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Abstract

Novel constructions of empirical controllability and observability grami-

ans for nonlinear systems for subsequent use in a balanced truncation style

of model reduction are proposed. The new gramians are based on a gen-

eralisation of the fundamental solution for a Linear Time-Varying system.

Relationships between the given gramians for nonlinear systems and the

standard gramians for both Linear Time-Invariant and Linear Time-Varying

systems are established as well as relationships to prior constructions pro-

posed for empirical gramians. Application of the new gramians is illustrated

through a sample test-system.

AMS subject classification numbers: 93B05, 93B07, 93B15, 93B40

Key Words: controllability and observability gramians, model reduc-

tion, balanced truncation, Lyapunov equation

1 Introduction

The development of effective model reduction techniques is of paramount im-
portance for all areas of engineering. These include control system design for
nonlinear mechanical, chemical and electronic engineering systems, the design of
Radio-Frequency (RF) integrated circuits and many others [1] – [18].

In linear system theory (e.g. see [19], [20] and the references therein), the
input-output interaction of a system is characterized by the so-called gramian
matrices or gramians, which can be subsequently used in a model reduction pro-
cedure, called balanced truncation [19] – [22]. For general nonlinear systems the
notion of gramians and balancing has been derived from the more general concept
of controllability and observability (or energy) functions [23] – [26]. However, the
calculation of the energy functions is computationally expensive and the result
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is rarely an explicit solution [9], [23] – [26]. For these reasons, it is very difficult
to apply this method to large-scale problems [1]. Several recent research papers,
[1] followed by [5] – [8], have presented a specific framework for the analysis and
model reduction of nonlinear models for the purpose of control termed empirical
balanced realization. In the present paper, some shortcomings of this approach
as regards the determination of the empirical gramians are detailed in Sections 3
and 4 and an improved approach for the computation of the empirical gramians
is suggested in Section 5, Definitions 3,4. Numerical tests are given in Section 6.

2 Empirical gramians and balanced truncation

As in Lall et al. [1], the non-linear system under consideration is of the form:

ẋ(t) = f((x(t), u(t)) (1)

y(t) = h(x(t))

where f : Rn × R
p → R

n and h : Rn → R
q are nonlinear functions, the function

u(t) ∈ R
p is regarded as an input signal to the system and the function y(t) ∈ R

q

is an output signal. A simple idea, used extensively in the analysis of autonomous
nonlinear systems, is to compute a trajectory x(t) on the time interval [ti, tf ] and

to consider the integral [17]
∫ tf

ti
x(τ)x(τ)T dτ as an approximation of the exact

gramians for subsequent construction of an appropriate projector (the superscript
T denotes transposition). The method proposed in [1] for general nonautonomous
systems stems from this basic idea. Data, taken either from experiments or from
numerical simulation and consisting of sampled measurements of x(t) and y(t) ,
is used to parametrize the trajectories for the nonlinear system.

The following constructions for empirical controllability and observability grami-
ans are then proposed in [1]:

Let M ≡ {c1, c2, . . . , cs} be a set of s positive constants, Tn ≡ {T1, T2, . . . , Tr}
– be a set of r orthogonal n× n matrices and E

n ≡ {e1, e2, . . . , en} be the set of
standard unit vectors in R

n .
Definition 1. Let T

p, Ep and M be given sets as described above. For the
system (1) the empirical controllability gramian is defined as:

P̂ =

r
∑

l=1

s
∑

m=1

p
∑

i=1

1

rsc2m

∫ ∞

0

Φilm(t)dt (2)

where Φilm(t) ∈ R
n×n is given by Φilm(t) = (xilm(t) − x̄ilm)(xilm(t) − x̄ilm)T

and xilm(t) is the state of system (1) corresponding to the impulsive input u(t) =
cmTleiδ(t). Here δ(t) denotes Dirac’s delta function. The mean w̄ of a function
w ∈ L1 is given as:

w̄ = lim
t→∞

1

t

∫ t

0

w(τ)dτ. (3)
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Definition 2. Let T
n, En and M be given sets as described above. For the

system (1) the empirical observability gramian is defined as:

Q̂ =
r

∑

l=1

s
∑

m=1

1

rsc2m

∫ ∞

0

TlΨ
lm(t)T T

l dt (4)

where Ψlm(t) ∈ R
n×n is given by Ψlm

ij (t) = (yilm(t) − ȳilm)T (yjlm(t) − ȳjlm)

and yilm(t) is the output of system (1) corresponding to the initial condition
xilm(0) = cmTlei with input u = 0.

The purpose of using the sets M, Tn and E
n in Definitions 1 and 2 is an

attempt to ensure that the entire region of feasible values of initial inputs/states
is covered and probed. The set En defines the standard directions and the set Tn

defines ’rotations’ of these directions. The set M introduces different scales for
each direction of the initial states/inputs.

In what follows several shortcomings associated with Definitions 1 and 2 are
brought to light and novel proposals for improvement are suggested.

3 Linear time-varying systems

An examination of Linear Time-Varying Systems (LTVS) in the context of model
reduction is both nontrivial and instructive. The controllability gramian pro-
posed in Definition 1 for a non-autonomous system ẋ = f(x, t) does not yield
the standard controllability gramian for such systems [2], [17]. Furthermore, the
derivation of the standard gramian for LTVS provides a motivation for the new
improved constructions suitable for nonlinear systems. In what follows, for sim-
plicity, only one-dimensional inputs and outputs are considered, i.e. p = q = 1 in
(1), (2). Consider a LTVS:

ẋ(t) = A(t)x(t) +B(t)u(t) (5)

y(t) = C(t)x(t)

The fundamental solution of (5) is defined as the solution of:

Θ̇(t) = A(t)Θ(t), Θ(0) = I (6)

where I is the corresponding identity matrix. For example, if A is a constant
matrix, (as for the linear time invariant system – LTIS) then one simply recovers
the very well known solution Θ(t) = exp(At). The general solution of (5) is:

x(t) = Θ(t)

(

Θ−1(t0)x(t0) +

∫ t

t0

Θ−1(τ)B(τ)u(τ)dτ

)

(7)

Now let t0 → −∞, t = 0 and x(−∞) = 0. From (7) it follows:

x(0) =

∫ 0

−∞

Θ−1(τ)B(τ)u(τ)dτ =

∫ ∞

0

Θ−1(−τ)B(−τ)u(−τ)dτ (8)
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and as usual, one can define a Controllability operator:

C : L2([0,∞)) → R
n as

∫ ∞

0

dτΘ−1(−τ)B(−τ)• (9)

and Controllability gramian as:

P =

∫ ∞

0

Θ−1(−τ)B(−τ)BT (−τ)Θ−1T (−τ)dτ (10)

From (7) with t0 = 0 and u ≡ 0 it follows y(t) = C(t)Θ(t)x(0) and therefore the
Observability operator can be defined as:

O : Rn → L2([0,∞)) as O = C(t)Θ(t) (11)

and the Observability gramian is:

Q =

∫ ∞

0

ΘT (τ)CT (τ)C(τ)Θ(τ)dτ (12)

Strictly speaking, the gramians for LTVS must depend on t as shown in [2],
[17]. However, for the purposes of model reduction, constant gramians are pre-
ferred and the constant versions (10) and (12) are used as approximations. The
expressions in (10) and (12) are generalisations of the gramians for LTIS where
Θ(t) = exp(At) [1].

4 Bilinear representation of nonlinear systems

Another very interesting class of nonlinear systems that it is instructive to examine
are the bilinear systems; moreover a wide class of nonlinear systems (subject to
suitable restrictions– [2], [10], [18]), may be represented in a bilinear form. The
bilinear system is also interesting because there is an exact solution when the
input is a delta-function and thus the gramians (2) and (4) can be tested explicitly.
Consider the following bilinear system:

˙̂x(t) = Â(t)x̂(t) + N̂ x̂(t)u(t) + B̂u(t) (13)

y(t) = Ĉx̂(t)

Again, it is assumed that all the eigenvalues of Â have negative real parts. Let
the sets employed in Definition 1 be as follows: M ≡ {c1, c2, . . . , cs}, T ≡ {1}
and E ≡ {1} since p = q = 1. Thus the inputs to the system are of the form
u0(t) = cmδ(t) . The solution to (13) with an input u0(t) = cmδ(t) is:

x̂11m(t) = eÂt

(

I +
cm

2
N̂ +

c2m
4
N̂2 + . . .

)

B̂cmθ(t) (14)

where θ(t) is the unit step function. Note that the sum in (14) is finite since N̂

is nilpotent by construction [2], [10]. (x̂11m(t) corresponds to x̂ilm(t) with i = 1,
l = 1). Following from Definition 1, the Controllability gramian is therefore:

PBL =

∫ ∞

0

eÂτ B̄N B̄T
NeÂ

T τdτ (15)
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where

B̄N B̄T
N =

s
∑

m=1

(

I +
cm

2
N̂ +

c2m
4
N̂2 + . . .

)

B̂B̂T

(

I +
cm

2
N̂ +

c2m
4
N̂2 + . . .

)T

.

(16)
Since the bilinear system (13) assumes a linear form when the input is zero, the
Observability gramian is as usual:

QBL =

∫ ∞

0

eÂ
T τ ĈT ĈeÂτdτ (17)

It is not difficult to prove that the gramians in (15) and (17) are solutions to the
following Lyapunov Equations:

ÂPBL + PBLÂ
T + B̄N B̄T

N = 0 (18)

ÂTQBL +QBLÂ+ ĈT Ĉ = 0

However, there are the following problems with the gramians in (15) and (17).
Firstly, they do not relate to the known gramians for the bilinear systems [14] –
[16], [18]. Secondly, (14) suggests that the Krylov space for the Controllability
operator is span{Âp1N̂p2B̂} for pi ≥ 0. However, the known Krylov space [10] is
span{B̂; Âp1B̂; Âp1N̂Âp2B̂; . . . ; Âp1N̂Âp2N̂ . . . Âpk B̂} for pi > 0.

5 Nonlinear systems

The nonlinear system in (1) has a rather general form. In [5], [7] it is suggested
that the use of the empirical gramians (2) and (4) is limited only to control-affine
systems. Indeed, for example, for a system, depending quadratically on the input,
the square of the Delta-function cannot be defined.

For the present analysis, let the nonlinear systems be of the form:

ẋ(t) = f(t, x(t)) +B(t)u(t) (19)

y(t) = h(t, x(t))

It contains two terms: a dynamical term (or drift term) f(t, x(t)) and a source
term (or diffusion term) B(t)u(t) . Clearly, LTVS systems are of the form in (19).

Instead of considering different inputs and ’mean values’ as in Definitions 1
and 2, it is more natural to analyse the system in a vicinity of an equilibrium point
when u(t) = 0 . Consider the vicinity of an isolated asymptotically stable equi-
librium point (steady–state solution) which is supposed to be a constant solution
and is chosen for simplicity at x = 0, i.e. f(t, 0) ≡ 0. It is also assumed that the
system does not leave the region of attraction of this equilibrium point when the
input is applied for the initial data used. If the system exhibits multiple steady–
state solutions, then the analysis may be applied separately in the vicinity of each
solution provided that extra care is taken to ensure that the system does not leave
the region of attraction of the corresponding (asymptotically stable) equilibrium
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point. Of course, the constructed gramians will therefore only provide a basis for
reduction locally in the vicinity of the selected equilibrium point.

In this work, it is proposed to make use of an approximation for the most natu-
ral object – the fundamental solution Θ of (19) that would generalize the exp(At)
term for linear systems. This is reasonable since the projection Krylov spaces
for linear systems are generated by their fundamental solution exp(At). The con-
structions would, in general, depend on Θ for negative times which is unavoidable.

For linear systems, of course, there is a simplification since
(

eA(−t)
)−1

≡ eAt so
this does not present a limitation but in general, Θ−1(−t) 6= Θ(t) , cf. (10).

Let xilm(t) be the solution of (19) with u ≡ 0:

ẋ(t) = f(t, x(t)) (20)

and with initial condition:
xilm(0) = cmTlei (21)

It is assumed that the initial condition (21) does not take the system outside the
region of attraction of the equilibrium point x = 0. Then the ’state-space average’
of the ’nonlinear’ fundamental solution may be defined as:

〈Θ(t)〉 =
1

rs

s
∑

m=1

r
∑

l=1

n
∑

i=1

1

cm
xilm(t)eTi T

T
l (22)

where the setsM, Tn, En previously defined for Definitions 1 and 2 are employed.
Indeed, for a LTVS, xilm(t) = Θ(t)cmTlei and therefore 〈Θ(t)〉 ≡ Θ(t).

The following constructions of empirical controllability and observability grami-
ans for the nonlinear system (19) are now suggested:

Definition 3. For the system in (19), the nonlinear controllability gramian is
defined as:

P̃ =

∫ ∞

0

〈Θ(−τ)〉−1B(−τ)BT (−τ)〈Θ(−τ)〉−1T dτ (23)

where 〈Θ(t)〉 is as described in (22).
Of course, this construction requires that 〈Θ(−τ)〉 is invertible for all τ ≥ 0.

(23) is obviously a generalisation of (10).
Definition 4. For the system in (19) the nonlinear observability gramian is

defined as:

Q̃ =

∫ ∞

0

zT (τ)z(τ)dτ (24)

where z(τ) ∈ R
n is given by:

z(t) =
1

rs

∑

i,l,m

1

cm
yilm(t)eTi T

T
l

and yilm(t) is the output which corresponds to an initial state xilm(0) = cmTlei
and a zero source term. The motivation for this construction is as follows:
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For a linear output y(t) = C(t)x(t), since 〈Θ(t)〉 ≡ Θ(t) the observability
gramian (12) is:

Q =

∫ ∞

0

〈Θ(τ)〉TCT (τ)C(τ)〈Θ(τ)〉dτ (25)

Since

C(τ)〈Θ(τ)〉 =
1

rs

∑

i,l,m

1

cm
C(t)xilm(t)eTi T

T
l =

1

rs

∑

i,l,m

1

cm
yilm(t)eTi T

T
l = z(t)

then the construction in (24) is confirmed as a generalisation of (12).
Both gramians (23) and (24) when applied to LTVS (or LTIS) thus result in

the usual gramians i.e. (10) and (12). This confirms the motivation for their use
in preference to (2) and (4).

6 Illustrative numerical example

The circuit employed is the nonlinear RC ladder shown in Fig. 1 (frequently
employed as a test circuit for model reduction techniques [10] – [13], [18]). The
example enables comparisons to be made between the existing formulations for
empirical gramians and those proposed in this contribution. The nonlinear re-
sistors (a diode in parallel with a unit resistor) have the constitutive relation
i(v) = (e40v − 1) + v (where i represents current and v represents voltage). The
capacitors have unit capacitance. The input is a current source u(t) = e−t enter-
ing node 1 and the output is the voltage taken at node 1, Fig 2(a). This is an
example of a gradient system (e.g. according to the definition in [27]), since the
equations describing the system may be written in the form:

v̇ = −∇V +Bu(t) (26)

y = Cv ≡ v1(t)

where B = [1 0 . . . 0]T , C = BT and

V (v) =
1

40
e40v1 − v1 +

v21
2

+

n−1
∑

k=1

(

1

40
e40(vk−vk+1) − (vk − vk+1) +

(vk − vk+1)
2

2

)

.

(27)
The function V (v) represents a strong Lyapunov function for the gradient sys-

tem as described in [27]. This then enables the application of Lyapunov stability
criterion to show that v = 0 is an asymptotically stable equilibrium point of the
system (when the source is set to zero).

The number of nodes in the system is n = 30. The time interval chosen for
consideration is t ∈ [0, 1]. The reduction of the original system to a system of
order 3 is implemented using several different methods.

In order to compare the new gramians with the existing constructions for
empirical gramians (Definitions 1,2 ), a bilinear representation [2], [10], [18] of the
system in (26) – (27) is employed. The reason for doing this is that an exact
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solution exists for a bilinear system when subjected to impulsive inputs. This is
of importance in the formation of the gramian as specified in Definition 1 as it
necessitates subjecting the system to impulsive inputs. A bilinear approximation
with two terms in the Taylor’s series expansion is employed. The resultant bilinear
model is of order 30+ 302 = 930. For information, the Root Mean Square (RMS)
error between the result from the nonlinear model (26) and the full order– 930
bilinear approximation (13) is 1.0× 10−2, Fig 2(b).

As a benchmark, consider the simplest reduced model (of order 3)– that which
employs only the linear part of the bilinear approximation to form the gramians
necessary for balancing. To be specific, the gramians employed are the solutions
of the following Lyapunov equations:

ÂPBL + PBLÂ
T + B̂B̂T = 0, ÂTQBL +QBLÂ+ ĈT Ĉ = 0. (28)

The RMS error in comparison to the full order– 930 bilinear model is 2.6× 10−2,
Fig 2(c).

Now consider the use of the gramians (18) formed on the basis of Definitions
1 and 2 with dim(x̂) = 930, M ≡ {−5,−0.5,−1,−0.1, 0.1, 0.5, 1, 5}, T930 = {I}.
The RMS error in comparison to the full order– 930 bilinear model is 7.5× 10−2,
Fig 2(d). Moreover, it is observed that when M ≡ {c1}, i.e. consisting of only one
constant, the reduction process is ill-defined for some values of c1, e.g. c1 = 0.20;
0.22; i.e. the reduced model is unstable.

Finally, consider the case where the gramians formed on the basis ofDefinitions
3 and 4 are employed for reduction purposes. The integration over τ in these
constructions is replaced by a discrete summation. The resulting RMS error (in
comparison to the original model) is 5.3 × 10−5, Fig 2(e). This indicates the
superiority of the novel constructions for the purposes of model reduction via a
balancing technique.

7 Conclusions

The paper has proposed new constructions for empirical gramians for subsequent
use in a method of model reduction based on ’balancing’. The important new
concept involved in the formation of the novel empirical gramians, (23) and (24),
is that of a ’state-space average’ of the ’nonlinear’ fundamental solution (22).

The method is successful if the state-space average of the nonlinear funda-
mental solution is well defined. Of course, this is not the case for all nonlinear
systems as the solution of (20) may not exist or may only exist for specific choices
of the initial data. However, the method is applicable for systems for which the
nonlinearities are not too severe, e.g. for the so-called ’weakly’ nonlinear sys-
tems as described in [10]. For such systems, it is expected that the ’nonlinear’
fundamental solution is ’close’ to the exponential form that corresponds to the
fundamental solution for a linear system. The new empirical gramians coincide
with the usual gramians for both LTVS and LTIS.
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Figure 1: Nonlinear circuit
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Figure 2: Comparison between output from nonlinear model and reduced-order
models: (a) Solid line – Nonlinear model (26); (b) Dash-dotted line – Bilinear
approximation (13); (c) Points – Reduced bilinear system with gramians based
only on linear part of bilinear approximation (28); (d) Dashed line – Reduced-
model with gramians (18) based on Definitions 1,2. (e) Dotted line – reduced-
order model where the reduction is based on the novel Empirical gramians – (23)
and (24).
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