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Abstract

A stochastic theory of fluvial landsurfaces is developedtifansport-limited erosion,
using well-established models for the water and sedimeré$luThe mathematical mod-
els and analysis is developed showing that some aspectadsgugace evolution can be
described by Markovian stochastic processes. The laratmsgfare described by non-
deterministic stochastic processes, characterized bwtstital quantity the variogram,
that exhibits characteristic scalings. Thus the landsedaare shown to be SOC (Self-
organized-critical) systems, possessing both an iniigaidient state and a stationary state,
characterized by respectively temporal and spatial sgalirmThe mathematical theory of

SOC systems is developed and used to identify three stochmmetesses that shape the
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surface. The SOC theory of landsurfaces reproduces edtalilinumerical results and

measurements from DEMs (digital elevation models).

1 Introduction

The evolution of the surface of the earth is a challengingfaascinating problem. Although the
basic physical processes eroding the surface and movingsh#ing sediment are understood,
modeling them is in general very difficult. Not only can thefaoe consist of different types
of material, rock, sand, soil and vegetation, most surfatesalso extremely complex both in
composition and topography and over geological time tectoplift and earthquakes can have
a profound effect on topography. Thus a basic problem in gephology is to model all of
these different effects and then put them together in a maheal model that can produce
realistic landsurfaces. Such a model would give a valuatsigght into the various forces that
shape the surface and be a guide and a useful tool to gealsgislying complex formations in
geology.

The complexity of most landsurfaces and the instabilityarhe raises a fundamental mod-
eling question and a question of predictability. Shouldi&rrfaces be modeled by physically
based deterministic models, expressed as partial difietesguations (PDES), or should they
by be modeled as stochastic particle systems (cellulamzatty) given the inherent influence
of noise in the environment on these system? That noise @aitbus in landsurface evolution
is clear when variations in rainfall rate, rock composifi@nd topography are considered. A
related question is what features of topography are praalietgiven some initial topography.
It is known that realistic landsurfaces can be created bygbmmodels using a random walk of
water and sediment if they are seeded by quenched noise.udowules leaves something to be
desired from a scientific perspective because one woulddikenderstand the forces that play

a role in the creation of the surface and what features ofuhface are predictable and which



are not.

Research on the evolution of river networks since the workoffton [53] may be clas-
sified according to the class of model used. A first class ofefsodased omliscrete mod-
eling techniquesthese are analogous to models for phase transitions ist&tat mechanics,
has been remarkably successful in simulating the geomatdcopological characteristics of
stream networks [30, 31, 58, 2, 29, 32]. Many of these modhea/ever, such as those used
by Shreve [63, 64], illustrate how simple statistical agmtoes that essentially ignore physical
mechanisms can give rise to good descriptions of many feswifrriver networks. Such mod-
els typically provide little physical insight into the untieng phenomena. Researchers who
attempt to incorporate physically-based mechanisms iistorete models have typically found
it necessary to adopt strong assumptions concerning thation of channelized flows. The
well-known model of Willgoose et. al. [30, 31], for examp&mploys two partial differential
equations to determine two states: the first being surfas@aebn and the second an indicator
variable of channelization. While the second variable asdjoverning equation lead to real-
istic simulations, it is difficult to relate either to wels&blished principles of fluid flow and
erosion and hence there is some mistrust of the results ontie!|.

Another class of models has focused on the searchdioational principleg[1, 57, 27, 12]
using both discrete and continuous modeling approachesh ®odels have led to simulation
results suggesting that fluvial networks may be governedrbple optimality principles. Sin-
clair and Ball [12], for example, recently indicated howadberosion rules lead to an optimality
principle. These approaches, however, do not provide adequodels of the emergence of
channelized flows while the variational principles evokee typically difficult to justify on
physical grounds.

A third class of models is based @ontinuous modeling techniques, conservation con-

ditions, and constitutive relationshipsxpressed in terms of PDEs. Such models have led



to (1) some understanding of early instabilities undedyihe initiation of channelized flow
[72, 37, 23, 24, 2, 73, 36]; (2) a significant understandintpematurephases of drainage basin
evolution[7, 71, 74]; (3) a rigorous derivation of variatad principles governing drainage basin
evolution [71]; and, quite recently, to (4) valuable inggmto the emergence of channels and
related scaling laws (see [11, 21, 22, 10] and below).

Developments in nonlinear, deterministic and probaliilistathematics during the last two
decades are now ripe for a new and powerful synthesis. Thesei¢s raise the prospect for
advances in the geosciences that used to be out of reach bématical modeling and they
are also leading to significant advances in the theory ofineat stochastic partial differential
equations (SPDESs).

For a long time the unsurmountable problem in the theoryrddarface evolution was the
role of noise and instabilities. Erosion is driven by smalke because both the eroding surfaces
are unstable and small noise may trigger a large event. Thstsdilities will typically take the
small noise that always exists in nature and in numericalprgations and amplify it until it
become large enough to drive the system. The most challgpgablem is how highly colored
the noise is when it comes through the magnifying glass eddag the nonlinearities. The small
noise in the surroundings and in computations may be whitandormly distributed in time
and space, but the large noise that drives these systemariglgtcolored, or non-uniform, both
in space and time. In this paper we will investigate how n@d#ought into the third class of

models discussed above.

1.1 The Noise Creation

The details of the noise creation can be understood in rgugklfollowing manner. The tiny
perturbations caused by the small noise in the environnremt gxponentially for a while be-

cause of the exponential growth created by the instalsiliBeit they do not grow exponentially



forever as they would do if the system was linear. Insteachtidinearities will saturate the

exponential growth and instead one gets noisy terms that@alenger small. Moreover, since
different modes get saturated in different ways and at iiffetimes, the large noisy terms are
no longer white. They become colored in some way that is clteriatic to the system. In turn

this large colored noise will drive the system and createaaattteristic noise-driven state.

The first conclusion we can draw from this argument is thatvéwvg surfaces are not pre-
dictable. They are deterministic in the sense that the isoisitare determined by the initial
conditions and one can make infinite-dimensional mathe@latiodels that describe them, but
we cannot predict where the mountain or valley will be lodate when the earthquake will
occur and how big it will be. However, these processes pessasistical behaviors that are
predictable. For example how rough the surface will be asifipé by the variogram can be
predicted. It is then appropriate to adopt the language @badvility theory when discussing
these system and think about their solutions as randomblasizhat possess deterministic sta-
tistical properties.

The situation in geomorphology is in many respect analogouke situation in chaotic
dynamics some forty years ago. Then scientists were facédproblems that could be posed
as initial value problems for ordinary differential equeis (ODES) but produced solutions that
are not predictable due to sensitive dependence on intiadliions, or instabilities magni-
fied so much by tiny random perturbations that predictabilias lost. This is referred to as
the Butterfly Effect The difference is that whereas the ODE systems were fiimtemsional,
landsurface erosion is an infinite-dimensional phenomgdescribed by partial differential

equations (PDES).



1.2 lll-posed Problems

The infinite-dimensionality made erosion mathematicatijouchable until recently. The rea-
son was that the PDE initial value problems that one coula poesnfinite-dimensions were
ill-posed and this led researchers to the conclusion tlestetiproblems could not be solved, or
at least not numerically. Indeed this is true for linear peafs that are ill-posed in the strongest
sense, because then the smallest modes will grow the fastdsafter a short time the in-
significant details represented by these modes will coralyisaturate any computation. More
recently it has been realized that this is not the case foymlgmosed nonlinear problems. The
reason is that although the smallest modes grow initiakyféistest they are also saturated the
fastest and simply end up contributing to the tail-end ohHrgquencies of the colored noise.
The numerical analysis of nonlinear SPDEs is still a forrhldachallenge and nonlinear
PDEs accompanied by ill-posed problems that turn themsehie nonlinear SPDEs are even
harder to solve. Not until recently has significant progiessn made on how to solve such
equations numerically. The first observation was that expthethods that are the methods of
choice for most computationally intensive problems beeafstheir speed, were completely
useless. These methods require a significant amount otettiflissipation to be put in by
hand. Whereas they can reproduce the large structures prabéems, they get the production
of the colored noise wrong every time. Its characteristiacgtire (the color) is simply de-
stroyed by the amount of artificial numerical viscosity. Thenerical methods that produce the
correct color aremplicit method447], because although these methods also create numerical
dissipation, it is much smaller and created in such a cdetitdashion that it does not signif-
icantly alter the coloring of the noise. Thus implicit medlsocreating very small numerical
dissipation capture the magnification of the noise by thtalkties and produce numerically
the stochastic processes with the correct statisticalgrtiggs. The price one pays is that the re-

sulting computations are very intensive, the implicit noets are much slower than the explicit



ones, and to produce realistic landsurfaces and earthgwaka fault system requires a large
computational facility dedicated to these computatiortgs Was another reason why earth sci-
entists had not attempted such computations earlier; ndtrenently with the emergence of

powerful Beowulf clusters of workstations have these lasgale parallel computations become

economically feasible.

1.3 SOC Systems

The stochastic processes describing landsurface evolati® characterized by the statistical
guantities associated to them. The evolution of the sizdistjuantities can be described in
the following way. Initially they are not stationary but gran time as a polynomial with
a characteristic leading coefficient called the temporafjhmess coefficierff. There is an
equivalence between the spatial and the temporal scale giwveanother coefficient called
the dynamic coefficient coefficient, o~ x*. Eventually the system reaches a critical size or
feels the influence of the boundaries and the temporal roughesaturates into a statistically
stationary state where the statistical quantities do nmiv@mny more, but the system fluctuates
about the statistically stationary state and the fluctnatiare correlated. In this stationary
state the statistical quantities are characterized by wnpatial scaling, given by the spatial
roughness exponept Only two of those exponents are independent because ofjtineadence

of the space and time scales. Their relationships is givehdgquation,

(1) X=pz

The statistically stationary state is determined by anriaw measure living on infinite-
dimensional phase space. This invariant measure detesmipgobability density that per-
mits a computation of all the relevant statistical quaesitand it is invariant with respect to

the temporal evolution of the stochastic process. Typidhié invariant measure lives on an
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Figure 1. The scaling exponents of the variogram are showa famction of time, for an
initial landsurface with a slope of 8.5 degrees, on a logglog. The temporal evolution shows
four different exponents (slopes), along with their regras coefficients, and a statistically
stationary state (with slope zero) is emerging, furthesthéaright.
infinite-dimensional subspace and the temporal roughgmiogess projects the dynamics onto
this infinite-dimensional subspace. If the invariant meass colored so that the different
directions, in the infinite-dimensional space occupiedh®y measure, have different weights
then we will call the systeran SOC systemMoreover, if the temporal roughening is charac-
terized by more than one temporal roughening coeffigggnk = 1,-- -, n, then the process is
calledmulti-fractal. This means that there are statistical quantities whoseofagrowth during
the initial transient are not related. The multi-fractalg a signature of the complexity of the
process and such systems will be called an SOC systemsowitiplex transients

In the physics literature SOC systems have been studieddmgaime and go by the name
of self-organized-critical system. The (somewhat vagdegniwas that the system somehow
self-organized during the initial transient and formed ®GSattractor” in the stationary state.
The mathematical theory developed for the landsurfaceuéeol showed that no attractor ex-
cept the trivial one exists but the system projects onto agate which is therefore attracting

during the transients. Instead of an attractor there is aarignt measure living on this sub-



space and this invariant measure completely determinestd#tistically stationary state. The
stationary state is critical in the sense that the motiomgsdic on the subspace and both large
and small events are possible. Moreover their distribusatetermined by the associated prob-
ability density.

The abundance of power laws in nature was noticed and stbgiedany authors during
the 19th century, see for example Willis [80], Zipf [82] anchivlelbrot [46]. Many time-series
including electrical noise and stock market price variatior example, show power-law tails
in their power spectra and this is called 1/f noise, see H&&s In 1987, Bak, Tang and
Wiesenfeld [5, 6] proposed SOC as an explanation of the itlgigfi 1/f noise in nature. The
book by Per Bak: How Nature Works : the science of self-orgeahicriticality [3] contains
many applications of SOC to natural phenomena.

We will now give a brief introduction to SOC from a physicalipoof view following
Sneppen [67] and Dhar [16], with references for readers wdrat ¥o read more of this literature.
Bak, Tang and Wiesenfeld [5] observed that mountain rangesy, networks and coastlines
have fractal structure, meaning that some correlationtfondas a power law behavior. For
mountain ranges the correlation is the variogram (widtkcfiom) that scales as a function of

the lag variable, or the distance between two locations,

V(X7y7t) ~ ‘X_y|x

with characteristic exponelt in the statistically stationary phase. The characterestponent
takes the valueg = 0.5 for channelizing surfaceg,= 0.66 for young surfaces angd= 0.75
for mature surfaces, in the transport-limited situatiaee ELO]. The width function played an
important role in the analysis of surface growth, see Kardarisi and Zhang [38]. The shape
of a river basin is determined by both its young and matures@hand the first and the third

scaling laws above together produce Hack’s law [34]. Hatdis says that the length of the



main river in a river basin scales with the area of the rivesitbhéo the power %8, see [10].
Actually, the exponent in Hack’s law has a rangg®-00.7 depending on whether the river basin
is young our old, small or large, see [22, 18, 19, 20] for detailhe ranges in Hack’s law will
be important for us below and we will associate them witheldgference processes shaping
landsurfaces, initial channelization, adolescent graavith maturation. Another example is the
well-known Gutenberg-Richter law [33] for earthquakese Tiiterpretation of the existence of
such a power law is that the system does not possess a chistacgeale instead all scales are
connected. The absence of a characteristic scale meanbehdtails of the system behavior
are not important, instead statistical properties mustdesl to describe the system as a whole
and these statistical properties should be scale invariant

The SOC terminology originated in statistical mechanicemlsystems exhibiting correla-
tions with power law decay over a wide range of length scalesaid to have critical correla-
tions. This is because correlations much larger than thgthescale of interactions were first
studied in equilibrium statistical mechanics in the nemgftiood of critical phase transitions.
One needs to fine-tune some physical parameters (for exaerplgerature and pressure) to
specific critical values. In nature this is rather unlikedyntappen for example the growth of
a mountain range by uplift and its erosion is unlikely to be finned to any parameters. The
systems that we are interested in are not in equilibriunretievariation in time but average
properties are roughly constant in time. These system aguiéntly open and dissipative. We
can for example think about the influences of uplift and r@irdn a mountain range and the bal-
ancing dissipation of sediment by erosion. Thus we consitese states to ben-equilibrium
steady states

Bak, Tang and Wiesenfeld argued that the dynamics whichrggedo the robust power-law
correlations seen in the equilibrium steady states in paturst not involve any fine-tuning of

parameters. It must be such that the systems under themahatolution are driven to a state at

10



the boundary between the stable and unstable states. Statk then shows long range spatio-
temporal fluctuations similar to those in equilibrium a#i phenomena. They also proposed a
system whose natural dynamics drives it toward and thentaiasit at the edge of stability: a
sandpile. Their model was actually not a very good model dai sand, [35], however it was
solvable and generated a large number of papers, see [731ahfibr recent reviews. It also
inspired experiments on piles of long-grained rice [28} ttanstitute an SOC system.

The sandpile model proposed by Bak, Tang and Wiesenfeldeanlised explicitly. This is
of course very useful because it mean that various progestithe system can then be spelled
out in all details. In [16] a slight generalization callectbirected Abelian Sandpile Model
(ADM) is solved and it is shown that ADM is equivalent to Sategger’'s model of river basins
[62], Takayasu’'s aggregation model [68] and the voter maosks [45] and [25]. This means
that all of these models occupy the same universality cléstihe same scaling exponents. In
a recent paper Dhar and Mohanty [17] showed that the diresgtedpile models fall in the same
universality class as directed percolation; see [25].

We do something similar in this paper with the continuum nedeamely solve the linear
SPDEs driven by colored noise, see the next two sectionss@aibout all their scaling laws. It
will be clear that all scaling exponents in a reasonableeamgne-dimension are possible. This
means that there exist solvable SPDEs occupying all théaaiuniversality classes. Then
we will see in our applications to the nonlinear landsurfageations that three universality
classes are picked out by these nonlinear equations: omlegf@hannelizing surfaces, another
for young surfaces and the third for the mature ones. In ahbeidhood of these surfaces
the nonlinear landsurface equations occupy the same gailitgrclass as the corresponding
solvable linear SPDEs. It is obvious that our SOC systemga@ueévalent to the SOC systems

in the physics literature because both are completely cteraed by their scaling exponents.
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1.3.1 Temporal scaling invariance

The statistical quantities characterizing the SOC systeawe scaling invariances initially as
functions of time and eventually as functions of space. guFé 1 the temporal evolution of the
variogram is shown as a function of time on a log-log plot. Tigare shows that the temporal
evolution grows polynomially and is characterized by salkstaling exponen{s, k=1,---,4
which are shown as the slopes on the lines fitting the nunetata. This implies that there
exist several cross-over regions with different spatialiags. The first characteristic exponent
for the maturation process, see [10], is of the ofdge= 0.127, which is in agreement with
the theory, and the higher order exponents are smaller;tes@nthe graph levels off. This
signifies that the system has entereddtatistically stationary statthat is characterized by the
exponen34 = 0. The data is composed of an ensemble average over five ruanems with
an initial condition consisting of a smooth surface with@psg of 85 degrees, where each run
is done with a different random seeding of the initial datar &ach run the time evolution is
averaged over the correlations of different spatial distarand a range of upslope positions.
It is clear from the plot that the maturation process in lamfige evolution is multi-fractal in
its temporal evolutions and eventually becomes statigrahiferent values of the initial slope

produce similar results.

1.4 Complexity in Geomorphology

The evolution of the surface of the earth under the influericeatonic uplift, weathering and
erosion is a multi-scale multi-fractal process. In a sevigsapers Smith, Birnir and Merchant
[71, 74, 65] developed a family of landscape models, basetherSmith-Bretherton model
[72], that capture the fundamental processes at work wiaegslurfaces are eroded by water.
They showed that in numerical simulations these landscayukels capture the emergence and

development of stable, dendritic patterns of valleys addas. In a subsequent paper [10] they
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demonstrated the manner in which these models also capieieffects of random influences

in driving the processes of landscape evolution. In padictheir results provided a physical

basis for explaining various fundamental scaling relaiops [44, 70, 55, 42, 60, 61, 59, 48,

54, 69, 62, 58, 32, 56, 21, 22] that characterize fluvial landss and supply a bridge between
deterministic and stochastic theories of drainage basituguen.

Birnir, Smith and Merchant [10] employed several specifchtéques from the emerging
theory of complex surface evolution (for a review see [4X] f8]) in investigating the models
discussedin [71, 74] as systems driven by noise or stochasitesses. First, they characterized
the statistical structure of eroding surfaces and flows iimseof variousstructure functions
(or variogram) that represent the statistical correlastvacture of complex surfaces. Second,
they applied known results from this theory concerning threnfof scalings that emerge from
appropriate universality classes of PDEs when subjecteahtbom driving forces of a specific
form. The rationale for such application is that systemstging to the same universality class
manifest qualitatively similar behaviors. Birnir et al.salconnected part of the theory to the
concept of self-organized criticality (SOC) as proposedbk et al. [5, 6, 4, 49, 3, 67, 15, 16,
17].

Careful studies of Hack’s exponent, see Dodds and Rothmigr2 2 18, 19, 20], show that
it has three ranges apart form very large and very small sch&re the exponent is close to
one. The three ranges seem to be shaped by a different typatef flow. The first range is
characterized by the roughness coefficieff of the water flow and corresponds to Brownian
motion, see Edward and Wilkinson [26], of water over chaizitel slopes, we will associate
this range with theChannelization ProcessThe second range is associated with shock for-
mation, bores and hydraulic jumps in the water flow. It cquoesls to quenched and pinned
Burger’s shocks, see Parisi [50] and Sneppen [66], and iscteized by the roughness coef-

ficient 2/3 of the water flow, see Welsh, Birnir and Bertozzi [78]. Welwadll this process of
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landsurfaces growing and evolving from a convex to a corfcstvape thé\dolescence Process
The largest range by far in Hack’s exponent is associatdd twrbulent water flow, see Birnir
[9], and is characterized by the scaling exponeft.3We will associate this range with the
Maturation Process

In this paper we develop the basic mathematical theory fo€ S@stems and apply it to
nonlinear partial differential equations describing theriation of fluvial landscapes. We first
solve a SPDE driven by white noise in Section 2 producing theadled Edward-Wilkinson
process [26] that models the short time and stationary behakinfinite-dimensionaBrown-
ian motion. Then in Section 3 we give a mathematical definibbSOC systemand solve a
SPDE driven by noise that has polynomial coloring in time, this is the noise that we will
encounter in the evolution of mature landsurfaces. An examjith exponential coloring in
time is also discussed. We compute the variogram for thesatiens and show that they have
both a transient and a stationary state as the Edward-Wdkiprocess does, and an invariant
measure that lives on an infinite-dimensional subspace.etti@ 4 we apply the theory to
the nonlinear PDEs describing transport-limited landste$ that were analyzed numerically
in [10]. This allows us to give a complete statistical chéedzation of the three processes
that govern the evolution of such landsurfaces: the Charat®n Process that channelizes the
surface, the Adolescence Process that evolves it from aegdiova concave surface, and the
Maturation Process that controls the evolution of the neasurrface. In Section 6 we discuss
the applications, limitations and possible extension#isftheory of landsurfaces and whether

it produces that most general SOC theory. Section 7 containsonclusions.

1The use of these terms here and below follows their use in ggaimlogy which is opposite to the mathemat-
ical definition
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2 The Stochastic PDEs

We write the generic linear Stochastic PDE for SOC systentisdriorm
(2) dU =AUdt+dW, xc Q, tcR"

whereU (x,t) is the solutionA denotes the Laplacian avd is a Wiener process. We assume
thatQ is either a box with periodic boundary conditions or a geldoanain with either Dirich-

let or Neumann boundary condition. The initial conditiomgigen by the formula
U (x,0) = up(X)

whereup(x) can either be a deterministic function or a stochastic E®aex.

Now suppose that the Wiener process can be expressed as

3 W = S BX
(3) k;Bta(O()

were theB's are standard independent Brownian motions anchee the eigenfunctions of
the negative LaplacianA on Q with eigenvalued,. Then the stochastic initial value problem

can be solved in the following manner. We seek a solution®fdihm

Ukt = 3 Aal
k=1

where theA's are independent stochastic processes. A substitutiorthietstochastic PDE

gives the stochastic ODE initial value problems

dAS = — N At +dBY, teRT

15



AS=08, k=0,1,...

These problems are easily solved

Al eAktAng/t e M-SRk
0

where the integral is the usual Ito’s integral and &f's are the so-called Ornstein-Uhlenbeck

processes.

Now consider the stochastic initial value problem,
dU = AUdt+dW
with periodic boundary conditions
U(xt)=U(x+1L,t); Ux(Xt) =Ux(x+1L,t), t>0,
where the 1 are unit vectors IR" and initial conditions
ux0)=c, 0<x<L, i=1,..,n

W (dx, dt) now denotes a white noise process that is white in both spatéirae and charac-

terized by its expectation

E(W(dx dt)W(dX,dt')) = d(x—x)d(t —t")dxdxdtdt’.
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The solution of this initial value problem is

U(xt) =c+ Z Alex(x)
k;éO

where

A= //@ W(dy,ds), keZ?,

andg denotes the complex conjugate of the basis funaomhe basis functions are Fouries

components (exponentials) because of the periodic boymdaditions.

Lemma 2.1

Atk:/te)\k(ts)d k
0

where B are standardR-valued independent Brownian motions.

Proof:

E(AAY) // /t//a y)ee(y)e -9 M U=SE (W(dy, dgw(dy, ds))

tat’ oL |
- /0 A ér((y)e'(/ (y>dy e_)\k(t_s)e_)\k/(t _s)dS

wheret At’ denotesnin(t,t’),
_ / " e MtH)-29qg  if k=K,
0

and zero otherwise.
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On the other hand,
E( / Le M9 k. / t e?\k/(t’s')ng’) -/ t / " e Mt-Sig M%) (g BEdK)
0 0 0.Jo

= / e 2gs i k=K,
0

and zero otherwise. Hence both sides of the equality represeeo mean Gaussian processes

with same covariance function. QED

Now let E denote the expectation and V the width function afoggam, which is the square

root of the second momepp,
Vz(xvyvt) = E(|U (yvt) -U (Xat)|2)7

then, when the initial conditions are constant, we obtain

Lemma 2.2
_ 1_e*2)\kt
E(AtkAtk):Tk,
and
> 1-e 2
V2 X, y,t) = - —e X2
=3 “on &Y &)l

Proof: Lett =t’in the above proof to obtain

7 t _ 1-—e 2
E(AKAY) = /0 e Pt Ids— =2

The width function is computed in the following manner,

00 00

EUD-UxDD= 5 5 EAN)ady) -adX)l?,
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since E{A{‘E) =0, if k# j, and otherwise by the formula above, this is equal to

© 1 e—Z)\kt

2 o lew el

QED
If the initial conditions are not constant they usually gaveontribution to V.

The above formula for the width function is perfectly gemdmat we will now specialize
to one dimension and a domain that is an interval with pecibdiundary conditions. In this
case the basis of eigenfunctions of the Laplacian are thedfmomponents with the following
eigenvalues ,
Z%d() , keZ.

The estimates can be carried out in higher dimensions bafghkcations that we have in mind
are to a one-dimensional width function. This means thatavedentify the intervalO, L] with

periodic boundary conditions as the cir&e We letaA b denote the minimum ad andb. The

following estimates are proven in Walsh [76]; see also Edveard Wilkinson [26].
Lemma 2.3 The following two estimates hold

© 1_eg L\? L 2V2
2\ 211 V21 L

k=—o0

and

Proof:



always holds. In particular if

then it follows by the integral test that

2 1-e M @ 1
2 732/ du
k; 2\ 1 2(2m)?

On the other hand, if

then
S l-eM =1 - o
2y <Y a2 [ Tdur [ S
& e & ° 7
2
_Lvt oz 1LY
V21 L 2\ 21

The proof of the second inequality is

ety T\ [Ty T 1 2ri 2rid
_ _ _ - (1_eT'<y—x> _e—T'<y—x>+1)
vL VL vL WL

= ‘Esinz (%(y—x)) < é <1A (%(y—X)Y) :

Therefore,
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QED

The width function characterizes both an initial transistate and a stationary state for the
stochastic procedd (x,t), these two different states are characterized by t (tenipana x

(spatial) scalings of the width function.

Theorem 2.1 The stochastic process defined by the equation (2) and tlse 1i8) possesses

both a transient and a stationary state. Initially, duringransient growth,

V2 L 2\/21n
(Xy’)f[( )A<\f2n L> t

whereas in the stationary state

Bl
| — |

1 1
\% t) <\y\/=ly—X|2.
o) < /Ty

Proof: From Lemma 22,

4 2 1-e2 /1K 4 2 1-e 2
_ - - —(y— < - -
L Z S|n2< C (y x)) T2 o

The result follows from Lemma.3. The second estimates also follows from Lemntaghd

the trivial estimate



QED

Theorem 2.2 There exists a Gaussian invariant measure

0 0 e*)‘kxa
u(dx) = exp{—_zw)\kxﬁ-l—ek}dx: k:er (\/W) dxc

on the phase space H L%(S!), where x= S x«& is a general vector in H, whergy =

%In()‘—#) is the normalization factor of the Gaussian.

The proof of Theorem 2.2 is a special case of the proof of Térad@.2 and Corollary 3.2.

3 SOC Systems

We will now define processes that we call SOC systems or SOepses.

Definition 3.1 A stochastic process U is an SOC system if it possesses hmaiiséent growth

state and a statistically stationary state satisfying thiéofving four conditions:

1
1. The process possesses a scaling, so the width functierpy scales with a temporal
roughness exponeftduring the initial transients and the spatial roughnessagnty

in the statistically stationary state.

2. There is an equivalence of time and spasee|k|* given by the temporal coefficient z
X=zp

and the systems possesses a spatial scale L (system siee,cuppff, wavelength se-
lection) that is an upper limit for the spatial scaling. A lemlimit for the length of the

time-transients is given by~ L%
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3. The process projects the dynamics to a subspdcef the original phase space H as

t — c0. H' = H is also permitted as a special case.

4. There exists an measure P on this subspdcand the process restricted to the subspace

is invariant with respect to this measure.

5. The invariant measure is colored; that is: the infinitelgrmyg directions in Hare weighted

(colored), with weights different from a pure Gaussian orsBonian measure.

The point of Condition 5 is that the invariant measure catwedd pure Gaussian as in Theorem

2.2. However, it can be a weighted Gaussian as in Coroll@&wgh the weightsy providing

the color. In general it will be a non-Gaussian or Poissomaasure that is colored in the above

sense.

Definition 3.2 An SOC process ha®mmplex transients the process is multi-fractal during the
initial transients, so that either the width function scalgith several different rationally inde-
pendent exponents, or homogeneous linear combinatiohs bfgher moment(s_, akpﬂ/k)%,

n > 2, scale with exponentf%,, which are rationally independent @f B, # 5[3, p,g € N.

Definition 3.3 An SOC process hasmplex stationary staiéthe stationary state of the pro-

cess is multi-fractal, so that homogeneous linear comisnatof the higher moments._, akpﬂ/k

n> 2, scale with exponentg,, which are rationally independent gf X, # gx, p,g € N, in the

stationary state.

Example 3.1 We now solve the equation (2) with tieelored noise
®© 1
4) dW= S cZe ““dBfe(x).
k=0

Here the coefficients give different weight to the differeimectionsex and represergpatial

coloring whereas the exponential factas® give (an exponentiallemporalcoloring. Then
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by a similar computation as in Lemma 2.2

72th]_ e 2(A—ay)t

AK
EAA = 2(A — Q)
and the width function becomes
l—e 2(Ax—oy)t
720(kt o 2
2(x%y:t) ch v l&(y) —e(X)|~

The following estimates hold

V <Ct%,

wherep = supf’ such that

(5)

—qui-2¢
k0G0 [ — o 2P

C a constant and

\ S C |y_ X| 2X7
wherex = supy’ such that
(6) T <@
k_O,Zak_O 7\& X

The proofs are similar to the ones in Lemma 2.3.

An example of a noise that gives a process with the abovmggaiﬁ; the noise (4) with the

coefficientscy = &, p=2x—1, andAc—ax| =b K, g= X aandb being constants.

2[3'

Colored Wiener processes with spatial coloring as in exar8plave been widely studied in

the literature; see for example Dawson and Salehi [14] wtierg are used to describe random

environments, and [51]. Dawson [13] gives a good accounheél PDEs driven by both white

and colored noise. In particular, it is shown in these refees that colored noise gives colored

scalings for linear SPDEs.
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We can now show that the stochastic process with the colaves in Example (3) is an
SOC process whereas the process defined by equation (2) aredneise (3) is not an SOC

process.

Lemma 3.1 The stochastic process in Example (3), defined by equatijowi{ the colored
noise (4), is an SOC process. Moreove% i5 not a rational multiple of8 then the stochastic

process has complex transients.

Proof: Conditions 1 and 2 in Definition 3.1 are proven by Examplé 8an here be taken
to be the spatial period (system size). The third conditroDéfinition 3.1 is also proven in
Example 3 which shows that &is+ « the variance o) vanished except on the subspace where
ok = 0. Since the mean &f also decays exponentially we see that the process is pedjeato
this subspaceyy = 0, where the statistically stationary state lives, see ptard. Corollary
3.2 gives the existence of an invariant measure on this swlspnd satisfies Condition 4 of
Definition 3.1. Since this measure is a weighted Gaussidsdtsatisfies Condition 5. We need
to show that with the conditions @handq the process satisfies Definition 3.2. We will compute

the fourth moment,

lex(y) — e(¥)[*

0 _ a—2(A—og)ty2
_ — ANt (1 € )
e kZo e 4(A — a)?

2

© g 2o
+ 3 ( > ce zaktmﬁ()’) - Q<(X)|2> :
k=0

The second part of this expression scales*ady Equation 5 whet is small, the first part is

estimated as in Example 3. By the integral test

00 (1_ efZ(Akak)t)Z 00 1

Cze*4(1kt 1
k=0 G0 “ 4(Ak— ak)? K40 — a2

At?
k=0, 00

25



< (/tl/“t2 du+/ )

assuming thaty, = kp and Ak — okl = kq, whereC’, a andb are constants. The last integral

equals
1 1 2(p+q)-1
=/ t~ a
(1—2p+ 2(p+q) —1

_ct¥ta,

where B =1+ p%l andC is another constant. This shows tlipt — 3p§)1/4 scales with the

exponenf3 + 4—1q which is rationally independent @ QED

It is clear that the stochastic process in Example (3) doéshae a complex stationary
state, because its invariant measuréidis a weighted Gaussian by Corollary 3.2. This implies
that its variance and all homogeneous linear combinatibtieechigher moments scale with the

same exponent given by (6).

Corollary 3.1 The Edward-Wilkinson stochastic process defined by equ##ip with white

noise (3), does not have complex transients, and is not anBaxess.

Proof: The scaling3 = % corresponds to the long time asymptotics of Brownian mogiond

it is well know that the moments scale pg ~ t* in that case. The Edward-Wilkinson process
is the transient toward a Brownian motion and then the sgalfrthe second moment &2 =

p2 ~ 112, The same argument as in the proof of the Theorem 2.1 givesimeila poy ~ t¥/2

for the initial transients. Thus no linear combination a&# thoments can scale with an exponent
rationally independent @@ = %1. It is also easy to check by carrying the computation in Lemma
2.3 out for the higher order terms inthat all the terms scale with the exponémtThus no
other exponents appear in the scalingvof This violates Definition 3.2. Conditions 1 and
2 of Definition 3.1 are satisfied by Theorem 2.1 and Theoreng®&s an invariant measure
supported on the full spacél{ = H) and satisfies Conditions 3 and 4. However, it is a pure

unweighted Gaussian measure and thus fails Condition 5. QED
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Polynomial Colored Noise

In this section we will consider processes that are colokepdbynomially decaying noise
instead of exponentially decaying noise as in the last @ectiThis is the coloring that we
will encounter in the application to fluvial landscapes ia thllowing sections. As always we

consider a linear SPDE for a systems in the form
(7) dU =AUdt+dW, xe Q, teR™"

whereU (x,t) is the solution, and denotes the Laplacian. We assume again@hit either a
box with periodic boundary conditions or a general domaithwither Dirichlet or Neumann

boundary condition. The initial condition is given by therfaila
U <X7 0) = UO(X)

whereup(x) can either be a deterministic function or a stochastic E®aex.
We are now going to assume that the noise process is colotedrbepace and time and

can be express as

®) AW = 3 G (t+to) OB ()
k=0

were theB's are standard independent Brownian motions andihee the eigenfunctions of
the negative LaplaciarA on Q with eigenvalued,. Notice that this time-coloring of the noise
is different from (4). There the noise decayed exponegtialtime whereas here the decay is
polynomial. Then the stochastic initial value problem carsblve in the following manner. We

seek a solution of the form

Ukt = 3 Aal®
k=0
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where theAfs are independent stochastic processes. A substitutiortfietstochastic PDE

gives the stochastic ODE initial value problems
k k 3 K
dA = —MAdt+ 2 (t +1o) “%dB, te RT

Ag—u‘(‘), k=0,1,...

These problems are easily solved

t
A= e A G / (s+to) e M IdB,
where the integral is the usual Ito’s integral but now #fe are no longer Ornstein-Uhlenbeck

processes.

Lemma 3.2 Let

t
Q= Ck/o (s+1to) " Xke 219 g

then

2(x.Y;t) %Qde« ().

The proof of the Lemma is similar to the proof of Lemma 2.2.

Lemma 3.3 If ok # 0, then
lim Qk=0.

Proof:

t
fim Q= O Jim / (s+1g) Pke (t-9)gg
—® —00 0
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The last integral is of the form

t @ b(t—s) t e bz
/ ————ds= —/ ——dz
0 (S+tp)? o (t+to—2)2
by the change of variables=t —s. The integral on the right hand side of the last equation can

be split

T —bz t—T —bx
/o (t+et07—z)aOlZ+ ebT/o (t-i—toe—x—T)adx’
making the change of variables= x4+ 1 in the latter integral. Now the first integral converges
uniformly and we can take the limit— co inside the integral. The second integral converges
and we can let =t/2, then the second expression vanishes-aso because of the decay of
the exponentiale*bt/2 in front of the integral. Now lety = tx/2 andt > ty — oo, then both

expressions converge to zero. QED

Lemma 3.4 The following two estimates hold

[ee]

Q <Ct®
k:0, Gk#o

where

B: mln{'\k(g —Gk)+, ne Z+7 ke Z+7

where(-)+ denotes the positive part, and



Proof: We integrate by parts to get

00 n—1
© S Q=Y ()™ % _yin-2a)

M) G
k0G0 Erkeo%izo Mi=1(] —20k)

up to terms of higher order in Fort small the fastest growing terms has the coeffic[grt
miny k(n— 20). If only finitely manyays satisfyay # 0, the sum converges. If infinitely many

ok # 0 we can only integrate by parts as long as

(2}\k) nfle < 00,
k=0 G0

The proof of the second estimate is the same as in Examplesd that lim_.. Q{‘ =0

for ayx # 0 by Lemma 3.3. QED

Theorem 3.1 The stochastic process defined by Equation (7) and the ablooése (8) pos-

sesses both a transient and a stationary state. Initiallyirdy the transient growth,
V(x,y,t) < Ctf,
C a constant, whereas in the stationary state
V(xy,t) <Cly—xX,

where the coefficienfgandy are defined in Lemma 3.4.

The following theorem is stated and proven as Theorem Gn31i].

Theorem 3.2 Consider the stochastic PDE (SPDE)

dU = AU(t)dt+B(t)dW(t), U(0)=x,
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and suppose that A is the generator of a strongly continuems-group $) on a Hilbert space

H, and B-) a linear operator B H — H. For any t> 0 and x€ H let

Q = / ' S(9)B(s)B (9 (s)X dis
0

be atrace class operator. Then for ang ¥ the solution Ut) is a stochastic procesB(S(t)x, Q),

with mean &)x and variance Qand the SPDE possesses an invariant measure, given by

v N(0,Qw)

where

Qu = / S(9)B(S)B*(5)S'(s)x ds
0
andv is the invariant measure of the deterministic PDEs=UAU.

Proof: The assumption oA andB imply that

u(t) S(tx+/S(t— ()dW(s)

is a mild solution of the SPDE.

The transition semi-group on H corresponding to the SPDE is

0= [ 60)2SOX Q)@Y

A probability measurge M (H), M (H) is the set of all probability measures Hnisinvariant

[, ROCIAH0 = [ o(9d

if

for all boundedp onH.
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Now the simplest way to proceed is to consider the charatiefunctionaliof the measure

P,

; 1
Rte|<h,x> _ e<h,5(t)x>e77<ch,h>, xe H

Y

for a fixedh € H. We have leth(x) = €<"*> and the computation is standard. Clearly this

implies thatu is invariant if and only if
(10) a(h) = e 2<M> (s ()h).

It is this condition that we now prove. We define the measuteeto

H(dx) = f%<Q;l/2x,Q;l/2x>dx,

so that

ﬁ(h) _ ef%<Qwh,h>.

Thus
(S (t)h) = e 2<QS NS Oh> _ g-3<SHQS (>

whereh € H and

SI)Q=S (=~ 3Qth + 5Quh

and substituting this expression in f8(t) Q.S (t) in the exponential
ef%<5(t)QmS*(t)h,h> _ e%<ch,h> — 3 <Qwh,h>

e

gives
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which is Condition (10).

QED

Corollary 3.2 Let H denote the subspace(’ = Yo o,—oXe&}. There exists a weighted

Gaussian invariant measure

M
e

k:OI,_ulk:O V/ Tk / Ak

[ee]

Wdx) =exp(— Y z—txﬁ-i—ek}d)(: X

k=0, ax=0

on H', whereby = %In(%) is the normalization factor of the Gaussian.

Proof: LetH’ be the subspace éf, H' = {X =S¢ q,—0*&}. We need to proof Condition

(20). In the proof of Theorem 3.2 we defined the measure to be
Wdx) =exp{— ¥ &xﬁ}dx = e’%<Q;l/2’(’Q;1/2’(>d>(,
k=05 =0 Ck
so that
and Condition (10) becomes

(h) = e 2= pise ).

Here the operatd®.. is defined by
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thex,s being the Fourier coefficients af= 5’ oxe € H. Thus
ﬂ(S*(t)h’) _ e—%<QmS*(t)h’,S*(t)h’> _ ef%<S(t)QwS*(t)h’,h’>

whereh € H and

G
2

Ck

SHQS M= 5 e Mneg -
2\

(€M — Dheac+
k=0, 0oix=0 2Nk

k=0, =0

hkem
k=0T, =0

whereh = 5’ ,hgec is the Fourier expansion &f The last expression above is nothing but
1 1
- h/ - 00h/
S +5Q
and substituting this expression in f8(t) Q..S'(t) in the exponential

ef%<5(t)QmS*(t)h’,h’> _ e%<ch’,h’>ef%<Qwh’,h’>

gives
A(S (t)h)e 2= XM — i)
which is Condition (10). QED

The corollary is nothing but the classical computation @f fveighted) invariant measure for

an Ornstein-Uhlenbeck process.

Theorem 3.3 The stochastic process defined by equation (7) and the cblurese (8) is an
SOC process. It has complex transients if the differenceowfesof the coefficients, —

gcxk, k> 2, p,qe Z", that determine the t scaling of V, is not a rational number.
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Proof: The proof of the five conditions in Definition 3.1 is similarttee proof of Lemma 3.1.

We need to prove the condition in Definition 3.2. By the Equa(i9)

00 n—-1
(11) y Q= (P yn-zay
k=0%G =1 Mi=1(] —20) ’
=0, 0 £0 n=1k=0, o0 | 1j=1
it is clear that som@{(l will dominate initially with thet exponentn; — 2a41, wheren; is a
positive integer or zero. Later on during the initial tramds, otheQ{‘s may dominate with a
smaller exponent, — 20, etc. If the differencer, — 2as is not a rational number, then these

q
exponents are rationally independent. QED

Remark 3.1 In practice it may be impossible to check the conditions ifird&gon 3.2 or Def-
inition 3.3, because any irrational number can be appraacharbitrarily closely by a rational
one. Thus in real application we interpret these condittonsay that no low order rational

dependence can be found, or one wit very largeintegersp,q € N.

Remark 3.2 We have presented a one-dimensional existence theoryd@RIDES in this sec-
tion but all the statements apply and are similar in higheratisions. The only difference is
that in order for the stochastic processes solving the SR®Ees continuous, the spatial col-
oring coefficientsc, in Equations (4) and (8), must decay faster wtim higher dimensions;
see Walsh [76]. Moreover, it turns out that it is the one-disienal theory that applies to the
fluvial landsurfaces discussed below although these sgfare themselves two-dimensional.
The reasons are that there is a strong bias initially, intced by the initial slope of the surface
and the numerical scaling results, see [10], apply to oneedsional cross-sections, perpendic-
ular to the down-slope direction of the surface. Later orhastosion process approaches more
mature landscapes, there is an interplay between thelictitzanelization that is still active in
the bottom of the valleys along the main rivers, and the atelece and maturation processes

that act on the slopes of the mountains, perpendicular tortiml) down-slope direction. Thus
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the adolescence and maturation processes must also belgagemhe-dimensional scaling in

the direction perpendicular to the (initial) down-slopeedtion; see [10] and below.

4 Fluvial Landsurfaces

Fluvial landsurfaces are described by two coupled nontiffi2Es, see [10].H denotes the
height of the water surface arddenotes the water depth. This implies that H — h is the
height of the landsurfaces, but it is easier to describe WoéuBon in terms of the first two

variables. We therefore focus our attention on the model

oh OH . s 1
2— e . 3 2
(12) n P O [|DH|h3‘DH‘2] + R,
oH oh OH s y
n— =0 |—n3 719
(13) = —n% =0 hDH|h3|DHP }

in which we have adopted the scaling relatibfyf [H]| = [qw|/[ds] =N, n being a small parameter
andR being the rainfall rate.

We use the same boundary and initial conditions as [71, #puel a linear ridge extending
uniformly in the lateral X)-direction and defined over a rectangular domain of lerigénd
width K,

D={(xy) eR0<x<L,0<y<K},

with initial conditions corresponding to a ridge of height uniform in the x-direction and with

slopec in the y-direction,

h(x,y,0) = d(y), d(y) = ho, 0<y<K-—e¢
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(14) d(y) =ho—~

H(xy,0) = cy+d(y), 0<y<K,

and boundary conditions

h(x,K,t) = 0,

(15) H(x,0,t)= hg =h(x0,t)

corresponding to a water depth of zero at the top of the ridgeaa absorbing body of water at
the base of the ridge. While the water surface must be carglde be a free surface at the top
of the ridge, it may be viewed as consisting of finitely manysith curves that are solutions of
a nonlinear ODE (the PDE restricted to the boundary). Thesees are joined in a continuous,
but not smooth, moving boundary (see, for example, FiguraBis borrowed from [10]). The

upper boundary is characterized by the additional conuitio

qWZQS:Oa

where
_ OH
~[OH]

UH

5 y
h3Y|OH |20
|OH | |OH

h3|OH |2, qs=

COw

are the water and sediment flux respectively, see [71], atiig the absence of any flux of water
or sediment over this boundary. Singg andgs are expressed as powerstodndH in the
constitutive relations, these conditions imply that thaishing of the water depth dominates
the blow-up of the gradient ¢4 (in gy andgs) and that the normal derivative bf may become
infinite at the upper boundary

n-OH(x K, t) = oo.
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We will choose the values of the sediment transport paraswete 2,6 = 2, which are realistic
values for a range of landsurfaces. We note that there isgmifisant variation of our results
in a whole neighborhood of such valuesyoédndd. The boundary conditions on the lateral
boundaries of the ridge at= 0 andx = L are taken to be periodic, modeling a linear ridge of
infinite extent.

Water flowing down a uniform erodible sediment surface fosmsll channels that quickly
cover the whole surface, see [71] and [10]. We will first exaenivhat happens following this
initial channelization process. In particular, we assuh@ pur perturbed solutions take the

form

h(X,y,t) = h]_(X,y,t) +V(X7y7t>7 H (X7y7t> = H]_(X,y,t> + U(X,y,t)

whereH;(x,y,t) represents a convéyortion of an interfluvial ridge, see Figure 3 at 10% of
the sediment eroded. The functibn(x,y,t) is the depth of water flow over this portion, and
V(X y,t),u(x,y,t) are respectively the small perturbations to these questitiThe equations

linearized about the convex profiles are

ov 52 [OH;
16 220 — O.|Zhd—21_
(19 o {3 1|DHl|1/2V} i
s [Ou 1.5 OH,
O-|h?———— — Zh3(OHy - Ou)——— |,
ll|DH1|1/2 oM (OH: )|DH1|5/2]
9 [ 3
u 1 1 2 5/2 52 [OH, 1 2 5/2
(s 1 5 OH,
17 O |h3(—= +2h3|0H¢*?)(0H; - Ou) ————
a7 + _ 1(2n+ 1|0H <) (OH: u)\DH1|5/2 ’

2Here and below the meaning of convex and concave is opposteir mathematical definition in accordance
with the use of these terms in geomorphology

38



The first equation is a hyperbolic equation¥airiven by[Ju. The second equation is a parabolic
equation foru driven byv and[v.

Because water flows down the gradient of the surfidgéx,y,t), we may view the first

equation as a hyperbolic PDE in one space dimension. Naifelg let u = =i denote the

~ |OH,|
unit vector in the direction of the gradient of the water aad, we can write the first equation
in the form

(18) 20V

. 5 % 1/20V
nN°5p = 3MIOHI 25+ gy tv + f(xyt).

where the scalas parametrize the direction of the gradie%ﬁ,: u-[v. This equation is ana-
lyzed in the Appendices in [10], where it is shown titatevelops shocks if the profiles about
which we linearize are convex have knick-point singularities.

The original nonlinear system (12,13) can be completelyyaed in the direction of the
maximal (negative) gradient ¢ because then it becomes one-dimensional. This is done in
[78] and to some extent in [79]. It is shown that an initiallydar profile develops a shock in the
water flow, when a small perturbation is inserted at the tdps $hock is a bore that propagates
downstream; in the wake of the shock is another shock in thengarrface, a hydraulic jump
that digs up sediment. In the increased water volume bettneestationary hydraulic jump and
the traveling bore sediment is deposited. If this processpeated in several storms it results
in a convex hillslope as in Figure 3 at 10% eroded.

The typical profile of the water surface is illustrated in dig 2 borrowed from [78]. It
shows a propagating bore in front and stationary hydrauhay in the back; the origin is the
top of the slope, with increased water height in between.driggnal height of the landsurface
isy = 0. The upshot of all of this is that since the water is rathéioumly distributed over the
whole surface, up to the formation bify, the small white noise is magnified inf@arge colored

noise Namely, the statistics of bores and hydraulic jumps aredlod pinned Burger’s shocks,
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change in H

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X

Figure 2: The profile of the water surface with a bore and adyldy jump

see [50] and [66]. In this phase the surface is evolving ratq@dly and it seems appropriate to
call this theadolescencef the surface. We will see below that the adolescence phassepses
its own characteristic scaling.

After the initial channelization some channels grow inteerivalleys separated by ridges
and this landscape evolves through adolescence, see [@11@} toward a mature landscape
that persists for a long time. The water flow down the slope ofadure landscape and the
resulting scaling of the water (and land) surface is difiefeom the scaling of channelization
or the adolescence. To find and analyze this other scalingnearize equations (12) and (13)
about the separable solutions, see [71] and [65], repriesgetiite mature landscapes of valleys

and ridges

H= HZ(X7y7t> +8U(X,y,t), h= hZ(X7y't) +£V(X7y7t>7

whereHy = Ho(X,y)T(t), hy = ho(x,y)T‘l%(t), are the separable solutions of the equations
(12, 13). The form of the equations that we obtain @iox, y,t), v(x,y,t) by this linearizion

process is the same as that characterizing the early pefiodamnel emergence discussed

3As in our previous analysis, we employ sediment transpadmater valuey = & = 2, noting that similar
results hold for parameter values in a neighborhood of these
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above, namely (16) and (17), but with the terrhgx, y,t), hi(x,y,t) replaced by the separable
solutionsHy, ho.

Again, the first equation is a hyperbolic equation Yodriven by [Ju and the second is a
parabolic equation fau driven byv andv. Since the first equation is really a hyperbolic PDE
in one space dimension, exactly as in equation (18), wededc¢hlais parametrize the direction

of the gradient to obtain

ov 5 5 ov
20V _ 913 1/29V
(29) n P 3h2|DH2\ s

+ g(xy,t)v + f(ut).
A straight-forward analysis of this equation, presentednnAppendix in [10], shows that its
solutions develop shocks, for separable surfaces witpé3lsingularities, since concave slopes
with knick-points are the dominant feature of the matureasagiple landscape, as illustrated
in Figure 3, at 60% of the sediment eroded. More importardtytfie mature surfaces the
nonlinear water equations (12) have turbulent solutiogs[39]. This turbulent water flow feeds
sediment divergences and generates colored noise in dailied equations, see [10].
However, analogous to the adolescent phase, the linessedichent equation is simply a
reflection of what happens in the full nonlinear equatior®.(IThese nonlinear PDEs can be
analyzed, as above, in the direction of the maximal gradéttie separable surfaces and this
is done in [78] and [79]. Now the noise is also colored and thisring process is analyzed
in great detail in [78]. Once the convexity, created betwdenbore and the hydraulic jump
discussed above, meets the lower boundary a small conésitgated. This produces a shock
in the gradient of the sediment flow; its profile in the rivatlie called a knick-point. The
shock travels upstream; once it get all the way to the top efhitislope a concave profile
has been carved out; see Figure 3 at 60% eroded. The arritia ddnick-point at the upper

ridge completes the evolution of the tranport limited ripeofile but a similar evolution is also
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9.5

8.5

Z(m)

10% Eroded Land Surface Cross—Sections 10,20,30,40,50,60,70,80,90m Upslope

60% Eroded Land Surface Cross—Sections 10,20,30,40,50,60,70,80,90m Upslope

Figure 3: Transverse Sections at 10m separation on therigy&idges at 10% and 60% Eroded
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taking place on all the hillsides of all mature landsurfadssres and hydrolic jumps are widely
observed and it is well known that knick-points (rapidsyélaupstream in time.

The coloring process described in [78] proceeds as follovsmall perturbation at the
lower boundary is turned into small cavity in the hillslop&ieh then travels upstream. In
Figure 4 borrowed from [78] we see the slopély of the water surface as the knick-point ap-

proaches the upper boundary. Now the small perturbaticmagnified into a singularity in

1 T T T T T T T T T

0.5F 4

O Il Il Il Il Il Il Il Il Il
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 4: The slope of the water surface as a function of tlvendtmpe direction, showing a
knick-point approaching the upper boundaryx at O.

the derivative of the slope, that is highly colored in space @epresented by a Holder contin-
uous function; see [78] for more details. Moreover, sin@rdhs very little water on top of
the mature ridges, the distribution of the shocks is no longeform in space. We conclude
that the equations linearized about the separable surtaeedriven by large noise which is
highly colored in space and polynomially colored in time dwuéhe decay of the separable sur-
faces in time. This flow over a knick-point seems to be a pynexample of one-dimensional

turbulence, see [9] for further analysis.

5 The Channelization, Adolescence and Maturation Processe

Channelization and Adolescence
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In this section we will discuss the three stochastic praeestetermined by the equations
(12) and (13) linearized about the initial channelizingface (o, Ho), and the convexif, Hj)
and concavelb, Ho) surfaces respectively.

Consider the linearized equation describing the Charetéiz Process

5
ou 1.3 5/2
o \DHoll/z(ﬁ+h8\DH0|/)D”
5 _ 5 OH
i3 s 5/2 Oy)—0
(20) + O |:h0(—2r] +2hO‘DHO‘ )(OHo Du)|D|_|O|5/2}

52 OHy 1 .2 _ . s
O-|=h = 4+ 2h3|OHo|*
+ |:3 O|DHO|1/2(n+ O| 0| )V:|7

Initially the channels are very small, and the slopelp| is going to be very small. We will
5
3
make the assumption thfﬁ% < constant, except on a set of measure zero. Then ignoring

terms that are small the equation (20) becomes

0 0
u aAu-l—c—V

(21) o ox

5
wherea andc are constants. The reason for this is that the rﬁfém is approximately a
constant and all the terms multiplied ByHop| are small and can be ignored. Thus the equation
(20) reduces to the equation considered in Section Pyifs white noise. To verify this we
solve the equation

ov ov 2

(22) Ng =bs + kZOd Brex(x)

obtained from Equation (18), withl; replaced byHp, by ignoring terms that are small and
adding the noise in the initial water flow. We have also cagdtehe power off by a small term

(IOHo|) on the right hand side of the equation dnid a constant. Now setting= 0 it becomes
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clear thatg—‘s’ = u-Ovis white noise.

Next we solve the SPDE

(23) dU = AUdt+dw

where

(24) W= Bfe(x)
k=0

is our model for the (white) noise term in equation (20) whbeecs are the one-dimensional
eigenfunctions of-A andB{s are independent and Brownian. Then an analogous procéto th

of Theorem 2.1, recalling that the initial water surfacelig0), proves the following theorems.

Theorem 5.1 Assume that the last term in equation (20) can be modeled kig wbise, then

the Channelization process u defined by equation (20) is aaEbWilkinson process and
H = Ho(0.xy0) + 3 A0
constitutes Brownian motion of the channelizing surfageeVery fixed y, where the
Al e MAK | cé /O t e M9 gk

are independent Orstein-Uhlenbeck processes.

Theorem 5.2 The Channelization Process possesses a transient groatthwhere the width

function, of the slop&lH, grows with a temporal roughness expori‘emft%1

V((%Y), (zy),t) <ti.

The process eventually gets into a statistically statigretate, where the width function has a

4The notation'x,y), (z y) indicates that the lag variab#e- x is in the direction of thex axis.
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spatial roughness coefficient éf
1
V((xy),(zy),t) <Clz—x2.

There exists an invariant measure residing on the wholeepac
Corollary 5.1 The Channelization Process is nhot an SOC process.
Proof: The proof is the same as the proof of Theorem 2.2 and Cordldry QED

The numerical simulations in [10] are done by consideringgavariablez— x in the x direction

for a fixedy (upslope direction)x is called a scaling exponent\f scales with the exponent
X over a range of upslope valugsall the way from the lower to the upper boundary. The
scaling brakes down close to the boundaries because ofriflagnce. The theorem proves the
numerical observations in [10], see also [11]. Because @bihs caused by the initial slope
Ho = cy-+d(y), OH, but notH, scales initially and the bias causes the scaling expoment t
appear ag/2, see the appendix in [10] for the details. Moreover, iflitiadhe water deptth
scales as Brownian motion, in the computations, lendingstgo our modeling of the noise
(24).

We consider the equations (12) and (13) linearized abouh#heonvex surfacenh(, H1),

5
h3 s
u _ D[ 1 (1+thH15/z)Du]

ot IOH Y2
5 1 5 UH
‘ 3 3 5/2 5 71
(25) + 0O {hl(—2n+2h1|DHl| )(OH1 Du>|D|_|1|5/2}
52 [0OH, 1 2
EEREL e G
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We have linearized the equations (12) and (13) about a fixefllgH (x,y,to) = Hi(X,y),
h(x,y,t0) = h1(X,y). The variables describes perturbations of the water depth; it solves arhype
bolic equation and will develop shocks but more importatitly solutiondH; (andh;) contain
the bores and the hydraulic jumps as described in the prewection. Thus the last two terms
in the equation (20) contailarge colored noisg where the colog = 2/3 is similar to that of
shock solutions of Burger’s equation with multiplicativ@ise and a pinning force, see [78] and

Parisi [50] and Sneppen [66].

5
hd .
Lemma5.11f0< |W\00 < o in Q except on a set of measure zero, then the operator

5
h? 1 3
Au = D-[DHil/z(n-l—thHlE’/z)Du]
s 1 8 OH;
O |h3 (== +2h3|0H,|%?)(0H1 - Ou)————
+ 0 [+ lon P O oo T

is dissipative and generates a continuous contraction ggoup.

Proof: The operatoi is clearly symmetric on the Hilbert spaté(Q) with boundary con-
ditions that vanish on half dQ and are periodic on the other half @R, see the equations
(12) and (13) A is defined on the subset of smooth functi@¥ Q) c L?(Q), soAis a closed

operator. To show that A is dissipative if suffices to showvt tha
< U,AuU><0,

for all u € L?(Q), where<, > denotes the inner product irf(Q), but

5

o1

3 5/2
<uAu> = <ul (ﬁ+hf|DH1|/)Du >

= ||:|H]_|l/2
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s 1 _8 OH
. 3(_— 3 5/2 . - —
h3
1 5 5 1 5
—H(i\DHi\W(ﬁ + hﬂDHl‘S/ZNDU‘ZJFhf(ﬁ+2hf‘DH1‘5/2)‘DHl‘s/z(DHl'D“)z)l/zH
h3
1 5
< — 1 _h3 SDH 5/2 Duz 1/2
< —N(igmatag +30HI2) 00|

by Schwartz’s inequality applied to the vector prod(idH; - Ou), where|| - || denotes thé.?

norm. Now since the last expression is negative, we conchate
< u,Au><0.

Now it is easy to show that 1 lies in the resolvent seAaind this implies tha# generates &°

semi-group, see Yosida [81], page 250. QED

The operator-A is in fact essentially self-adjoint dr?(Q) with the hypothesis in Lemma
5.1 and has a sequence of eigenvamfélse o and associated eigenfunctioggx,y).

We now solve the SPDE

(26) dU = AUdt+dwW

where

(27) W= S aBe(x)
k=0

where thecy have the spatial coloring = 2/3 of the the KPZ (Burger’s) equation with multi-

plicative noise and pinning force, see Parisi [50] and Seagf6].

Theorem 5.3 Assume that the equation (25) is driven by the noise (27)n Tie adolescent
surfaces are described a stochastic Adolescence ProchesAdolescence Process possesses a

transient growth state where width function, of the slajp¢, grows with a temporal roughness
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exponertt of 2

Wi

V((xY),(zy),t) <ts.

The process eventually gets into a statistically statigretate, where the width function has a

spatial roughness coefficient &f
2
V((X7y>7 (Z7y)7t> S C|Z_X|3'

There exists an invariant measure residing on the wholeespac
Corollary 5.2 The Adolescence Process is an SOC process.

Proof: The proof is the same as the proof of Lemma 3.1, with= 0, 0 < k < 0. This restricts
the dynamical exponent to lze= 2. The existence of a colored invariant measure follows from

Corollary 3.2. QED

We will now explain why the one-dimensional examples in Bedt 2-3 apply to the two-
dimensional linearized equations in this Section. Theaeas that both the evolution of the
convex and the concave profiles in Figure 3 takes place inithetobn of the maximal gradient
of the water surfacéJH| and can be restricted to an evolution with a one-dimensispaitial
variable. This direction is of course never a straight ling ib is mostly directed in the
direction. In they (upslope) direction the initial surface dominates and gigebias to the
numerically computed scaling. Thus the scaling laws in H@] obtained by cross-sections of
the surfaces (convex and concave) in xhdirections at fixed values of Statistically this is

identical to the information gained by taking cross-sewialong the directions of mdxH

see [10] for more information on this issue.
The operatorA has the same properties as above when restricted to onesionahcross-

sections. Namely;A is essentially self-adjoint oi?([0, L]) with periodic boundary conditions

SThe notationx,y), (z,y) indicates that the lag variabke- x is in the direction of thes axis.
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and has a sequence of eigenvalhgée o and associated eigenfunctiongx).

Maturation

We now linearized the equations (12) and (13) about a selessalutionH, = Ho (X, y) T (1),

hy, = ho(x,y)T_%(t), describing a mature decaying landscape, see [71, 74, 1@ r&dulting

equations are

(28)

ou
ot

_|_

‘ |DH0\1/2(T
5
- |hd(

e
.| 2h3
30

5
h§ T—l 5
° +h8DH05/2T)Du}

_T1

5
o + 2h3|OHo|>?T) (OHo - D)

OHo }
|OHo|/2

OH, T3/° 2 9
OH |(i/2< n +2hS|DH0|5/2T21°)V]
(0]

and a hyperbolic equation for the watedepth as described in the previous section. The water

depth can develop shock that are sources of noise, howedgstinction to equation (20) this

noise is highly colored in space due to the fact that the wdgeth goes to zero on top of the

separable ridges, see [10], and the solutidngandh,) contain the colored knick-point shocks,

described in previous section. In addition the noise tenlinng v andv is colored in time

due to the factor§ /5, T andT2w. We conclude that Equation (28) is driven layge noise

that is highly colored both in space and timéChe remainingl factor T—1 is removed in the

following manner.

It is shown in [71] that the time decaly satisfies the ODE,

T

~ — _aT?
a - @

where—a = F—g is the ratio of the sediment fluk, to the volumeV, = [ Ho(X,y)dxdy. This
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ODE is easily solved to give
1

Tt = (1+at)

assuming that (0) = 1. Substituting this expression in férin the equation (28) and making

the change of variables= (”2202 give the equation

5
ou hs 1 s 1
— = O | —2 (= +h3|OH[¥?—)O
ds T2y T MelbHe” 55gtu
(5 -1 _ s 1 OH
O- |hd (== + 2h3|OHo|*? == )(OH, - Ou) ——2
(5.2 OH, 1 2 |OH,|%/2
29 0| =hd 2hg——2 v
) 8" g ey T g

This equation is also driven by large noise, in the last twm$g colored by a quenched (by the
absence of water on top of mountains) knick-point noise acemnd polynomially colored in

the times.

5
h3 :
Lemma 5.2 If 0 < |W|00 < o0 in Q, except on a set of measure zero, the operator

5
hi 1

-g.|l—° =
Aou OH, /21

5 __
u +D-{h8(2—nl)(DHo-Du) UHo }

|0H,[5/2

is dissipative and generates a continuous contraction ggoup whereas the operator

5
he 1 ¢ 1
A = O | —2 (= +h3|0OHe|*%2—)O
(S)u {DHOW(n-i_ o|HHo[" "5 tu
5 1 5 1 H
O- |he (== + 2hd|OHo|¥?=—)(OHo - Ou) ——2
0 Wy + 20O ) OHo- D) e

generates a solution operatof$s,) for the equation (29), fot/n large.
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Proof: The proof of the dissipativeness Afis the same as in Lemma 5.1 but simpler. Fon 1

large the quadratic forra u, Au > bounds the form

5 1 5 1 UH
Ou, (hd|OHe|?2 == + 2h3 |OH,|%2 = (OH, - Ou)—2—-)[O
< U,( o| o| 2CS+ 0| 0| 28.3( (o] U)|DH0|5/2> u>

uniformly in s. This implies that the formc u, A(S)u > generates a solution operator; see Kato

[39]. QED

Width Function for Slope = 6.5 degrees
T T

slope=0.0008617

12=0.7301
451

a0
35+
30+
251

20- slope=0.065628

slope=0.01972 1?=0.99893

150 1?=0.99105

slope=0.0013646
1=0.852

ol +— 0 I I L L
500 1000 1500 2000 2500 3000 3500

Figure 5. The scaling exponents of the variogram are showa famction of time, for an
initial surface with a slope of 6.5 degrees, on a log-log .plohe temporal evolution shows
four different exponents (slopes), along with their regi@s coefficients, and a statistically
stationary state (with slope zero) is emerging, furthesthéaright.

The operator-A, is also essentially self-adjoint drf(Q) with the hypothesis in Lemma 5.2
and once we restrict it to a one-dimensional cross-secsafiscussed above, it retains these
properties o?([0,L]) and has a sequence of eigenvallies: « and associated eigenfunctions
&(X).

We now write the equation (28) restricted to a one-dimeraioross-section as a SPDE,

(30) dU = AqUds+ dW,
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Width Function for Slope = 10 degrees
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Figure 6: The scaling exponents of the variogram are showa famction of time, for an
initial surface with a slope of 10 degrees, on a log-log pldhe temporal evolution shows
four different exponents (slopes), along with their regras coefficients, and a statistically
stationary state (with slope zero) is emerging, furthesthéaright.

where the noise
0 Ck K
W, = kZO@BSE;((X)

is colored both in space (thogs) and time (thes “ks) and some (infinitely many) of ttee are
zero. TheBtk are independent Brownian motions and we have ignored tleerdetistic part of

the operatoA(s),
5
hg

A(s) — Ao = THo 2

s 1
(h§|0Ho|¥?5 )0

If n is small this part is going to be very small compared fq &nd can be added by regular

perturbation theory. The same proof as that of Theorem 8esdghe following theorem.

Theorem 5.4 Assume that the noise for mature landscapes has the color

(31) W = —Bs&(X) + ckBsex(X),
k:o,zak7éosd k2 k_O,Zak_O °
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then the mature landscapes are described by a stochastigritain Process

HO(X7y0) ad k
H<X7y07t) = an T A za((x)'
(ran) & o
where the 5
K _y (an? 3 (H?zt) —\ (<1+at)2—s) —0lk q pK
A(l+at)2 =€ "k & A0+Ck/0 e = s "B,
2a

are independent. For k such thag = 0, the Aﬁm)zs are Ornstein-Uhlenbeck processes.
2a

Theorem 5.5 Suppose that

i.e. az = 119 and that

for x < 0.75, then the Maturation Process possesses a transient graate where its width

function, of the water surface H, grows with a temporal rongss exponefibf 0.10

V((xY). (zy),t) <t>,

and the process eventually gets into a statistically stetiy state, where the width function has

a spatial roughness coefficient@f75
V((Xv y)v (Z7y)7t> S C|Z_ X|O.75'

Proof: We apply Lemma 3.4 to the Equation (30), that models Equd@8) with the noise
(31). Then the Theorem follows from Theorem 3.1 observiraj thV? scales bys% then

(s10)1/2 = s20 = (c(tg+1)10) ~ Ct%10 for to small. This means that scales as®1%.  QED

5The notationx,y), (zy) indicates that the lag variab#e- x is in the direction of thex axis.
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Theorem 5.6 The Maturation Process projects, as t becomes large, ontobsmace, H=

{X =3 xx&|ak = 0}, of the phase spac€([0,L]), where there exists an invariant measure.
Proof: This is a direct consequence of Theorem 3.2. QED
Corollary 5.3 The Maturation Process is an SOC process.

Proof: By Corollary 3.2 the invariant measure is a weighted GaussiBhus the process

satisfies Conditions 1-5 of Definition 3.1. QED

Remark 5.1 The verification of the fact that the Maturation Process lmaspdex transients is
so far numerical. There are two exponents in Equation (29)3190 =0.1and2-12=04. In
the roughening of the surface, the latter exponent is daieihay the first (which is smaller) and
does not show up. Numerically, two smaller coefficients dwate later during the transients, see
Figure 1 and Figures 5 and 6. Thus numerically the Matur&Rimtess satisfies Definition 3.2
and this is presumably due to the small terms we omittedgiliatcorrections with exponents

smaller than QL.

Numerically there is a trade off between the length of thematations and the instabilities
that set in with larger slope. In Figure 1 we strike a balanite slope 85 degrees and get an
initial coefficient of Q127 that persists. This is in rough agreement with the theorlyigure 5,
with a slope of & degrees, we are not quit far enough into the maturationepaldisough the
computing time is already extremely long and get a slope@$®. In Figure 6 the slope of 10

degrees is rather unstable and we get the slop&0

Remark 5.2 The upper-cutoff for the spatial scaling of the landsuréasanot the system size
but the half-width of the valley& Hack’s law implies that for young channelizing landsuesc
10% eroded,

0.1cK ~ (Y2, ¢ ~ 0.01(cK)?
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wherecK is the height of the mountain rang&(is the width in they direction anc: the slope),
whereas

0.5cK ~ (3% ¢ ~ 0.40(cK)*/3

for a mature landsurface, 50% eroded. This means that meaileys typically (unlessK is

large) are wider than young ones and the nunibef valleys is,

L

N~ ————
0.02(cK)?’

for young surfaced, being the length (in th& direction) of the mountain range, whereas

L
N[ —
0.80(cK)*4/3

for the mature landsurfaces. This says that mature surtgpesally (unlescK is large) have

fewer valleys than the young surfaces.

Discussion:We showed that the three processes Channelization, Adwoles@and Maturation
are driven by large noise terms, white for the first and caldyeth in space and time for the
latter two processes. These noise terms are created bysshacks and hydraulic jumps in the
second case and turbulent flow and knick-points in the secasel, see [78] and [9]. In addition
the noise in the Maturation case is colored in time by the tfa&t the separable surfaces have
a distinct polynomial decay in time. This analysis allowdagssociate these three processes
with solution of one-dimensional linear SPDEs driven by theee different types of noise
above.

It would be more desirable to solve the nonlinear PDEs direntd read of all the above
information. This may be doable in the case of the Chann@iz&rocess where channelization

is working on the whole two-dimensional surface. Numehgcahe bias of the initial surface is
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removed by consideringH that scales over the whole surface. But this is more contglica
in the adolescence and maturation cases where the Adotesard Maturation Processes are
working on the slopes of the separable mountains but the righiaation Process still works
on the bottom of the valleys. In fact for the mature landsddugescaling properties of the
river basin, such as Hack’s law, may be understood by puttwagof those processes together;
see [10]. It may be that one-dimensional theory analogodkdmumerical results in [78] is
the ultimate result for the Adolescence and Maturation &ses. In any case it remains to
show that the full transport limited landsurface evolutisra Markovian Stochastic Process
determined by the solutions of the full nonlinear PDEs, aintng large noise; and that these
solutions reduce to the three processes above, close toitihbdhannelizing surfackp(x, y,t),
the convex surfaceld(x,y,t) and separable surfaceél = Ho(X,y)T (t) respectively. This is

what the numerical and analytical results indicate.

6 Applications and Limitations of the Theory

The theory presented here captures well the evolution aofslariaces for transport-limited sit-
uations, such as one would typically find in desert enviroms\eThe scaling exponents are in
good agreement with the numerical simulations [10] bothtfier channelization process, that
channelizes the initial surface, the adolescence probasgvolves it from a convex to a con-
cave surface, and the maturation process that does theatdtsnulpting of the mature surface.
The agreement is good for the scaling exponents in the staticstates; see [10], and reason-
ably good during the initial transients of the maturatioagd, as shown in Figures 5, 1 arfd 6
In these figures the scaling exponent of the initial trartdigio the maturation phag® ranges
from 0.066 for slope &, 0.127 for slope &, to 0189 for slope 10. The time-scale for these

transients is geological time and they take a very long tom@impute and are very sensitive to

"These computations were done by Kirsten Meeker using aysiagirogram developed by Russell Schwab.
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the value of the slope. However, the average is reasonatsg ¢b the theoretical value ofl0
for B2 in Theorem 5.5.

The picture is obviously more complicated for real landsces. Erosion takes place on
a surface that may already have a complicated form and sircédnsients take place on a
geological time-scale it is not clear how the temporal sgpéxponents can be measured. The
spatial exponents can on the other hand be measured from Qigka( elevation model) data
and in [10] the numerically computed exponents were cong@exponents from a DEM [77],
with satellite data from Ethiopia, Somalia and Saudi-Asabihe exponents measured in this
DEM fall in the range spanned by the spatial exponents of la@celization, the adolescence
and the maturation phases.

The magnification of the noise by the nonlinearities (theahsurface is seeded by tiny ran-
dom perturbations) is understood, see [10], [78] and [78E fieason is that both the water and
sediment flow down the gradient of the water surface and tignifigation can be understood
as shock formation in one dimension. This was pointed oul@),[and worked out in [78] ,
[79]. The details, presented in [78] , confirm the predicfimnthe mechanism of the formation
of transport-limited surfaces in [71]. The shocks that easut the concave mature slopes are
traveling knick-points. Thus the theory is completed byemisng the bores and hydraulic jumps
and the traveling knick-points into the noise in the adaese phase. Inthe maturation phase
the color of the noise stems form turbulent water flow, segif@juding flow over these same
knick points (rapids) as the surfaces mature. In additidhése results one would like to prove
the existence of an invariant measure for the full nonlifaEs (12) and 13) with these noise

inputs. For now, however, this is beyond our mathematicathie
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6.1 The SOC Theory

The theory presented is essentially the mathematicalorersi the theory of Self-organized-
critical systems in the physics literature. The system®thaw phases a transient and a sta-
tionary phase characterized by the scaling of the variograhe idea of an SOC attractor is
replaced by an infinite-dimensional subspace that attthetdynamics. On this subspace there
exists an invariant measure that contains all the inforonedbout the stationary state. The sys-
tem is seen to temporarily self-organize during the trarisien a rather trivial way. Either it
approaches the stationary state in the subspace whereatlonaty state lives or the motion is
in the orthogonal complement of this subspace and is evilnfurajected out. However, the
structure or scaling of the stationary state is gradualisnéd during the transients. It is explic-
itly expressed in how the different directions are weightealored) in the invariant measure.
This is how the stationary statesslf-organizedluring the transients.

The mathematical model clarifies the role of instabilitiesl @onlinearities. The instabil-
ities make small perturbation grow and these dynamics @ ¢blored by the nonlinearities.
Whether and how this coloring takes place plays an importd@in the structure of the station-
ary statéé The color produces long range spatial correlations in thtostary phase and long
range temporal correlations in the transient phase. Thagli¢ar by examining the conditions
in Example 3.1 and 3.4, that any temporal exponenrt§0< 1/4 is possible in one dimension
and any spatial exponenf2 < x < 1. The long range correlations are given by (¢ < 1/4
and 12 < x < 1 respectively. The Edward-Wilkinson process ( Channttinaand Brownian
motion ) sits at the boundary of these intervals, vith 1/4 andx = 1/2. The Adolescence
Process is long-randge= 1/3, x = 2/3 and the Maturation Process more so wth 3/4.

The transport-limited erosion model gives us three praeI3ne, the channelization where

the white noise in the environment is magnified but not calpresulting in channelization that

8 One might therefore be tempted to interpret SOC to meané&rysbf color”.
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is an Edward-Wilkinson process driven by white noise. Theeotwo processes are driven by
highly colored noise because of the non-uniform distritnutof water over the adolescent and
mature surface and the coloring of the system by bores ancilyc shocks and knick-points
in the adolescent phase. The noise on the mature surfacgegsisd by turbulent water flow over
knick point and these concave mature surfaces. The Adaleaod Mature Processes are SOC
processes with long range correlations. In addition theukéditon Process possesses complex
transients that scale with several temporal exponents.

The above theory is not restricted to linear equationsalizeng about known profiles as in
the landsurface case, the modification for nonlinear SPBEsaightforward, see [51]. Suppose

we start with a nonlinear SPDESs,

(32) dU = (AU +F(U))dt+ BdW,

whereF (U) is a mildly nonlinear functions, for example LipschitZin andBdW noise similar
to the examples above. We assume @ a linear operator on the Hilbert spaldewhere

U lives, andA generates a strongly continuous semi-grougHonThen there exists a solution
operatorS(t) of the deterministic nonlinear equation and given some itimm$ of S(t) we can
prove the existence of an invariant measure, see [51], salthwe results apply to the nonlinear
equation. Thus the SOC theory exists and is similar for me@li equations with mild nonlin-
earities. (Unfortunately, the nonlinearities in the lamdisce equations (12) and (13) are not
mild.) However, we expect more complicated SOC systemsitt.ekhe stationary states that
we get are not complex, see Definitions 3.1 and 3.3. The mesasurthe infinite dimensional
spaces that we are getting are all (colored) Gaussian ancbarpletely determined by their
mean and variance (the variogram). There must be many Bpatanplex SOC systems with
more complicated invariant measures, or in other words raitibow-colored stationary states,

so that the higher moments exhibit different spatial sgglin
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6.2 More General Landsurfaces

In this paper we use the one-dimensional analysis of therlate over evolving landsurfaces
in [78] and [9], based on [26], [50], [66] and [9], to find thelaong of the nonlinear sediment
flow, linearized about three stages of evolving landsugad@ese are the channelizing surface,
the adolescent surface and the mature surface. We condludethe color of the water deter-
mines the color of the surfaces. This was done for one péaticnodel of water and sediment
flow describing a transport limited situation found in désswvironments. For this model we
can completely describe the ranges, see [22, 18, 19, 20]¢k’slkaw, see [10] and [9].

The detachment-limited case must be included to get a monplete stochastic theory of
landsurface evolution. Here one waits for the rock to wealiedore the sediment is carried
away. Itis probable that the chemical composition of th&nedl play a role in the statistical
characterization of the system and some results indicatiettis is the case at least in the
characterization of the temporal evolution. Vegetatiometand soil must also be taken into
account, tectonic uplift and diffusion and at high altitad®nd in cold climate, the action of
glaciers. It is probable that the inclusion of these phenmameill lead to stationary states
characterized by more a complex invariant measure thare thibsve, thus producing a more
complete stochastic theory of complex SOC systems, withpbexrstationary states. Indeed
studies of DEMs show that topography exhibits fractal; séekeénberg and Goodchild [40],

and multi-fractal; see Lavallée, Lovejoy and Schertz&j,[4tructure.

7 Conclusions

The stochastic theory of transport-limited landsurfackntiifies three processes that shape
eroding surfaces consisting of loose sediment. The firstgg®called the Channelization Pro-

cess is an infinite-dimensional Brownian motion driven bisadhat is white both in time and
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in its spatial distribution. This process consists of tlamsient of a random walk biased in the
downslope direction. It then saturates in a stationarg staracterized by the spatial scaling of
Brownian motion. The process is completely characterizeitiskimean and variance that allow
us to compute the variogram of topography. This processraiaes the originally smooth
surface and lays down the basic network of streams and riltggessess an invariant measure
living on the whole of infinite dimensional phase space antbisa SOC system.

The second process is called the Adolescence Process arattehaes the evolution of
young surfaces from a convex to a concave shape. This prexesisen by colored noise
created by shocks, bores and hydraulic jumps, in the wateaihal knick points in the sediment
flow. The noise is quenched by absence of water a variousdosabn the surface and pinned
by the vanishing of the slope of the water surface. The Adelese Process is characterized by
its mean and variance. It has a stationary state with a $patighness coefficieng = 0.66. It
also possesses a colored invariant measure charactettigrggationary state. This makes the
Adolescence Process an SOC process.

The third process called the Maturation Process is drivenidpyly colored noise. It is also
characterized by its mean and variance and the variogralessicétially with several charac-
teristic temporal exponents. Eventually it reaches a gtetate where the spatial scaling has a
large exponent @5, indicating a long range correlation. The Maturationd@ss possesses an
invariant measure living on an infinite-dimensional sulegpaf the original phase space. This
measure completely characterizes the stationary stateselproperties make the Maturation
Process a SOC process with complex temporal transients.

Together these two processes produce the observable fiespef transport-limited sur-
faces, such as Horton’s relations and Hack’s law, see [b@)}y possess the numerically ob-
served scaling laws [10] and agree with values obtained s [77].

SOC systems in Definition 3.1 capture the basic propertissléforganized-critical system.
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The idea of temporal self-organization during the transiegmanifested in the magnification
of the initially white noise, during a very short initial ped of exponential growth and then
saturation and coloring by nonlinearities. This is the de{jrproperty of these systems. Thus
the self-organization is expressed in the spatial strecbfithe stationary state that is formed
by magnification and coloring of small white noise during ttemsients. The motion is simply
projected onto an infinite-dimensional subspace duringiridmesients and the invariant mea-
sure living on this subspace determines all the properfiiseostationary state. The invariant
measure seems the capture the idea of an SOC "attractoreaséne real attractor of at least
the transport-limited landsurfaces is trivial (a flat platg Thus SOC systems are defined as
systems that color themselves using the white noise in thieogrment as a source, can show
multi-fractal transients and then project onto an infidieensional subspace where they pos-
sess an invariant measure completely determining thetical’ stationary state. Itis likely that
more complex landsurfaces will in addition be shown to haa@aary states that themselves

are multi-fractal.
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