cannot be obtained if the respective 
retrieval is not a part of the solution.

The example in Fig.  5 gives an overview of the connection between the mas-
ter problem and the subproblems. The upper row shows an optimal solution of the 

Fig. 5  First two m-transitions of an optimal solution of the U-BRP
master

 and optimal solutions of the two 
corresponding subproblems U-BRP

sub(1) and U-BRP
sub(2)
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U-BRPmaster which occurs within the procedure. Only the first two m-transitions 
contain relocations and are therefore presented. Furthermore, the corresponding 
subproblems U-BRPsub(1) and U-BRPsub(2) are presented. Since the first m-transi-
tion contains �1 = 4 moves, the corresponding subproblem U-BRPsub(1) consid-
ers the s-configurations 0,… , 4 and therefore four s-transitions. Analogously, the 
U-BRPsub(2) considers the s-configurations 0,… , 2 and therefore two s-transitions. 
The optimal solution of the first subproblem contains variables 𝜆c > 0 so there is no 
feasible solution which leads to a feasible s-configuration after each single move. 
Thus, the combination of moves cannot be part of a feasible solution of the original 
problem U-BRP and therefore is cut off by adding the constraint

to the U-BRPmaster . On the other hand, the optimal solution of the second subprob-
lem contains �c = 0 for all c = 1,… , �2 . Thus, the combination of moves of the sec-
ond m-transition is identified to be feasible with respect to the original problem and 
therefore no constraint is generated.

5  Acceleration methods

The row generation framework presented in Sect. 4 is a basic version. In this section, 
we propose possible modifications which may accelerate the procedure. In Sect. 5.1, 
we present possibilities to fix a part of the variables within the U-BRPmaster to the 
value 0 in a preprocessing step. In the Sect.  5.2, we present valid inequalities for 
the U-BRPmaster . In the Sects. 5.3 and 5.4, variable fixings and symmetry breaking 
constraints for the U-BRPsub(c̄) are presented. Finally, in Sect. 5.5, we propose three 
different types of constraints which can be generated within the procedure.

5.1  Fixing the variables of the master problem

Some moves can be excluded in advance and therefore the corresponding vari-
ables of the U-BRPmaster can be fixed to the value 0 in a preprocessing step. These 

x̄233251 + x̄223161 + x̄211221 + ȳ1211 ≤ 3 +
∑

(i, j, k, l, n) ∈ X ⧵ {(2, 3, 3, 2, 5),

(2, 2, 3, 1, 6),

(2, 1, 1, 2, 2)}

x̄ijkln1

+
∑

(i, j, n) ∈ Y ⧵ {(1, 1, 3), (1, 2, 1),

(1, 3, 4), (2, 1, 2),

(2, 2, 6), (2, 3, 5)}

b̄ijn0

+
∑

(i, j, n) ∈ Y ⧵ {(1, 1, 3), (1, 2, 2),

(1, 3, 4), (3, 1, 6),

(3, 2, 5)}

b̄ijn1
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variables can actually be omitted from the model, but for a better readability we 
leave the U-BRPmaster unchanged and state this by the definitions (34)–(36).

The first fixings (34) concern the variables b̄ijnc.

Remember that item c is the target item within the c-th m-transition. Thus, all items 
n ≤ c are not anymore located within m-configuration c. Second, an item n cannot 
be located on a tier j in an m-configuration c if there are not enough items left within 
that m-configuration to reach that tier. Therefore, in an m-configuration c there is 
never an item n located on a tier j higher than the number N − c of remaining items 
in that m-configuration.

The variables x̄ijklnt are fixed as denoted by (35). There are four cases in which 
a variable is fixed.

The first condition i = k of (35) prohibits a relocation within one stack since such a 
relocation is never feasible. Note that by applying these fixings, the constraints (8) 
become redundant and can therefore be relaxed. Second, within the c-th m-transition 
the target item c is never relocated but only retrieved since a relocation of this item 
is superfluous. Additionally, all items n < c are already retrieved and therefore can-
not be relocated anymore. Thus, all relocations with n ≤ c can be fixed to 0. Third, 
a relocation of an item from tier j = 1 of one stack to tier l = 1 of another stack is 
superfluous since it is indifferent in which stack an item is located if it is on the 
bottom. Fourth, a relocation is excluded from the solution space if the sum j + l of 
the corresponding tiers of this relocation cannot be reached by the remaining items. 
Remember that the variables x̄ijklnc represent relocations within the c-th m-transition 
originating in m-configuration c − 1 . Thus, the number of the remaining items within 
the concerned m-configuration is N − c + 1 . The sum j + l connected to a relocation 
can have a maximal value N − c + 2 (number of the remaining items plus 1) which 
occurs in an m-configuration with all items located in at most two stacks. Figure 6 
gives two examples to illustrate the fourth condition. The items are not numbered 
since it is irrelevant for illustration purposes. Both examples include N = 3  items 
and concern relocations within the first m-transition ( c = 1 ). Thus, j + l can have a 

(34)
b̄ijnc ∶= 0 i = 1,… ,W; j = 1,… ,H; n, c = 1,… ,N −W ∶

n ≤ c ∨ j > N − c

(35)
x̄ijklnc ∶= 0 i, k = 1,… ,W; j, l = 1,… ,H; n, c = 1,… ,N −W ∶

i = k ∨ n ≤ c ∨ j + l = 2 ∨ j + l > N − c + 2

Fig. 6  The relocation on the left is not affected by a variable fixing. The relocation on the right is prohib-
ited by fixing the corresponding variable to the value 0
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maximal value of N − c + 2 = 4 . The example on the left shows a relocation which 
is not affected by a fixing. On the right side an example for a relocation is presented 
which is prohibited by fixing the corresponding variable to the value 0.

The variables ȳijnc are fixed as stated by (36).

Within the c-th m-transition only item n = c is retrieved and thus the variables ȳijnc 
are fixed to the value 0 if n ≠ c . Since the variables ȳijnc remain unfixed only if 
n = c , they can be reduced to triple indexed variables ȳijc , but for clarity reasons we 
leave the variables unchanged for the remainder of this paper. Second, an item can-
not be retrieved from a location on a tier j within the c-th m-transition if the number 
N − c + 1 of items left within m-configuration c − 1 is too low to reach that tier.

5.2  Valid inequalities for the master problem

Furthermore, we formulate valid inequalities for strengthening the relaxed model 
formulation U-BRPmaster . The intention is to cut off solutions of the solution space 
which are infeasible with respect to the original problem U-BRP. Since these solu-
tions may be prohibited within the row generation procedure otherwise, it should 
reduce the number of iterations required within the procedure.

Property 5.1 If there is a relocation of an item n in an m-transition c ending in 
slot (i, j), then slot (i, j) must not be occupied by another item n′ ≠ n or there must 
be a further relocation of an item n′ ≠ n in that m-transition c starting in slot (i, j) or 
there must be a retrieval of item c from slot (i, j).

With respect to the U-BRPmaster it is feasible to relocate an item n to a slot (i, j) 
which is actually occupied by another item n′ ≠ n if item n leaves the slot again by 
a further relocation within the same m-transition. For the original problem U-BRP, 
this would cause an infeasible solution since it violates the condition that a slot must 
be occupied by at most one item. Therefore, we are applying the valid inequali-
ties (37) to implement the insight of Property 5.1.

Note that the variables b̄ijn(c−1) are excluded from the constraints  (37) to not pro-
hibit some sort of “back and forth”- or cyclic relocations within an m-transition. 

(36)
ȳijnc ∶= 0 i = 1,… ,W;j = 1,… ,H; n, c = 1,… ,N −W ∶

n ≠ c ∨ j > N − c + 1

(37)

W�
k=1

H�
l=1

x̄klijnc ≤ M

⎛
⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎝

1 −

N�
n� = 1

n� ≠ n

b̄ijn�(c−1)

⎞
⎟⎟⎟⎟⎟⎠

+

W�
k=1

H�
l=1

N�
n� = 1

n� ≠ n

x̄ijkln�c + ȳijcc

⎞⎟⎟⎟⎟⎟⎠
i = 1,… ,W; j = 1,… ,H; n = 1,… ,N; c = 1,… ,N −W
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Relocations are called cyclic relocations if an item is relocated at least twice within 
an m-transition c whereby it is relocated to the slot in which it was initially located 
in the originating m-configuration c − 1 . For specific instances, cyclic relocations 
are mandatory to obtain an optimal solution and therefore shall not be cut off (see 
the Appendix 4 for an example).

Property 5.2 If there is a relocation in an m-transition c starting or ending in 
slot  (i,  j), then the slot (i, j + 1) above must either be a free slot or there must be 
another relocation in that m-transition c starting in slot  (i, j + 1) or there must 
be a retrieval of item c from slot (i, j + 1) . Analogously, if item c is retrieved from 
slot (i, j) in m-transition c, then the slot (i, j + 1) above must either be a free slot or 
there must be another relocation in that m-transition c starting in slot (i, j + 1).

On the basis of Property 5.2 we are applying the valid inequalities (38) and (39).

Note that a Big–M is not needed in the constraints (39) since only one retrieval takes 
place within each m-transition and therefore the left–hand sides have a maximal 
value 1.

Property 5.3 For all c = 1,… ,N −W it can be enforced that the retrieval of the 
target item c is the last move within the c-th m-transition, i.e., if the target item c is 
located in slot (i, j) at the beginning of the c-th m-transition, then this slot (i, j) and 
all slots below can be disabled for any relocation in this m-transition. Such reloca-
tions can take place in the following m-transition and therefore no feasible solution 
of the original problem gets lost.

Based on the Property 5.3 we are applying the valid inequalities (40) to enforce 
that in each m-transition c = 1,… ,N −W there are neither relocations starting or 
ending in the slot in which the target item c is located nor in a slot below.

(38)

W∑
k=1

H∑
l=1

N∑
n=1

(x̄ijklnc + x̄klijnc)

≤ M

((
1 −

N∑
n=1

b̄i(j+1)n(c−1)

)

+

W∑
k=1

H∑
l=1

N∑
n=1

x̄i(j+1)klnc + ȳi(j+1)cc

)

i = 1,… ,W; j = 1,… ,H − 1; c = 1,… ,N −W

(39)
ȳijcc ≤

(
1 −

N∑
n=1

b̄i(j+1)n(c−1)

)
+

W∑
k=1

H∑
l=1

N∑
n=1

x̄i(j+1)klnc

i = 1,… ,W; j = 1,… ,H − 1; c = 1,… ,N −W
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The valid inequalities  (40) have two effects. A first (obvious) effect is that some 
solutions are cut off from the solution space which are infeasible with respect to the 
original problem U-BRP. An example for such a solution is presented in Fig. 7.

A second effect is that feasible but symmetrical solutions may be prevented. A mini-
mal example for symmetrical solutions is depicted in Fig. 8. Both solutions are feasible 
with respect to the U-BRP but the upper solution is prohibited by (40).

Taking together the Properties 5.1 – 5.3, the valid inequalities (37),  (38) and (40) 
can be reduced to (37’), (38’) and (40’), respectively, without loss in strength of the 
valid inequalities.

(40)

j∑
j�=1

W∑
k=1

H∑
l=1

N∑
n=1

(x̄ij�klnc + x̄klij�nc) ≤ M(1 − b̄ijc(c−1))

i = 1,… ,W; j = 1,… ,H; c = 1,… ,N −W

(37’)

W�
k=1

H�
l=1

x̄klijnc ≤ M

⎛
⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎝

1 −

N�
n� = 1

n� ≠ n

b̄ijn�(c−1)

⎞
⎟⎟⎟⎟⎟⎠

+

W�
k=1

H�
l=1

N�
n� = 1

n� ≠ n

x̄ijkln�c

⎞⎟⎟⎟⎟⎟⎠
i = 1,… ,W; j = 1,… ,H; n = 1,… ,N; c = 1,… ,N −W

Fig. 7  Infeasible solution with respect to the original problem U-BRP

Fig. 8  Symmetrical solutions of the U-BRP
master
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For clarity reasons, this reduction is explained in three steps. (1) According to Prop-
erty 5.3, within an m-transition, relocations shall neither start or end in the slot of 
the target item c nor in a slot below, i.e., a retrieval from a slot (i, j) shall neither ena-
ble this slot (i, j) nor a slot below for any relocation. Therefore, the ȳ–variables can 
be omitted from the constraints (37) and (38). (2) Furthermore, the valid inequali-
ties (40) are reduced by just disabling the slot, in which the target item is located, for 
any relocation. All slots below are implicitly disabled by the constraints (38’). (3) 
Finally, the valid inequalities (38) and (40) may restrict any relocation which starts 
or ends in a specific slot (i, j). These constraints can be reduced by only prohibiting 
any relocation which starts in that specific slot (i, j) (and not those which end there) 
and therefore the variables x̄klijnc and x̄klij′nc are omitted from the left–hand sides of 
constraints (38) and (40), respectively. A relocation ending in an occupied slot (i, j) 
automatically leads to a further relocation starting in that slot (i, j) due to constraints 
(37’). Therefore, if a relocation starting in a slot (i, j) is prohibited by (38’) or (40’), 
then all relocations ending in this slot  (i,  j) are implicitly prohibited by the con-
straints (37’). Note that the reduced constraints (37’), (38’) and (40’) are mutually 
dependent and therefore should be applied together and not isolated.

The constraints  (41) affect the retrieval moves. Within the c-th m-transition, as 
soon as the target item c is accessible it can be retrieved and therefore a relocation 
of it is always superfluous within that m-transition. Therefore, the constraints  (41) 
enforce that item c is retrieved from the slot (i, j) where it is located at the beginning 
of the c-th m-transition.

Note that a target item is never relocated within an optimal solution of the origi-
nal problem U-BRP or the U-BRPmaster (in its initial version) since such relocations 
are superfluous. Within the row generation procedure such relocations might occur. 
The reason is that a superfluous relocation may (re-)allow a combination of moves 
which is actually prohibited by a generated constraint (see the relocations of item 3 
in the Appendix 3 for an illustration of a similar effect). Additionally, these superflu-
ous relocations are implicitly prohibited by the valid inequalities (40) or (40’) which 
actually make the constraints  (41) redundant. Nevertheless, applying  (41) might 
reduce solution time.

(38’)

W∑
k=1

H∑
l=1

N∑
n=1

x̄ijklnc ≤ M

((
1 −

N∑
n=1

b̄i(j+1)n(c−1)

)
+

W∑
k=1

H∑
l=1

N∑
n=1

x̄i(j+1)klnc

)

i = 1,… ,W;j = 1,… ,H − 1;c = 1,… ,N −W

(40’)

W∑
k=1

H∑
l=1

N∑
n=1

x̄ijklnc ≤ M(1 − b̄ijc(c−1))

i = 1,… ,W;j = 1,… ,H;c = 1,… ,N −W

(41)ȳijcc = b̄ijc(c−1) i = 1,… ,W; j = 1,… ,H; c = 1,… ,N −W
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5.3  Fixing the variables of the subproblems

As in the master problem U-BRPmaster , there are some variables within the sub-
problems U-BRPsub(c̄) which can be fixed in a preprocessing step. Note that fix-
ing the variables of the U-BRPmaster as presented in Sect. 5.1 implicitly fixes the 
corresponding variables of the U-BRPsub(c̄) within the row generation procedure 
due to the constraints (24) and (25). Nevertheless, further variables can be fixed 
within the U-BRPsub(c̄) which may not yet be affected.

Due to the Property  5.3, the retrieval of the target item can be assumed to 
be the last move within the respective m-transition. Thus, for each U-BRPsub(c̄) , 
c̄ = 1,… ,N −W  it can be enforced by the fixings (42) that the retrieval of the tar-
get item c̄ takes place in the last s-transition c = 𝛾c̄ and from the slot (i, j) where 
the target item is initially located. In turn, all retrievals which are related to the 
target item c̄ and to its initial location but not to the last s-transition c = 𝛾c̄ can be 
prohibited by the fixings  (43). All retrievals which are not related to the target 
item c̄ or not to the initial location of the target item are already excluded within 
the row generation procedure by the constraints (25) and are therefore not part of 
this subsection.

Taking together the constraints (25) and the fixings (42) and (43), all variables yijnc 
are fixed and therefore become parameters.

According to that, it can be assumed that the target item remains in its initial loca-
tion within all s-configurations c = 1,… , 𝛾c̄ − 1 except in the last one c = 𝛾c̄ since it is 
retrieved in the last s-transition. Therefore, further variables can be fixed according to 
(44) and (45).

Note that one could apply additional fixings to forbid any relocation of the target 
item, but since it is implicitly done within the row generation procedure by the con-
straints (24), no further x–variables are fixed within the subproblems.

Enforcing the retrieval of the target item c̄ within the subproblem U-BRPsub(c̄) to 
take place in the last s-transition c = 𝛾c̄ , vc̄c are not anymore variables but parameters 
defined as follows:

(42)yijc̄𝛾c̄ ∶= 1 i = 1,… ,W; j = 1,… ,H ∶ b̄∗
ijc̄(c̄−1)

= 1

(43)yijc̄c ∶= 0 i = 1,… ,W; j = 1,… ,H; c = 1,… , 𝛾c̄ − 1 ∶ b̄∗
ijc̄(c̄−1)

= 1

(44)bijc̄c ∶= b̄∗
ijc̄(c̄−1)

i = 1,… ,W; j = 1,… ,H; c = 1,… , 𝛾c̄ − 1

(45)bijc̄𝛾c̄ ∶= 0 i = 1,… ,W; j = 1,… ,H
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Therefore, by applying the variable fixings  (42)–(45), vc̄c can be omitted from the 
objective  (17) of the U-BRPsub(c̄) such that the objective reduces to max

𝛾c̄∑
c=1

−𝛾c̄𝜆c 

( ⇔ max
𝛾c̄∑
c=1

−𝜆c ). Furthermore, the constraints (18) can be relaxed since vnc are not 

anymore variables but parameters and the correct values for the variables bijnc are 
implicitly ensured by the constraints  (21). The constraints  (22) and (25) contain 
parameters only and can therefore also be relaxed. Note that the valid inequali-
ties (40) or (40’) within the U-BRPmaster should be activated when fixing the varia-
bles within the U-BRPsub(c̄) as denoted by (42)–(45) to ensure that the Property 5.3 
holds true.

5.4  Symmetry breaking constraints for the subproblems

The symmetry breaking constraints  (47) within the U-BRPsub(c̄) can be stated as 
follows:

If an optimal solution of the U-BRPsub(c̄) contains multiple moves within an s-tran-
sition c = 1,… , 𝛾c̄ , then there must be at least one s-transition c′ ≠ c without any 
move. If one or more s-transitions without any move exist, then the constraints (47) 
enforce that these s-transitions must take place at the beginning. The last s-transition 
c = 𝛾c̄ is omitted from the domain of the constraints since there is always a move, 
namely the retrieval of item c̄ , in this s-transition (enforced by (42)). Therefore, not 
to perform a relocation in s-transition 𝛾c̄ must not prohibit a relocation in the preced-
ing s-transition 𝛾c̄ − 1 . Note that the variable fixings  (42)–(45) should be applied 
when adding the constraints  (47) to the U-BRPsub(c̄) to ensure the retrieval to take 
place within the last s-transition 𝛾c̄.

The sum on the right–hand sides of constraints (47) is multiplied by the fac-
tor (c − 1) . If a relocation takes place in an s-transition c, then c − 1 is the maxi-
mal number of relocations that can take place in the preceding s-transition c − 1 . 
Therefore, the factor (c − 1) is large enough to not falsely cut off an optimal 
solution.

Note that the computational effort for optimally solving the U-BRPsub(c̄) is negli-
gible in comparison with the U-BRPmaster due to fixing the most variables. Neverthe-
less, applying the constraints (47) might reduce solution time, especially caused by a 
reduced number of iterations required.

(46)vc̄c ∶=

{
0, c = 1,… , 𝛾c̄ − 1

1, c = 𝛾c̄
c̄ = 1,… ,N −W

(47)

W∑
i=1

H∑
j=1

W∑
k=1

H∑
l=1

N∑
n=1

xijkln(c−1) ≤ (c − 1) ⋅

W∑
i=1

H∑
j=1

W∑
k=1

H∑
l=1

N∑
n=1

xijklnc

c = 2,… , 𝛾c̄ − 1
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5.5  Alternative types of generated constraints

In this subsection, we propose three types of constraints that can be generated 
within the row generation procedure. Constraints of Type 1 are the generated 
constraints presented in Sect. 4.1. Alternatively, a constraint generation of Type 
2 or 3 can be applied. For illustration purposes, Fig. 9 introduces a new exam-
ple with N = 6 items, W = 2 stacks and a limited height H = 5 . The upper row 
shows the first m-transition of an optimal solution for the U-BRPmaster which 
occurs within the row generation procedure. The bottom row shows an optimal 
solution of the corresponding subproblem U-BRPsub(1) consisting of five s-transi-
tions. Additionally, it is illustrated which combinations of moves are prohibited 
by the different types of constraints. Note that the example of Fig.  9 contains 
the U-BRPmaster and the U-BRPsub(c̄) in its basic versions. This example cannot 
arise while applying the acceleration methods presented in the Sect.  5.1  –  5.4 
since the solutions violate many of the valid inequalities, symmetry breaking 
constraints and variable fixings mentioned so far (see the Appendix 5 for further 
information on the fact that Type 2 is tighter than Type 1, and Type 3 is tighter 
than Type 2.).

Type 1 The first type of generated constraints is like the explanations and the exam-
ple within Sect. 4.1. If a subproblem U-BRPsub(c̄) has an optimal solution with at least 
one s-transition c = 1,… , 𝛾c̄ containing more than one move (determined by 𝜆c > 0 ), 
then a constraint is added to the U-BRPmaster . This constraint prohibits all moves, which 
are contained in the U-BRPsub(c̄) , in this combination in the c̄-th m-transition. In our 
example of Fig. 9, the additional constraint

Fig. 9  First m-transition of an optimal solution of the U-BRP
master

 and an optimal solution of the corre-
sponding subproblem U-BRP

sub(1)
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is added to the U-BRPmaster.
Type 2 The second type of generated constraints is similar to Type 1, but only such 

moves are considered which are contained in an s-transition c = 1,… , 𝛾c̄ with 𝜆c > 0 . 
In this case, the additional constraint

is added to the U-BRPmaster of our example. Actually, the relocation x̄132331 does not 
cause infeasibility since it can take place as the only move within an s-transition (see 
the third s-transition of the U-BRPsub(1) in Fig. 9). Thus, the decision variable x̄132331 
is not part of the left–hand side of the generated constraint, so the value of x̄132331 
is not affected by this constraint. Note that constraints of Type 2 are tighter than 
constraints of Type 1 since they always cut off the same solutions as Type 1 con-
straints but prohibit further solutions if Type 1 and 2 constraints are not identical. In 
our example, the partial solution x̄132151 = 1, x̄211331 = 1, x̄231161 = 1, ȳ1111 = 1 (and 
all other x̄ijkln1 and ȳijn1 with value 0) is still feasible with the additional constraint of 
Type 1, but not anymore with the constraint of Type 2.

Type 3 Finally, in terms of Type 3, for each s-transition c = 1,… , 𝛾c̄ of a subprob-
lem U-BRPsub(c̄) with 𝜆c > 0 , an individual constraint is generated and added to the 
U-BRPmaster . In our example (Fig. 9), there are two s-transitions with 𝜆c > 0 and there-
fore two individual constraints are generated. In the particular case, the additional 
constraints

x̄132151 + x̄211331 + x̄231161 + x̄132331 + ȳ1111 ≤ 4

+
∑

(i, j, k, l, n) ∈ X ⧵ {(1, 3, 2, 1, 5), (2, 1, 1, 3, 3),
(2, 3, 1, 1, 6), (1, 3, 2, 3, 3)}

x̄ijkln1

+
∑

(i, j, n) ∈ Y ⧵ {(1, 1, 1), (1, 2, 2),
(1, 3, 5), (2, 1, 3),
(2, 2, 4), (2, 3, 6)}

b̄ijn0 +
∑

(i, j, n) ∈ Y ⧵ {(1, 1, 6), (1, 2, 2),
(2, 1, 5), (2, 2, 4),

(2, 3, 3)}

b̄ijn1

x̄132151 + x̄211331 + x̄231161 + ȳ1111 ≤ 3

+
∑

(i, j, k, l, n) ∈ X ⧵ {(1, 3, 2, 1, 5), (2, 1, 1, 3, 3),

(2, 3, 1, 1, 6), (1, 3, 2, 3, 3)}

x̄ijkln1

+
∑

(i, j, n) ∈ Y ⧵ {(1, 1, 1), (1, 2, 2),

(1, 3, 5), (2, 1, 3),

(2, 2, 4), (2, 3, 6)}

b̄ijn0 +
∑

(i, j, n) ∈ Y ⧵ {(1, 1, 6), (1, 2, 2),

(2, 1, 5), (2, 2, 4),

(2, 3, 3)}

b̄ijn1
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and

are added to the U-BRPmaster . Note that a constraint generation of Type 3 delivers 
the tightest constraints and therefore should lead to the lowest average number of 
iterations required within the row generation procedure.

5.6  Tightening the generated constraints

Remember that a generated constraint (15) does not prohibit a specific combination 
of moves within an m-transition if it is extended by at least one further relocation or 
if the adjacent m-configurations differ (see Sect. 4.1). This is ensured by the vari-
ables on the right–hand side of (15). In turn, it is very rare that any of these variables 
on the right–hand side take a value unequal to 0, i.e., that an optimal solution would 
be falsely cut off if the variables on the right–hand side of (15) were omitted. To 
make use of this insight, we partition the procedure in two phases and tighten the 
generated constraints within the first phase. Note that this modification is applicable 
for all three types of generated constraints presented in Sect. 5.5.

Phase 1 The procedure starts with a generation of tighter constraints denoted by 
(15’) instead of (15).

With the exception of the tighter cuts (15’), the procedure is performed as presented 
in Sect. 4. After a termination of the procedure, the second phase starts.

Phase 2 The result of Phase 1 is the U-BRPmaster extended by all generated con-
straints in all iterations of Phase 1 and the corresponding optimal solution of the 
extended U-BRPmaster . Since constraints of the form (15’) are generated in Phase 1 

x̄132151 + x̄211331 ≤ 1 +
∑

(i, j, k, l, n) ∈ X ⧵ {(1, 3, 2, 1, 5), (2, 1, 1, 3, 3),

(2, 3, 1, 1, 6), (1, 3, 2, 3, 3)}

x̄ijkln1

+
∑

(i, j, n) ∈ Y ⧵ {(1, 1, 1), (1, 2, 2),

(1, 3, 5), (2, 1, 3),

(2, 2, 4), (2, 3, 6)}

b̄ijn0 +
∑

(i, j, n) ∈ Y ⧵ {(1, 1, 6), (1, 2, 2),

(2, 1, 5), (2, 2, 4),

(2, 3, 3)}

b̄ijn1

x̄231161 + ȳ1111 ≤ 1 +
∑

(i, j, k, l, n) ∈ X ⧵ {(1, 3, 2, 1, 5), (2, 1, 1, 3, 3),

(2, 3, 1, 1, 6), (1, 3, 2, 3, 3)}

x̄ijkln1

+
∑

(i, j, n) ∈ Y ⧵ {(1, 1, 1), (1, 2, 2),

(1, 3, 5), (2, 1, 3),

(2, 2, 4), (2, 3, 6)}

b̄ijn0 +
∑

(i, j, n) ∈ Y ⧵ {(1, 1, 6), (1, 2, 2),

(2, 1, 5), (2, 2, 4),

(2, 3, 3)}

b̄ijn1

(15’)
∑

(i,j,k,l,n)∈X∗
c

x̄ijklnc +
∑

(i,j,n)∈Y∗
c

ȳijnc ≤ 𝛾c − 1
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instead of constraints of the form (15), the final solution of the U-BRPmaster obtained 
in Phase 1 is not proven to be optimal. In order not to lose optimality guarantee, 
all generated constraints of the form (15’) within Phase 1 are once again replaced 
by  (15) and the procedure is continued by usage of  (15). More specifically, if the 
result of Phase 1 is the U-BRPmaster extended by x generated constraints of the form 
(15’), then the input to Phase 2 is the U-BRPmaster extended by x corresponding con-
straints of the form (15). Thus, Phase 2 is an optimality check for the solution found 
in Phase 1. It is worth mentioning that in none of our instances, the optimal solution 
found at the end of Phase 2 was better than the feasible solution found at the end of 
Phase 1, and therefore, in all these cases Phase 1 already delivered an optimal solu-
tion of the original problem.

6  Computational study

In this section, the results of a computational study are presented. All model formu-
lations and the row generation method are implemented in AMPL. The commercial 
solver Gurobi (version 9.1.1) is used to solve the models. The computational experi-
ments are conducted on an Intel(R) Core(TM) i7-4770 CPU @ 3.4  GHz desktop 
computer with 16.0 GB RAM and Windows 10 Professional (64-bit).

The computational experiments are performed on the test (CV) instances pro-
posed by Caserta et al. (2011) and Caserta et al. (2012). The authors randomly gen-
erated instances for different sizes of stacking areas, determined by the number of 
stacks W ∈ {3, 4,… , 10} and the maximal stack height H ∈ {5, 6, 7, 8, 12} . Each 
size of a stacking area defines an instance class (H-W) containing 40 instances. Any 
stack of the stacking area contains H − 2 items, i.e., the two upper slots of each 

Table 1  Comparison of the RG, the BRP–I and the BRP
m3

(H-W) # Opt Time (s) Time* (s)

RG BRP–I m3 RG BRP–I m3 RG BRP–I m3

(5-3) 40 40 40 14.2 63.8 0.3 14.2 63.8 0.3
(5-4) 39 35 40 248.7 1027.3 4.6 162.7 961.3 2.1
(5-5) 39 22 40 262.1 2360.7 21.2 176.5 2328.9 11.4
(5-6) 37 3 39 526.9 3481.6 191.3 277.7 3472.0 84.8
(5-7) 33 0 36 945.8 3600.0 438.1 382.8 3600.0 187.1
(5-8) 27 0 33 1714.3 3600.0 969.0 806.4 3600.0 345.9
(6-4) 29 3 39 1395.2 3504.7 354.8 558.9 3468.6 53.8
(6-5) 18 0 24 2331.4 3600.0 1742.5 780.8 3600.0 360.0
(6-6) 9 0 16 3101.6 3600.0 2554.7 1384.9 3600.0 657.8
(6-7) 3 0 5 3531.4 3600.0 3402.8 2685.7 3600.0 2659.5
(7-4) 5 0 11 3290.4 3600.0 2705.7 1123.1 3600.0 42.8
(7-5) 0 0 2 3600.0 3600.0 3443.8 – – –
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stack are empty. Thus, a (H-W) instance contains N = W(H − 2) items. The item 
numbers 1,… ,N are randomly allocated to the available slots of the stacking area. 
In total, the CV instances contain 21 instance classes and therefore a total of 840 test 
instances.

Within preliminary computational experiments, we compared the three proposed 
types of constraints (see Sect.  5.5). The results show no significant differences in 
performance for most test instances. Only for the largest test instances (5-6) of 
the preliminary study, Type 3 slightly outperforms Type 1 and 2 and therefore we 
decided to generate constraints of Type 3 within the computational study. Addition-
ally, we make use of the tighter cuts (15’) in Phase 1 of the procedure and (15) 
in Phase 2 (see Sect. 5.6). All proposed opportunities for fixing the variables (see 
Sect.  5.1 and 5.3), the valid inequalities (37’), (38’), (39), (40’) and (41) and the 
symmetry breaking constraints (47) are applied.

Table  1 compares the performances of the new modeling approach (RG), its 
underlying basic model formulation BRP–I proposed by Caserta et  al. (2012) and 
the state–of–the–art model formulation BRPm3 proposed by Lu et al. (2020). There 
is a need to calculate an upper and a lower bound on the total number of reloca-
tions, as there are parameters within the model formulations that require these val-
ues. Thus, we calculate an upper bound by means of a heuristic proposed by Caserta 
et al. (2012) and a lower bound called LB3 proposed by Tricoire et al. (2018). The 
first column of Table 1 gives the instance classes. The columns two, three and four 
give the number of instances which could be optimally solved by the RG, the BRP–I 
and the BRPm3 , respectively. The columns five, six and seven give the average runt-
imes in seconds for the RG, the BRP–I and the BRPm3 , respectively, calculated over 
all instances of each class. Furthermore, the columns eight, nine and ten depict the 
respective average runtimes in seconds, calculated over the instances which could 

Table 2  Instances for which the 
RG outperforms the BRP

m3

CV instance (H-W) # Reloc Mean # reloc Time (s)

RG m3

88 (5-5) 9 6.7 28.4 36.4
127 (5-6) 11 8.1 135.5 1088.5
142 (5-6) 10 8.1 230.2 794.3
179 (5-7) 11 8.7 216.3 276.9
198 (5-7) 11 8.7 345.4 3600.0
205 (5-8) 12 9.6 2461.9 3600.0
233 (5-8) 11 9.6 657.1 1635.8
259 (6-4) 11 9.0 106.7 111.5
276 (6-4) 11 9.0 305.8 628.6
286 (6-5) 12 10.4 330.1 656.5
318 (6-5) 12 10.4 565.1 3450.3
359 (6-6) 13 10.3 1410.2 3600.0
371 (6-7) 15 13.0 2981.6 3600.0
398 (6-7) 13 13.0 2441.1 3600.0



1101

1 3

A new modeling approach for the unrestricted block relocation…

be optimally solved by the RG. A time limit of 3600 s for each instance is imple-
mented. Instances larger than (H-W) = (7-5) are not presented since none could be 
optimally solved within the time limit.

The results given in Table  1 confirm that the model BRPm3 outperforms the 
model BRP–I. Furthermore, the results show that the RG outperforms the model 
formulation BRP–I. However, the difference in performance between the two model 
formulations BRP–I and BRPm3 is quite large, so that although the RG framework 
greatly increases the efficiency of the underlying model BRP–I, it cannot yet com-
pete with the model BRPm3.

Nevertheless, it is worth noting that 14 of the instances are solved faster by the 
RG as by the BRPm3 and all these instances have an optimal solution value (num-
ber of relocations) that is greater than or equal to the average of the corresponding 
instance class. Details on this are presented in Table  2. The first and second col-
umns give the CV instance number and the corresponding instance class, respec-
tively. The third column presents the optimal numbers of relocations for the specific 
instances. The column four indicates the average optimal numbers of relocations 
for the respective instance classes. Finally, the columns five and six give the runt-
imes in seconds used by the RG and the BRPm3 , respectively, for solving the cor-
responding CV instance. For example, the CV instance # 359 (instance class 6-6) 
requires 13 relocations in an optimal solution and can be optimally solved by the RG 
in 1410.2 s, while the BRPm3 hits the time limit of 3600 s. Thus, although the BRPm3 
performs better than the RG on average, the RG may have advantages on specific 
instances, especially when an optimal solution requires a relatively large number 
of relocations. This may indicate that a restriction to allow at most one relocation 
per transition within a mathematical model (like in the BRP–I and the BRPm3 ) is a 

Fig. 10  Average runtimes with valid inequalities enabled/disabled. The numbers within the brackets 
denote the numbers of instances running into the time limit of 3600 s, respectively
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limiting factor. Thus, a relaxation of this restriction has high potential to speed up 
the solution time.

The valid inequalities (see Sect.  5.2) improve the solution quality of the 
U-BRPmaster and therefore reduces the number of iterations required, but since most 
of the valid inequalities exploit a Big–M, the time for solving the U-BRPmaster tends 
to increase. Therefore, the impact of the valid inequalities are investigated by further 
computational experiments. Figure 10 depicts the results of the comparison of the 
procedure with the valid inequalities enabled and disabled. The numbers within the 
brackets indicate the respective numbers of instances that ran into the time limit of 
3600 s. The settings are like in the main study, with the exception that only Phase 1 
is investigated. Additionally, we generated 40 further instances with (H-W) = (4-3) 
and N = 6 randomly allocated items. It can be observed that the valid inequalities 
significantly reduce the runtimes. Without applying the valid inequalities, the num-
ber of instances which cannot be solved increases very strongly by extending the 
instance size. For (H-W) = (5-6) , e.g., the major part (33 of 40) could no longer 
be solved. None of the instances greater than (5-6) are solved within the time limit 
unless the valid inequalities are applied.

Finally, Table  3 provides more detailed results of the new modeling approach. 
The first column of Table 3 again gives the instance classes. The second and third 
columns present the number of instances for which the first phase and both phases 
could be finished, respectively. Remember that a solution provided by Phase 1 is 
feasible for the U-BRP but only proven to be optimal after finishing Phase 2. In 
this context, it is worth mentioning that for the instances which are optimally solved 
(proven by finishing Phase 2), all solutions obtained after Phase 1 were already 
optimal. Thus, in these cases, the initial solution in Phase 2 is already optimal with 
respect to the original problem, even though it is not yet proven at this point. Already 
having an optimal solution for the original problem is obviously a great initial situa-
tion for the optimization procedure within Phase 2 and therefore Phase 2 has shorter 

Table 3  Results for the new 
modeling approach (RG)

(H-W) # Solved Time* (s) Median time* (s)

P1 P1 &2 P1 P2 P1 &2

(5-3) 40 40 4.5 9.7 14.2 1.6
(5-4) 40 39 68.4 94.3 162.7 6.9
(5-5) 39 39 44.6 131.9 176.5 28.2
(5-6) 39 37 179.3 98.4 277.7 100.6
(5-7) 35 33 221.8 161.0 382.8 155.2
(5-8) 29 27 546.8 259.6 806.4 598.8
(6-4) 30 29 343.4 215.5 558.9 127.1
(6-5) 19 18 532.8 248.0 780.8 566.8
(6-6) 10 9 930.4 454.5 1384.9 1376.5
(6-7) 4 3 1977.8 707.9 2685.7 2634.4
(7-4) 9 5 1023.4 99.7 1123.1 921.5
(7-5) 0 0 – – – –
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average runtimes compared to Phase 1 in many cases. This can be observed in the 
columns four, five and six which give the average runtimes for the completion of 
Phase 1, Phase 2 and the whole procedure, respectively. The last column states the 
median of the runtimes for the RG which are lower than the average runtimes in all 
cases, in most cases even significantly lower. The measures presented in Table 3 are 
computed over the instances which could be optimally solved by the RG.

Even though the new modeling approach cannot yet compete with the model 
formulation BRPm3 from Lu et al. (2020) or the most effective search-based meth-
ods, e.g., the branch–and–bound algorithms from Jin and Tanaka (2023), Tanaka 
and Mizuno (2018) and Tricoire et al. (2018), it gives rise to spend more effort on 
model-based approaches with a focus on the reduction of occurring configurations.

7  Conclusion

This paper adresses the unresticted block relocation problem (U-BRP). A mathe-
matical model formulation is developed to enable multiple moves within each tran-
sition, which is prohibited in most models from the literature. This significantly 
decreases the size of such model formulations and may speed up the solution time. 
The proposed model formulation is embedded within a row generation framework 
to construct an optimal solution for the U-BRP. The results of the computational 
study show that this modeling approach outperforms the underlying basic model 
formulation.

Although there are more effective procedures for solving the U-BRP optimally, 
e.g., the branch–and–bound algorithms developed by Jin and Tanaka (2023), Tanaka 
and Mizuno (2018) and Tricoire et al. (2018), or the model formulation proposed by 
Lu et al. (2020), the results of the computational study show that the proposed modi-
fications can significantly speed up model-based approaches. Like in the literature 
concerning the R-BRP, search-based methods have been considered to be superior 
to model-based approaches. Nevertheless, a recent publication provides a very com-
petitive model-based branch–and–cut approach for the R-BRP.

Fig. 11  Feasible solution of the U-BRP
master

 with two identical relocations of the same item
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Future research on model-based approaches for the U-BRP could focus on reduc-
ing the number of variables by means of a reduction of the number of configura-
tions that are considered, i.e., enable multiple moves within each transition. With 
respect to the proposed row generation framework, it could be worth to spend more 
effort on developing techniques for a further reduction of the number of iterations 
required. A further and probably more promising approach might be to make use of 
an adapted modification of a better performing model formulation, e.g., the BRPm2 
or the BRPm3 , and embed it within the row generation framework.

Appendix 1: Feasible solution with two identical relocations 
of the same item

Figure 11 depicts a feasible solution of the U-BRPmaster (and the original problem) 
which contains two identical relocations. These are the relocations of item 3 from 
slot (2, 3) to slot (3, 3) which take place twice and therefore the corresponding deci-
sion variable x̄233331 has the value 2. Note that this instance can be solved with 6 
relocations and therefore the depicted solution is not optimal but only feasible. We 
have not found any instance with an optimal solution containing an identical reloca-
tion of the same item more than once. We even expect such solutions not to exist, 
but since this is not proven, we follow a cautious approach in order not to falsely cut 
off such an optimal solution and therefore the variables x̄ijklnc are defined as integer 
variables ( ̄xijklnc ∈ ℕ0 ). For a better readability, the configurations which are actually 
omitted within the U-BRPmaster are presented in light gray.

Appendix 2: The weights within the penalty term must be at least 
c̄

Remember the objective (17) ( max
∑𝛾c̄

c=1
(vc̄c − 𝛾c̄𝜆c) ) of the U-BRPsub(c̄) and the fact 

that the number of s-transitions always equals the number of moves 𝛾c̄ contained in 
the U-BRPsub(c̄) (or in the respective m-transition). We can distinguish two cases which 
may arise: 

 (i) A feasible solution of the U-BRPsub(c̄) exists such that �c = 0 for all 
c = 1,… , 𝛾c̄ . The smallest possible optimal objective function value that can 
exist for such solutions is 1. This is a solution with one move in each s-tran-
sition (determined by 𝜆c = 0, c = 1,… , 𝛾c̄ ) and therefore all penalty terms 
have the value 0 ( ⇒

∑𝛾c̄
c=1

𝛾c̄𝜆c = 0 ) whereby the retrieval takes place in the 
last s-transition ( ⇒

∑𝛾c̄
c=1

vc̄c = 1 ). If the retrieval takes place in an earlier 
s-transition, the objective function value increases.

 (ii) No feasible solution of the U-BRPsub(c̄) exists such that �c = 0 for all 
c = 1,… , 𝛾c̄ and therefore there is at least one 𝜆c > 0 . In this case, the greatest 
possible optimal objective function value is 0. The smallest value that the sum 
of all penalty terms can have in this case arises in a solution with exactly one 
�c = 1 and all others having the value 0 ( ⇒

∑𝛾c̄
c=1

𝛾c̄𝜆c = 𝛾c̄ ). Thus, it is a solu-
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tion with one s-transition containing two moves, one s-transition containing 
no move and all other s-transitions containing exactly one move. Furthermore, 
the term 

∑𝛾c̄
c=1

vc̄c has its maximum value if the retrieval takes place in the first 
s-transition ( ⇒

∑𝛾c̄
c=1

vc̄c = 𝛾c̄ ). In total, such solutions cannot have a greater 
optimal objective function value than 𝛾c̄ − 𝛾c̄ = 0.

Thus, a feasible solution of the U-BRPsub(c̄) with at least one 𝜆c > 0 is never optimal if 
there exists a feasible solution with �c = 0 for all c = 1,… , 𝛾c̄ , i.e., if an optimal solu-
tion of the U-BRPsub(c̄) has at least one 𝜆c > 0 , then there is no feasible solution with 
�c = 0 for all c = 1,… , 𝛾c̄.

Appendix 3: Discussion on the constraints (23)

3.1: Example which requires the constraints (23)

Given an instance with W = 3,H = 5,N = 8 and the initial m-configuration given in 
Fig. 12 at c̄ = 0 . Figure 12 presents an initial optimal solution of the U-BRPmaster , i.e., 
no constraints are generated yet. Note that only the first m-transition is of interest and 
therefore presented.

The corresponding subproblem U-BRPsub(1) has the optimal solution presented in 
Fig. 13.

Fig. 12  First m-transition of an optimal solution of the U-BRP
master

 (iteration 1)

Fig. 13  Optimal solution of the U-BRP
sub(1) (iteration 1)
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Since there is no sequence for the two moves which leads to a feasible s-configu-
ration after each single move, this combination of moves is prohibited by adding the 
constraint

to the U-BRPmaster . From now on, these two moves can only take place together 
within the first m-transition of the U-BRPmaster if at least one further relocation is 
added to this m-transition (or if the adjacent m-configurations differ). In iteration 57 
this scenario occurs and the two moves from iteration 1 take place in an extended 
combination of moves (Fig. 14).

It is obvious that the two relocations of item 3 are superfluous since no item 
located below item 3 is relocated or retrieved. The only reason for the “back and 
forth”-relocations of item 3 is that it enables the moves from iteration 1 ( ̄x122161 and 
ȳ2111 ) to take place once again within the first m-transition.

These four moves of the first m-transition should now take place in the resulting 
subproblem U-BRPsub(1) , but without constraints  (23), the optimal solution of the 
resulting subproblem U-BRPsub(1) contains only a subset of the moves and not all. 

x̄122161 + ȳ2111 ≤ 1 +
∑

(i,j,k,l,n)∈X⧵{(1,2,2,1,6)}

x̄ijkln1

+
∑

(i, j, n) ∈ Y ⧵ {(1, 1, 2), (1, 2, 6), (2, 1, 1),

(2, 2, 5), (2, 3, 4), (3, 1, 7),

(3, 2, 8), (3, 3, 3)}

b̄ijn0

+
∑

(i, j, n) ∈ Y ⧵ {(1, 1, 2), (2, 1, 6), (2, 2, 5),

(2, 3, 4), (3, 1, 7), (3, 2, 8),

(3, 3, 3)}

b̄ijn1

Fig. 14  First m-transition of an optimal solution of the U-BRP
master

 (iteration 57)

Fig. 15  Optimal solution of the U-BRP
sub(1) (iteration 57)
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The optimal solution (Fig. 15) is very similar to that from iteration 1. The only dif-
ference is that �1 = 4 s-configurations are considered.

Thus, the constraint of iteration 1 is generated again which does not affect the 
solution space. From now on, the optimal solution of the U-BRPmaster remains the 
same and thus the procedure does not terminate.

3.2: The procedure never causes a deadlock if the constraints (23) are Enabled

In general, a row generation procedure never causes a deadlock if (i) the set of feasi-
ble solutions of the relaxed problem is finite and (ii) at least one feasible solution is 
cut off from the solution space of the relaxed problem per iteration.

Let x∗ be a feasible solution of the U-BRPmaster which is optimal with respect to 
the original problem U-BRP. Furthermore, let X̄ be the set of all feasible solutions 
of the U-BRPmaster . For any solution x ∈ X̄ , let r(x) be the corresponding number of 
relocations. Furthermore, let X̄r

∶= {x ∈ X̄ ∶ r(x) ≤ r(x∗)} be the set of all feasible 
solutions of the U-BRPmaster with at most r(x∗) relocations.

Condition (i) is fulfilled: Due to the fact that the stacking area (and therefore the 
number of possible relocations) is limited by the number W of stacks, the height 
limit H and the number N of items, the set X̄r is finite. In case of an unlimited maxi-
mal height, without loss of generality, H = N can be assumed since this is the maxi-
mal stacking height which can be obtained.

Condition (ii) is fulfilled: The constraints (23) ensure that each relocation of the 
c̄-th m-transition takes place within the solution of the U-BRPsub(c̄) . Thus, if the 
U-BRPsub(c̄) detects infeasibility, then all moves contained in the U-BRPsub(c̄) (i.e., 
contained in the c̄-th m-transition) are involved in a newly generated constraint of 
the form (15). This cuts off at least one feasible solution x ∈ X̄

r from X̄r.
Note that condition (ii) is also fulfilled for cuts of Type 2 and Type 3 presented 

in Sect. 5.5. These types do not involve all moves contained in the U-BRPsub(c̄) in a 
newly generated constraint, but all moves which cause infeasibility. Thus, there is 
also at least one feasible solution x ∈ X̄

r being cut off from X̄r.

Fig. 16  Feasible solution of the U-BRP
master

 with cyclic relocations which is optimal with respect to the 
original problem
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Since x∗ ∈ X̄
r and |X̄r| < ∞ , the worst case scenario is a complete enumeration 

of all feasible solutions of the U-BRPmaster with at most r(x∗) relocations, i.e., a com-
plete calculation of the set X̄r for finding x∗.

Appendix 4: Instance with mandatory cyclic relocations

Figure 16 depicts an instance which has no optimal solution free of cyclic reloca-
tions, i.e., an item must be relocated at least twice within an m-transition c whereby 
it is relocated to the slot in which it was initially located in the originating m-config-
uration c − 1 . The solution presented in Fig. 16 is optimal with respect to the origi-
nal problem U-BRP and is depicted within the framework of the U-BRPmaster . The 
relocations of item 12 within the first m-transition are of interest in this example. 
The optimal solution contains 8 relocations. If any relocation of item 12 ending in 
its initial slot  (2, 3) is prohibited within the first m-transition, then there does not 
exist anymore a solution with 8 relocations and therefore cyclic relocations of item 
12 are mandatory. For a better readability, the configurations which are actually 
omitted within the U-BRPmaster are presented in light gray.

Appendix 5: Further clarification that constraints of type 3 are 
the tightest constraints

The following example is a recap of the same example presented in Sect. 5.5. Ini-
tially, the first m-transition contains 4 relocations and 1 retrieval defined by the partial 
solution x̄132151 = 1, x̄211331 = 1, x̄231161 = 1, x̄132331 = 1, ȳ1111 = 1 . All other x̄ – and ȳ
–variables within the first m-transition have the value 0 in this example as well as in 
all following exemplary partial solutions (all x̄ijkln1 and ȳijn1 have the value 0). Thus, 
for a better readibility, all decision variables on the right–hand side can be omitted. 
The three different types of constraints generated by the procedure are as follows:

Type 1: x̄132151 + x̄211331 + x̄231161 + x̄132331 + ȳ1111 ≤ 4

Type 2: x̄132151 + x̄211331 + x̄231161 + ȳ1111 ≤ 3

Type 3: x̄132151 + x̄211331 ≤ 1 and x̄231161 + ȳ1111 ≤ 1

Table 4  Exemplary partial 
solutions of the U-BRP

master
 and 

their feasibility with respect to 
the different types of generated 
constraints

Exemplary partial solutions Type 1 Type 2 Type 3

1 x̄132151 = 1 , x̄211331 = 1 , 
x̄231161 = 1 , x̄132331 = 1 , 
ȳ1111 = 1

Infeas Infeas Infeas

2 x̄132151 = 1 , x̄211331 = 1 , 
x̄231161 = 1 , ȳ1111 = 1

Feas Infeas Infeas

3 x̄132151 = 1, x̄211331 = 1 Feas Feas Infeas
4 x̄231161 = 1, ȳ1111 = 1 Feas Feas Infeas
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Given the constraints of the different types, the following Table 4 gives some exem-
plary partial solutions. Furthermore, it indicates whether the solutions are feasible or 
infeasible (and thus cut off from the solution space) with respect to the constraints of 
Type 1, 2 and 3, respectively.

⇒ Type 2 constraints cut off all (partial) solutions which are cut off by Type 1 
constraints (solution 1 in this example). Additionally, Type 2 constraints cut off fur-
ther (partial) solutions which are not cut off by Type 1 constraints (solution 2 in this 
example). Thus, Type 2 constraints are tighter than Type 1 constraints.

⇒ Type 3 constraints cut off all (partial) solutions which are cut off by Type 2 
constraints (solutions 1 and 2 in this example). Additionally, Type 3 constraints cut 
off further (partial) solutions which are not cut off by Type 2 constraints (solutions 3 
and 4 in this example). Thus, Type 3 constraints are tighter than Type 2 constraints.
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