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Abstract
At the scale of Switzerland, the national railway company SBB Cargo AG has to 
schedule its locomotives and drivers in order to be able to pull all trains. Two objec-
tive functions are considered in a two-stage lexicographic fashion: (1) the locomo-
tive and driver costs and (2) the driver time that is spent without driving. As the 
problem instances tend to reach really big sizes (up to 1900 trains), we propose 
to schedule locomotives and drivers in a sequential way, thus having a sequence 
of smaller problems to solve. Moreover, for smaller instances, we also propose to 
schedule jointly locomotives and drivers in an integrated way, therefore increasing 
the search space but possibly leading to better solutions. In this paper, we present a 
mathematical formulation and model for the problem. We also consider the contract-
related constraints of the drivers, and we propose a way to integrate some time flex-
ibility in the schedules. Next, we propose an innovative matheuristic to solve the 
problem, relying on a descent local search and a rolling horizon decomposition. An 
important goal of this method is to explore thoroughly at which extent a general-
purpose solver can be used on this problem. Finally, the benefits of each aspect of 
the model and of the method are analyzed in detail on the results obtained for 20 real 
SBB Cargo AG instances.

Keywords  Locomotive and driver scheduling · Problem decomposition for 
sequential optimization · Matheuristics · Lexicographic objectives

1  Introduction

SBB Cargo AG (www.​sbbca​rgo.​com) has to provide locomotives and drivers for 
about 500 long-distance (national) trains per day in Switzerland. The objective 
is to assign the locomotives and the drivers to the trains such that the implied 
costs (locomotive and driver costs) are minimized. For the primary objective of 
this study, we consider two types of costs: the fixed cost per locomotive or per 
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driver duty and the additional cost for light-traveling connection (i.e., when a 
locomotive and a driver travel without pulling a train). Moreover, a secondary 
objective is considered in order to make the driver schedules as smooth as 
possible (i.e., reduce their waiting times).

The family of solution methods relying on both metaheuristics and exact 
methods is called matheuristics. An extensive review of the matheuristics that 
have been developed for routing problems can be found in Archetti and Speranza 
(2014). In this review, the matheuristics are classified in three categories: decom-
position approaches, improvement heuristics, and column generation. Another 
review (Ball 2011) considers an additional category, namely the relaxation-based 
approaches. Various papers have shown that matheuristics have the potential of 
delivering high-quality solutions for vehicle routing problems (e.g., (Leggieri and 
Haouari 2018)). This motivates us to design a dedicated matheuristic based on a 
rolling horizon (i.e., a decomposition approach) coupled with a descent search 
(i.e., an improvement heuristic) to solve the integrated version of the considered 
problem (i.e., locomotive and driver scheduling).

The initial research question raised by SBB Cargo AG is the following. Can 
we solve the entire problem (i.e., locomotive and driver scheduling) with a direct 
approach relying on an efficient, state-of-the-art general-purpose solver? If this is 
not possible, can we decompose the problem into a sequence of subproblems that 
are suitable for the solver? The integrated approach is proposed to tackle the ini-
tial research question. Next, as the experiments will show that the direct approach 
is not possible for most of the instances (except the smaller ones), we propose 
a sequential approach. Given the increasing efficiency of solvers, such types of 
research questions have been more often tackled in the last decade for various 
industrial applications, such as distribution network design problem in the auto-
motive industry (Kchaou Boujelben et al. 2014), routing and scheduling problem 
in roll-on roll-off shipping (Hansen et al. 2022), lot-sizing and scheduling in the 
production of fruit-based beverages (Toscano et  al. 2020), scheduling problems 
of the pharmaceutical industry in multiproduct multistage batch plants (Kopanos 
et  al. 2010), periodic inventory routing problem in reverse logistics (Cardenas-
Barron and Melo 2021), aircraft scheduling (Sama et al. 2019), and operational 
management of intermodal logistics platforms in the automotive industry (Coin-
dreau et al. 2019). Unsurprisingly, the railway industry is also concerned by this 
research stream (e.g., (Bouzaiene-Ayari et  al. 2014; Frisch et  al. 2019; Haahr 
et al. 2016; Scheffler et al. 2020)). In such a context, and in line with our above 
research questions, a recent study has pointed out the relevance and importance 
of integrating vehicle and crew scheduling in transportation (Ge et al. 2022). The 
authors have raised a key research question that can be summarized as follows. 
“With the continuous improvement of information and communication technol-
ogy, as well as general solvers, is it possible to solve integrated problems, that 
had to be tackled by means of specialized heuristics years ago due to their inher-
ent problem complexity, by means of currently available standard solvers and, if 
so, which instance sizes are to be solved in time limits deemed practical?”.

The contributions of this paper rely on the following combination of features.
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•	 We formulate the locomotive and driver scheduling problem as an integrated 
model that also satisfies important contractual aspects of the drivers and allows 
time flexibility on the light travels (i.e., when a locomotive and a driver travel 
without pulling a train, in order to relocate the locomotive at the next planned 
location). As pointed out by (Rählmann and Thonemann 2020), adding time 
flexibility is an important feature in a context where the drivers frequently wait at 
stations before driving the next train.

•	 Two objective functions are considered in a lexicographic fashion: the locomo-
tive and driver costs, and the driver inactive times (i.e., the time between the end 
of a duty and the beginning of the next one).

•	 We propose a matheuristic for solving the model in an integrated way (i.e., the 
entire problem is tackled) and in a sequential way. The matheuristic employs a 
rolling horizon decomposition and a descent local search for improving solu-
tions.

•	 Several studies have shown that the way of decomposing the problem signifi-
cantly affects the solution quality (Jütte and Thonemann 2015). The proposed 
sequential approach is based on an efficient decomposition of the problem into a 
sequence of smaller subproblems that are suitable for a general-purpose solver. 
Moreover, the proposed sequence of subproblems is natural in the sense it is 
understandable and intuitive for decision makers. Indeed, as mentioned in (Silver 
2004), decision makers are likely to better accept decision rules if they have an 
intuitive understanding of how the rules operate.

•	 As highlighted in (Burdett and Kozan 2010), an efficient graph representation 
helps in designing better algorithms. A pre-processing procedure is proposed for 
significantly reducing the size of the locomotive flow graph and the driver rout-
ing graph.

•	 The experiments are conducted on 20 real instances with up to 1900 trains. We 
thoroughly analyze which level of integration brings the best solutions and how 
each part of our method improves the obtained results

The paper is organized as follows. Section  2 introduces the problem without any 
formalism, as well as the assumptions of our study. Section 3 presents the related lit-
erature. Section 4 presents the mathematical formulation and model, where an inno-
vative proposition to allow some time flexibility is also given. Section 5 describes 
the characteristics of the real instances and a pre-processing procedure for reducing 
their sizes. Section 6 proposes solution methods to solve the problem, while consid-
ering both the sequential and the integrated frameworks. Experiments are conducted 
in Sect. 7, followed by conclusions and extensions in Sect. 8.

2 � Informal presentation of the problem and assumptions of this 
study

With respect to the railway industry, the reader is referred to (Rählmann and Thone-
mann 2020) for more information on various optimization problems that can occur 
from the strategic level to the real-time level. The overall railway planning process 
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is a complex task. As mentioned by Zhang et al. (2022) and shown in Table 1, to 
reduce its computational complexity, the process is usually hierarchically divided 
into several stages.

The locomotive scheduling problem consists in assigning a locomotive to each 
train to be pulled, whereas the driver scheduling problem consists in assigning a 
driver to each locomotive. At SBB Cargo AG, this task is currently accomplished 
sequentially by a set of planners (with some iterations), using separate optimization 
algorithms which require manual guidance. Indeed, the locomotive scheduling prob-
lem occurs at a tactical level, whereas the driver scheduling problem occurs at an 
operational level. Note that the optimization approach employed by SBB Cargo AG 
strongly differs from our sequential approach, as the latter relies on a single decision 
maker who has an overview on the entire problem (without using manual guidance 
and iterations). In that sense, the approach employed by the company cannot be for-
mally labeled as a sequential approach.

The goal is to minimize two types of objective functions, namely the locomotive 
and driver costs (denoted as f L and fD , respectively), as well as the driver inactive 
times (denoted as f C ). The following costs are considered.

•	 The fix activation costs of the locomotives (depending for instance on the pur-
chase and maintenance costs).

•	 The light traveling costs of the locomotives (i.e., when a locomotive and a driver 
travel without pulling a train, in order to relocate the locomotive at the next 
planned location).

•	 The driver costs (depending on the annual salaries of the drivers).

On the other hand, the driver inactive times are the relocation and waiting times of 
the drivers before their next duties. More precisely, when a driver has finished to 
drive a train, two types of features have to be taken into account before s/he drives 
the next train: the traveling relocation time (during which the driver is a passenger 
in a regular train) and the waiting time (i.e., the driver waits at the planned location 
before pulling the next train).

Consequently, the total cost f = f L + fD and the total inactive time f C have to be 
minimized. Based on the priorities of the company, these two objective functions are 
optimized in a lexicographic fashion: the cost (f) has the priority over the inactive 
time ( f C ). In other words, no reduction of f C can be performed if it augments f. This 
priority is very natural and in line with the literature (Portugal and co HRL, Paixão 

Table 1   Railway planning 
process: from strategic to 
operational planning

Strategic level Origin–destination demand matrix
Network design
Line planning

Tactical level Train timetabling
Rolling stock scheduling
Crew scheduling

Operational level Real-time train dispatching
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JP, 2009): the indirect costs (which somewhat correspond to idle times in the job 
scheduling literature) are less important than the real, direct costs (which are easy to 
measure from an accounting perspective). This is also in line with other studies, in 
which no trade-off among objectives is possible. Among them, one can cite applica-
tions in the automotive industry (Solnon et al. 2008), in vehicle routing (Lehuédé 
et al. 2020), and in aviation (Prats et al. 2010).

The following constraints are considered: (1) the flow conservation constraints 
for the locomotives (with additional features to allow more flexibility); (2) the rout-
ing constraints for the drivers; (3) the break constraints for the drivers (in order to 
respect the driver contracts).

The following assumptions characterize this study.

•	 The considered problem is at a tactical level, i.e., for an annual planning horizon 
including the most important constraints. Some examples of the constraints that 
are relaxed at the tactical level are driver qualifications or locomotive-specific 
times for maneuvers.

•	 A simplified model with only one type of locomotive is used. This is however a 
conservative assumption as it results in a much larger solution space when com-
pared to the case involving several locomotive types. This simplification has the 
advantage to allow better identifying the weaknesses and strengths of the pro-
posed methods. The consideration of various locomotive types (i.e., adding the 
associated constraints and thus reducing the solution space) is left as a possible 
future work.

Consequently, the proposed tactical solutions cannot be used immediately by SBB 
Cargo AG, but they can be employed as input for the operational planning (i.e., 
short-term, and including all constraints and exceptions), for which the company 
uses the software IVU.rail (www.​lbw-​optim​izati​on.​com/​en/​optim​izer). However, the 
generated tactical solutions provide obvious insights on the structures of operational 
solutions and on their associated values. Moreover, the proposed method (with its 
different variations) is a proof of concept on which the company can rely to build 
their next generation of algorithms. Accurately exploring the practical conditions 
to ensure that the results can be used in practice is left as a future research step that 
should cover, as highlighted by Zhong et al. (2019), the type and different compo-
sitions of rolling stock, the limitations of rolling stock and crew, the maintenance 
requirements of a rolling stock, etc.

The 20 instances provided by SBB Cargo AG will be accurately presented in 
Sect. 7, and they all have 10 depots. For each instance, the initially planned number 
of locomotives will be given (see Table 3). Next, in Sect. 7.4, a sensitivity analysis 
will be performed if different numbers of locomotives are employed. It is important 
to note here that for each instance, the involved decision maker can—theoretically—
pickup its preferred solution among the 160 provided solutions (we can thus rea-
sonably assume that the picked solution will be efficient for the company). Indeed, 
we have two solution approaches (i.e., integrated, and sequential). Next, for each 
approach, we have 8 algorithms (depending on the procedure combination to use, 
as presented in Sects.  7.2 and 7.3). Finally, for each instance, we can run all the 

http://www.lbw-optimization.com/en/optimizer


1118	 M.-S. Vié et al.

1 3

16 available algorithms for 10 different but relevant numbers of locomotives (i.e., 
we will not only use the initially planned number of locomotives). At the end, the 
decision maker can decide to either employ the initially planned number of locomo-
tives, or a different number of locomotives, based on locomotive availability and 
total costs.

Considering large NP-hard problems, it is well known in the optimization com-
munity that to be efficient, a solution method should have the ability to intensify 
and diversify its search in the solution space. Intensification refers to the ability to 
deeply investigate and exploit a promising zone of the solution space, whereas diver-
sification refers to the ability to explore various zones of the solution space (which 
is particularly important for very large instances). When optimal solutions and tight 
bounds are not known for the considered problem (which regularly occurs for indus-
trial problems), solution quality is often assessed by comparing the results returned 
by various algorithms. Such a comparative approach is in line with many papers in 
various industrial fields (e.g., production design (Vié et al. 2019), inventory deploy-
ment (Respen et al. 2017), network design (Amrani et al. 2011), production sched-
uling (Thevenin et  al. 2017), and aircraft landing planning (Vié et  al. 2022)), but 
also for academic problems (e.g., graph coloring (Malaguti and Toth 2010)). To be 
reliable, a comparative approach should involve methods that are made of differ-
ent features (e.g., intensification and diversification procedures), and compare them 
with a common time limit according to the obtained solution values. This is exactly 
what we have done in our numerical comparisons (e.g., the below DLS feature will 
play an intensification role, whereas the below TFA feature will play a diversifica-
tion role).

3 � Literature review

The considered problem involves the driver scheduling problem and the locomotive 
scheduling problem. References for the former problem are given in the next para-
graph, whereas papers for the latter are outlined in the third paragraph. The integra-
tion of both problems is discussed in the fourth paragraph. Given that hundreds of 
articles have been published in the field, we only give pointers in this section. The 
reader interested in more information is referred to most recent below-mentioned 
literature reviews.

The vehicle scheduling problem with a single depot can be formulated as a min-
imum-cost flow problem, and it is therefore solvable in polynomial time (Lenstra 
and Kan 1981). In contrast, the consideration of multiple depots makes the problem 
NP-hard (Bertossi et al. 1987). The crew scheduling problem can be formulated as 
a set covering problem and it is therefore NP-hard too (Jütte and Thonemann 2015). 
The railway crew scheduling problem consists of finding the best duty combination 
for railway crews in order to cover all trains over the planning horizon. The reader is 
referred to Heil et al. (2020) for an extensive literature review on crew scheduling, 
covering 123 publications on railway crew scheduling (with a focus on publications 
from 2000). The driver scheduling problem consists in selecting a set of duties for 
vehicle drivers. It is a well-known problem, and various models, possible objective 
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functions and constraints can be found in (Portugal and co HRL, Paixão JP, 2009; 
Wren et  al. 2003), whereas some case studies are presented in Kwan (2011). The 
most common contract-related constraints for drivers, which are also present in our 
problem, are the following: maximum duty length, minimum break duration, maxi-
mum time without break, and multiple driver depots (Abbink et al. 2005; Boschetti 
et al. 2004; Fores et al. 2002; Yunes et al. 2005).

The locomotive scheduling problem consists of assigning a set of locomotives to 
a preplanned train schedule in order to be able to pull all the trains from the origins 
to the destinations. Various models and pointers to recent references can be found 
in Ahuja et al. (2005); Frisch et al. (2021); Piu and Speranza (2014); Vaidyanathan 
et al. (2008a, b). The literature provides various linear programming formulations 
and highlights the importance to minimize the real costs as a first objective. Moreo-
ver, the combination of MIP and heuristic features is also successfully employed 
(Scheffler et al. 2020).

The integrated vehicle and crew scheduling problem has been widely studied in 
the literature, and the reader is referred to (Caprara et al. 2006; Ge et al. 2022; Peru-
mal et  al. 2020) for reviews of the problem, solved either sequentially or jointly, 
and for pointers to the main papers and methods tackling this type of integra-
tion. The most common and popular method is column generation, coupled either 
with Lagrangian relaxations (Borndörfer et  al. 2008; Freling et  al. 2003; Huis-
man et  al. 2005) or with Branch-and-Price (Friberg and Haase 1999; Haase et  al. 
2001; Horváth and Kis 2019; Mesquita et al. 2009). However, some papers propose 
metaheuristics such as Greedy Randomized Adaptive Search procedures (De Leone 
et al. 2011) or Large Neighborhood Search (Lam et al. 2020; Perumal et al. 2020). 
Considering these studies, the biggest solved instances have around 1500 timetabled 
trips (Borndörfer et al. 2008), which roughly corresponds to the instances faced by 
SBB Cargo AG (the biggest instance presented in this paper has 1899 trips).

With respect to the above literature review, and in line with the considered 
research stream, an important goal of our work is to explore thoroughly at which 
extent a general-purpose solver can be used on a challenging real-life problem that 
is faced by railway operators (while considering some specific features faced by SBB 
Cargo AG). The main motivations of using a general-purpose solver are explained 
in Sect. 1 when presenting the research question. Indeed, given the increasing effi-
ciency of solvers, a growing research stream consists in determining if it is possi-
ble to solve industrial problems by means of currently available solvers and, if so, 
which instance sizes can be solved in acceptable time limits (with respect to prac-
titioners). In such a context, state-of-the-art approaches such as column genera-
tion methods, fix-and-optimize techniques, and metaheuristics (e.g., large neigh-
borhood search or variable neighborhood search algorithms) are out of the scope 
of the considered research stream. Such methods, as well as defining more refined 
MIP models (e.g., with strengthening cuts), are left as avenues of research. In our 
context, the proposed matheuristic contains original and unique algorithmic design 
choices, it is extensively tested, and it performs well on real-life instances. The pro-
posed sequential approach is based on an efficient decomposition of the entire prob-
lem into a sequence of smaller subproblems that are suitable for a general-purpose 
solver. Moreover, the proposed sequence of subproblems is natural in the sense it is 



1120	 M.-S. Vié et al.

1 3

understandable and intuitive for decision makers. This is particularly interesting and 
appealing from an industrial perspective.

4 � Mathematical model

The mathematical model for the integrated locomotive and driver scheduling prob-
lem is presented as follows.

•	 Flow variables and constraints for the locomotives (Subsect. 4.1), with additional 
features to allow some time flexibility where possible (Subsect. 4.2).

•	 Routing variables and constraints for the drivers (Subsect. 4.3).
•	 Break-related additional variables and constraints that ensure feasible driver 

duties according to their contract (Subsect. 4.4).

The employed main notation is summarized in Table 2. Other models for the loco-
motive flow and driver routing already exist in the literature, and our contribution 
here relies mainly on the time flexibility feature. Moreover, the contract-related 
constraints presented here are the most important ones from the SBB Cargo AG’s 
perspective. They come from their own modeling and were only adjusted to fit this 
feature addition. Note that because of a non-disclosure agreement, all the costs pre-
sented here are based on estimations and approximate formulas. For instance, driver 
costs could also include training, insurance and some equipment that are not consid-
ered here.

As already highlighted above, other modeling decisions and formulations are of 
course possible (e.g., (Zhu et al. 2014)), including the determination of strengthen-
ing cuts. On the one hand, the reader interested in investigating the importance and 
possible impacts of the formulation can refer to (Bertsimas and Weismantel 2005; 
Pataki 2003), where strong formulations are discussed for example for the well-
known facility location problem and the traveling salesman problem. Such addi-
tional modeling efforts are out of the research scope defined above for our paper, 
and thus left as possible future works. On the other hand, the reader interested in 
having more details on the rationale and justification of various modeling choices 
can refer to Ahuja et al. (2005); Frisch et al. (2021); Piu and Speranza (2014); Vaid-
yanathan et al. (2008a, b) for the locomotive scheduling problem, and to Heil et al. 
(2020); Portugal and co HRL, Paixão JP, (2009); Wren et al. (2003) for the driver 
scheduling problem.

4.1 � Locomotives flow

For the planning of locomotives on a tactical level, SBB Cargo AG currently uses a 
multi-commodity flow-based optimization approach that computes (cyclic) locomo-
tive tours/circulations. In this approach, locomotive types are scheduled collectively, 
exploiting possible type substitutions and respecting coupling constraints for the 
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Table 2   Mathematical notation

Sets AD Arcs of GD

AL Arcs of GL

B Set of back-arcs in GL

D Driving nodes in GD

GD Graph for drivers

GL Graph for locomotives
H Home nodes in GD

I(u) Set of incoming arcs of u
L Set of light-traveling arcs in GL

ND Nodes of GD

NL Nodes of GL

O(u) Set of outgoing arcs of u
S Set of station locations
T Set of train arcs in GL

W Set of waiting arcs in GL

Data Ai Arrival time of train i
CL Unit cost for locomotive type k
Ci Additional cost for light traveling on arc i
CD Unit cost of a duty
Dmax

i
Maximum delay before departure of a light traveling train i

L Length of the cyclic period
M Sufficiently big integer
Ti Driving time of node i
Tij Traveling time between nodes i and j
dutymin Minimum duration of a duty
dutymax Maximum duration of a duty
breakmin Minimum time at which a break can start
breakmax Maximum time at which a break can start

Variables bi Indicates if breaks have occurred in the duty before train i
di Actual delay before departure of a light traveling train i
f Joint costs
f L Locomotive costs
fD Driver costs
f C Secondary contract objective
ti Relative end time of node i within the duty of its corresponding driver
wi Time spent waiting after driving on node i
xi Number of locomotives that serves the arc i
yij Indicates if node i is served after node j by a driver
zh
i

Indicates if node i is served by a driver from home location h
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locomotives. Further, the model respects specific traction requirements of the trains 
(e.g., double traction through long tunnels or along steep sections).

The flow variables and constraints for the locomotives are based on a space-time-
expanded graph GL = (NL,AL) , and an example is represented in Fig. 1. Each node 
in NL is associated with a location and a timestamp, and the arcs in AL are of three 
types (we have here AL = T ∪W ∪ L , and these sets are defined next). First, each 
train that must be pulled is represented by an arc between its departure and arrival 
nodes (e.g., arc 1 → 2 represents a train that connects location B to location A). We 
denote T  as the set of such train arcs, and S as the set of station locations (in Fig. 1, 
S = {A, B, C} ). Second, we have the waiting arc set W , where each arc connects 
each arrival to the next departure at the same location (e.g., arc 2 → 8 represents 
waiting at location A), considering cyclic times over the week. Considering cyclic 
times here means that, at the end of the week, we come back to the beginning of 
the week (i.e., next Sunday = previous Sunday), which is equivalent to consider-
ing the days modulo 7. This makes perfect sense for SBB Cargo AG, as their cli-
ents demands are weekly periodic. Hence, there is always a next departure (as we 
are considering a cycle, there is no point where no train comes next), and B ⊂ AL 
denotes the set of arcs going back in time, called the back-arcs (e.g., arc 14 → 3 ). 
We use back-arcs for cycling as back-arcs go back in the modulo (e.g., from Friday 
to Monday). Therefore, cutting them will tell us how many locomotive “cycles” (and 
thus how many locomotives) we use in total. Third, to allow a locomotive to travel 
without pulling a train, the light-traveling arcs in L connect each arrival node to 
each other location, at the earliest possible time (i.e., the timestamp of the arrival 
node plus the traveling time needed between the two locations). For instance, the 
arcs 2 → 3 and 2 → 4 connect the arrival of Train 1 at location A to each other loca-
tion (i.e., B and C). The variables and constraints are represented as a min-cost flow 
problem under constraints, and therefore the locomotive scheduling problem alone is 
solvable in polynomial time (as long as we consider only one locomotive type, else it 
becomes a multi-commodity flow problem, which is in general NP-complete). Even 
though this information is not useful when solving the entire integrated problem, it 
is relevant for solution methods using decomposition approaches such as separating 

Fig. 1   Flow graph for the locomotives
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locomotives and drivers. Regarding Fig. 1, nodes and arcs are inputs. They repre-
sent where we need locomotives (trains), or what locomotives can do (wait or light-
travel). The variables are the number of locomotives on each arc, and if there are 
two locomotives, it does not matter which one is pulling which train as we consider 
one locomotive type. In other words, this graph consists in a small flow decomposi-
tion to perform to get the routes per locomotive. Note here that each train (i.e., each 
arc) can have more than one locomotive. Among the involved locomotives, one has 
to pull the train, and the other ones belongs to the train because they simply need to 
be relocated (i.e., such inactive locomotives can be considered as wagons, and they 
do not need any driver).

Let xi ∈ ℕ be the decision variable indicating the number of locomotives that 
serve the arc i ∈ AL . Note that the set of back-arcs B is a cut of the flow graph, 
hence the sum of the flow variables on this set indicates the total flow value of the 
graph. Therefore, the fix activation cost for the locomotives is 

∑
i∈B xi ⋅ C

L , where 
CL is the unit cost for activating one locomotive. More precisely, the value of CL is 
based on the following calculation: purchase + average maintenance costs

average locomotive lifetime
× (one week) . Let Ci 

be the additional cost for light traveling on arc i ∈ L (which is evaluated by SBB 
Cargo AG, and mainly relies on network access costs and additional driver costs). 
The additional pulling cost due to light traveling is thus 

∑
i∈L xi ⋅ Ci . To give an 

order of magnitude, we have CL ≈ 5000  CHF/week, whereas 
Ci ≈ (length of i in km) × 3  CHF/week. The total locomotive costs are therefore 
summarized in Eq. (1).

Moreover, the locomotives must satisfy three sets of constraints. First, constraints 
(2) impose that each scheduled trip i from T  has at least one locomotive. Second, 
constraints (3) are the flow conservation constraints on each node u ∈ NL , where 
I(u) (resp. O(u) ) is the set of incoming (resp. outgoing) arcs of u. Constraints (4) are 
the domain constraints.

4.2 � Light traveling time flexibility addition

In the previous graph (Fig. 1), the locomotives do the light traveling as soon as 
possible (as it does not impact the locomotive flow solution). However, for the 
drivers, as they have many duty constraints, we want to allow flexible departures 
for these trains. In order to do so, for each light-traveling arc i ∈ L , we define 

(1)f L =
∑

i∈B

xi ⋅ C
L +

∑

i∈L

xi ⋅ Ci

(2)xi ≥ 1 ∀i ∈ T

(3)
∑

i∈I(u)

xi =
∑

j∈O(u)

xj ∀u ∈ NL

(4)xi ∈ ℕ ∀i ∈ AL
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the maximum delay Dmax
i

 as the maximum time a locomotive can wait before its 
departure, but still reaches the next train arc departure. For instance, the light-
traveling arc 2 → 3 can be delayed up to the departure time corresponding to node 
5 (i.e., the locomotive performing 2 → 3 must only be on time for starting its mis-
sion associated with Train 2, which means that arc 2 → 3 can be slightly shifted 
to the right, as long as node 3 is not on the right of node 5). For this purpose, 
we introduce a decision variable di that chooses the actual delay waited by the 
locomotive before departure, which must therefore be smaller than Dmax

i
 . To be 

consistent with the locomotive flow model, the di variables are also computed in 
cyclic time (i.e., modulo one week, to allow the repetition of the schedule every 
week).

Now, considering that we might want the possibility to delay even more these 
light-traveling arcs (e.g., we might want to put the arc 2 → 3 even after the depar-
ture time of node 5 in order to allow assigning Train 2 to another locomotive), we 
add new light-traveling arcs. More precisely, we would have to add light-traveling 
arcs from each location to arrive just after each train departure of another loca-
tion. As in our model, we have discretized the time with steps of one minute (i.e., 
the time bucket is one minute), arriving just after means one minute after (arriv-
ing two minutes after would result in overconstraining this arc). The resulting 
graph after such operation on the graph from Fig. 1 is presented in Fig. 2.

The operation Time Flexibility Addition (TFA) of adding these delay variables 
and new light-traveling arcs exactly doubles the number of light-traveling arcs, 
and adds one extra decision variable for each traveling arc (new or not). To sim-
plify the time consistency constraints in the following subsection, we define vari-
ables with null values ( di = 0 for each train arc i ∈ T  ). In other words, we have 
time flexibility only for light traveling (so the di variables only exist for those 
arcs), but to simplify the writing of some equations, we add time flexibility also 
on regular trains and set it to 0 (which is actually equivalent to not adding it). 
Note that adding this new set of light-traveling arcs is only useful when solving 
the integrated problem. If solving the locomotive and driver problems sequen-
tially, adding time flexibility to the light travels only means adding the variables 
di to the activated light-traveling arcs.

Fig. 2   Flow graph with light travel time flexibility for the locomotives
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4.3 � Drivers routing

At this stage, the model has been set for the locomotives. Now, we integrate the 
drivers dimension. We need a driver for each train or light travel, knowing that a 
driver comes from a home location and needs to get back to it at the end of the shift. 
As a driver can take a passenger train between two trains that s/he drives, represent-
ing these constraints is not straightforward when relying on the above locomotive 
graphs. Therefore, we introduce a routing graph for the drivers, where each node 
represents a locomotive (i.e., a train or a light travel) that requires a driver. This type 
of representation is in line with well-known vehicle routing problem representations.

Let GD = (ND,AD) be the routing graph for the drivers. The drivers must go 
from one locomotive to another; therefore, the set AD of nodes actually corre-
sponds to train arcs of the locomotive graph. More precisely, the drivers must 
serve all nodes of D = T ∪ L , composed of the trains T  that need a driver, includ-
ing the light traveling trains L (only the activated ones in the case of sequential 
solving, but all of them in the case of integrated solving). Also, we are given a 
set of home nodes H , from which the drivers start their duty, and to which they 
must return at the end of the duty. Therefore, we have ND = D ∪H . An example 
with the train set of Fig. 1 is given in Fig. 3 which is an aggregated graph for all 
drivers (i.e., there is a small decomposition to perform to know which driver is 
assigned to which train, which is quite straightforward as their respective duty 
loops do not really overlap). Each arc of ND links either a pair of driving nodes of 
D (such arcs are represented by plain black arrows), or a driving node of D with 
a home node of H (such arcs are represented by dashed gray arrows). Note for 

Fig. 3   Routing graph for the drivers
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example that there is no arrow from home depot to Train 1. Therefore, the driver 
coming from depot home 1 cannot serve the mission of Train 1, meaning that s/
he has to do some light traveling first (the departure from Train 1 is too far away 
from her/his home). The size of the graph GD will be significantly reduced by the 
pre-processing procedure presented in Sect. 5.

For this model, we define four additional sets of decision variables. For each 
arc (i, j) ∈ AD , yij ∈ {0, 1} indicates if node i is served after node j by a driver. For 
each driving node i ∈ D and home node h ∈ H , zh

i
∈ {0, 1} indicates if node i is 

served by a driver from home location h. This additional set of variables helps to 
keep track of where a driver comes from, to ensure that s/he goes back home and 
not to another depot. For each driving node i ∈ D , ti ∈ ℕ indicates the relative 
end time of node i within the duty of its corresponding driver, and wi ∈ ℕ is the 
time spent waiting after driving on node i and traveling to the next location. The 
composition of a driver’s duty is illustrated in Fig. 4: for each driving node, the 
driver first drives the train, then travels to the departure location of the next train 
(or to home if there is no next train), and finally waits until the departure. Defin-
ing the waiting time w at the end of the nodes allows the driver to wait before 
going back home, which guarantees the feasibility of the contract-duty-length 
minimum constraint, even if her/his duty is really short (as we have a minimal 
length constraint). We denote Tij as the traveling time between two nodes i and j, 
and as Ti the driving time of node i.

With these variables, the total number of duties is the sum of the drivers that 
leave a home location h ∈ H , and the total driver costs are presented in Eq. (5), 
with CD being the unit cost of a duty. More precisely, the value of CD is based on 
the following ratio: annual salary of a driver

number of duties per driver per year
 . The order of magnitude of this cost 

is CD ≈ 800 CHF/week.

The global objective of our integrated problem is to minimize the total costs 
f = f L + fD (i.e., locomotive costs + driver costs).

In addition to minimizing fD , the driver routing problem must satisfy various 
structural constraints.

•	 Driver assignment constraints. Constraints (6–7) ensure that the y and z vari-
ables indicate the same number of drivers per driving node. Constraints (8) state 
that each driving node i must have exactly one driver if it is a regular train. With 
the help of a sufficiently big integer M (each M value was chosen as small as pos-

(5)fD = CD
⋅

∑

h∈H

∑

i∈D

yhi

Fig. 4   Example of a duty with two train nodes i and j 
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sible, see Sect. 6), constraints (9–11) verify that each light traveling train has one 
driver if it is activated (i.e., if xi > 0 – remember that it can be bigger than 1) and 
zero if not (i.e., if xi = 0).

•	 Home constraints. Constraints (12–15) ensure the link between the y and z varia-
bles, by translating that ( yih = 1 or yhi = 1 ) implies zh

i
= 1 , and yij = 1 implies 

zh
i
= zh

j
 (we need both the last two constraints to ensure that there is equality). 

Thanks to the z variables, these constraints ensure that each duty starts and ends 
at the same home location, by transitivity.

•	 Sub-tour elimination constraints. Constraints (16–19) ensure the time consist-
ency of the duties, as shown in Fig. 4. More precisely, if i is the first node of a 
duty that starts at home location h (i.e., if yhi = 1 ), then it sets ti = Thi + Ti ; and 
if j follows i in a duty (i.e., if yij = 1 ), then it sets tj = ti + wi + Tij + Tj . These 
constraints prevent sub-tours without a home location at the start and at the end, 
as the t variables can only increase when going through a driving node i ∈ D , 
whereas they are not set in the home location nodes h ∈ H.

•	 Train arrival constraints. Constraints (20–23) ensure the consistency between 
the train arrival times and the ti variables. It ensures that the difference between 
the actual arrival times Ai + di and Aj + dj of the trains of nodes i and j ( Ai and Aj 
being the arrival times if the associated locomotive does not wait before depar-
ture) is the same as the difference between the relative duty times ti and tj . The 
case where Aj < Ai (that can happen as we consider cyclic times) is handled by 
adding the length of the cyclic period L. Note that if yij = 1 , then tj > ti , and 
therefore this ensures that if Aj ≥ Ai , then Aj + dj ≥ Ai + di , which is why the 
different cases between constraints (20–23) can be differentiated by comparing 
only the Ai s without the dis.

•	 Domain constraints. Constraints (24–28) specify the allowed values for the vari-
ables.

(6)
∑

j∈ND

yij =
∑

h∈H

zh
i

∀i ∈ D

(7)
∑

j∈ND

yji =
∑

h∈H

zh
i

∀i ∈ D

(8)
∑

h∈H

zh
i
= 1 ∀i ∈ T

(9)
∑

h∈H

zh
i
≤ 1 ∀i ∈ L

(10)
∑

h∈H

zh
i
≤ xi ∀i ∈ L



1128	 M.-S. Vié et al.

1 3

(11)M ⋅

∑

h∈H

zh
i
≥ xi ∀i ∈ L

(12)zh
i
≥ yhi ∀i ∈ D,∀h ∈ H

(13)zh
i
≥ yih ∀i ∈ D,∀h ∈ H

(14)zh
i
− zh

j
≥ yij − 1 ∀(i, j) ∈ D2,∀h ∈ H

(15)zh
j
− zh

i
≥ yij − 1 ∀(i, j) ∈ D2,∀h ∈ H

(16)ti ≥ Thi + Ti −M ⋅ (1 − yhi) ∀i ∈ D,∀h ∈ H

(17)ti ≤ Thi + Ti +M ⋅ (1 − yhi) ∀i ∈ D,∀h ∈ H

(18)tj ≥ ti + wi + Tij + Tj −M ⋅ (1 − yij) ∀(i, j) ∈ D2

(19)tj ≤ ti + wi + Tij + Tj +M ⋅ (1 − yij) ∀(i, j) ∈ D2

(20)(Aj + dj) − (Ai + di) ≤ tj − ti +M ⋅ (1 − yij) ∀i ∈ D,∀j ∈ D, s.t. Aj ≥ Ai

(21)(Aj + dj) − (Ai + di) ≥ tj − ti −M ⋅ (1 − yij) ∀i ∈ D,∀j ∈ D, s.t. Aj ≥ Ai

(22)
(Aj + dj) − (Ai + di) + L ≤ tj − ti +M ⋅ (1 − yij) ∀i ∈ D,∀j ∈ D, s.t. Aj < Ai

(23)
(Aj + dj) − (Ai + di) + L ≥ tj − ti −M ⋅ (1 − yij) ∀i ∈ D,∀j ∈ D, s.t. Aj < Ai

(24)yij ∈ {0, 1} ∀(i, j) ∈ AD

(25)zh
i
∈ {0, 1} ∀i ∈ D,∀h ∈ H

(26)ti ∈ ℕ ∀i ∈ D

(27)wi ∈ ℕ ∀i ∈ D

(28)di ≤ Dmax
i

∀i ∈ L
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4.4 � Contract‑related constraints

SBB Cargo AG must respect their driver contracts in order to obey work-time regula-
tion. Therefore, an additional set of decision variables is required: bi ∈ {0, 1} indicates 
if breaks have occurred in the duty before train i ∈ D . With these variables, and to 
fulfill the contract specifications, the constraint set formally described below must be 
added.

•	 Allowed interval for a duty. Constraints (29) state that a duty (in minutes) must hap-
pen between dutymin and dutymax , respectively, fixed to 360 and 660 min in this 
study (i.e., 6 and 11  h). Note that constraints (29) consider the last train before 
going back home (else if yih = 0 , the equation is obviously satisfied as only dutymax 
remains), as we only look at the total duty length and the relative time of the trains 
from the start of the duty.

•	 Break occurrence. Constraints (30) ensure that there is one paid break in each duty. 
Note that a paid break is necessary a waiting arc (see Sect. 4.1), but a waiting arc is 
not necessary a paid break (indeed, a driver can wait multiple times).

•	 Forbidden intervals for break scheduling. Constraints (31–32) impose that the start 
of this break does neither occur in the first breakmin minutes of the duty nor after 
breakmax minutes (as we consider the start of the break for reference, these con-
straints are tied just before the waiting, which is why wi does not appear). In this 
study, breakmin and breakmax are fixed to 90 and 300 min (i.e., 5 h), respectively. 
Note that the understanding of constraints (31–32) should start with what happens 
in the parenthesis: yij = 0 means that the involved arc was not chosen and thus no 
constraint applies; bi = 1 means that the break has occurred and thus the second 
constraint must apply (i.e., we must be at least 90 min away from the duty start); 
bi = 0 means that the break has not occurred yet, and thus the first constraint must 
apply (i.e., we must not be after 5 h within the duty).

•	 Break duration. Constraints (33–34) specify that the break lasts at least one hour.
•	 Variable consistency. Constraints (35) ensure the consistency between the b and y 

variables (i.e., it ensures that bj ≥ bi if yij = 1 ). Note that constraints (34–35) are 
just propagation constraints: if a break has happened before train i and next in the 
duty, train j comes just afterward, it means that a break has occurred before train j in 
the duty (remember that the b variables are an indicator of whether a break has hap-
pened somewhere before or not, not an indicator about if the break has happened 
exactly before the train).

•	 Domain constraints. Constraints (36) specify the allowed values for the variables.

(29)dutymin ⋅ yih ≤ ti + wi + Tih ⋅ yih ≤ dutymax ∀i ∈ D,∀h ∈ H

(30)yih ≤ bi ≤ 1 ∀i ∈ D,∀h ∈ H

(31)ti + Tij ≥ breakmin ⋅ (bi + yij − 1) ∀i ∈ D,∀j ∈ D ∪H
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In addition to these constraints, minimizing the driver time that is paid without driv-
ing is relevant as well. Therefore, the function presented in Eq. (37) is considered 
as a secondary objective (i.e., time spent traveling 

∑
(i,j)∈AD yij ⋅ Tij plus time spent 

waiting 
∑

i∈D wi).

This objective function is in line with some studies that have considered the integra-
tion of the timetable and the crew schedule on an operational level (Rählmann and 
Thonemann 2020). Indeed, those problems are usually solved sequentially, which 
results in suboptimal schedules for the drivers due to large idle times between two 
train rides.

5 � Presentation of the instances and the pre‑processing procedure

In this study, we consider 20 instances extracted from the SBB Cargo AG data of 
2018–2020. Each instance corresponds to a weekly demand extracted from different 
scenarios (e.g., a type of locomotive, or a specific sub-network). The 20 instances 
and their characteristics are presented in Table 3.

For each instance, we first indicate the size |T| of the set of scheduled trains and 
the size |S| of the set of the corresponding station locations. Column “Max-paral-
lel” presents the maximum number of trains that are running at the same time; this 
information gives a lower bound on the numbers of locomotives and drivers that are 
required. The last two columns give information on the solution of the locomotive 
flow problem alone (and were obtained by solving this problem). More precisely, 
column “Locomotives” indicates the minimum number of locomotives required, and 
column “Light travel” gives the number of light-traveling arcs used in the optimal 
solution found for the locomotive problem alone.

The instances are divided into four groups, where each group is built based on the 
instance sizes and minimum numbers of locomotives needed. Indeed, the instances 
of the first group have up to 112 trains and need at most 10 locomotives, whereas 

(32)ti + Tij ≤ breakmax +M ⋅ (bi + 1 − yij) ∀i ∈ D,∀j ∈ D ∪H

(33)bi ≤
wi

60
+ (1 − yhi) ∀i ∈ D,∀h ∈ H

(34)bj − bi ≤
wj

60
+ (1 − yij) ∀(i, j) ∈ D2

(35)bj − bi ≥ yij − 1 ∀(i, j) ∈ D2

(36)bi ∈ {0, 1} ∀i ∈ D

(37)f C =
∑

(i,j)∈AD

yij ⋅ Tij +
∑

i∈D

wi
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the instances of the last group have at least 1122 trains and 36 locomotives. This 
instance separation will allow us to study how our solution methods behave with the 
increase of the difficulty level (i.e., when moving from the first to the last group).

In line with other studies (e.g., Babayev and Mardanov (1994); Coindreau et al. 
(2019); Hertz et al. (2005); Weintraub et al. (2008)), we want to reduce the prob-
lem size as much as possible before using the proposed algorithms. When using a 
general-purpose solver, this task can be important, for instance, when memory prob-
lems can occur (which is the case for the integrated approach, see Subsect.  7.1). To 
accomplish this, we propose a pre-processing procedure that reduces first the size of 
the locomotive flow graph (Subsect. 5.1) and second the size of the driver routing 
graph (Subsect. 5.2).

5.1 � Reducing the locomotive flow graph

In practice, SBB Cargo AG barely chooses light traveling trains lasting more than 
2 h. Also, in all the considered instances, removing them from the graph does not 
impact the number of locomotives used in the optimal solution of the locomotive-
only flow problem. Therefore, we remove all light travel arcs that travel more than 
2 h from our locomotive graph. This observation is only empirical, and the result-
ing reduced graph could prevent us from finding better solutions. We have however 

Table 3   Characteristics of the 
considered instances

Instance |T| |S| Max-parallel Locomotives Light travel

I1 46 30 2 3 30
I2 39 32 4 4 24
I3 72 16 4 4 21
I4 101 28 6 6 60
I5 112 31 10 10 8
I6 190 50 9 9 155
I7 315 34 13 19 159
I8 288 41 11 12 191
I9 262 78 9 10 87
I10 403 63 14 17 288
I11 301 97 11 12 109
I12 348 97 15 17 174
I13 340 74 16 19 211
I14 486 102 16 24 189
I15 759 96 17 25 239
I16 1245 148 29 36 449
I17 1122 113 34 37 749
I18 1551 139 36 43 517
I19 1168 77 47 49 576
I20 1899 179 43 52 661
Average 552 76 17 20 245
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decided to perform this reduction because it leads to many arc removals, and we 
conjecture that the risk of missing a better solution is extremely poor (this holds true 
for most of our graph reductions). Indeed, such an operation removes on average 
35% of the traveling arcs from the locomotive flow graph, and therefore, it removes 
35% of the traveling nodes from the driver routing graph, which consists of T ∪ L . 
This is a significant reduction, as the number of arcs of the driver routing graph 
(before the pre-processing presented in Subsect. 5.2) scales quadratically with the 
number of nodes in the driver routing graph (as we have an arc between each pair of 
nodes).

Table 4 shows the effect of the locomotive graph reduction over the instances, 
both on the graph with and without TFA. The last column shows the average reduc-
tion percentage of |D| , computed over the two cases (i.e., with or without TFA). 
Note that the average reduction percentage of |D| without TFA and the average 
reduction percentage of |D| with TFA are always very close (they differ by at most 
1%). We observe that TFA roughly doubles the number of arcs in the locomotive 
flow graph, as the procedure doubles the number of light-traveling arcs, and as the 

Table 4   Locomotive flow graph reduction

Without TFA With TFA

Instance |D| before pre-
processing

|D| after pre-
processing

|D| before pre-
processing

|D| after pre-
processing

Reduction 
percentage 
(%)

I1 887 704 1731 1380 21
I2 946 715 1851 1386 24
I3 951 781 1903 1553 18
I4 1948 1570 3998 3261 19
I5 3361 2821 6610 5530 16
I6 5842 4536 12,406 9829 22
I7 9260 5017 18,142 9954 46
I8 8951 6219 17,125 11,628 31
I9 17,050 13,013 34,359 26,083 24
I10 19,441 12,174 38,944 24,238 37
I11 24,104 18,386 48,206 36,659 24
I12 30,639 20,656 55,038 36,321 33
I13 16,491 10,279 33,297 20,281 38
I14 39,894 25,649 83,475 54,387 36
I15 57,734 35,108 120,683 73,009 39
I16 159,400 101,626 324,484 207,438 36
I17 93,227 69,730 198,736 146,843 25
I18 184,396 116,066 382,191 238,853 37
I19 74,885 50,843 153,204 102,234 32
I20 309,261 195,026 604,616 380,490 37
Average 52,933 34,546 107,050 69,568 35
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number of train arcs is negligible in comparison. Indeed, as we construct light-trave-
ling arcs between each arrival at a station to the next departure of each other station, 
|L| is of the same magnitude as |T| × |S| ) (i.e., on average 76 times bigger than |T| ). 
However, discarding long light travels reduces the size of D = T ∪ L by a percent-
age ranging from 16 to 46%. Also, this reduction percentage tends to increase with 
the number of trains (it is between 16 and 24% for the instances with less than 200 
trains, and over 24% for the other instances).

5.2 � Reducing the driver routing graph

Note that in this section, for sake of clarity, we present the graph reduction that is 
induced by the rules of the pre-processing procedure. But in the implemented meth-
ods, we directly build the graph with the “interesting” arcs, instead of initially con-
sidering all the arcs and then removing the “uninteresting” ones.

Without considering the contract-related constraints (29–36) in the driver rout-
ing graph, we would need all possible arcs between each pair of nodes of D , and in 
both ways between each node of D and each node of H , as explained in Subsect. 4.3. 
Therefore, we would have a total of |D| ⋅ (|D| − 1 + 2 ⋅ |H|) arcs in the graph. But 
as we can see in Table  4, even after the light-traveling arcs reduction, |D| ranges 
from 704 to 195,026. Therefore, we can have up to around 4 ⋅ 1010 arcs in the driver 
graph, which is obviously too much to be handled by a general-purpose solver. How-
ever, we can significantly reduce this number by taking into consideration the con-
tract constraints stated in Subsect. 4.4 and by using the SBB Cargo AG insights on 
the arcs that are barely used in practice.

Indeed, we can first remove each obviously inconsistent arc, that is, each arc 
between two train nodes i and j (from D ∪H ) if a driver cannot physically visit both 
within one duty (knowing that a duty must not last more than 11 h). Consider for 
example the trains presented in Fig. 5. In this case, a driver could drive Train 3 after 
Train 1, or Train 4 after Train 2. However, s/he could not drive Train 2 after Train 
1 (as the two trains overlap), Train 4 after Train 1 (as the corresponding duty would 
last more than 11 h), or Train 4 after Train 3 (as s/he would not have time to travel 
from B to C between the two trains).

Fig. 5   Example for train-driver duty consistency
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In addition, due to practice observation (these arcs were barely used in a duty), 
we remove each arc between two driving nodes (i, j) ∈ D ×D if traveling between 
i and j is longer than 5 h, or if waiting between i and j (without considering di or 
dj ) is longer than 4 h, and we remove each arc between a driving node i ∈ D and 
a home node h ∈ H (in both directions) if traveling between h and i takes more 
than 3 h.

Table 5 has the same structure as Table 4. It presents the effect of the driver 
graph reduction over the different instances, when solving the integrated prob-
lem, both with and without TFA. Each column with the label “possible” gives 
the number of all possible arcs, whereas a column with the label “feasible” only 
indicates the arcs that are actually feasible. The number of arcs obtained after the 
pre-processing steps are given in the columns with the label “processed”. As the 
number |L| roughly doubles when adding TFA, we observe that this option mul-
tiplies |AD| by a factor of around 4. On average, the number of arcs is reduced by 
97% if we consider all possible arcs, and by 46% if we consider the feasible arcs 
only. However, and in particular for the largest instances, the size of the reduced 
graphs remains significant: for the biggest instance, we still have a billion arcs 
in the graph after reduction. Here again, a general-purpose solver is clearly not 
appropriate to tackle the problem, and therefore justifies the design of matheuris-
tics. Indeed, as it will be shown in Sect.  7, the solver is only able to solve the 
integrated problem up to around half a million arcs (i.e., only the instances of the 
first group).

The very large size of the driver routing graph, when solving the locomotive 
and driver problems together, also fully justifies the fact that these two problems 
are often solved sequentially. Indeed, if solving the locomotive flow problem first 
and the driver routing problem second, instead of considering all light travel pos-
sibilities of L in the driver routing, we would only consider the ones that have 
been activated when solving the locomotive flow problem (i.e., the ones that have 
a strictly positive flow). More precisely, we would remove all light travel arcs that 
are not used in the locomotive flow optimal solution (presented in Table 3) from 
the set D (presented in Table 4), thus resulting in a much smaller set, as shown in 
the second column of Table 6. Note that in this case, this set is the same with or 
without TFA, as when solving the problems sequentially, adding this option does 
not change the number of light-traveling arcs considered. In the next columns, we 
indicate the number of arcs that would compose AD with such a set, before (col-
umn 3 if looking at all possible arcs, column 4 if looking only at feasible ones) 
and after (column 5) the pre-processing, and the reduction percentage (column 6) 
brought by the pre-processing (which is of the same order of magnitude than for 
the integrated problem, except for the smallest instances where it goes to 75%). 
Finally, the last column shows the ratio between the size of the graph for the inte-
grated problem (without TFA) when compared to the size of the graph for the 
driver problem only. Looking at the problems sequentially reduces the size of the 
graph significantly for the smallest instances (the graph size is at least divided by 
16) and drastically for the largest instances (the graph size is divided by around 
5000 for I20, as we go from around 1.2 ⋅ 109 to 2.4 ⋅ 105 arcs).
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6 � Loco‑driver matheuristic

The loco-driver matheuristic, presented in Algorithm 1, relies on two main ideas: 
(1) solve the locomotive flow problem with a fixed number of locomotives (with 
Algorithm 2); (2) improve the driver duties of the so-obtained solution with the help 
of a general-purpose solver. Two approaches are possible for (2): (a) use a rolling 
horizon decomposition (RHD) over the cyclic week (with Algorithm  4); (b) use 
a direct approach that launches the general-purpose solver on the entire problem, 
with the total available computing time. Note that this direct approach also provides 
the general-purpose solver with the initial solution obtained in Step (1). These two 
approaches (a) and (b) are numerically compared in Sect. 7.

Steps 1 and 2 of Algorithm 1 are performed for different numbers nL of locomo-
tives, ranging from nL

min
 to nL

max
 . On the one hand, the value of nL

min
 is presented in 

Table 3. It is computed by solving (to optimality) the locomotive problem only (i.e., 
the driver constraints are ignored). On the other hand, nL

max
 was fixed to nL

min
+ 9 

(after preliminary experiments). Indeed, larger values for nL
max

 never led to better 
solutions (with respect to objective function values). The allowed computing time 
of 140  min is explained in Sect.  7. Consequently, Algorithm  1 can be performed 
within one day of computing time, as 10 values for nL are tested. Note that the num-
ber of locomotives being fixed, the remaining main objective function to optimize 
corresponds to the light traveling distance plus the duty costs (the second objective 
function f L remains unchanged, as this cost is inherent to number of locomotives).

Algorithm 2 generates an initial solution to the entire problem. It is based on the 
following steps: solve the locomotive flow problem only (with a general-purpose 
solver); greedily construct a driver routing solution by assigning a duty per regular 
train and per activated light-travel train; try to construct longer duties by performing 
a descent local search (this step is optional and numerical comparisons will be per-
formed with and without it).
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The descent local search (DLS) is presented in Algorithm  3. Its purpose is to 
reduce the number of duties of a given solution S, without changing the parts of the 
solution regarding the locomotives (i.e., the number of locomotives used and the 

Table 6   Driver routing graph when fixing locomotives (i.e., for the sequential approach)

Instance |D| without 
unactivated 
light arcs

|AD| possible |AD| feasible |AD| processed Reduction 
percentage 
(%)

Reduction ratio 
(vs. integrated)

I1 76 7220 2014 1679 77 17
I2 63 5166 1514 1284 75 24
I3 93 10,416 2231 2083 80 16
I4 162 29,322 4835 4064 86 28
I5 120 16,680 3245 2750 84 169
I6 345 125,580 14,813 10,780 91 74
I7 474 233,682 14,324 15,034 94 55
I8 479 238,542 21,528 16,246 93 89
I9 349 128,432 18,181 10,110 92 557
I10 691 490,610 36,227 26,465 95 171
I11 410 175,890 19,193 12,663 93 873
I12 522 282,402 25,067 17,445 94 762
I13 550 312,950 25,767 19,110 94 182
I14 675 468,450 38,378 27,067 94 834
I15 998 1,012,966 72,605 47,131 95 814
I16 1694 2,901,822 188,849 118,344 96 2743
I17 1840 3,420,560 221,427 133,082 96 1121
I18 2073 4,336,716 277,109 163,894 96 2541
I19 1738 3,053,666 174,671 120,789 96 666
I20 2569 6,648,572 411,414 241,924 96 4847
Average 796 1,195,082 78,670 49,597 91 829
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light-traveling arcs activated). In order to accomplish that, it performs one type of 
move: group two duties together, with the possibility of changing the drivers home 
location (in order to allow grouping two duties with drivers coming from two dif-
ferent home locations). Note that if two duties are combined, then only one driver is 
needed (i.e., the second driver is not used anymore, as we have no constraint on the 
number of drivers). At each step, we merge the two duties having the best impact on 
f C , and we stop when we cannot merge duties anymore without violating the maxi-
mum duty length constraint. We look only at the second objective function f C when 
grouping two duties, as it has the same impact on the first objective function what-
ever are the two duties chosen: it does not change the locomotive costs f L (because 
we do not change the locomotive solution), and it reduces the drivers cost by 1 ⋅ CD 
(as we decrease the number of duties by 1).

In the rolling horizon decomposition (RHD), presented in Algorithm 4, we try 
to improve the solution by re-optimizing, with a general-purpose solver (but with 
a time limit of 5 min), all the duties that start in interval [t, t + 24 hours] , and we 
roll this window (i.e., we increase t by a time step of 12  h) over the planning 
horizon (i.e., the cyclic week) twice. We also relax the light traveling edges that 
are used in this interval, so that we can choose another one if it helps improving 
the solution. It is relevant to do it twice as the duties will be longer in the second 
run, and hence more trains will be considered when including all duties starting 
in this window. Note that, as we roll the horizon by time steps of 12 h, and as 
we run it twice over the total horizon of 1 week, we solve the problem 28 times. 
Consequently, with a time limit of 5 min for the general-purpose solver, this step 
can take up to 28 × 5 = 140 minutes.



1139

1 3

A matheuristic for tactical locomotive and driver scheduling…

Note that, as described below, this algorithm has a run time in O(number of duties)3 , 
but this can be easily reduced to O(number of duties)2 by storing the grouping scores 
between duties, sorting it, and only computing the grouping scores with the new duty 
at each iteration (and it is impossible to go below this order of magnitude, because we 
need at least the scores between each pair for our algorithm, which requires squared 
computing time). However, we do not describe such improvements here, as they are 
well-known, and such considerations would unnecessarily complicate the presentation 
of the method (note that in our case, the computing time of DLS remains reasonable 
anyway).

For each occurrence of M in the model, it has been implemented in the solver by 
replacing it by the smallest possible upper bound. More precisely, we have chosen the 
following values;

•	 M = nL
min

+ 10 for constraint (11), as it is an upper bound on the number of loco-
motives xi to use;

•	 M = 660 for constraint (16), as if Thi + Ti > 660 , then the arc h → i would have 
been removed from the graph during the pre-processing phase;

•	 M = 660 for constraints (17) and (19), as 660 is an upper bound for ti due to con-
straint (29);

•	 M = 2 ⋅ 660 for constraint (18) as ti + wi ≤ 660 due to constraint (29), and 
Tij + Ti ≤ 660 due to the pre-processing phase;

•	 M = Dmax + 2 ⋅ 660 for constraints (20–23), with Dmax = maxi∈L(D
max
i

) being 
an upper bound of the di possible values, as ti ≤ 660 due to constraint (29) and 
Aj − Ai ≤ 660 (or Aj − Ai + L ≤ 660 , if Aj < Ai ) due to the pre-processing phase;

•	 M = 2 ⋅ 660 − 300 for constraint (32), as ti and Tij or both are upper bounded by 
660.
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7 � Results

The proposed approaches were coded in Python 3.6 and run on the Baobab server 
of the University of Geneva (with Intel 8 cores under a maximum memory con-
straint of 60GB). As a general-purpose solver, we use Gurobi V9.1. The allowed 
time limit to solve the entire problem is one day of computation. Indeed, as the 
problem is at a tactical level, there is no need to provide a solution within a cou-
ple of minutes. As 10 values of nL (the number of locomotives) are considered for 
each instance (see Sect. 6), it means that we have a computing time of 140 min 
for each considered number of locomotives. We observed that the solver never 
stops before its allowed time limit (which is not surprising given the complexity 
of the problems/instances). For these reasons (i.e., tactical nature of the problem, 
full employment of the available computing time), we will not compare the meth-
ods according to speed, but only according to quality (i.e., solution values).

The two considered objective functions f (i.e., locomotive costs + driver costs) 
and f C (i.e., the driver time that is spent without driving) are related. Indeed, if 
there are less light travel in the solution, the duties total length will very prob-
ably be shorter. As explained in Sect. 2, f and f C are optimized in a lexicographic 
fashion: the cost f has the priority over the inactive time f C . In other words, no 
reduction of f C can be performed if it augments f. In this regard, for each nL 
value, our optimization approach contains two phases.

•	 Phase 1. We first try to minimize f for 80% of the time limit (i.e., 112 min).
•	 Phase 2. Considering the solution generated in Phase 1 as input, we try to 

reduce f C for the remaining 20% of the allowed computing time (i.e., 28 min), 
but without augmenting the value of f.

Doing so (i.e., allocating 80% of the computing time for optimizing f and 20% 
of the computing time for optimizing f C ) uses a tool proposed directly by the 
Gurobi solver, and we have observed in preliminary experiments that this time 
repartition gives the best results according to the lexicography.

For all the presented tables, the average cost f per train connection (i.e., we 
divide the cost by the number of trains |T| , for normalization over all instances) 
is presented in Swiss Francs (CHF), the average values of f C in minutes, and 
the light distance traveled in kilometers. We decided to show average values in 
order to better compare the results for different instance sizes. Indeed, the biggest 
instance has more than 40 times the number of trains contained in the smallest 
one. For each table, the best values are highlighted in bold font.

In the following subsections, we first briefly compare the results of the inte-
grated and the sequential approaches (Subsect. 7.1). Next, for each of these two 
approaches, we thoroughly analyze the impact of each component of the method, 
namely, DLS, RHD and TFA (Subsects. 7.2 and 7.3). It is important to note that 
DLS and RHD are two algorithms of the Loco-Driver Matheuristic, whereas TFA 
is related to the modeling part. Finally, we provide managerial insights on the 
number of locomotives to use and on instance splitting (Subsect. 7.4).
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7.1 � Sequential versus integrated approach

As a first observation, solving the integrated problem consumes too much mem-
ory for our method. Indeed, even without TFA, we are only able to solve the first 
8 instances (the ones where |D| < 7000 after pre-processing) if we use RHD, and 
only 5 instances (the ones where |D| < 3000 after pre-processing) if we solve the 
problem over the whole week directly. When a memory problem occurs, it happens 
very early for the five biggest instances (i.e., on the initial linear program), whereas 
it occurs on the branching phase for the other instances. In contrast, the sequential 
approach is able to solve every instance with each configuration.

For the 8 instances that could be solved by both approaches, and for each 
approach (i.e., sequential, and integrated), Table  7 presents the smallest obtained 
value (over all possible configurations) of the cost per train connection (the details 
will be discussed in the next subsections). The integrated approach finds a slightly 
better solution for the instance I1, finds the same solutions as the sequential 
approach for instances I2 and I3, but it is outperformed by the sequential approach 
for the other instances. The explanation for this is certainly that the integrated prob-
lem becomes too big for the computing time limit given for those instances. For 
such instances, considering the above common time limit restrictions (i.e., the solver 
can only provide its best encountered solution during the available time limit), solv-
ing a sequence of smaller problems is thus more efficient than solving the entire 
problem. In other words, these results for the small instances I1–I8 validate the qual-
ity of our sequential approach.

7.2 � Results for the sequential approach

Table  8 presents the average value of the cost f per train connection obtained for 
the sequential approach, with all possible configurations of our proposed method: 
with or without RHD; with or without DLS; with or without TFA. Remember that 
all these methods use the general-purpose solver, and they differ on the problem to 
solve and on the employed initial solution. The first three lines present the method 
configuration, where a check mark indicates the activation of the considered option. 
For example, the first column presents the result of the method where DLS, RHD 
and TFA are employed, whereas the fourth column only activates DLS. The last col-
umn corresponds to running the solver on the whole problem, given the simplest 
initial solution (i.e., one duty per train).

The following observations can be made.

•	 DLS reduces the costs drastically: the average cost is 671.5 with DLS (over the 
four algorithms), versus 798.3 without it. This improvement is likely to be due to 
the fact that this operation saves a lot of computational effort for the solver.

•	 RHD also improves the solutions significantly, as we obtain an average cost of 
683.8 with it, versus 786 without it. However, this improvement mostly occurs 
for large instances. This is likely to mean that: the solution provided by DLS is 
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already very good for solving the driver routing problem alone; relaxing the light 
traveling edges only becomes useful if the instance is big enough.

•	 TFA does not bring a significant advantage: it slightly reduces the average cost 
when combined with RHD, but it worsens the solutions without it. This implies 
that TFA leads to a problem that is too big for the solver, unless we use RHD.

•	 The improvements brought by the components under study are more important 
for the larger instances.

•	 The simplest method (i.e., without using any component, see the last col-
umn) still generates good solutions for small and medium instances. Indeed, 
we obtain an average cost per train connection of 787 (resp. 711, 739) for 
instances I1–I5 (resp. I6–I10, I11–I15). Unfortunately, the method fails 
for the large instances, as the average cost per train connection is 1201 for 
instances I16–I20.

•	 In contrast, the most refined method (i.e., using all three options) does not suffer 
at all with the augmentation of the instance complexity. Indeed, if we look at the 
average cost per train connection by group of five instances: we have an average 
cost of 779 (resp. 639, 621, and 596) for instances I1–I5 (resp. I6–I10, I11–I15, 
and I16–I20).

For each method configuration, the last three lines of Table 8 show how the total 
cost (averaged over all the instances) is distributed over its three components: (A) 
cost due to the number of locomotives (first component of f L in Eq. (1)); (B) cost 
due to the number of duties ( fD in Eq. (5)); (C) cost due to the light distance trave-
led (second component of f L in Eq.  (1)). Without the use of DLS nor RHD, the 
best solutions found have larger (A) and (B) values, but smaller (C) values, lead-
ing, however, to an overall larger total cost. Except for this case, most methods pro-
vide almost the same costs with respect to (A) and (C), and the cost differences are 
explained by (B).

Table 9 has the same structure as Table 8, but it presents the average values of 
the cost f C per train connection. Overall, we observe similar behaviors as for the 
first objective (i.e., f = f L + fD ): RHD and DLS are clearly beneficial, whereas TFA 
only improves the results slightly if combined with RHD. Moreover, f C does not 
really increase with the instance size when using DLS, RHD and TFA: it ranges 
from 111 to 169, and the results do not appear to be linked with the instance size 
(the minimum is reached for I9, whereas the maximum is obtained for I10). On 
the contrary, and as observed for f, the f C values are very high for the five largest 

Table 7   Average cost per train connection when solving the integrated or the sequential problem, over 
the 8 instances that could be solved by both approaches

The best results are indicated in bold faces

Instance I1 I2 I3 I4 I5 I6 I7 I8

Sequential 738 983 690 675 786 596 733 617
Integrated 735 983 690 710 815 769 876 789
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instances when none of the method components is active (it reaches an average of 
368 for the simplest method).

7.3 � Results for the integrated approach

Tables 10 and 11 have an already presented structure. Table 10 (resp. Table 11) pre-
sents the average value of f (resp. f C ) per train connection obtained for the integrated 
approach. Only instances I1 to I4 are considered, because at least one method con-
figuration ran out of memory for the other instances. Overall, the different methods 
behave as for the sequential approach. Again, DLS improves the results significantly. 
However, the benefit of RHD is less clear: the average costs are slightly reduced 

Table 8   For each method configuration of the sequential approach: average cost per train connection for 
each instance; distribution of the average cost per train connection over the three cost components

The best results are indicated in bold faces

 Component DLS ✓ ✓ ✓ ✓

RHD ✓ ✓ ✓ ✓

TFA ✓ ✓ ✓ ✓

 Instance I1 738 790 772 790 738 790 772 790
I2 983 1004 983 983 983 983 983 983
I3 701 712 690 701 690 701 690 701
I4 675 691 675 683 715 707 711 675
I5 800 793 786 786 786 786 786 786
I6 630 627 613 596 699 697 711 634
I7 752 749 749 733 871 848 1011 871
I8 634 652 645 617 710 744 820 713
I9 477 480 486 459 532 535 599 483
I10 702 680 702 680 833 837 1024 856
I11 494 505 497 475 563 536 634 543
I12 643 646 650 611 742 751 940 808
I13 745 733 742 705 860 871 1098 898
I14 650 649 625 616 725 725 862 740
I15 574 565 567 525 607 600 872 708
I16 566 565 622 574 579 579 867 1044
I17 641 642 718 720 666 664 1227 1225
I18 525 521 597 563 546 539 1193 1185
I19 716 697 799 748 732 722 1373 1349
I20 532 531 853 959 537 535 1207 1204

Average cost 659 662 689 676 706 708 919 860
 Cost distribution nb. locos 251 254 254 255 254 255 269 261

nb. duties 376 377 403 390 421 421 623 569
light dist. 33 32 32 31 32 31 27 29
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(resp. augmented) with (resp. without) DLS. Finally, the benefit of TFA seems to 
be more promising for the integrated approach, even though it leads to worse aver-
age results over the four instances. Indeed, looking at them separately, TFA always 
improves the solution for I1, almost always for I3, does not change it for I2, and 
worsens it for I4. In other words, TFA has a good potential to improve the solutions, 
but unfortunately, it increases too much the size of the problem with respect to the 
solver ability (except for the small instances with less than 100 trains).

7.4 � Managerial insights on the number of locomotives and on instance splitting

An interesting managerial insight consists in measuring how the increase of the 
number of locomotives impacts the results. For each instance, Table 12 compares 
the solution found with the smallest possible number nL

min
 of locomotives with the 

best solution returned by our methods. In this table, the results in bold highlight the 
instances for which these two solutions are different. For all the 14 first instances 
but I7, the same solutions are encountered. In contrast, for the larger instances 
(I15–I20) and I7, the number of locomotives increases (on average by 10%) in order 
to decrease the light distance traveled (on average by 33%) and the number of duties 
(on average by 3%), leading to an overall cost reduction of around 1%. In other 
words, using more than the minimum possible number of locomotives (to satisfy the 
demand) is only interesting if the number of trains to be pulled is really significant 
(more than 500).

This naturally leads to the following question: would it be better to decompose the 
big instances into smaller ones, and therefore having smaller problems to solve and 
hence a larger chance of finding the best solution in the allowed computing time? To 
investigate this aspect, we consider the three instances I11, I16 and I20, which were 
actually built by combining the train connections of two other instances (involving 
two compatible locomotive types). More precisely, we have T(I11) = T(I2) + T(I9) , 
T(I16) = T(I14) + T(I15) , and T(I20) = T(I12) + T(I18) . In this context, Table  13 
compares the results obtained when solving the two instances separately (e.g., I1 
and I9), versus when solving the instances with their combined trains (e.g., I11). 
Two methods are compared: the simplest (i.e., without any feature among DLS, 
RHD and TFA) and the most refined (i.e., with all the features activated in the 
method). The following two main observations can be made. First, the results of 
the refined method highlight again the need for DLS, RHD and TFA. Second, for 
the refined method, the results are clearly in favor of looking at the entire instance 
(versus decomposing it), even if more duties are created. However, for the simplest 
method, the whole instance is too big for two of the three cases. This observation 
is particularly interesting. It indicates that a sequential approach cannot simply be 
reduced to instance splitting, highlighting again our contribution with respect to the 
proposed problem decomposition of the sequential approach.
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8 � Conclusion

Scheduling locomotives and drivers is one of the main tasks of each railway com-
pany. In this study, we first propose a mathematical lexicographic model (including 

Table 9   Average solution values 
with respect to f C , for each 
method configuration of the 
sequential approach, and for 
each instance

The best results are indicated in bold faces

 Component DLS ✓ ✓ ✓ ✓

RHD ✓ ✓ ✓ ✓

TFA ✓ ✓ ✓ ✓

 Instance I1 143 146 158 132 147 176 157 133
I2 164 184 160 128 162 158 176 129
I3 127 141 138 98 117 125 132 98
I4 149 149 141 103 183 178 137 105
I5 123 124 126 84 116 123 125 85
I6 136 137 136 92 147 170 165 99
I7 135 147 146 96 164 231 230 148
I8 128 131 132 83 152 181 197 124
I9 111 113 115 72 125 134 179 85
I10 169 117 169 117 192 207 314 178
I11 111 119 116 76 130 133 174 103
I12 155 151 160 103 186 123 263 179
I13 166 163 167 109 207 192 297 183
I14 143 142 139 101 166 165 274 147
I15 157 158 153 101 150 140 269 181
I16 144 144 165 129 138 139 283 354
I17 157 157 188 165 150 147 427 373
I18 135 133 168 136 127 126 377 373
I19 150 144 192 150 135 141 368 358
I20 126 127 265 294 127 127 384 383

Average cost 141 141 157 118 151 156 246 191

Table 10   Average cost per train connection for each method configuration of the integrated approach

The best results are indicated in bold faces

 Component DLS ✓ ✓ ✓ ✓

RHD ✓ ✓ ✓ ✓

TFA ✓ ✓ ✓ ✓

 Instance I1 750 782 735 782 765 765 753 765
I2 983 983 983 983 1045 1045 1004 1004
I3 690 701 712 712 701 724 741 701
I4 956 710 1460 716 810 739 810 739

Average cost 845 794 973 798 830 818 827 802
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all driver-contract-related constraints as well) to solve this problem, relying on a 
general-purpose solver. We also propose an extension of this model that allows time 
flexibility on the light travels. Next, we develop a general matheuristic that uses the 
solver to find solutions to this problem, either in an integrated or a sequential way, 
with the help of additional optimization features (e.g., a rolling horizon decomposi-
tion, a descent local search for improving solutions).

Table 11   Average solution 
values with respect to f C for 
each method configuration of 
the integrated approach

The best results are indicated in bold faces

 Component DLS ✓ ✓ ✓ ✓

RHD ✓ ✓ ✓ ✓

TFA ✓ ✓ ✓ ✓

 Instance I1 128 153 128 138 140 157 128 141
I2 129 128 130 132 153 199 162 179
I3 116 108 109 113 101 118 114 104
I4 136 132 432 148 225 144 225 144

Average cost 143 126 200 133 155 155 157 142

Table 12   Comparison of the best solution found over all algorithms according to the chosen number of 
locomotives

The best results are indicated in bold faces

Solution obtained with nL
min

Best solution obtained over all nL values

Number 
of locos

Number 
of duties

Light 
distance

Average 
cost

Number 
of locos

Number 
of duties

Light 
distance

Average 
cost

 Instance I1 3 16 2002 735 3 16 2002 735
I2 4 19 1047 983 4 19 1047 983
I3 4 37 31 690 4 37 31 690
I4 6 44 995 675 6 44 995 675
I5 10 47 146 786 10 47 146 786
I6 9 76 2506 596 9 76 2506 596
I7 19 163 1948 734 20 158 1488 733
I8 12 137 2701 617 12 137 2701 617
I9 10 80 2071 459 10 80 2071 459
I10 17 211 6756 680 17 211 6756 680
I11 12 95 2357 475 12 95 2357 475
I12 17 138 5764 611 17 138 5764 611
I13 19 169 3122 705 19 169 3122 705
I14 24 201 6243 616 24 201 6243 616
I15 25 312 8186 526 30 293 4594 525
I16 36 610 14,880 572 39 594 11,042 565
I17 37 642 11,078 652 41 613 7895 641
I18 43 707 13,347 529 48 677 8776 521
I19 49 697 6035 703 52 679 3441 697
I20 52 884 16,134 535 57 863 11,055 531
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Considering 20 real instances, the first result of this study is that the general-
purpose solver is overwhelmed by the integrated problem, as it runs out of memory 
for 80% of the instances. In contrast, our matheuristic is able to solve the sequential 
problem efficiently, but it requires the use of specific features (i.e., rolling horizon 
decomposition and descent local search). Two managerial insights can be deduced 
from our work. First, if a company would like to solve an optimization problem with 
a commercial solver but the problem is too big for it, it is recommended to decom-
pose the problem into an efficient (with respect to solution quality) and natural (with 
respect to the involved decision maker) sequence of smaller subproblems that are 
suitable for the commercial solver at hand. As highlighted by the experiments con-
ducted in Sect. 7.4, we cannot simply split an instance into smaller parts to be effi-
cient (considering the entire instance was indeed more efficient, even if more duties 
are generated). Second, we have shown that increasing the number of locomotives 
(to reduce the light travel distance and the number of duties) has the potential of 
reducing the overall total cost for the biggest instances.

Among the straightforward future works, we suggest the development of solution 
methods to tackle the integrated locomotive and driver scheduling problem, or to 
add driver considerations when solving the first locomotive flow. Promising candi-
dates that have been successfully applied for other problems with common features 
(e.g., transportation scheduling, consideration of various objectives, and even crew 
scheduling) are column generation (Gaur and Singh 2017; Crainic and Rousseau  
1987), variable neighborhood search (Thevenin and Zufferey 2019), and fix-and-
optimize techniques (Coindreau et al. 2021). Moreover, this would allow to inves-
tigate further the potential of our time flexibility mechanism for the light travels, 
as we have shown that it could improve the solutions of the integrated problem, but 
unfortunately it increases too much the size of the model with respect to the solver 
ability. Finally, one could also explore how these algorithms could be parallelized to 
make a better use of the allocated computing time.
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