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Summary. We derive a set of asymptotically exact coupled amplitude-streaming flow
(CASF) cqualions governing the cvolulion ol weakly nonlincar nearly inviscid mulli-
mode l'araday waves and the associated streaming flow in finite geometries. The stream-
ing flow is found to play a particularly important role near mode interactions, Such
interactions come about either through a suitable choice of parameters or through break-
ing of degeneracy among modes related by symmetry. An example of the first case
is provided by the inleraction of (wo nonaxisymmelric modes in a circular conlainer
with different azimuthal wavenumbers. The second case arises when the shape of the
container is changed from square to slightly rectangular, or from circular to slightly
nongircular bul with a planc of symmclry, The generalion of streamning flow in cach
of these cases is discussed in detail and the properties of the resulting CASF equa-
lions arc described. A preliminary analysis suggests thal these cqualions can resolve
discrepancies between existing theory and experimental results in the first two of the
above cases,
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1. Introduction and Formulation

The Faraday instability, that is the excitation of surface gravity-capillary waves by the
verlical vibralion of a container of (luid [17, has been of greal inleresl from the poinl
of view of pattern formation [2], [3]. This system has an additional appeal in the low
viscosily limil hecause ol ils close conneclion with classical walcr wave theory, However,
this limit is singular and must be treated with care. 'This is because viscous oscillatory
boundary layers attached to the container and the free surface are capable of driving
streagming flows \hal in lurn inlcracl with the waves responsible Tor them [41], 151, [6].
This interaction arises already at leading (i.e., cubic) order and as a result has a strong
clfcel on the stahilily of the waves. Depending on circumstances the strecaming Now can
promote instability or stabilize the waves. As a result theories of the l'araday instability
based on the potential formulation are fundamentally unreliable, even in the low viscosity
limil. Tn a recent paper [31 we have discussed the origin of the streaming Qow and
derived equations describing the interaction of this flow with the l'araday waves in
the casc of an exiended (wo-dimensional conlainer, Tn such conlainers a mean Oow is
easily excited and consists of two contributions, the inviscid mean flow familiar from
theories of inviscid water waves, and the streaming flow driven by nonzero time-averaged
Reynolds siress in the oscillalory boundary layers along no-slip boundarics and the
free surface. 'T'he mechanisms responsible for driving the streaming flow (also called
“acouslic slrcaming” or “viscous mean Now™ ) arc well known and go back 1o the work of
Schlichting [ 7] and Longuet-Higgins | &] (see | 9] for areview). However, their importance
for the dynamics of Faraday waves under experimentally relevant conditions has been
recognived only relatively recen(ly [51, [6]. Tn this paper we Tocus on threg-dimensional
containers of small aspect ratio, i.e., systems in which the frequency of the vibration
sclecls a wavenumber of the inslabilily thal is comparahle lo the size of (he conlainer, Tn
this case inviscid mean flows are much harder to excite (although as we shall see they
are not entirely absent) and the viscous streaming flow provides the dominant interaction
wilh (he waves. We poinl oul thal mode inleracltions are very elfeclive in gencraling such
viscous streaming flows and hence that such flows must be included in any quantitative
attempt to explain experiments on mode interactions in the nearly inviscid Faraday
system. The case of a circular container is typical. If only one (axisymmetric) surface
mode is excited, its evolution decouples from the streaming fow (see Section 2,3.1). In
conlrasl, il lwo counler-rotaling surface modes are involved, The syslem scleels an equal
amplitude superposition of these modes. The resulting oscillation is a standing wave and
50 1s completely determined up to an overall phase; however, it is this phase that is coupled
to the streaming flow and that can exhibit nontrivial dynamics (see Section 4.2). This
special property of the system is a consequence of rotational invariance of the system,
and is in dirccl contrast Lo (counler-rolaling) waves exciled dircelly by laieral vibralion
where the wave amplitudes couple to the streaming flow as well [4], [6]. 1n the present
paper we show that even with vertical vibration the full coupling between the streaming
flow and the wave amplitude and phase is restored when (1) the {circular) cross section
of the Faraday container is slightly perturbed so that invariance under rotation is lost, or
{i1) when a sccond pair a counler-rolaling modes is present. In general, (i1i) the presence
of two surface modes suffices for full coupling if the ¢ross section of the container 18 not
circular or if it is circular but the two interacting modes are axisvmmetric (for they then



differ from ong another in somcthing besides the sign of their phase velocily ). These three
cases are considered explicitly below and used to illustrate the general theory presented
in this paper.

Sircaming Nows are of inlerest in other arcas of Muid mechanics as well, and have
been studied theoretically and/or experimentally in connection with flows in blood ves-
scls [107], generalion of mean molions in the car [117, inleraclion of sound waves wilh
obstacles [12] as well as flows around vibrating bodies [13]. In these applications the
interest is in steady flows generated by oscillations; such flows are sometimes called
slcady sircaming, Analogous Mows produced by a viscous boundary layer allached (o a
vibrating free surface are of interest in water wave theory ([14], [15], [16], [17], [18] and
references thereind and play a fundamcenlal role in the instabilily of the occan Lo Tang-
muir circulations [19], |20]. They have also been studied in connection with capillary
waves [21] and in conjunction with thermal effects in order to investigate the usability of
the resulling strcaming Now lor controlling undesirable thermocapillary conveclion [22],
[23], |24] that occurs in materials processing in microgravity [25], [26]. In all these cases
the primary oscillaling Oow was given a priori. On the other hand, steady circulations arc
known to affect the dynamics of surface waves [27], [28], suggesting that the streaming
flow generated by the waves themselves can also atfect their dynamics, The techniques
devcloped in this paper show thal this is indeed the case. Similar coupling arises in
vibrating liquid bridges [6], [29], and may well play a role in the dynamics of acousti-
cally driven drops and bubbles. Tn particular the currenl descriplion of sell-propulsion
of acounstically driven bubbles relies on the excitation of specific mode interactions but
remaing entirely inviscid [30], [31]. [32].

To Tormulale the mathemalical problem, we consider a cylindrical conlainer of gen-
eral cross-section X under vertical vibration. In order to avoid uncertainties associated
wilh the modceling of contact ling dynamics ([337, [34] and references (hercin) and addi-
tional difficulties due to the presence of a strong singularity in the velocity at a moving
contact ling when the contact angle differs from 0 or & [35], [30], we assume that the
conlacl line is pinned Lo the upper edge of the verlical wall of the container, and Lhal
the liquid fills the container such that the unperturbed free surface is exactly horizon-
tal. Faraday experiments on this configuration have been performed in an attempt to
eliminate the lateral meniscus and the associated meniscus waves |31, [37], 138]. We
nondimensionalize lengths using the unperturbed depth Z and time using the gravify-
capillary time Tefh + Tiph*y17'2, where g is (he gravilalional acceleralion, T is the
coetficient of surface tension, and p is the density, all assumed to be constant. We use a
Cartesian coordinate system attached to the vibrating container, with the z = 0 plane at
the unperturbed free surface. ‘The governing equations (continuity and momentum coin-
servation) and boundary conditions (no-slip at solid boundaries, kinematic compatibility
and langenlial and normal siress balance al the free surface) are

V-v=10, I — v X (Vxvr)=-Vp+ Ay (1.1)
forx.y)eX, —-1l<«z=f,
v=0 ilz=—1oril(x,y) e ax, =0 il(x,y)edx, (1.2)

von= (e,  n, (Ve+ Vv ) mlxn=0 az=/ (1.3)



p— VP2 — (0 =8+ SV IV LI+ VDY
=C, (Vv + Vv'yomlorm—A4ue’feos2et, alz=f, (14

together with appropriate initial conditions. Here p (= pressure + |v|*/2 + (1 — Siz —
Ao’z cos 2eot) is a modified (hydrostatic stagnation) pressure, v is the velocity, f is the
vertical defleclion of the (rec surface, r is the oulward unil normal (0 the (ree surlace,
while 7% denotes the boundary of the cross-section X (i.e., the lateral walls) and e is
the upward unil vector, The real paramelers ¢ > 0 and 2o denole the amplilude and
frequency of the forcing. The quantity €, = vi(gh® + Thip)'? (with v = kinematic
viscosity) is a capillary-gravity number and § = TH(T + pgh®) is a gravitv-capillary
balance parameter; these are relaled 1o the usual capillary number C = v/ p/Th and
Bond number B = pgh*/T by C, = C/(1+ B and § = 1/(1 + B). 'The parameter S
is such that O < .8 = 1, with the extreme cases S = 0 and ¥ = 1 corresponding (o the
purely gravitational limit (" = 0) and the purely capillary limit (g = 0), respectively.
In this paper we consider the (nearly inviscid, nearly resonant, weakly nonlinear) limit

C, 1, |er — 2] & 1, w1, (1.5)

where &2 1s an inviscid eigenfrequency of the linearized problem around the flat state.
In contrast to [5] we assume that §2 has (algebraic and geometric) multiplicity N =
1. Silvalions with N = 1 arisc cither duc o the presence of symmclries or al mode
interaction points that take place at particular values of g and e, 'This ¥ -fold degeneracy
of the linear inviscid problem can be lifted by forced symmetry breaking or by moving i
and « slightly from the mode interaction point. The inclusion of viscosity also shifts the
location of the mode interaction point. In either case these perturbations (generically)
splil the cigenfrequency &2 inlo N distinel Irequencies, £27, ..., 8y, assumed Lo be
such that

1% — Q| < | fork=1....,AN. (1.6)

As alrcady mentioned, the streaming Now is expecled (o play a significanl role in jusl
these circumstances. 'This flow enters into the problem because the linearized prohlem
admits Avdrodvaamic (or viscous) modes [39], [40]. [5], in addition to the usual siface
maodes. In the nearly inviscid limit the former decay more slowly than the surface modes,
and 30 are easily excited, forming the streaming flow, For small C,, these modes take
the Torm (v, p, ) = el C, P, CyF)y+ o, with the (real) cigenvalue . < 0
given by

Vv.-U=0, AW=-VP+AU, if(x.vieXZ, —-1l=z<=0 (17
U=0 ifz=-lorif(x.y)edZ, (1.8)
e. - U=0, fe. (VU +VU Yixe, =0 alz=0. (1.9)

The associaled (scaled) Iree surface delleclion Fois caleulaled a posicriori from the
normal stress balance and volume conservation:

SAF — (1 —=S)F = (=P 4+ [VU+ VU )-e]-e).y inZT, (1.10)

F=0 adY, and]FaLx‘dy:O. (111
T



Thus, in contrast (0 (he surface modes, the hydrodynamic modes are nonoscillalory
and exhibit G (C,) free surface deflection. Moreover these modes decay on an ()(Cg‘ Iy
timescale, in contrast to the O(C Y U2y timescale of the surface modes, and hence cannot
be ignored a priori in a weakly nonlingar theory,

The remainder of the paper is organized as follows. In Section 2 we derive and dis-
cuss a syslem of coupled amplitude-streaming flow (CASF) cqualions thal describe the
slow evolution of the complex amplitudes of competing surtace waves and the associated
streaming flow. The streaming flow itselfis incompressible and satisties a Navier-Stokes—
like equalion in three dimensions. As a conscquence only a limiled descripltion of the
resulting system can be obtained analytically, and any study of the attractors must rely on
coslly numcrical compulalions, Thus some clTorl has been made (o simplily the CASF
equations further, in order to obtain model problems which nonetheless capture the role
played by the streaming flow. These models are constructed using Galerkin truncation,
and as in arclated problem [417 appear Lo perform well, Tn Scclions 3 through 5 we Tocus
on three particular cases, namely an interaction between two nearly degenerate modes
in reclangular conlainers with almost square cross-seclion, as in the well-known experi-
ments by Simonelli and Gollub [42] and leng and Sethna [43], an analogous interaction
in almost circular containers (to our knowledge, a situation not studied experimentally),
and a mode-mode interaction in circular containers, as in the scminal experiment by
Ciliberto and Gollub [44], [45]. Finally, in Section 6 we discuss in general terms the role
ol sireaming Mows in the nearly inviscid Faraday system,

2. Derivation of the Coupled Amplitude-Streaming Flow Equations

In this scclion we derive cqualions for the (complex) ampliludes Ag of modes with
frequencies &£2; created from the breakup of a &-fold degenerate inviscid mode by a
small change in the system geometry or in the parameter values used. In the limit (1.5)-
(1.6) these modes arc nearly inviscid everywhere exeepl in viscous boundary layvers, of
()(Cciﬂ) thickness, attached to the walls of the container and the free surface. Since all
these modes oscillale with frequencics near e, we wrile the velocily v and the modilicd
pressure p in the bulk (ie. outside of these boundary layers), and the free surface
deflection f in the form

R N

v, p, fy = e ZAk(Vk- Fr, Fi) + (v35, Pas. fas)
=1

N
+ Z AkAn’Am (Vki'ms Prim, I'}cﬂm) + [ +cCc
k=1
N B
+ > Ay, Py, Fu) + @, P, f°) + NRT, (2.1)
k=1

where MVRT stands for nonresonant ferms (depending on the short time variable ¢ ~ 1 as
exp{ikwi ), with the integer £ %= £1, 0); the terms written out explicitly either resonate
wilh the surface waves or wilh the sireaming Qow. The ampliludes Ay, ..., Ay, the



streaming flow velocily w* wilh (he associaled modified pressure p, and free surface
deflection ° are all small and depend weakly on time, namely,
|dAd| <« |Ar & |, Tork=1,.... N, |tk | < |Bf| <1,
|ap*ioe| < |p*| << 1, |afslot] < | f°] < L

(2.2)

In addition (2.1} also depends on powers of the small parameters C,, o, @ — £2, &2 — £2,
... 8y — £2; the corresponding Lerms have nol been wrillen oul explicilly becausc
they will not be needed in what follows. All coefficients in (2.1) are (1) except tor
the quantities vz, pas. and fa,, which depend bilinearly on (Aj, ..., Ay) and #° (see
bclow), The main objeclive of this scelion is Lo derive and discuss the following cqualions
(hereafter the CASI’ equations) that describe the flow in the bulk, outside of the thin
viscous houndary layers al the conlaingr walls and the uid surlace:

N N
AL = —Tde +ile — 1AL+ Y Puml — DAn+i Y it ArAn Ay
fmo 1 foron 1
N 0 N _
—iSEZ[ fu-*-gk,dx,4j+iu > awA, fork=1,.... N (23
7 Y1 YD 71
N B
du’ 1ot — |:us + Y AgA (g —gk,)} x (V x u5) = -V j' + C,Au’,
ki=1
V.ou =0, (2.4)
for (x,v) € Z, —1 < z = 0, subject to the boundary conditions
N B
u = Z AcAipl, ilz = —loril(x,y) € d¥, (2.5)
k=1
N ~
woe =0,  d@fiz= ) AiAipy alz=0, (2.6)
k1

where #* i the horizontal projection of &, and the modilicd pressure 5 and Lhe various
coefficients and vectors are determined below.
The tollowing remarks are in order,

{i) The Trequency splilling arises as a resull of an Q&) ~ 4 change in the shape of
the container. T'his change has no ettect at leading order on the damping @ or on
any of the remaining terms in (2.3),
(i) The veclors oy, salisly ), = ;. so (hat (he sums in (2.5) and (2.6) arc real.
Tikewisc g = gu and fryy = By (scebelow),
(iii) The following estimates hold for k, {,m,n=1,..., N

~ 1,
(2.7)

| 2
|ee] <& 1, [Beine| ™ |ctimn] = loter] ~ |guel ~ o] ~ 1| ~ |

and allow us to neglect higher order terms hased on the tact

|| ~ AL~ AN L (2.8)



(iv) 10 €, < |A¢]?, the higher order viscous lerm relained in (2.4) plays no role in the
bulk but remains responsible for the presence of secondary viscous boundary layers
associated with the streaming flow.

2.1. The Amplitude Equations

The amplitude cqualions (2.3) can be derived (excepl for the singularily in the solution
in the bulk near the contact line that must be handled with care |29]) by substituting
expansion (2.1) into (1.1) and into the boundary conditions that result from mafching
conditions helween the viscous boundary layers and the bulk, and imposing solvability
conditions (i.e., eliminating secular terms on the fast timescale £ ~ 1) at each order.
The only unfamiliar lerm in the amplilude cqualions is that involving the sircaming Now
velocity, this term is derived below.

A. The leading order terms in (2.1) are linear combinations of the suifuce modes
(V. Pe, Fiy, Tor k = |, ..., N, which arc nonirivial solulions ol the lincarized,
inviscid prohlem

V-V, =0, 2V, = -VF inIx]—10 2.9

e.- Vi, =0 ifz=-1, my- Ve =0, Fro=0 if(x.y)edZ, 2.10)

€:~Vk:iQFA—,, P—(1-5F+SAF, =0 on z=0, (211)

/ Frdxdy =0, (2.12)
T

where ny is the outward unit normal to the lateral wall, For convenience these
maodes are sclecled such (hal

i
/ f Vi - Vide + f [(1 —S5)F.F + 3V F,- VE]dody = 8. {2.13)
-1 Jz b

fork,I1=1,..., N, where &, is the Kronecker delta and the dot denotes the inner
produci

vio¥y =t + i+ wqwn IF v = e, + vpep +wpe, fork = land 2.

{2.14)
Here the overbar denoles the complex conjugale. Noele thal cqualions (2.9+2,12)
are equivariant under the action

(V.P,Fy— (—V, P, F). (2.15)

B. The linear terms in the amplitude equations (2.3) account for damping, detun-
ing, deparlure (rom degeneracy and lorcing, and arc oblained rom the solvahilily
conditions at orders C1%[ Ay |, Cyl Agl, o — S2| Az, |2 — €201 Ag], and p| Ay,

B-1. Viscous effects resull in both detuning and damping, yiclding

dy =y, 1+ DO+ C + O, (2.16)



B-Z,

where 3/ and y;’ are real and siricly positive. The O(C}™) term comes rom
viscous dissipation and viscous detuning in the Stokes boundary layers attached to
the boundary of the container while the () term results from dissipation in the
bulk and a firsL. corrcelion Lo dissipation in the boundary laycrs; nele thal there is no
viscous detuning at the latter order and that viscous dissipation in the boundary layer
allached Lo the free surface isignored (sinceilprovides a O (CF2 Ag |3 contribulion),
The second term may be neglected for sufficiently small Cg. Hnnwever, as first shown
by [46] in the liquid bridge context and confirmed by [47] for brimful cylinders
ol circular cross scclion, (he wo-lerm approximalion gives quanlilalively much
better results [47], [48], [49] tor typical values of €, (e.g,, water in centimeter-
deep containers) because of the relalively large value of the ratio y,2/y Tor a fixed
contact line |47]; this is expected to remain so tor brimful containers of general
cross section. Note that 2/, is necessarily large for high order modes for which

w0, vi ~ kI* as 2 — oo, (2.17)

where k| is the wavenumber of the mode and salislics the inviscid dispersion
relation

Q7 ~ (1 — $H|k| + S|k (2.18)
This is because for high frequencies the surface modes behave locally like (linear
comhinalions of) plang waves, wilh well-defined waveveclors, excepl of course
in the vicinity of the contact line. The estimates (2.17) follow from standard esti-
males of viscous dissipalion laking inlo accounl thal as £2 becomes large the in-
viscid eigentunctions vanish exponentially with depth with a characteristic length
scale k| L.
The lerm accounling (or the deparlure from the N-Told degencracy depends lincarly
on 2 — §2;, where 2 and £2,, .. ., 82y are the unperturbed and perturbed (inviscid)
cigenlrequencies, respectively, Nole thal these are perlurbalions ofa €1 1) quanlily
(namely £2), while the corresponding effects in the remaining terms in the amplitude
equations are neglected because they involve perturbations of terms that are already
small. Generically, the perturbation splils the M-dimensional cigenspace in the
degenerate problem into N surviving eigenspaces that need not coincide, even
in first approximaltion, with those spanned by the & cigenvectors of (2.9)-(2.12)
selected above although these eigenvectors can always be selected so that this is in
fact so (in this case, 1Y Bem (82 — £23 Ay, would simplify to 182, — 2) Ay in (2.3)).
Since the lerm responsible for the frequency splilling is conservalive and would be
of the form i(§2; — £2)A; for suitably chosen eigenvectors, it follows that

N
B = B and Y B = for kLm=1...N, (219
=1

where we have laken inlo accounl thal, according (o (2.1) and (2.13), (he energy
of the system is

0
L f f\VI'ldx+fl(l—S)|f\'3+S|Vf|3mdy
—-1J% N

N N

Sad o[> 1adt]. (2.20)

[ ko



£-3. The cocflicienls of the paramelric forcing lerms arc

o = 2 f F.F dxay. (2.213
P>

C. At second order in the complex amplitudes, equation (2.1) containg no resonant

C-1

terms of the Torm exp(Ziex ). Al this order we oblain only nonresonant lgrms
and the (slowly varying) resonant terms explicitly displayed in (2.1), namely
3 /i;cA, (e Py Fo)+(uf. 0, 0): by definition, both | pf| and | ¥ are 0 (Y | Ag %)
The funclions Py, Fir in {2.1) can be calculaled rom the striclly inviscid problem
but will not be needed below. The expressions > ApAyy and u° are of the same
order (scc (2.8)), and both contribule 1o the Exlerian mean flow velocity al leading
order. The associated mean Hows will he called irviscid mean flow and stream-
ing {or viscous mean) flow, respectively, The distinction between the two is made
precise by requiring (hal

-y =0 if(x.y)edZL, wie. =0 ifeitherz=—lorz=0, {2.22)

where 1y is the oulward unil normal (o %, Thus il is the irviscid mean Qow Lhal
accounts for the normal component of the mean flow velocity at the unperturbed
lree surface. Nole thal the inviscid mcan Now is slaved Lo the surface waves.

The velacity vectors Ay appearing in the expression for the inviscid mean flow
veloeity cun be written in the form

hy =1V Hy, 2.23%)

with the velocity potential Hy, given by

AHy =0 if(x,v)eXand — 1« z <0, (2.24)
Hyy =0 ifeitherz = —1or(x, v) € gk, (2.25)
DHylaz = iV (Fy Vi + Fﬁ:’k) ilz =10, (2.26)

where f/;\.,,; and ¥ are the horizontal projections of V., and V., The boundary
condition {2.26) thal (orces this Oow resulls Trom the shorl-lime average of the
left-hand side of equation (1.3a); note that iy = I_n,;.. Moreover, according to
(2.1, (2.9, (2.22), (2.23), and (2.26), the normal componenl of the mean Oow
velocity is

N
i7" Y AV VR - BV AL, (2.27)
ki=1
and henee vanishes identically if Fr and Py(z = 0} arc proportional Tor all £, wilh
the proportionality constant independent of &, "This situation in turn holds it either
(a) capillary effects are absent or (b) the contact line is completely free (namely, if
the dynamic contact angle is constant). In some cases this is true even for a fixed
contact line (as in this paper), e.g., if {¢) the surface wave is quasi-standing (see
Scction 2.3.1) or il (d) the cross seclion is circular and only (wo counler-rolating
maodes are present.



C-2. The streaming flow velocity u® cannol be calculaled (rom siriclly inviscid (heory,

for which & = 0. The mean flow described by Davey-Stewartson—like models
[50] is strictly inviscid and has the same origin as the inviscid mean flow described
above: Tl accounts for mean Now normal (o the unperlurbed free surface. Tn order
to determine #° (see Sections 2.2-2.3 below), we need to go to O(Y_ |A[*) in
the momentum equation and include viscous clfeets thal allow vorticily crealion
in the oscillatory boundary layers. 'The resulting vorticity may then ditfuse or be
advected into the bulk.

. Al third order in the complex amplitudes, we oblain lwo kinds ol resonani lerms.
. The terms in (2.1) that are explicitly cubic in the complex amplitudes are required

Tor the calculalion ol the cocllicien!s ¢y, . This calculalion is omilled since despile
the presence of viscous boundary layers, the resulting coetficients coincide with
those obtained in the strictly inviscid limit. In this limit, the original problem (1.1)-
(1.4)isinvarianl under the aclionf — —{,v — —v, and conscrvalive, and we musl
therefore have

Dt = Ui Cima + Ctlmn = Smntd + Wunki s Digpen = Uim . (2.28)

Addilional relalions must hold il (he sysicm (2.3) is Lo be Harnillenian [517, [521.
Lixplicitcalculations of the coefficients in this limit for square | 53], | 54]. rectangular
[54]. and circular [55] domains with a free contact line confirm these relations (see
also [56]).

I'or use below, we note that the velocity vectors associated with the corresponding
lcrms in (2.1) are polential, namely,

VX Vim=0 l(ork Im=1 ..., N, (2.29)

and that
| hiinn] ™~ S2|k|3‘F|3 as {2 — 00, (2.3

where k| and | £7| denote the order of magnitude of the wavevector and the free
surface deflection of the surface modes, respectively, Both are of order unity when
§ ~ 1. The estimate (2.30) follows from well-known explicit expressions for
laterally unbounded waves [536]. Alternatively, it can be obtained by noting that it
the period and wavelenglh of the waves arc used Tor nondimensionalizalion (insicad
of the gravity-capillary time and #), these cubic coetficients are of order unity. 1'or
this new nondimensionalization, 7 is replaced by #/§2 and Ax by AL/ Flk|3.

D-2. The resonant lerms denoled by (vs,, pag, [ ;,Y)ci”“ + ¢.c.in (2. 1) generale the
terms in the amplitude equations (2.3) that include the coupling to the streaming
fow. These Lerms are dislinguished rom the remaining third-order resonanl lerms
by the requirement that they depend bilinearly on both the streaming flow velocity
and the complex amplitudes. Since these terms are new, we provide a detailed
derivalion here. To simplily nolalion we wrile the relevant parl of equalion (2.3)
in the form

AL = H. (2.31)



Thus we only need 1o show (hal

N ]
Hi = —i1y f f w' g dxA;. (2.32)
T 145

tor appropriate vector functions gy, which are calculated below. 1o this end, we
substitute equations (2.1) and (2.31) into (1.1)—(1.4) and retain terms that are either
hilingcar in (&%, Az) or lincar in Hz. We oblain

N N
Vv =0, iSvsy + Vo, = Z AV, % (W x 6’y — Z Vi H;
i=1 =1

il(x,vyeXand — 1 <z <0, (2.33)
e, vy, =0 ilz=-—1, ooy, =0 i (x, ¥y) € DY,

S =0 A0 y) € dx, (2.34)

N N
€, vy — i = V- [(Z A;Fg) u:| +) IH ifr=0. (239
=1 =1

N
P = =S far + SAfy, =0 (Z Am) ifz =0, (2.36)
[

where #@° and V are again the horizontal projections of #° and V. In fact, equa-
tion {2.33) applics only in the bulk, oulside (sccondary) viscous boundary layers.
Although these boundary layers should in principle be taken into account in the
derivalion of the boundary condilions, a straightforward calculalion shows (hal the
boundary lavers do not contribute new terms to the boundary conditions at this
order. Also, in order to obtain (2.35) we have taken into account that, according to
(2.4a), Mu' e )iz = ~V.& alz=0.The coupling (erm H is now oblained by
applving a selvability condition to equations (2.33)~(2.36). Using the inner product
(2.14), we mulliply ¥y by (2.33b) and (2.9b) by w4, add, and inlcgrale the resulling
equation over (x, ¥) € X, —1 = z <« (. Repeated integration by parts using (2.13)
together with the remaining equations and boundary conditions in (2,9)—(2.11) and
(2.33)2.36) yiclds

N i}
H, = ;:Ag |:f1 LVk AV % AV x u’ )] dx
+/ li2F 0" - V) — BV - (Fit’))o—0 fi\iff)’}
T

N [§]
= —iQ;A; ]_1 fzus - g dx, (2.37)

where g is given by

g =10 'V x (Vi x V). gu =g {2.38)



The second equalily in (2.37) Tollows on inlcgrating by parls the surface (erm {and
taking into account that, according to (2.10), £5 = 0 at the contact line) and using
(2.11a) and the expression

f f Vi [V »x(V xa’)]dx
—1J%

[}
:f f(qus)-(‘i_/kag)dx
1y

()]
_ f f[us SV X (W X V)= V- (- Vi Vs — (0 - VOV de
—1JE
1]
= —i2 fus * Bkl dx
1 4%

+ f (" - Vide, - Vi) — - Vidle, - Vid]—o dxay,
by

oblained from standard vector identitics and inlegration by parts. Fqualion (2.37)
now yields the required expression (2.32) for Hy.

2.2. The Streaming Flow Equations and Boundary Conditions

We now consider the slowly varving velocity associated with the streaming flow, #°, and
show that it evolves according to equations (2.4)—(2.6).

2.2.1. The Continuity and Momentum Equations. Fquations similar (0 (2.4) arc well
known [19], [20], [17], but for completeness they are obtained here by substitution
of expansion (2.1) into the original conlinuily and momenlum cquations (1.1}, Since
(1.1a) is linear, the oscillatory flow introduces no new terms and (2.4a) follows. The
momentum equation does, however, involve additional terms resulting from products (in
the quadralic adveclion (erm) of oscillalory lerms (hal arc of first and (hird order in the
complex amplitudes; these are of the same order as the usnal O¢|a® ) advection terms
{sce (2.8). In addilion, duc Lo the very nalure of the sircaming (ow, we musl also relain
viscous terms, however small these may be. l'rom equations (2.23) and (2.29) it tollows
that

N N
autfar — (Z Ap Ak, +u5) x V xu' — [(Z A;V;) X V X 15 + c.c}

k.i=1 =1

N
= -VIp"+ Y (ALAr+ AADHul + CoAu + o (2.39)
£i=1
where va;, By, and Hy; are defined in (2.1) and (2.23), and given by (2.33)-(2.30) and
{2.24)2.26). FEqualion (2.33h) yiclds
N
V ok = —if27 Y AV x (Ve x Vx '), (2.40)

[



and wc only need Lo use the veclor idenlily
x Vx@xVewitce =i[Vx{uxit)]=VxwH V[V xw) (uxu)], (2.41)

which holds for any real vector w and any complex vector # such that V - a4 = 0 and
V x u = 0 6], to obtain equation (2.4), with g, as in (2.38) and f* given by

N N
ﬁl" = ‘f)“' -+ Z (ARAI + ‘i;(A;)ij + 18271 Z AIL,*{A][(V X ') (‘_/,k x V. (2.42)
£1 1 PR

2.2.2. The Boundary Conditions. 'The form of the houndary conditions (2.5)-(2.6)
readily follows from the following properties:

a. The forcing lerms depend bilinearlvon (A, ..., Ax)and (@1, AN), with Q1)
coefficients depending on position only.

b. The Stokes boundary layer near the solid walls provides a forcing tangential velocity,

and the boundary laver near the free surfuce provides a forcing shear siress. The

component of @® perpendicular to the boundary vanishes in both cases hy the definition

(2.22) of the streaming flow,

The boundary conditions must be invariani under any Symmetry that applies the

original problem.

d. The forcing shear siress al the free surface vanishes al leading order if the associated
Surface wave is guasi-standing (see Section 2.3.1 below), that is. if the phase of
3 AV, is independent of position,

L]

Properly (a)is adirect consequence of the slowly varying nature of the streaming Qow,
and property (¢) is obvious. Properties (b) and (d) are well known in two dimensions
[71, [57]. [8], [38] and have been checked [59] for general, not necessarily plane, solid
and (ree boundarics in (hree dimensions, In (acl, the formulae in [59] become simple
for plane or cylindrical rigid boundaries (see Appendix) and for plane unperturbed tree
surfaces such as thosc in this paper, and allow a quick calculalion of the veclor funclions
py; and 3, appearing in equations (2.5}-(2.6):

wh = —282) Q2 +30(V - VoV + (Ve - ViV, + el — hy

ilgithcrz = —1or (x, ¥) € 34X, (243)
i = VIV (RVi)+2VE - VOV 1 2V - VOVE +ce — @haliz) e,
irz =0. (2.44)

Hcere, as above, f/k and W arc (he tangential projections of Vi, and ¥ on ¢ither the solid
boundary or the unperturbed free surface. Note that the inviscid oscillatory velocity ¥y
is tangential to the solid boundary, and thus ¥V, = Vi in (2.43).

2.3. Seme General Remarks on the CASF Equations

Betore proceeding to particular cases, several remarks about the CASF equations are in
order,



2.3.1. Single-Mode, Standing, and Quasi-Standing Surface Waves. Tn (he generic
case N = 1 (already considered in a related context in [29]) the eigenfrequency £2
is algebraically simple and the only eigenfunction {V, Py, F1) is necessarily invariant
under (2,15); thus v, and V; arc collincar and (scc {2.38)) g1 = 0. Conscquenlly the
integral termin the (only) amplitude equation (2.3) vanishes identically and the evolution
of Ay decouples from (he streaming flow, as anlicipaled in Scclion 1. This conclusion
does not require any additional conditions on the streaming flow.

In the context of this paper, we shall say that a wave is staading if the free surfuce
cxhibils slalionary nodal lincs, This condition holds for all single-nodc waves, bul is
quite stringent in the multimode case, Specifically, if we rewrite (2.1) in the form

b p, f) = e (V. P, Iy + e+, (2.45)

where (V, P, F) = Y Ay (V. Pp. Fy), this requirement holds if and only it (V, P. F)
can be wrillen as (V, P, FY = B(t)(Va(x), Ps(x), Folx)), with (V,y, Py, Fo) invarian(
under (2.15). For instance, in square containers a wave is standing only if the integral
lerm appearing in the amplitude equalions (3.13) vanishes, a requirement generically
satisfied only if the streaming flow is reflection-symmetric.

In general, standing waves are independent of the streaming flow. To see this we simply
lake (V]., P, F]) = {Vy, Py, Fy)in cqual‘ion (21) wilth A, 75 0, A= .. = Ay = 1),
The streaming flow contribution to the A amplitude equation (2.3) then vanishes because
g1, = 0, whilg the remaining cquations are salisficd idenlically, This docs nol mean,
however, that the stability properties of such standing waves are independent of the
streaming flow, as elaborated further below. In cases in which the nodal lines move but
only on the slow limescale T we shall say thal the wave is guasi-standing. For such waves
the phase of (V, P, I7) is still independent of position (but will depend on t). An example
ol such awaveis provided by an axisymmelric oscillalion in which the radial nodes move
{slowly) in and out. This example also shows that not all reflection-symmetric waves are
standing.

2.3.2. Mass Transport Velocity, Stokes Drift, and Related Issues. The above analysis
of the mean flow has been made for convenience in terms of the Eulerian velocity, This
velocily is given by & 4+ &, where Lhe mean Tows associaled with &' and

N
HE = Z /i;;/lghk; (246)
ki=1

are the viscous and inviscid mean flows, respectively: here, hy; is given by (2.23)<2.26).
In conlrasl, the mass transporl, or Lagrangian, vclocily [8], [58],

" = '+ u™ (2.47)
is associaled with (he lime-averaged (on the limescale { ~ 1) Irajeclorics of malcrial
elements; the difference between them (the Stokes dritt) is

N

u't = — Z ArAigy, (2.48)
[



where g is again given by (2.38); (his expression for 2% is readily oblained (rom the
standard one |58]. Note that the Stokes drift, like the inviscid mean flow, is slaved to
the surface waves, in contrast to the streaming flow (see below), and that the normal
compongnl of the Eulerian mean Oow velocily docs nol lead Lo any mass (ransporl 4CToss
the wnperturbed free surface, ie, ™ - e, = 0 at z = 0. This result follows from
cqualions {2.22) and (2.46)(2 .48) since cqualions (2.23)-(2.26), (2.38), and sltandard
formulae from vector analysis imply that iy - e, = gu - e, atz = 0.

The mass transport velocity is the relevant one for comparison with flow visualiza-
Lions {wilh an ¢xposurc litne long compared Lo the Torcing period) and, more gencrally,
for transport (and mixing) of passive scalars [60], [61]; unfortunately, both the stream-
ing Now and (he inviscid mean Oows arc oflen ignored, ¢.g. [61], presumahly under
the {mistaken) assumption that they are small compared to the Stokes drift. The mass
transport velocity is also the appropriate one for calculating some global properties
of thg Mow, such as the wolal momenlum or angular momentum of the Ouid, averaged
over the short timescale ¢ ~ 1. I'or an axisymmetric container, the angular momentum
aboul the z-axis is M + M, where M is (he angular monienfwmn of the streaming flow
a’ and

N
M= Z AL A My (2.49)
ki=1

is the angular mormenlum of the inviscid mean Qow and the Stokes drifl. Here My is the
angular momentum of bz — gz, [n inviscid theories the conservation of angular momen-
lum plays an imporlant rele, bul this is no longer so once viscosily {and hence sircaming
flow) is included. Indeed, in such systems there is no reason why an initial condition
with zero angular momentum cannoet evolve into o final state that spins clockwise or
counlerclockwise [62]. Tn conlrast neither the mean (inviscid 4+ streaming) Oow nor the
Stokes drift affects the energy I of the system at leading order because the contribution
ofbothis of order 3 | Ag|*, while E is quadralic in (he complex amplitudes (sce (2.20)).
‘This is consistent with the fact that the coupling to the streaming flow in the amplitude
equations (2.3) is conservative. llowever, neither flow can be ignored at higher order
in the energy cqualion, even though the dissipalion in the streaming Now is in general
small |63].

2.3.3. Neglected Higher Order Terms. The neglecled higher order lerms in (the am-
plitude equations (2.3) are of order

A, (| A

1Al L CPUAD + AR = A,

(O + 1AL + | Aw'| + Al

and account, respectively, for viscous digsipation in the boundary layer attached to the
free surface, higher order nonlinearity, the effect of viscosity on the nonlinearity, coupling
tothe streaming flow and forcing, and the effects of departure from the N -fold eigenvalue
degeneracy (as measured by & ~ |82 — £ | < 1) on the lincar damping, nonlincarily,



coupling (o the sircaming Dow and forcing. Some of these lerms are somelimes relained
in the literature [37], [64], |65], [66]. Lquation (2.4a) is exact (recall that «° includes the
total streaming flow velocity, not just the first approximation) while the neglected terms
in (2.4b) and (2.5)+2.6) arc, respeclively, of order

€ o (NI 41 'l + (P 1AL + )
and (€7 4+ Y 1Ae® + ) 1Al (2.50)

and originate from higher order effects in the advection terms and in the oscillatory
boundary laycrs. Finally, when the degencracy is lifled by Torced symmelry breaking
{e.g., by perturbing the cross section X of the container) the resulting change in the
domain also has an effect on the streaming flow. Ilowever, these corrections are of
higher order and may also be ignored.

2.3.4. Surface Wave-Streaming Ilow Coupling. 'The momentum equation (2.4b) is
the usual Navier-Stokes equation with a volumetric force

w +uty x (W x u®y, (2.51)

called the vartex force. This force does not drive any flow by itself (it vanishes if #° = 0)
bul can cnhance or inhibil the clfcel of the remaining lorcing lerms; in facl this lerm
can destabilize shear flows produced hy water waves. The vortex torce depends on the
streaming flow vorticity, ¥ = V x uf, which evolves according to

AU 4 [+ u' ) VI — (V' +u' +a’?) = C,AQ,  (2.52)

asin|17], p. 119. The streaming flow is directly forced by the boundary conditions (2.5)-
{2.6). T1, as implicilly assumed, €2 ~ [, then [he funclions ¢, appearing in (2.5)-2.6)
are also of order unity and the streaming flow velocity &® satisties (2.8), perhaps after an
initial transient (see Section 2.3.5 below), Since, in addition, |gg | and || are also of
order unily, the streaming (ow Lerms in (2.3) arc ol the same order as the cubic lerms,
and it is inconsistent to include the latter and neglect the streaming flow. 'This is true
even more so when £2 is large since then the wavenumber k| is also large (according
to the inviscid dispersion relation (2.18)) and the inviscid eigenfunctions then vanish
exponentially fast outside of a layer of thickness |k| ! near the free surface (the surface
wave layer), According 1o cqualions (2,13 and (2.18), in (his layer

[V ~ S2|F| ~ k| (2.53)

It follows from equations (2.30), (2.38), (2.43), and (2.44) that

~ 27Nk, (2.54)

1 2
[tptnen| ~ |K|lgre] ~ ‘kH(PM‘ ~ |(10M

In this limit, the forcing term in (2.5) ¢can be neglected in comparison to that in (2.6). We
musl consider Iwo cascs.



(a) T the strcaming Now velocily vanishes oulside the surface wave layer, then [u®| ~
1k|=! 3 ot || Ax|? in this layer and, according to (2.54), we have

0
1D i A An AL ~ 2] ) f f a' - guds Al ~ 2R AN 2.55)
—1JE

Note that this case requires that the streaming flow be confined to the surface wave
layer, In some geomelries (¢.o., in Scelion 4 below i1 the radial wavenumber remaing
hounded when &2 =3 1) the spatial derivative of the right-hand side of (2.6b) remains
bounded. In this case, a standard order of magnitude estimate shows that viscous
diffusion is large compared Lo adveclion and the streaming Now can only remain
confined if its time average vanishes, tor ntherwise the streaming flow vorticity must
arow lincarly al the edge of the surface wave layer and conlinemenl is nol possible,
See Section 4.5 below.

{b) If, instead, the streaming flow is not confined to the surface wave layer, then |¢°| ~
3 el Ael” everywhere and

|ZaklmnfilAmAn ~ £ l‘k‘SZ|Ak
~ 2 l\kﬁka

In this case, the streaming flow terms in (2.3) dominate the cubic terms, and the streaming
Now provides the nonlincarily thal salurales the instabilily.

We conclude that the effect of the streaming flow on the dynamics of the surface waves
cannot in general be neglected in comparison to the usual cubic nonlinear terms and that,
roughly specaking, the imporlance of this effect is larger Tor higher order modes. For
instance, streaming flow effects should be more important in [42] than in [43] because
the former studies the interaction of (2. 3) and (3. 2) modes in an almost square container
while the latter focuses on the modes (0, 1) and {1, 0).

0
3<<S2‘Zf fus-gudx A
14y

3

(2.56)

2.3.5. The Role of Transients. In addition to the basic fast timescaler ~ 1, the Faraday
syslem exhibils several slower limescales. The amplilude cquations (2.3) exhibil a surface
wave dissipation fimescale, given by (see (2.16))

[l =de] P =10 C7+ Gl (2.57)

and a shorter timescale associated with the foreing if |z¢] is large compared o |dy|. When
[cde| ~ |pe|. only one timescale is present, and

ty~ Al (2.58)
Similarly, the streaming flow momentum equation (2.4) exhibits the viscous fimescale
1~ =0, (2.59)

which is much longer than the timescale (2.57) if either C; — O for 4 fixed mode or
(see (217016 € — oc Tor fixed C, (« 1), However, in praclice, as explained afler


file:///dt/-1

cquation {2.16), bolh limescales can be comparable Tor low order modes provided C, is
not too small and the contact line is pinned, as assumed here. 'This viscous timescale is
the relevant one for the diffusion of streaming flow momentum and vorticity (see (2.4b)
and (2.52)) (rom the boundarics into the bulk, Tn addition, the streaming Now manifesls
the timescale (2.57) of the surface waves, which according to {(2.8) and (2.58), is also
the convective timescale of the sirecaming Oow. Bul the ullimale, Tong (ime hehavior of
the system is approached only on the viscous timescale &,. In dimensional terms this
timescale is given by °/v, and so varies from a few minutes to a few hours for water in
cenlimeler-deep conlainers [427, [431, [45]. Such a limescale can excrl an influcnce over
the duration of a typical experiment [42], [45].

We now examing the implicalion of the above comments for the dynamics of surface
waves in the generic case when the timescales (2.57) and (2.59) are well separated,
ie., ty < 1, For simplicity, we assume that these are the only relevant timescales. We
distinguish two cascs, depending on initial conditions;

A TV xa’ =0att = 0, then according to (2.44) and (2.22) we must also have u’® =
at ¢ = (), and thus #° remains small on the timescale £; (see (2.4, until such time as
the momentum and vorticity diffuse from the boundary layer into the bulk., During
this (ransienl. we have \f f b gdx] < |A %, and thus the system approaches an
attractor of the amplitude equations usually considered in the literature, namely those
with the streaming flow omitted. Ilowever, after this transient, the streaming flow
beging to manifest itselt and the solution evolves towards the true attractor of the full
CASF equations, Transients of this type may have been detected in laterally vibrated
[67, Fig. 8] and Faraday [42, §7.1] syslecms,

B, Ifthe streaming flow vorticity is nonzero to begin with, the streaming flow atfects the
dynamics of the surface waves from the very beginning. During the initial transient
of duralion /; viscous diffusion in the momenlum cqualien (2.4b) can he ignored;
the resulting simplified CASF equations can exhibit attractors that need not be close
Lo the truc allractors of the system; the laller will be reached only on the viscous
timescale t,.. Iransients of this type might be responsible for the striking behavior
reported in [42, Fig. 16].

We conclude that the behavior of the 1'araday system during the long initial transient
should depend strongly on initial condilions: I the initial streaming velocily is nol
controlled, the system can appear to be “structurally unstable™, as reported in |42]. If the
viscous timescale is longer than the duration of the experiment and the initial streaming
vclocily is approprialcly small, the influence of the streaming (ow will nol be apparenl.
These conclusions could explain why the results of I'eng and Sethna |43] largely agreed
with the predictions of a weakly nonlinear theory without streaming flow, while those
of Simonelli and Gollub |42] did not. In the former case the dimensions of the container
were much larger and the kinematic viscosity somewhat smaller; the viscous timescale
was therefore much longer (i.c., i) = A = (25.4 cm)?/(0.01 ¢cm”s™ ") 2 18 hours in
[43], and ¢, == (2.5 ey 20,036 em?s ™) ~ 3min in |42]). Lo obtain these estimates
we used [08]. [69] for the physical parameters not given in [42], [43] even though
'eng and Sethna [43] state only that their container is “similar” to that used by [69].
Despite this uncertainty it is clear that the viscous timescale in [43] is much longer than
thal in [42].



3. Mode-Mode Interaction in Almost Square Containers

Let us assume now that the cross section of the container is a rectangle that is close to
the squarc

x| <« L2, |¥| < L{2. {3.1}

We supposc thal i€2 is a double cigenvaluce of he inviscid problem (292,12} in X, i.c,,
N = 2 in the terminology of Sections 1 and 2. 'This assumption implies that the surface
wave mode cxciled by the paramclric forcing breaks (he Dy symmelry of the syslem,
this mode and the corresponding one obtained by reflection in a diagonal are excited
simultaneously and hence interact strongly in the nonlingar regime., In the following we
refer Lo the nonlinear stales that resemble these cigentmaodes as pure modes. Tn addilion 1o
the pure modes, the system admits nonlinear states in the form of mixed modes, consisting
ol an cqual amplilude “supcrposilion™ of the pure modcs., Both the pure maodes and the
mixed modes are excited at the same value of o and are standing waves; their relative
stability depends on the nonlinear terms in the corresponding amplitude equations. This
scl-up was investigaled both experimentally [427, [437 and theoretically [431, [53], [54],
[70], [71], |72]. However, a number of discrepancies between experiment and theory
remain, When the conlainer is square, the predicled shape of several hifurcalion curves
in the (¢, e) plane differs from that reported in the experiment [42]. These predictions
are based either on the assumption that the primary bifurcation is generic [70] and
henee that mean Nows are slaved Lo the dynamics of the mode ampliludes, or on a
velocity potential formulation with the a posteriori addition of small damping [43],
[53], [34], [71]. Both approaches thus leave out the streaming tlow, leaving open the
possibility thatitis this flow that is responsible for the ohservations. Simonelli and Gollub
[42] also demonstrated that perturbing the container ¢ross section to a rectangular one
unfolds the mode inleraction poinl and produces chaolic oscillalions in ils vicinily, In
the theories put torward, this behavior depends on the cubic coefficients computed on
the basis of inviscid theory. Iowever, as already indicated, the streaming flow comes
in at the same order and hence is expected to have a profound ettect on the chaotic
dynamics as well. In Section 3.1 we first write down a scaled form of the CASF equations
that apply Lo this problem, and then analyze some of their properlics in order Lo make
in Section 3.2 a qualitative comparison with the experiments in [42], |43]. We also
comment on the appropriateness of some additional simplifications, including 4 Galerkin
truncation (§3.3).

3.1. The Scaled CASF Equations

We begin by considering the dynamics in a square container. Motivated by experiments
[42], 1437, we et (Vy, Pr, Fr) and (Va, P, F2) be lwo cigenlfunclions of (2,.9+2,12)
related by reflection in the xy diagonal, with /| odd in the x-direction and even in the
y-direction. The odd-odd and even-even cases are treated similarly but lead to somewhat
different amplitude equations. The chosen eigentfunctions are linearly independent, and
we denote their amplides by A; and A», respectively. Since they break the Dy symmetry
ol the square, the group D4y acls on these ampliludes and on the associaled sireaming



MNow in a nontrivial way;

£ — —x, Al — —Aq, (7, w3, uy) — (=, u), ui), (3.2)
X<y, Al & As, G s, )y e (s, us, ud) (33)
In view of the symmetry (2.15) of the inviscid eigenvalue problem (2.9)>—(2,12) we can
take f7 and [ to be real, with ¥V, and V; purely imaginary. lrom equations (2.21),
{2.23)—(2.206), and (2.38) it now follows that
W = W, hyy=hn=0. hyy=—hy =ih. g =gn=0
ig. (3.4

f12 = 8
Here h=V H;, g =& I » (V| x Va3 are both real and equivariant under

X = —X, (1), U2, 43y — (1], —U2, —H1), {(3.5)

X<y, (1), U, H2) = {—it2, —1), —H3), {(3.0)

where # = {1, ua, u3) stands for either & or g, and the function H, is given hy (2.24)—
{2.26), The reflection symmetries (3.2)—(3.3) also imply that in a square

Uil = Wijan.
@ums = 0 ifexactly two of the indices I, s, 7 are equal to 1, (3.7
o) = U, n = Uy = (), dl = (fg, (38)

tor k, i, m,n = 1,2, where the symbol " means that the value of the index has been
changed (from | 10 2 or vice versa),

If the square container is now perturbed to a rectangle, the eigentrequencies are split
as discusscd in Scction 2, with the modes (Vy, Py, Fr), (Va, Pa. F2) being precisely the
surviving eigenmodes discussed in the comment above eq. (2.19). Thus

JBMm =0 if (k. L, I’”) % (1' 12 1)- (2' 29 2)* ﬁ”] - 18322 =1L (3-9)

Since the remaining cocflicients in (2.3) arc unalTecled (al lcading order) by (his perlur-
hation, they are constrained by (3.4)3.8), and hence take the following form:

+ The damping-detuning coetficients are d) = dy = y C12+1C, +i(n C1F 40— ),
with 31 = 0 and 2 = 0.
o All the coclTicienls oy and oy vanish, cxcepl (or

o] = U3y = O, W2y = U1 = 1] = U1 = ¢af2,
(3.10)
1132 = an)] = U, W] = oy = iy,
where the o, ..., &4 are real, Explicit expressions for the coefficients o, ..., vy can

be Tound in [53], [54] lor scveral dilferenl modc inleractions and a (ree conlact line,



1T we now introduce the rescaling

r=1/s, ¥l Cé’z 4w — (82) + §2:)/2 = 8T, (£, — €232 = 3A, A1)
A =8"A, o= 8T/lay, u = Su, B=38p,
where
5 =31C" 4w, (3.12)
is thc damping rale, we may use (3.4) 1o rewrile cqualions (2.33(2.4) in (he (orm

Apry = —TLHIT £ AAL il |A P+ oa|APIA L FiosA AL HiTA
0
is‘z] ]u-gdmP (3.13)
148
V-u=0

dqufot —[u+HA A Y—GA LA N x{(V=xu)=-Vp+ Re "Au, (3.14)

where

H=1i(A_A_ — A A )h, G=iA A —A_A g,
Re = (0 C)” + nCIC, (3.15)

arc lhe inviscid mean Now velocily, the Slokes drifl, and the effeclive Reynolds number
of the streaming flow, respectively. In eqs. (3.13) the terms A # 0 describe the leading
order ¢ifect of perlurhing the cross seelion 2 Lo a reclangular ong.

Liguivariance under (3.2)-(3.3) and the properties ¢ and & in Section 2.2.2 imply that
the boundary conditions (2.5)—(2.0) take the form

= (A FP+1A P +UA P =14 P+ A4 +A4 A ey
+i(A. A —A A yp, ifeitherz=—1or(x.v)edx, (3.16)
u-e. =90, Sl =i(A A —A A Jps ifz=0, (3.17)

where & is again the horizonlal projeclion ol a, and the (real) veclor lunclions g, . .., ©s
(which can be calculated in terms of the inviscid eigenmodes by means of (2.43)—
(2.44)) are tangent to the boundary of the container and exhibit the following symmetry
properlics:

ALy transTorms like ¥ under (3.2)-(3.3).
B. ¢, transforms like (3.2) and (3.6).

C. o transforms like (3.5) and (3.3).

D ¢y and 5 transform like (3.5) and (3.6).

‘The torm of the boundary condition (3.17) follows from (2.44) and shows that the velocity
shear at 7 = O vanishes whenever A. A = A | A . This requirement is equivalent to
the requirement that the phase of A, V, 4+ A_V, be independent of position. i.e., that the
surtace wave be quasi-standing. These boundary conditions hold at leading order in the
reclangular container as well,



The final CASF cqualions for the nearly square conlainer are thus (3.13)(3.14),
{3.186)-(3.17), with the vector functions h, g, ¢,...., s as calculated from (2.43)
{2.44) und (3.4). The latter functions satisty the symmetry properties indicated in (3.4)
and A-T) above; these are relevant Lo the analysis thal (ollows, The real cocllicicnls o,
wy, und w3 have been calculated independently in [43], [53], [34]. [72] for a free contact
line; in the presenl problem the conlact ling is assumed (o be pinned, which makes (he
calculations of these coefficients substantially more involved [29]. However, once the
cross section is fixed, with A = 0 and A £ 0 for squares and rectangles, respectively,
the only (rec paramnclers are the scaled forcing amplitude T and the scaled detuning 1.

3.2. Qualitative Comparison with Experiments

A In a squarc (A = O} there are Lwo Lypes of primary branches thal bifurcale (rom
the flat state (A_, A_) = (0, 0) simultaneously: (i) pure states, of the form (A, 0)
or (0, A), and (ii) mixed states of the form (A, £A}). Both are standing waves.
Fqualions (3.13) show immedialely that in both cases [ f 2 - g dx = 0. Thus ncither
state involves the streaming flow. These results can be traced to the equivariance
ol g under (3.5)~3.6), and arc a consequence of the rellection symmelry of the
streaming flows associated with these states. However, their stability properties with
respect to reflection symmetry-breaking perturbations do depend on the coupling to
the strcaming Oow. There arce two instabililics of this kind, The first resul(s in stcady
states of the form (A4, A_), A_A_ # A_A_. These states resemble the alternating
roll slalcs (A, £1A) familiar Irom studics of the Hoplbilurcation with Dy symmclry
[73] that occurs when T = 0; l'eng and Sethna [43] call these states “rotational™. In
addition there are instabilities that would not be present without the coupling to the
sircaming Now; here the excilalion of the sircaming Now deslabilizes standing waves
that would otherwise he stable (see below).

B, In reclangular domains (A # ) the CASF cqualions arc invarianl undcer the group
Dy only. This group is generated by (3.2) and

y— -V, Ay — —Aa, =yl ul) — (uf, —ul ul (3.18)

As a result there are only two primary branches of pure steady states and these
arg exciled al dilferent thresholds, i.c.. the mulliple hifurcalion when A = 0 s
split apart. 'The mixed modes no longer form a primary branch and instead appear
only through secondary bifurcations. Simonelli and Gollub [42] did not attempt
a comparison wilh theory for this case. They did reporl, however, observalion of
several difterent types of time-dependence in the mode amplitudes near the original
mode interaction point. It is likely that such oscillations are the consequence of the
interaction of the two nearly degenerate modes much as discussed in |74]. Since
most of the reported oscillations lack instantaneous 22 symmetry, streaming fow
is likely (0 couple 1o the amplilude dynamics in an cssenlial way. A comparison
by I'eng and Sethna |43] of their theory for A # 0 with experiments worked quite
well for I;-symmetric states but failed completely [43, Figs. 5,0] for the rotational
states that should be accompanied by streaming flow. 1t should be noted that in a
rectangular domain these states ditfer qualitatively from those in a square domain,
and correspond insicad Lo waves thal rolale back and lorth, Tn fact, for the parameler



values [or which (heir theory predicls waves of this Lype, Feng and Scthna did observe
experimentally extremely slow, amplitude modulated, and apparently chaotic back-
and-forth rotations, but were unable to establish their properties with confidence
because of the long limescales involved. Tn conlrasl, the remaining Tealures of the
bifurcation diagram involve only reflection-symumetric states and these were found
10 be in reasonable quanlitative agreement with the theory,

These experiments are consisienl with our suggestion thal sircaming Nows are gen-
erated whenever the state of the system lacks reflection symmetry, and that these flows
might very well be responsible for the existing discrepancies between theory and exper-
imenls involving these slales. Quanlilalive comparison wilh these experiments can only
be performed on the basis of a (numerical) solution of the tull CASL equations. We do
notreporl here the resulls of such compulalions since the conlactling in both experimenls
was left free, while for our theory it must be pinned. However, with this modification
the experiments would full within the scope of our theory because (1) the aspect ratio is
evidenuly small, and (i) C, is also sulficiently small, viz., €, = 2.5 107" in Feng and
Sethna |43] and 2.4 - 10~ in Simonelli and Gollub |42], using Ai=254cem,p=1g¢g
em v =00lem’ s T =30dynem™ [43], and A = 2.5 cm, p = 0.81 g cm ™,
p=0032cm?s, T =248 dyn cm~! |42]. Note that in both cases surface tension
can in fact be ignored since S = 4.7 - 10 3 and 5.0 - 10 °, respectively. To reach these
conclusions we have, once again, used [68], [69] lor the physical paramelers nol given
in|42]. 143].

3.3. Truncation of the CASF Equations

Given the complexily of the CASF cquations, we have conslructed ahicrarchy of simpli-
fied models based on Galerkin truncation of the Navier-Stokes equation for the streaming
flow, The streaming flow will in general contain terms of different symmetries. In a square
these are determined by the two reflections (3.2) and (3.3) generating the group D4 Terms
in the streaming flow can be odd/odd, odd/even, even/odd, and evenfeven under these
symmelrics. Tn the following we wrile down the lcading lerms of cach Lype. Using the
results of the preceding section we have

Aty = =1+ 1D As 4+ Len A + aalA | A +ivadeA?

+iTAL T yrviAs, (3.19)
vty = eil—u +i(A_A- — ALA )]+ you w4 preaos, (3.20)
vi(Ty = ea|l—u: + A_A_+ALA_ |+ pavva 4y, (3.21)
V() = e3l—vs + |A_] — [AZPT 4 wyegos 4 psesg, (3.22)

Uity = eal—us + A HIA P14 pof + 705 S + . (3.23)

Iere 5; = —A,; Re LIV ; < O are the correspending hydrodynamic eigenvalues, and
the v, represent the (real) amplitudes of the four different contributions to the streaming
flow. These equations can be constructed as in [75]; Each contribution must be inde-
pendent of the fasl limescale and henee be a product of an amplitude and a complex



conjugale; cach must be ¢ither odd or even under (3.2) and (3.3); cach musl couple (&
the amplitudes Ay in a conservative fashion and only the first, odd/odd, maode can con-
tribute to the amplitude equations because the remaining ones are reflection-symmetric
{properly §3.2A above). Thus y is real and no lerm of the form vy AL with & = |
is present in (3.19); both facts can be checked by explicit computation. [owever, the
refleclion-symmelric modes do alfeel implicilly the surface wave dynamics through
because of the nonlinear terms in (3.20). Note that in steady state the streaming flow
associated with (A, 0) takes the form (op, o, va, vg) = (0,0, |A]2, [A]?) as A — O,
while (i, 1, 13, v4) = (0, 2|41, 0, 2| A]?) for the mixed modes (A, £A),

If we neglect the nonlinear terms in (3.20)—(3.23), equations (3.19) and (3.20) decou-
ple from the resl, inan almost square container we therelore have

AL(t) = —[1+i(I" £ M]AL +ila AL + ea| Ax[ DAL +iosALA]
FATA| Fyv Az, (3.24)
p(T) = e[—m (A A — AL A (3.25)

In the remainder of this subsection we discuss the consequences of this one mode ap-
proximalion of the sircaming Now, although the resulls apply 1o (3.19-(3.23) as well.

Both the pure and the mixed modes can become unstable to perturbations involving
the streaming flow. Let us first consider pure modes, (A, A , vp) = (A.0.0), with
A # 0 such that

[1+1 + A — iy |A]PJA = iTA;

the phase of A can be eliminated from this equation, to obtain
1+ [T+ A —q|AP =717, wy £ 0.
Thus the instability sets in at
T =T =[l+T+47"%

and the amplilude |A| increases monolonically (or T = T, provided (1" + Aoy < O;
if (' + A)w, > 0the branch bifurcates subcritically at T = 7T, betore turning around
lowards larger 7 al a sccondary saddle-node bilfurcalion,
1o determine the linear stability of these states, we replace A, A_,and vy by A +
X ¥ 4+Y e X e 4+Y e, and Ze*T 4-c.c., respectively, and linearize. The resulting
cqualions
o+ L+ T + A — 2l |AP1X | —i(Y + e ATy, =0, (3.26)
[+ 1 — i+ A) + 2i |AP]Y | + 0T + @ AHX. =0, (3.27)
414+ UD — A) — i APIX — (Y +a3ADYY —pAZ =0, (328
Do 1 — il — Ay i APTY (T + oADK —pAZ =0,  (3.29)
e(AX_ — AY_)— L+ )7 =0, (3.30)



have pure cigenmodes (X_ = Yo = 7 = 0) and mixed cigenmodes (X = V. =0,
Z # ) with associated dispersion relations given by
oA DF T+ A =200 APT = 1+ (7 + AY, (331)
W20 4 128 4 (oo + @ — )| API=20 + (o + o0 — )| AL
+ 2yel A A+ )] =0, (3.32)
respeclively, The former relalion is quadralic and shows readily thal pure-mode inslabil-
ities are always nonoscillatory at threshold (1.e., associated with A = 0) and correspond

cither Lo the primary bilurcalion al ™ = T, or 1o lhe sccondary saddlc-node hilur-
cation at

|A]Y = (I + Aa. (3.33)
In contrast the relation (3.32) is cubic, and shows thal mixed-modc inslabilitics arc cither
nonoscillatory, occurring when
A = 2A00y —aa —an)  ar AP =207y + o0 — a3 + 29), (3.34)
or oscillalory, producing quasiperiodic oscillalions, when
[2A + (o9 +or —eD)|APIRE + 6y — ) —ea + )| Al = (e +2),  (3.35)
provided in all cases that |A]> = 0, Since the corresponding eigenvalues b = Lik; are
aiven by
2y =—g Loy |AP2A + (@n + oz —a))|AT] = 0, {3.36)

the presence of this bifurcation leading to quasi-periodic waves requires that y == 0.
Such bilurcalion cannol therelore occur withoul the streaming ow, From cqualions
(3.33)(3.35) we also find conditions for codimension-two degeneracies: (i) a lTakens-
Bogdanov bilurcalion, resulling from (he coalescence of the symmelry-breaking and
Hopf bifurcations, occurs if (3.34b) holds and

el +or —oa +2y) =4y UTA (e + o2 — a3 + 2y + 1w + o3 —a)l: (3.37)
(i) a saddle-node—symmetry-breaking bifurcation occurs when (3.33) holds and either
T+ Ay —ar —ea) =28 o (T +A¥a g —as +2y) =20 (3.38)

(iii) a saddle-node—Hop! bifurcation with one zero plus two nonzero imaginary eigen-
values occurs when (3.34b) holds and

[2Aw1 + (2 + o5 — oD+ A I[2Te + (e — o1 — oz + o) (T4 A)] = (e +2)ef.

{3.39)
‘The first two of these hifurcations contain within their unfolding periodic solutions that
correspond to (ditferent types of) asymmetric mixed-mode oscillations in the Faraday
system. ‘The last bifurcation containg symmetric quasi-periodic solutions | 76], and these
correspond to three-frequency states in the Faraday system, Chaotic dynamics are present
near (he global bifurcations wilh which the (wo-lori (crminale [777, [78].



The corresponding resulls Tor the other pure mode, (A, A_, 1) = (A, 0,0), can
be obhtained from the above results using the substitution A — —A. Likewise, we can
use these results to deduce the stability properties of the mixed modes (A, A ,v)) =
(A, +4,0) in a squarc container (A = 0). This is because cquations (3.19) and (3.25)
are invariant under the transformation

A —= (A £ A )2, m — —i/f2, o] —> g + o+ s,

oy — 2{a — o), s — (o — oz + a3), ¥ — =2y, (3.40)
while the mixed modes become pure modes. It follows that for the mixed modes
LT — (o F oz +enAPF =Y, o foados £0,
and henee thal these modes sel in al
T=7 ={(+ sz”{

i.e., simultaneously with the pure modes. The stability results of these states follow
immedialely (rom the substitution {3.40) inlo (2.33)-(3.39) and sclling A = 0; nole, in
particular, that the two dispersion relations are now associated with reflection-symmetric
and symmelry-breaking perturbations, respectlively, Onee again all the same bifurcalions
and degeneracies are still present, and streaming flow 15 crucial for the presence of a
symumetry-breaking Ilopf bifurcation.

4, Mode-Mode Interaction in Almost Circular Containers

In this section we discuss the corresponding results for circular containers, This sys-
lcm has the symmetry group O(2) of rolalions and refleclion of a circle, We consider
nonaxisymmetric modes so that the primary instability breaks the symmetry, and hence
corresponds to a zero eigenvalue of double multiplicity, We can think of this instability
as generaling clockwise and counlerclockwise rolaling waves. When (hese waves are
coupled via the parametric torcing, the primary state is a standing wave with reflection
symmclry. In this casc only the phase ol this standing wave couples 1o the strcaming
flow. However, as soon as the shape of the container is perturbed from circular, hoth the
phase and the amplitndes couple to the streaming flow. In these cases the presence of
the sirecaming Mow has a much more dramalic impacl on the dynamics. This inleresling
case has, untortunately, not been investigated in experiments.

d.1. The Scaled CASTE Equations

We use cylindrical coordinates (7, ¢, z) with associated unit vectors e,, es, and e, and
lake the unperturbed cross seclion of the conlainer 10 be

:0=r < K. (4.1)



The two (N = 2) surface cigenmodes appearing in (2.1) arc laken 1o be

(Vi, Py, F\) = (ille, + Veo +iWe,. P, F)c™®, (Vo Pr. Fa) = (— V1, P, FY),
4.2)
where 1 > 1 and the functions U, V, W, P, and F are real and independent of 2. From

equations (2.23)(2.26) and (2.38), we now have
hy=hpn=ho=hy=go=gu1=0, 43
gn= gn=g= 227"V x(VWe, — UVe,) = 2(r, D)ep. =

When the cross section of the cylinder is perturbed while preserving the reflection
svmmetsy in the plane 0 = 0. 7, the amplitude equations must remain invariant under
the action

Al e A, w ey — —u' - es 4.4
In view of (2.19) this fuct implies that
i =P =1—prar=1— B, Pz = Pl = —Piz = —faar. 4.5)

This tact is used helow to construct the linear terms in the amplitude equations. The re-
maining lerms commule with the symmelry Of2) of the unperlurbed container, generaled
by (4.4} and the rotations

6 64+p. A — A Ay o Aje Mo (4.6)
‘Thus (i) the viscous damping-detuning terms must be such that
di=dr =y (1 +DCE + 1 4.7
and (i) the cocflicicnls of the nonlingar (ermns and of the forcing all vanish excepl for
o1 = o = o, w12 = a2 = o7, Wiz =z = o, 4.8)

[lere yll =0, y:} > 0, w1, o, and o are real, and we have taken into account (2.16) and
(2.28). The cocllicicnls oy, o2, and ¢s have been compuled by Milcs [55] for a parlicular
case with a tfree contact line.

Wilh these results and the rescaling

I =18, VfC;fEJrC!)*Qer.Bm(QQ*521)=3r, Br12(821 — §23) = 8A,

Ala=8"AL, o= 8T, ut = u. P=58%p. 4.9
where
§=9 C)7+ ¢y (.10}
is the damping rate, the amplitude equations (2.3)-(2.4) become
Aty = (1L HilDA | FIAAZ Fien|A P+ aa| Az [A HiTAL
0 plapR
:Fis'zf f f gir .z - eprdrdt dzAy, (4.11)
—1J0 0
V.ou=0,

dafdt —[u4+G{A A )= (Vxuy=-Vp+ Re LAun, (4.12)



where the Stokes drifl G and the effeclive Reyneolds number Re are given hy
G=(AJ 1A Nges and  Re= ([ Cl7 + yi CHC,. (4.1%)

Nolc thal the inviscid mean Oow is ahsenl Irom Lhese cqualions, as expecled from the
fact that the Stokes dritt is horizontal at the unperturbed free surface (see the discussion
in §2.1C). Il the sircaming (ow is ignored in (4.11) the resulling equalions are a special
case of those considered in |79], [8(].

The presence of the O(2) symmetry (4.4,4.0) and the properties ¢ and din Section 2.2.2
logelher imply thal the boundary condilions (2.5)-(2.6) lake the Torm (in lcrms of the
rescaled variables (4.9))

u = g A_A_e™™ Lo+ @al|AL]T 4 AP ay x €5

FlignA A e Lee au(A P = A [Pes
ifeitherr = Rarz = —1, (4.14)
weoe, = (0ulaz) e, =0, D) ep=ps(A 7 —|A 15 onz=0, (4.15)

where ny is again (he oulward unil normal. As before, the boundary condilion (4.15¢)
follows from the requirement that the surface shear vanish tor quasi-standing surface
waves, i.¢., waves for which the phase of A | V) + A Vs is independent of position.

Fqualions {4.11)-(4.12), (4.14)>(4.15) conslilule the rescaled CASF [or the presenl
problem. In these equations the (real) scalar tunctions ¢, . .., ws and g are independent
ol 8, and given by (2.43)-(2.44) and (4.3) in lerms of the componenls (4.2) of the exciled
linear modes. lior a pinned contact line the coefficients ! and 33 in (4.10) and the
corresponding inviscid eigenfunctions have been calculated in [47].

When A = 0 the CASF cqualions (4.11)—(4.12) arc equivarianl wilh respecl (o the
full group O(2). As soon as A £ 0 the symmetry of the problem is reduced to the group
Py generaled by

A —» —A., f— Hd4m, and A. < A_, f— —f weey — —I-gp.

(4.16)
The former arises from evolution in time by 27/ while the latier is a consequence of
the remaining spatial reflection symmelry. Once again (he coupling Lo the streaming
flow in the amplitude equations (4.11) vanishes identically when the surface wave is

refleclion-symmelric for all 7,

7

4.2. The Circular Container

When A = 0 the surface wave becomes quasi-standing after a transient, which means
thal il is delermined up Lo a spalial phasc Gn. I0 we wrile

Ai _ Biefimflu(."l! (4‘17)
where

o] moa R
Uhity = (_Qf’m]f f f elr, ) - epr drd dz, (4.18)
“1Jo Jo



then cqualions (4.11) reduce (o
Bi(t)= (1 +il"B| +i(en|B " + az|B=|*3B| +iYT B+ (4.19)

These cquations provide the simplest descriplion of nearly inviscid Faraday waves in
O(2)-symmetric systems [81] and all their solutions converge to reflection-symmetric
slcady slales of the form

B = Roc™%, (4.20)

ie., to standing waves. Lquations (2.1), (4.2), (4.9), and (4.20) imply that the corre-
sponding free surface deflection is given by

f =282 Ry Fy cos{m[0 — 0y(x) + O° 1), (4.213

and hence that only the spatial phase @, couples to the streaming flow, as described by
equation (4.18) and

V.ou=0, Buldt —u x (V xu)=—-Vp+ Re 'Au, (4.22)
# = 2R |1 cos|2m(8 — 6a)] 4 g2l x eg — 245 sin|2m(9 — 6a)les.

ifeithery = Rorz = —1, (4.23)
u-e, = (0w/oz) e, = (0uldz) - ea =0, onz =0, (4.24)

as obtained upon substitution of (4.17)~(4.20) into (4.12), (4.14)~(4.15). The {constant)
arhitrary phasc 47 appearing in (4.20) has been ¢liminaled by an appropriale rolalion,
Ligs. (4.18), (4.22)-(4.24) possess, for all RS, reflection-symmetric steady states of the
form & = #*(r, 4 — 0, z), &y = conslanl, with &°(r, 0,2} - ep = —u*(r, —0,2) - &,
note that there is a whole family of such states, obtained by an arbitrary rotation |[82].
For small RS the existence and (orbital) asymptotic stability of these states can be
ascerlained analylically. T lurns cul thal these slales can lose stabilily al finile Ry cither
through a parity-hreaking hiturcation giving rise to uniformly drifting spatially uniform
standing waves (such as those observed in Faraday experiments in annular containers
[83]). or via a symmetry-breaking Hopt bifurcation that produces the so-called direction-
reversing waves [84]. In the latter case the standing waves drift alternately clockwise
and counlerclockwise bul their mean location remains fixed. Solulions of this Lype have
been found in a two-dimensional Cartesian geometry with periodic boundary conditions,
and represent the instability that sets in at smallest amplitude [85]. The corresponding
three-dimensional results in cylindrical or annular domains remain unavailable.

4.3. Low Reynolds Number Streaming Flow

Once A # 0 cquations {4.11), can no lTonger be reduced (0 (4.19), and the slreaming
flow couples to the amplitudes as well. The description of this coupling becomes simpler
when the Reynolds number of the streaming flow is small, for then the nonpotential term
—u x (V x u)in (4.12b) is negligible. In fact this approximation remains qualitatively
usetul even for larger Reynolds numbers; see, in particular, Section 4.4 below. The
abscnce of nonlinear lerms allows us (0 isolale the parl of the streaming Dow velocily



thal contributes Lo the nonlogal (erm in (4,113, by decomposing the sircaming (ow
variables as

-

{u, p) = (vir, z, tleg, 0) + (&, p), where fﬂ #oepdd =0, (4.25)
0

ALy = —(1+iD)Ay + 1A A= +i{oy[AL] + 2| Az AL +1TAs

0ok
F 27ri£2] f elr.yvir z.tyrdrdzAL, (4.26)
—1Jo

vp = Re Mo + 7 e, —r uduy) if0<r < R, 1<z <0, (4.27)
v =0 asr—0, (4.28)
v o= (A ] - | A, Iy ifeitherr = Rorz = —1,

v, = @s(|A P —|A D) ilz=10. (4.29)

The resulting model can be integrated numerically by relatively inexpensive methods
and facilitates further analytical progress as well, In fact, the linear stability analysis in
Scclion 4.5 below Tor the even sitnpler model (4.40) is readily exlended 1o the present
case. Specifically, the stability properties of the symmetric steady states of (4.26)—(4.29),
ie,oftA. =4 = A, v=0, with A satisfving (4.41), are poverned by the dispersion
relations (4.48)-(4.49) with y &/ 4 £) replaced by

0 pR
erszf f g(r, IV (r, z, A)rdrdz, (4.30)
1J0

where V solves
MW o= RNV, 477V, =V 4 V) if0<r < R —1<z<0, (43D
V=0 asr—10, V =y ifeitherr = Rorz = —1,

V. = @5 ifz =0. (4.32)

Nole thal ¥V depends analylically on A excepl al the cigenvalues ol the homogencous
version of (4.31)-(4.32), which are poles of V. These latter eigenvalues are real and
ncgalive, and corrcspond 1o the purcly arzimuthal, hydrodynamic cigenmodes of
{(1.7-(1.9).

4.4. The High Frequency Limit

In the limil ol high forcing frequency, the CASF cqualions sitnplify dramalically and arc
replaced by a system in one spatial dimension together with a linearized equation tor the
strcarning Mow, Tn this limnil the azimuthal wavenumber s of the exciled surface mode
hecomes large, and g, @), .... wq vanish exponentially rapidly outside of the surface-

wave layer of thickness m . In this layer we have the estimates (see §2.3.4, case (a))

o~ o~ g~ |+ el ls| o+ gl ~ los) ~ 2 T (4.33)



provided the radial wavenumber remnains bounded. Tn addition in this layer
g(r. z) = gutr e, {4.34)
where
n="msz {4.35)
is a stretched variable, If the vorticity is confined to the surface-wave layer (see below),
the velocily components decay exponcnlially oulside of the layer. Inside the layer, the
azimuthal component v satisfies [v| ~ £ tm?|AL]* ~ C,m>, an estimate that follows
from a halance belween damping and nonlincarily in the amplitude cquations (for ap-
propriate torcing amplitude) and the estimate (2.17); the radial and vertical velocity

components are then s | times smaller. Altogether, after a suitable rescaling of the
cqualions, we ohlain

Bi(t) = —(1 +ilVB. +iABs +i@ B + &|B=|")B
0
+iTB::Fi;7[ Vig,tie"dnh,, (4.36)
Vi =V, Il —co<yp<0, V=0 an— —ox,
V, = |B_P—|By* alyp=0, (437

where Vois the following weighled average ol the azimuthal velocily:

S Voer pom
V= (] ] golrps{ryr do dr) f f 2o (r)e(r 0,7, Ty dO dr.
] 4] 0 o

As an evolution problem, equations (4.36)-(4.37) possess a unique solution, whose L
norm is uniformly bounded as © — o¢ provided

1 T 4 q., .
?[ (|B_|" —|B_|"ydr — 0 ast — . {4.38)

This condition lollows [rom the exacl relalion

— | Va.oan =8I — B,

de J

readily oblained from cqualions (4.37). Condilion (4.38) is cquivalenl Lo the requirement,
that the atiractor of the system be reflection-symmetric on average. When this is not the
case, vorticity cannot be ¢confined in the surface-wave layer, as assumed above, and will
spread into the bulk, producing the much more involved regime (b) in Section 2.3.4. In
this case equations (4.36)—(4.37) will have solutions such that | j V ¢y is unbounded as
T — O,

The linear model (4.36)-(4.37) is even simpler than that derived in the preceding
section, The reflection-symmetric steady states take the form B. = B = A, V =0,
with A satisfying (4.41), and there are no nonsymmetric steady states. The stability of
these states is given by the dispersion relations (4.48)—(4.49) with y&/(% 4 #) replaced
by p/0 + 412, with a nonzero 4 in (4.49),



4.5. Single Mode Approximation for the Streaming Flow

'The one-dimensional problem (4.27)+4.29) can be solved by expressing the azimuthal
component of the streaming flow velocity, v, as a Fourier expansion in the purely az-
imuthal hydrodynamic modes. TF only the first such mode is retained, the Tollowing
counterpart of (3.19)-(3.23) is obtained:

AL(t) = —(1+iDAL +1AA; +ile]AL)] +aa|Az DAL
FiTA; FiymA,, (4.39)
0@ = sl—m + AP —|AP), (4.40)
where & = —ARe™" = 0, and A < O is (he first purely azimulhal hydrodynamic cigen-

value, cf. Section 3.3.
These equations possess reflection-symumetric steady states (corresponding to a pure
standing wave) of the form (A, A_, 1) = (A, A, (), where A satisfies

[T — A) —i{oy + ) |A]F1A =1T 4, o ooy 20, (4.41)

as well as nonsymmelric sleady stales. The stability properlics ol both lypes of sleady
states can be obtained in closed form, although the analysis of the latter is somewhat
tedious, The phase of A can be eliminated in (4.41) to obtain

L+[T = A — (1 + a)| AT = 1% (4.42)
thus the instability threshold for the standing waves is given by
T="=[1+(T—-AN". (4.43)

The amplitude |A] increases monotonically for Y == T, provided (I'— A)/ (o 4wq) < O;
it (I' — A, + gy = 0, the branch bifurcates subcritically at T = T, before turning
around lowards larger T al a sccondary saddle-node bifurcalion, The lincar stabilily
properties of these states can be deduced immediately from Section 3.3 on noticing that,
in lerms of the new variables A . defined hy

A =i{A| — A 2 A=A +A W2, b =-unp, (4.44)
equations (4.39)—(4.40) become
Ay = —[1+ T £ M)A+ iller + o) A + 20 AL PAL
il —a)ALAY +iTAL T 20 Ax, (4.45)
Biny = el +iALA. — ALA), (4.46)
which coincide with equations (3.24)—(3.25). This is a consequence of the fact that
the chosen domain perturbation preserves a plane of reflection symmetry (see com-

ment at the end of §4.1). Under this change of variables, the symmetric standing wave
(A, A_)y=1(A, A} lransTorms inlo a pure mode (A, A_) = (0, A). Tl Tollows thal the



dispersion relalions Tor the standing waves (A, A) arc given by (3.31)-(3.32) using the
transtormation

o — o+ o, ar — 2, oy — oy — a, A > —A, .
(447

Thus
(MDD = A =2 +a)| AP =14+ (T =AY, (4.48)
2P 20+ 4AT — SAlye/(h+e)+ 0451J|A|2 =0, (4.49)

Once again, the Tormer dispersion relalion is associaled wilh reflection-symmeltric (i.c.,
standing wave) perturbations, and the latter with symmetry-breaking perturbations. We
summarize here the results obtained from (3.33)—(3.39) using (4.47).

The two steady state biturcations, the saddle-node bifurcation involving reflection-
symmetric perturbations and the symmetry-breaking bifurcation in (4.49), occur at

2

IA]D = (T = MMy + o), (4.50)

A" = T/2e +y)]. HTA#Q, (4.51)

respeclively. Nole thal the symmclry-breaking bifurcalion dogs ref occur in a perfectly
circular domain. This is so also for the symmetry-breaking Hopt bifurcation. This hifur-
cation produces a kind of blinking wave [79], [80], and occurs at

|A]? = @A + 2e + e24A 2w, —ey)]| = O (4.52)
The corresponding eigenvalues & = Fik; are given by
A= —e" —dey A|A] = 0, (4.53)
implying thal the presence of this Hop( bifurcalion requires thal
yA < 0. {4.54)

Such asymmetry-breaking Hopf bifurcation cannot therefore occur withiout the coupling
tothe streaming flow. The various codimension-two degeneracies identitied in Section 3.3
arg slill present: The Takens-Bogdanov hifurcalion occurs when (4.54) holds and

{(y +uape+2¢TA =0, {4.55)

and the saddle-node—symmelry-hreaking and the saddlc-node—Hop( hifurcations occur,
respectively, at

oy —ar + 293" =2(p +)A, (4.56)

4I'A + 22+ 53)/[41\(2&1 —ey)] — (I — AV (o +wa) =1 (4.57)
The first two of these bifurcations contain within their unfolding periodic orbits that
correspond to quasi-periodic l'araday waves, both of which will be asymmetric. The
third case contains symmetric gquasi-periodic solutions in its untolding that once again
may lead Lo chaos.



5. Mode-Mode Interaction in Circular Containers

We now consider the interaction between two pairs of nonaxisymmetric surface modes
in a circular container, as in Ciliberlo and Gollub’s experiment [45]. To oblain such
an interaction we select appropriately the driving frequency and amplitude. Theoretical
studics of such mode inleraclions include those based on amplilude cqualions for nearly
inviscid flows but without the inclusion of streaming fow [86], [87], |88] and generic
studies based on the O(2) symmetry of the system [62]; for 4 comparison and critique of
these approaches, see [62] and the comment by Miles [517, Tn this scetion we relain the
exact (2) symmetry of the system and focus on the role of the streaming tlow generated
by the mode interaction, We derive first (in §5,1) the rescaled CASF gquations, and (hen
analyze the surface wave-streaming flow coupling (§5.2), comparing the results with
previous approaches in Section 5.3. In Section 5.4 we comment on the dynamics near
Ihe bicritical poinl and in Scelion 5.5 we presenl a simplilicd modcel based on a Galerkin
truncation of the streaming flow.

5.1. The Scaled CASF Equations

We formulate the prohlem as in Section 4, and consider the linearly independent modes

Vi, P PO = (ite, + Vies +1Wie;. O, wphelnt
(Va. Po. 1) = (=W, PrL 1Y),
(Va, Ps, F3) = (il5se, + Vieg + iWaey, (s, Wa)el?,
(Vy, Py, Fy) = (—V3, B5, F3),
where, for j = 1 and 3, the functions U;, ¥;, W;, §;, and W are real and independent
of £, and the azimuthal wavenumbers are such that 1 < # < s, Thus these modes corre-
spond to two pairs of counter-rotating surface waves of the system. With this selection,
according (0 (2,23)-(2.26) and (2.38), we have
812 = g1 =gu=gs =0,
g = —gn =10V (Vix V) =g,
g = —gu =107V x (V3 x V5) = g3,

g3 = g =18 IV x (V) x Vq) zg-g+ci(" mie
g1 = —gu=gua=ge " (5.2)
gn = —gn=iQ 'V x (Vy x V)) = go ¢l w9,

g14 = —g€3 Eg4l Eg4_671['mA”m_'

. 10r—nn I —1ite—m
hlS = —h4’> = 1VH13 = h3+eltu m,eq h3l = —h24 = h13 = h3_€ 1 m,e’

hy = —hyy =iV Hy = hy 09, Big= fyy = by = hy o 1108



where Ay and Hyp arc given by (2.24)>(2.26). The veclor Tunclions g, g2, €31, £4.»
frs, and hy_ are independent of € and take the form
il 2 P
£ = Sgo, g2 = faep, gy, = :tlggler + gyep L igie,,
21 2 203

g4 = Xigie, + giep T igie,,

hiy = Zihle, + hies £ikle,. hiy = Likle, + hieg £ille,,  (53)
for some real scalar funclions g1, g, 24, g1, i, and A7,

Proceeding as in Section 4.1, we require that the amplitude equations be invariant un-

der rotations and reflection and conclude that the viscous damping-detuning cogfficients
musl be such thal.

dy=dy =y (1 +DC7 + 57 C,, dy=ds =y, (1 +DC+97C,. (5.4)

and that all the coefficients accounting for ¢cubic nonlinearity, forcing, and departure
from the mode inleraction arc zcro, excepl for

a1 =t = o, Uao| = wap2 = o),
133] = U442 = s, U144] = Ufa332 = W,
U234 = (7143 = Uy 3313 = Uqqqq = U
’ 3 ’ (5-5)
03443 = (4331 = Ug, a3 = dqa = O,
3203 = tiy)]a = o, 3412 = U432] = oy,
W) = . tlaq = a3, B = P = 1.
In addition, we introduce the rescaling
t =1/, (! + yg)C&{’? — (2 + L2+ —02=5T.
1 Ly o182 !
[y — )7+ 5 — A 12 =4 A, (5.6)
o= 8Ty, fr = &/, Bz = aaaluz, Arr =824, o
Ay =38]"B_. =8, p=8p.
where
1112 2 1,102 2
=pC" + G, G =1 C," +yy G, (5.7)

and rewrite equations (2.3)-(2.4) as

A_(t) = —(1 HilHiM)A. ool AP oAz + a2 B | +as|B=|A.
+icsA B_B, +iTA,

O pdx R i _ .
T 152/ f / lA:gl + B:eil(ﬂ—m)@gSi + B:Feqiltm+u)9g4:J
—140 0

curdrdo dz, (5.8)



Bi(r) = (1 +il' —1AYB| Filas|B > + as|B|* +a7|A.|* +os/A=|)B

—+ i(!g;f_?; A A P+ iﬁgTé;

0 Im pR , - .
=s 1&2] f [B:gl + Aie:“”*”””gkq; _ A:eiFIE_MAPJ]()gL‘:J
—1.J0 i)

cmrdr do dz, 5.9
V. ou =0,
Juldt — [ —H(A |, B\ Y+ GA B ) x (Vxuy=-Vp+ Re 'An, (5.1

where the inviscid mean flow velocity H, the Stokes drift G, and the effective Reynolds
numbcer Re arc given hy

H = (A_B_ — A_BLe "™ hy 4 (A_B_ — A.B_)e'™p, yce., (5.11)

G = (A" = A1 g + (B — B4 )g2
TI(ALB. — A Byl el 4 (A_B. — AL B_)cl™ I mig,
+ ¢.¢.], (5.12)
and
Re = (y] ;" + y/ CUC,. (5.13)

Morcover, in view of the O(2) symmelry of the problem and the properlics ¢ and d in
Section 2.2.2, the boundary conditions (2.5)—(2.6) may be written as

u = (A B¢+ A B phel ™
F{A_B_d) + AL B_ghelt e
FplA AT L ol BB MM L co (AL 4 AL Pt
+UA ] — A e
+ B+ |B- Dy + (IB-” — [ B- [,
ifeitherr = Rorz = -1, (5.14)
w-e; = (0,
dafdz = (A_B_ — A B_)p¥el "’ 4+ (A_B, — ALB_ )@l L¢c,
+0A P— 1A 2+ (B P— B, Dl onz=0. (5.15)
Here & is again (he horizontal projection of a, and
cp} = cp}n X €g, tp}? = q);‘eg, d)} = (p}ln@ * ey + ic/)}Zeg,
$7 = i} m x es + e, (5.16)

where the functions rpf and (ﬁf‘, are real and independent of 7, and ny is the outward
unil normal (Lo the selid boundary or the unperturbed (ree boundary ). Once again (5.15)



follows from the requirement thal the surface shear vanishes Tor quasi-standing waves.,
Here such waves take the form ALV, + A_V> + B, Vi + B_V4 provided their phase is
independent of position for all =, L.e., provided

A|—|A |=|B.|—|B|=AB —AB =0 (5.17)

These condilions also imply (hat A B, — A B =1,

5.2. The Influence of O(2) Symmeltry on the Coupling fo the Streaming Flow

Motivated by the experiment of Ciliberto and Gollub [44], [45] withm =4, 1 = 7, we
supposc in the following thal s and # are relalively prime. The symmelry O(2) acls on
the CASF equations (5.8)~(5.10), (5.14)-(5.15) by

0 —=0+¢: Ay — e:i”’éA:, B. — e‘i”éBi. (5.18)

8 — —t: A < A B, < B, u-e; —> —U- ey (5.19)

7

The propertics of being refleclion-symmelric and being quasi-slanding arc now (wo
independent properties of the solutions of the CASI equations, and on its own neither
implies that the amplitude decouples from the streaming flow, However, the two together
imply both (5.17) and

ALBY = AT AT, {5.20)

Since more conditions are required for decoupling than in the previous cases (treated in
§3 and $4), we expect the influence of the streaming flow on the surface wave dynamics
(o he more visible,

5.3. Comparison with Previous Theoretical Approaches

Ifthe streaming flow g ignored, a8 is usnally done in the literature, the resulting equations

ATy = [T+ A o)Azl — o)A P — o] Bo]* — a3|B, )14
+itegBoBs + A, (5.21)

Bi(t) = —[f1+UT — A —us|B_|* —wlB |* —aq]As]® — aslA | )] Ba
+i{as Ay A= + B2 1) B, (5.22)

are degenerate hecause they admit two new symmetries (in addition to the ((2) actions
(5.18)—(5.19)) that are not present in the original equations, Namely, equations (5.21)-
(5.22) arc invariant under the following four independent aclions;

Ai . e$]mrf)1Ai; B: . e:lmf)gBi;
Ap - A, u-eqg — —i- ey, By < B_, H-ea— —H-e5, (523)

which generate the larger group O(2)xO(2). This additional symmetry is an artifact of
the (runcalion of the amplilude cquations al third order, Tn [62] il is shown thal il the



amplitude cquations are compuled (o a sulficiently high order (m + 1 — 1 = 10 in
the Ciliberto-Gollub experiment), the O(2) svmmetry of the original system is restored.
Iowever, it this is not done, equations (5.21)—(5.22) predict that

dMaldr = —2M,, dMpldt = =28, Mp. (5.24)

where My = |A | P — |A |Pand My = |B.|* — |B | are (proportional to) the angular
momenla of the Stokes drifls associaled wilth cach pair of modes scparalely (sce the
comment in §2.3.2), and both M4 and Mp vanish exponentially as ¢ — oc. Thus at
large times M4 = My = 0, and from (5.21)—(5.22) we obtain that

phase of A_A_ = constant, phase of B_B_ = constant. (5.25)

In this case the spatial phases of the two pairs of modes, see (2.1) and (53.1), can be fixed
arhitrarily and we may wrile A, = 21 A_ and B, = ¢”%2 B_ for some conslanls ¢
and ¢ ie., the system (5.21)—(5.22) reduces to two complex amplitude equations, as
noted in [45], [87], [88]. Ilowever, these equations fuil to reproduce essential features
of the experimental bifurcation diagram. I'or instance, center manifold reduction at the
bicritical point (see §5.4 below) vields a two-dimensional system, suggesting that chaos
is nol possible in the vicinily ol this point, contrary 1o observalions [457. Tn facl, as shown
by Crawford et al. |62], higher order terms in the amplitude equations reinstate the cou-
pling between the mode amplitudes and 4 certain phase ditference, leading to a center
manifold descriplion of the dynamics that is of third order. However, the analysis in [62]
was based only on the symmetry properties of the system, and thus implicitly agsumed
Ihal viscosily is large cnough thal any mcan (ows arc slaved Lo the slow dynamics of
the complex mode amplitudes near the bicritical point. In the present case this is not
s0, and our approach shows that the inclusion of the streaming How when €, < 1 lifts
the degencracy of the fruncated amplilude cquations and reslores the original symme-
try of the problem. Specifically, with the streaming flow included, equation (5.244) is
replaced by

0 2T R .
dMaldt +2My = fszj f ] li{A_B, — A_B_)gs_ - mc'®® ™*
1.J0 (0

+ c.c.|r drdé dz

n i R .
_ SZf f f ﬁ(rfLrB, — Af§+)g4, gl -8
140 1]

+c.crdrdo dz, (5.20)

where gag and gao arc as in (5.3); a similar expression oblains for the evolulion of
Mg 'Thus the angular momenta M 4 and Mg no longer vanish individually at large times
{except of course in some particular cases, see below) and the spatial phases of the modes
arc no longer conslanl, Morcover:

A M, and Mg vanish at large times when the right-hand side of (5.26) (and of its
counterpart for Mp) vanishes identically; this occurs for solutions that either are
relleclion-symmelric or salisly Ay B, —A_B_=A_ B —A_B =0,



B. Somg obvieus simplificalions of the sircaming Now cqualions yicld a syslem of
simplified equations that suffer from the same spurious symmetries (5.23) and thus
are no better than (5.21)-(5.22). This happens, for instance, in the limit Re — 0in
{5.100), which is nol realistic when C, — 0; sec (5.13). In this casc the slrcaming
flow is slaved to the surface waves (much as the inviscid mean flow, see §2.1C)
and ils only cflecl is Lo change the values of the coclMicients of the cubic Lerms in
(5.21)-(5.23), without introducing new terms.

5.4. Dynamics of the CASF Equations near the Bicritical Point

If no simplifications are made, the instability thresholds from the flat state to surface
waves consisting of pure modes are given by

L+ (T + AP =77 and g + (T —A)F =87 (5.27)

For fixed A # 0, these vield two hyperbolas in the T-I" plane, which intersect at the
so-called bicritical poinl. The bifurcaling familics of purc modcs are given (modulo
rotations) hy

AL =A_=A4, By=8B_=0 and A_=A_=0, By=B_=218,
{5.28)
respeclively, The corresponding ampliludes |A| and |B| are given by

LU+ A — (oo +a) AP =T and 82+ — A — {os +ag)| BT = B377,

{5.29)
respectively, Since both pure modes are standing they are decoupled from the stream-
ing flow. "The center manifolds at threshold, away from the bicritical point, are two-
dimensional, but one degree of freedom plays no dynamic role since it is associated with
the neulrally stable spatial phasc of the wave. Near the bicrilical point (T, 17:) the cenler
manifold is four-dimensional and CASL equations take the form

daldr = |yi(Y —To) + 0 =T+ yslal” + wlblla+ .
dbldr = |ps(T — Te) +ys(Te =Ty + p1lbl* + pslal* b+ -,

where y1, ...,y arereal coetficients and the complex amplitudes ¢ and » are given hy
a=(A_A)", h={(B,B_)" (5.30)

‘Thus the amplitudes and phases of @ and » are precisely the amplitudes and spatial phases
of the two pure standing-wave modes, If these equations are truncated at third order, they
cxhibil spurious symmclrics thal again lcad 1o a spurious reduclion of dimension unless
(m +rn — 1)-th order terms are included, i.e., at the bicritical point the streaming flow also
becomes slaved to the surface waves—this is because of its nonzero damping. Ilowever,
it the Reynolds number Ke of the streaming flow is large, the center manitold reduction
only applies in an extremely small neighborheod of the bicritical point, and on larger
neighborhoods defined by T — T, ~ Re™ !, I' — I, ~ Re ' (he limescale for the



cvolulion of (the sircaming Oow (§2.3.5) becomges comparable Lo Lhe slow evoelulion of
the center manifold variables; in this regime, some of the viscous modes associated with
the streaming flow can no lenger be considered slaved to the surface waves and enter
cxplicilly inlo the descriplion of the dynarnics, This new source of complexily could alse
be responsible for the chaotic dynamics near the bicritical point reported in [45].

5.5. Three-Mode Approximation of the Streaming Flow

In this scclion we only consider the simplest approximalion Lo the strcaming Now (hal
does not permit spurious symmetries. A look at the coupling terms in (5.8)-(5.9) shows
that we need to consider at least the following hydrodynamic modes: the first axisym-
melrie, purcly azimuthal one, and (he firsl nonaxisymmelric modes with azimulhal
wavenumbers m — n and # + 7. Thus we write the streaming How and the associated
pressure as

@, p*y = Vi{u(r)eg. 0) + W, (vy(r, 23, prir, Z))Ci':m "8

W n(r, 2), palr, 2O Y o],

where Vi is real. Projecting the streaming flow equations onto these modes and rescaling
the results Icads (o the following system of simplificd cquations:

A(ry = —(1+ 10 +iA)Ax + Wl Ael + ar|A | P+ aol Bo|* + o3 B [D) A
+iag Az BB +iTA; FIVIAL + W, B2+ W) B=), (5.31)

BL(t) = — (B +iT —iA) By +ilas| Bal” + ws| B [* + a7 A + o5 A=) By
+iagB=A| Ax +ifh TB=Fi(HBVIB. + WFA. — W, Ar), (532
Vit = Vi + Bl A_® — |AL )+ BstB_P — B, (5.33)
W, = —s(8W, +aA B —d B, W, =W, (5.34)
W = —eh Wy + AL B — K A-BL), Wy = Wi, (5.35)
where 81, 82, B1..... s are real, but 1, and x> are generally complex. Note that if

the lorcing clicel of the walls, described by the right-hand side of (5.14), is neglected,
the streaming flow is only forced via the boundary condition (5.15), a fact consistent
with setting to zero the imaginary parts of the coefficients «; and &2 in (5.34)<5.35).
Note also that additional streaming fow modes forced by terms proportional to A | A]F_.
BoB..|A P+ |A 12 and |B >+ |B, ? and allowed by symmetry areuments are not
included because they do nol contribule o (5.31)-(5.32), an ohscrvalion thal Tollows
from the form of the coupling terms in (5.8)-(5.9) and of the vector function gi; see
{5.3), Likewise, the fact that the coefficients of ( Wﬁt B_, W.li B yin(53.31) coincide with
those of (Wl‘ A, Wzl A_)in (5.32) follows from the form of the vector functions g,
and gax (see (5.3)); note that the problem is not invariant under any transformation of
the form A <« B,



TTwelel Ay = A = Aand B, = B_ = B, then (aller a (ransicent) (5.31)+5.35)
become (cf. |[8§7])

ATy = —(1 +il+ 1M A+ il (wo + )| A]> + (o + @3)|B)P 1A + ies AB?
+iTA —i(W, + Wa) B, (5.36)
B'it) = (B +iT —iAIB +illes + )| B + (o1 + )| AP1B 4 it BA®
+i8TEB — (W, — Wa)A, (5.37)
Wi = —&(81 W) +x1AB — k1 AB), (5.38)
W, = —£(5: Wy +x,AB — i AB), (5.39)

where Wi = W' and Wy = W, arc purcly imaginary, These equalions contain as a
particular case the simplified equations (3.243-(3.25); in fact, they are the counterparts
of these equations for mode interaction in a general rectangle, i.e., one that need not be
closc Lo asquare., The resulling cquations thus provide @ convenicnl modcl of the Faraday
system in rectangular containers (cf. |43]) that incorporates the eftects of streaming flow.

6. Concluding Remarks

A general nearly inviscid, weakly nonlinear theory has heen developed in Scelion 2
describing the interaction of N surface modes and the associated streaming flow in a
vertically vibrated cylindrical container, The main result of the theory is a set of coupled
amplilude-sircaming Now (CASF) cqualions, summarized in (2.3)<2.6). The ampli-
tude equations (2.3) differ from the usual ones in the presence of terms that depend
on weighled averages of the sircaming Now velocily; thus enly these lerms have been
explicitly derived (in §2.1). The streaming flow itself is governed by a continuity and
a Navier-Stokes-like equation (2.4), both of which are similar to ones already used in
cxisling studics of streaming Nows bul which arc new in the present conlext; for this rea-
son we have summarized their derivation as well (in §2.2.1). "Ihe boundary conditions
(2.5)+2.6) Lhal drive these Tows resull Irom well-known (orcing mechanisms, origi-
nally due to Schlichting and Longuet-Higgins, but again are new in the present context
particularly since their derivation requires an analysis of three-dimensional oscillatory
boundary layers. This analysis is well heyond the scope of the present paper and we
have summarized the necessary results [59] in the Appendix. However, the “form™ of the
boundary conditions can be anticipated from general considerations. In Section 2.3 we
have discussed the general properties of the CASL equations and their applicability to
severdl outstanding experiments. We have emphasized that the excitation of streaming
Now via finilc amplilude instabilily provides an allcrnalive saluralion mechanism (or
the I'araday instability, and one that is particularly significant in the low viscosity limit
in which the coefficients of the nonlinear terms are purely imaginary. Indeed, we have
shown that it is asvmptotically inconsistent (o retain cubic terms and neglect the siream-
ing flow as usnally done in the literature, unless the state of the system has very specific
symmclry properlics, This obscrvalion remains (rue as the lorcing Irequency increascs



and, in particular, when the wavelenglh of the surface waves is small compared (o the
depth of the container (a frequent case in experiments). Since the Reynolds number
associated with the streaming flow is never small, this flow is never slaved to the waves
and henee is responsible (or introducing qualilalivel y new ingredicnls inlo the dynamics
of the system. We have explained these new ingredients in several cases (whose analysis
was included Tor illusiralion) and noled that these could provide explanalion for some
striking hehavior observed in l'araday experiments using low viscosity fluids.

We have used the CASF equations in several ditferent contexts. In the first two we have
cxplored the conscquences of small changes in symmetry on the dynamics of Faraday
waves, This idea is not new. In the ITamiltonian context it is well known that changes in
symmgelry can couple modes thal would otherwise be uncoupled, therehy causing insla-
bility |52]. This is the idea behind the so-called elliptical instability. Likewise, Crawtord
[89] noted that the Faraday system with Neumann boundary conditions possesses sev-
cral hidden symmelrics and suggesied an inleresling experiment on Faraday waves in
nonsquare containers that nonetheless possess £, symmetry [90]. The required change
in the domain destroys these (unphysical) symmceltrics and permits new Lypes of behay-
ior. We have seen here that the inclusion of viscous etfects has similar consequences.
The boundary conditions are no longer Neumann, and if the £y symmetry is itself bro-
ken, coupling Lo streaming ow is enhanced. Specifically, our investigalion in Seclion 3
of the mode-mode interaction in almost-square containers showed that streaming flow
is always associaled with the surface waves dyvnamics unless (the stale of the syslem
possesses areflection symmetry for all time;, however, even these reflection-symmetric
states may lose stability at finite amplitude to modes that break their symmetry and hence
drive a slreaming ow. Tn Scclion 3.3 we conslrucled a simple model (o illuslrale this
phenomenon; we expect this model to be qualitatively valid when the streaming flow
Reynolds number is nol oo large. A similar study of modce inleraclions in almaosl circular
containers (in §4.2) showed that breaking of the invariance of the system under rotation
is essential in order that the surface wave amplitudes couple to the streaming flow. For
simplicily we relained a relleclion symmelry when perlurbing the shape of the conlainer.
We found, once again, that only states lacking reflection symmetry were accompanied
by streaming flow, but that such flows could be excited in secondary instabilities of
reflection-symmetric states. In the generic case in which the perturbed cross section has
no reflection symmetry at all, all states of the system involve the streaming flow, The role
of the strcaming Now can be scen morc clearly in the two simplificd models constructed
for low effective Reynolds number or in the high frequency limit. The simplest, one-mode
approximation to the streaming flow, considered in Section 4.5, allowed us to examine
analytically the difterent secondary instabilities of a reflection-symmetric state, and to
classify the resulting dynamics, In particular we found that a symumetry-breaking ITopt
hifurcation could only occur as a rcsull of the coupling o the streaming Now, and we
identified several codimension-two bifurcations involving this bifurcation. These could
of course be responsible tor much complex dynamics that would not occur in the absence
of streaming flow. We hope that these predictions will stimulate experimental studies of
this set-up. As a final example, we considered the interaction of two modes with distinet
asimulhal wavcnumbers, this (ime in a ¢circular domain. Tn (his casc sircaming Mows
are always excited unless the state of the system is both gquasi-standing asd reflection-
symmetric, Thus such mode interactions are much more likely to generate streaming



Nows. W have found thal inclusion of such Qows avoids the spuricus symmeclrics thal
are an artitact of a truncation of the amplitude equations at cubic order, and provides a
much more realistic description of the system that does not have to rely on high order
lerms arising (rom spatial resonance [62].

Diespite their complexity, the CASF equations provide a substantial simplification
of the original cqualions {1.1)—(1.4); The oscillalions on the Tasl limescale § ~ | have
been filtered out, the effect of the viscous boundary layers has been replaced by effective
boundary conditions on the flow in the bulk, and the motion of the free surface has
been climinaled, Since dircel numecrical simulations of the full CASF cqualions are well
beyond the scope of the present paper, we have resorted to investigating the properties
of scveral model systems molivaled by cxisling experiments, and have uscd these Lo
sugeest possible explanations tor the discrepancy between the experiments and theories
that omit streaming flows, In particular we emphasize that, in the nearly inviscid Faraday
syslem, streaming Mows enler inlo the theoretical descriplion alrcady al third order in
the amplitnde, and hence that their omission is inconsistent with the retention of other
cubic lerms. Tndeed in many cascs the sircaming Jow provides the saluralion mechanism
tor the l'araday instahility, particularly in multimode situations. We hope, therefore, that
the present paper will stimulate both experimental and theoretical studies of the role of
sircaming Nows in the nearly inviscid Faraday system,

Appendix A. The Boundary Conditions for the Mean Flow in the Bulk

These boundary conditions resull (rom malching condilions belween the solulion in
the bulk and in the oscillatory boundary layers attached to the solid boundary and tree
surface. The well-known formulae in the literature (first obtained by Schlichting [7]
and Longuel-Higging [81) apply only Lo siricly Iwo-dimensional problems, while the
streaming flows considered in this paper are genuinely three-dimensional. The necessary
resulls arce derived in [59] and surmmarized here,

The appropriate boundary conditions at {the edge of the Stokes boundary layer at-
tached to) a static solid wall I'y are given interms of the mean fow velocity, #™ (=u' +u’=
the inviscid plus the viscous mean flow velocilics, with the notation in this paper),
and are

" o= o), &7 = 2280 Q2+ 3NV VIV L (V. NVIV fec] + o).
Asin Section 2.2.2, V- and 'V are the intrinsic divergence and gradient operators along
the solid boundary 1"y, r is the oulward unil normal (0 g, and &™ is (he (angential
projection of @™ along I's. The quantity ¢ is defined in terms of the velocity of the outer
inviscid flow at Ty, assumed to be of the form

v =e(Vexp(i2f) +c.c.) +o(e), (A1)

where |V| = (1) as ¢ — 0. Note that V is tangent to I's and that &° is independent of
viscosily and ol the curvalure of U'g 1o Icading order,



Similarly, the appropriale boundary condilions [or the sircatning Now 1o be imposed
at a (horizontal) unperturbed free surface, z = 0, are

" e, = 83[‘6’ - (_F‘if’] + . —H)(ez], {A2)
Az = VIV - (FV)+2AVFE - VIV 2V -V)VF +ce] +o@). (A3)

Here, asin Scelion 2.2.2, V- and V arc the horizonial divergence and gradient operalors,
and & and V are the horizontal projections of #™ and V, respectively, with V given by
{A.1). The (oscillatory) deflection f of the free surface is taken to be

F=e(e® Lo+ o).

Note that the right-hand sides of (A.2) and (A .3) are again independent of viscosity.
In facl, Tor planar unperturbed (ree surfaces such as those considered in this paper, the
3-1 oscillatory houndary layer problem had already heen solved by Liu, in a relatively
unknown paper [91].

References

[1] M. Faraday. On the forms and states assumed by fluids in contact with vibrating elastic
surfaces. Phil. Trans. Roy. Soc. London. 121:310-340, 1831.
[2] I. Miles and D. Henderson, Parameltrically fovced surface waves, Ann. Rev. Fluid Mech.,
22:143-165, 1990.
[3] A. Kudrolli and J. P. Gollub. Patterns and spatio-temporal chaos in parametrically forced
surface waves: A systematic survey at large aspect ratio. Physica 1. 97:133—154, 1997,
[4] M. [liguera. (rscilaciones Débilmente no fineates en Puentes Liguidos no Axilsimétricas,
docloral (hesis, Universidad Politéenica de Madrid, 1998,
[5] T.M. Vega, E. Knobloch, and C. Martel. Nearly inviscid Faraday waves in annular containers
of moderately large aspect ratio. Physica D, 154:313-336, 2001.
[6] M. Iliguera, J. A. Nicolds, and I. M. Vega. Weakly nonlinear non-axisymmetric ascillations
of capillary bridges al smull viscosily. Phys. Fluids, in press, 2002,
[7] H.Sc¢hlichling. Berechnung ebener periodischer Grengschichistrdomungen. Phys. Z., 33:327-
335, 1932,
M. 5. Longuet-[liggins. Mass transport in water waves. Phil. Trans. Roy. Soc. A, 245:535—
581, 1953,
[9] N. Riley. Steady streaming. Ann. Rev. Fluid Mech., 33:43-65, 2001.
[10] N. Padmanabhan and T. J. Pedley. Three-dimensional steady streaming in a uniform tube
with an oscillating elliptical cross section. J. Fluid Mech., 178:325-343, 1987.
[11] 1. Lighthill. Acoustic streaming in the ear itself. /. fluid Mech.. 239:551-606. 1992,
[12] N.Riley. Acouste streaming aboulaeylinder in orthogonal beams. J Flnid Mech., 242:387-
394, 1992,
[13] B. Yan. D. B. Ingham. and B. R. Morton. Streaming flow induced by an oscillating cascade
of civcular cylinders. S Fluid Mech., 252:147-171, 1993,
[14] O. M. Pillips.  The Dynamics aof the Upper Ocean. Cambridge Univ. Press, Cambridge,
1977,
[15] A.K.Liuand 8. H. Davis. Viscous attenuation of mean drift in water waves. J. Fluid Mech.,
81:63-84, 1977,
A1) D Craik. The drift velocity of water waves. [ fluid Mech., 110:187=205, 1982.

|&

[16



[17]
[18]
[19]
[20]
[21]
[22]

[23]

[24]
[25]
[26]
[27]
28]
[29]
130]
[31]
132
[33]
[34]

[35

—

[36]
137]
[33]

139]
[40]

[41]

A DD Craik. Wave Interactions and fluid Flows. Cambridge Univ. Press, Cambridge.
1985.

M. Iskandarani and P. L.-F. Liu. Mass lransporl in three-dimensional waler waves. . Fluid
Mech., 231:417-437, 1991.

A 1D.D.Craik and 8. Leibovich. A rational madel for Langmuir circulations. S, fuid Mech. .
73401126, 1976.

5. Leibovich, On wave-currentinleraction (heories of Lungmuir circulations. Ane. Rev. Fluid
Mech.. 15:391-427. 1983,

D J. Mollot, I. Tsamopoulos, T. Y. Chen, and A. Ashgriz. Nonlinear dynamics of capillary
bridges: lixperiments. [ [{uid Mech., 255:41 1435, 1993.

AL V. Anilkumar, R, N, Grugel, X, F. Shen, C. P Lee, and T, G. Wang, Conlrol of thermo-
capillary conveclion in a liguid bridge by vibralion, J. Appl. Phys., 73:4165-4170, 1993,

J. A, Nicolds, D. Rivas, and J. M. Vega. The interaction of thermocapillary convection and
low-frequency vibration in nearly-inviscid liquid bridges. /. Angew. Math. Phys., 48:380—
423, 1997.

1. A, Nicolds, D Rivas, und 1. M. Vega, On the sleady streaming {low due o high-frequency
vibration in nearly-inviscid liquid bridges. J. Fluid Mech., 354:147-174, 1998.

M. Jurish and W. Loser. Analysis of periodic non-rotational W striations in My single crystals
due to non-steady thermocapillary convection. f. Cryst. Growth, 102:214-222_ 199().

H. C. Kuhlmann, Thermmeocapillary Convection in Models of Crystal Growth, Springer-Verlag,
New York, 1999.

P A. Milewski and D). J. Benney. Resonant interactions between vortical flows and water
waves. Part 1: Deep water. Stud. Appl. Math., 94:131-167. 1995,

I Mashayek and N. Ashgriz. Nonlinear oscillations of drops with internal circulation. Phys.
Fluids, 10:1071-1082, 1998,

I A Nicolds and 1. M. Vega. Weakly nonlinear oscillations of axisymmetric liquid bridges.
J. Fluid Mech., 328:95-128, 1990.

T. 3. Benjamin and A_ 1. Hlis. Self-propulsion of asymmetrically vibrating bubbles. /. fluid
Mech., 212:65-80, 1990,

C. C Mued and X, Zhou, Paramelric resonance of a spherical bubble. . Fluid Mech., 229.29—
50, 1991.

7. C.Vengand 1.. (5. LLeal. Translational instability of a bubble undergoing shape oscillations.
Phys. Fluids, T:1325-1336, 1995,

L. M. Hocking., Waves produced by a verlically oscillaling plale. J. Fluid Mech., 179:267—
281, 1987,

G. W, Young and 8. H. Davis. A plate oscillating across a liquid interface: Effects of contact-
angle hystheresis. S [luid Mech., 174:327-356, 1987.

H. K. Molial.. Viscous and resistive eddics near a sharp corner. . Fluid Mech., 18:1-18,
1964,

E. B. Dussan V. On the spreading of liquids on solid surfaces: Static and dynamic contact
angles. Aan. Rev. I'luid Mech., 1 1:371-00, 1979,

5. Douady. lixperimental study of the araday instability. [ Fluid Mech.. 221:383-109,
1990,

1. Bechhoefer. V. Ego. 8. Manneville. and B. Johnson. An experimental study of the onset of
parametrically pumped surface waves in viscous fluids. J. Fluid Mech., 288:325-350, 1995,
1. Lamb. Hydrodvnamics. Cambridge University Press. Cambridge, 1932.

C. Marwl and E. Knobloch, Damping of nearly inviscid waler waves, Phys. Rev E, 56:5544—
5548, 1997,

M. Higuera. I. Porter, and E. Knobloch. Heteroclinic dynamics in the nonlocal parametrically
driven nonlinear Schridinger equation. Physica 1), 162:155-187, 2002,



[42] I Simonelli and 1. P. Gollub. Surface wave mode interactions: liffects of symmetry and
degencracy. [ Fluid Mech., 199:349-354, 1989,

[43] Z.C. Feng und P R, Selhina, Symmelry breaking bifurcutions in resonant surface waves., J,
Fluid Mech., 199:495-518, 1989,

[44] 5. Ciliberto and 1. P. Gollub. Pattern competition leads to chaas. Phys. Rev Letr., 52:922-925,
1984.

[45] S. Ciliberto and I. P. Gollub. Chaolic mode compelition in parametrically lorced surface
waves. J. Fluid Mech., 158:381-398, 1985.

[46] M. Higuera. J. A. Nicolas, and J. M. Vega. Linear vscillations of weakly dissipative axisym-
metric liquid bridges. Phvs. fluids A, 6:438-450, 1994,

[47] C. Murtel, I. A, Nicolds, and J. M. Vega. Surface-wave damping in « brim(ul circular eylinder.
. Finid Mech., 360:213-228, 1998, Scc also Corrigendum, 373:379, 1998,

[48] J. W. Miles and D. M. Henderson. A note on interior vs, boundary-layer damping of surface
waves in a circular cylinder. . fiuid Mech., 364:310-323, [998.

[49] 1. Towell, 'I. Tleath, CC. McKenna, W. 1lwang, and M. |% Schatz. Measurements of surface-
wave damping in a conlainer. Phys. Flids, 12:320-326, 2000,

[50] A. Davey and K. Stewartson. On three-dimensional packets of surface waves. Proc. Roy.
Soc. London A, 338:101-110, 1974,

[51] 1. W. Miles. Symmetries of internally resonant, parametrically excited surface waves. fhys.
Rev. Lett,, 63:1436-1437, 1989,

[52] E.Knobloch, A. Mahalov, and J. E. Marsden, Normal (orms [or three-dimensional paramelric
instabilities in ideal hydrodynamics. Physica D), 73:49-81, 1994,

[53] M. Nagata. Nonlinear l‘araday resonance in a box with a square base. [ Fluid Mech.,
200:263-284, 1984,

[54] M. Umcki. Faraday resonance in reclangular geomelry. J. Fluid Mech., 227:161-192, 1991,

[55] T.W. Miles. Resonantly forced surface waves in a circular cylinder. J. Fluid Mech.. 149:15-
31,1984,

[56] P.1.. [Tansen and P. Alstrom. Perturbation theory of parametrically driven capillary waves at
low viscosity. J. Fluid Mech., 351:301-344, 1997.

[57] H. Schlichling, Boundary Layer Theory, MceGraw-Hill, New York, 1968,

[58] G. K. Batchelor. An Introduction to Fluid Dynamics. Cambridge Univ. Press, Cambridge,
1967.

[59] J. A. Nicolds and J. M. Vega. 3-13 streaming flows driven by oscillatory boundary layers
allached Lo solid and [ree boundarics. Preprind, 2000,

[60] M. Umeki. Particle transport by angular momentum on three-dimensional standing surface
waves. Phys. Rev. Lert., 67:2650-2653, 1991,

[61] 7. C. l'eng and §. Wigains. 11luid particle dynamics and Stokes drift in gravity and capillary
waves generaled by lhe Faraday instability, Nonlinear Dynamics, 8:141-160, 1995,

[62] I.D. Crawiord, E. Knobloch, and H. Riccke. Period-doubling mode interaclions with circular
symmetry. Physica D, 44:340-390, 1990.

[63] 5. P. Decent. "The nonlinear damping of parametrically excited two-dimensional gravity
waves. Fluid Dvn. Res., 19:201-217, 1997,

[64] I. W. Miles, On Faraday waves, . Fluid Mech., 248:671-683, 1993,

[65] 8.D.Decent and A. D. D. Craik. Hysteresis in Faraday resonance. J. Fliid Mech., 293:237—
268, 1995,

[66] 5. P Decent and A. 1D, D. Craik.  On 1imit cycles arising from parametric excitation of
slanding waves, Wave Morion, 25275294, 1997,

[67] M. Funakoshi and 5. Inoue. Surface waves due Lo resonant horizontal oscallation, J. Fluid
Mech., 192:219-247, 1983.

[68] 1. R. Lide. Handbaek af Chemistry and Physics. CRC Press. Boca Raton, 1], 1995,



169]
[70]
171

[72]

173

[74]

1751

[76]

[77]

[78]

[79]

[80]

[81]

[82]
[83]
[84]
[85]
[85]
[87]
[88]
[89]
[90]

[91]

1 €. Virnig, A 5. Berman, and P. R. Sethna. On three-dimensional nonlinear subharmonic
resonant surface waves in g (uid, Part IT Experiment. Trans, ASME E, 55:220-224, 1987,
M. Silber and E. Knobloch. Paramelrically exciled waves in square geomelry, Phys. Letl A,
137:471-494, 1989,

M. Nagata. Chaotic behavior of parametrically excited surface waves in square geometry.
frur J. Mech. B/ {uids, 10:61-606, 1991,

D. Armbruster, I. Guekenheimer, and S. Kim. Resonant surface waves in a square conlainer,
In M. Singer, editor, Differential Equations and Computer Algebra, pages 61-70. Academic
Press, New York, 1991.

M. Silber and 1i. Knobloch. Tlopf bifurcation on a square lattice. Nenlinearify, 4:1063-1107.
1991.

J. Mochlis and E. Knobloch, Forced symmelry-breaking as o mechanism [or bursting., Phys.
Rev. Lent,, 80:5329-5332, 1998,

li. Knablach, 8. M. 'Tobias, and N. (). Weiss. Modulation and symmetry changes in stellar
dynamos. Mon. Not. B, Astr Soc.. 297: 11231138, 1998.

1. Guckenheimer and P Holmes, Newlirear Qscillations, Dynamical Systems and Bifurca-
tions of Vector Fields. Springer-Verlag, New York, 1983,

W. E. Langford. A review of interactions of Hopf and steady-state biturcations. In G. L.
[3arenblatt, (5. loass. and 12, 12, Joseph, editors. Nealinear Dynarnics and Turbulence, pages
215-237. Pilman, San Francisco, 1983,

V. Kirk. Murging of resonance longues. Physica D, 66:267-281, 1993,

G. Dangelmayrand E. Knobloch. Dynamics of slowly varying wavetrains in finite geometries.
In 1L 11 Busse and .. Kramer, editors, Nonlinear Fvelution of Spatic-lemporal Structures
in Dissipative Continuous Systers, pages 399-410. Plenum Press, 1990,

G. Dungelmayr and E. Knobloch, Hopl bilurcalion with broken circular symmelry. Newlin-
carity, £:399-427, 1991.

S. Fauve. Parametric instabilities. In G. Martinez Mekler and T. H. Seligman, editors.
Dynamics of Nonlinear and Disordered Systens, pages 67-115. World Scientific, Singapore,
1995.

1. D. Crawlord and E. Knobloch, Symmelry and symmelry-breuking bilurcations in uid
mechanics. Ann. Rev. Fluid Mech., 23:341-387, 1991,

S. Douady, §. l'auve. and (3. Thual. Oscillatory phase modulation of parametrically forced
surface waves. frwrophys. Leif., 10:309-315, 1089,

A. 5. Landsberg and E. Knobloch., Dircclion-reversing traveling waves.  Phys, Lefl. A,
159:17-20, 1991.

E. Martin, C. Martel. and J. M. Vega, Drift instability of standing Faraday waves. J. Fluid
Mech., in press, 2002.

S. Ciliberlo and I. P. Gollub,  Phenomenological madel of ¢haolic mode compelilion in
surface waves, Nuovo Cimento D, 6:309-316, 1985,

E. Meron and 1. Procaccia. Low-dimensional chaos in surface waves: Theoretical analysis
of an experiment. Phys. Rev. A, 34:3221-3237, 19806.

M. Umeki and 'I. Kambe. Nonlinear dynamics and chaos in parametrically excited surface
waves, J. Phyy. Sec. Japan, 48:140-154, 1989,

1. D. Crawford. Normal forms for driven surface waves: Boundary conditions, symmetry.
and genericity. Physica D, 52:429-457, 1991.

113 Crawford. Surface waves in nonsquare containers with square symmetry. Phyvs. Rev.
Leit., 67:441-444, 1991,

P. L.-F Liu. Mags transporl in the free surface boundary lavers. Coastal Eng., 17:207-219,
1977.



