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Abstract

A stochastic theory of fluvial landsurfaces is developed fortransport-limited erosion,

using well-established models for the water and sediment fluxes. The mathematical mod-

els and analysis is developed showing that some aspects of landsurface evolution can be

described by Markovian stochastic processes. The landsurfaces are described by non-

deterministic stochastic processes, characterized by a statistical quantity the variogram,

that exhibits characteristic scalings. Thus the landsurfaces are shown to be SOC (Self-

organized-critical) systems, possessing both an initial transient state and a stationary state,

characterized by respectively temporal and spatial scalings. The mathematical theory of

SOC systems is developed and used to identify three stochastic processes that shape the

∗and the University of Iceland, 107 Reykjavı́k

1



surface. The SOC theory of landsurfaces reproduces established numerical results and

measurements from DEMs (digital elevation models).

1 Introduction

The evolution of the surface of the earth is a challenging andfascinating problem. Although the

basic physical processes eroding the surface and moving theresulting sediment are understood,

modeling them is in general very difficult. Not only can the surface consist of different types

of material, rock, sand, soil and vegetation, most surfacesare also extremely complex both in

composition and topography and over geological time tectonic uplift and earthquakes can have

a profound effect on topography. Thus a basic problem in geomorphology is to model all of

these different effects and then put them together in a mathematical model that can produce

realistic landsurfaces. Such a model would give a valuable insight into the various forces that

shape the surface and be a guide and a useful tool to geologists studying complex formations in

geology.

The complexity of most landsurfaces and the instability of some raises a fundamental mod-

eling question and a question of predictability. Should landsurfaces be modeled by physically

based deterministic models, expressed as partial differential equations (PDEs), or should they

by be modeled as stochastic particle systems (cellular automata) given the inherent influence

of noise in the environment on these system? That noise is ubiquitous in landsurface evolution

is clear when variations in rainfall rate, rock compositions and topography are considered. A

related question is what features of topography are predictable given some initial topography.

It is known that realistic landsurfaces can be created by particle models using a random walk of

water and sediment if they are seeded by quenched noise. However, this leaves something to be

desired from a scientific perspective because one would liketo understand the forces that play

a role in the creation of the surface and what features of the surface are predictable and which
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are not.

Research on the evolution of river networks since the work ofHorton [53] may be clas-

sified according to the class of model used. A first class of models based ondiscrete mod-

eling techniques, these are analogous to models for phase transitions in statistical mechanics,

has been remarkably successful in simulating the geometricand topological characteristics of

stream networks [30, 31, 58, 2, 29, 32]. Many of these models,however, such as those used

by Shreve [63, 64], illustrate how simple statistical approaches that essentially ignore physical

mechanisms can give rise to good descriptions of many features of river networks. Such mod-

els typically provide little physical insight into the underlying phenomena. Researchers who

attempt to incorporate physically-based mechanisms into discrete models have typically found

it necessary to adopt strong assumptions concerning the initiation of channelized flows. The

well-known model of Willgoose et. al. [30, 31], for example,employs two partial differential

equations to determine two states: the first being surface elevation and the second an indicator

variable of channelization. While the second variable and its governing equation lead to real-

istic simulations, it is difficult to relate either to well-established principles of fluid flow and

erosion and hence there is some mistrust of the results of themodel.

Another class of models has focused on the search forvariational principles[1, 57, 27, 12]

using both discrete and continuous modeling approaches. Such models have led to simulation

results suggesting that fluvial networks may be governed by simple optimality principles. Sin-

clair and Ball [12], for example, recently indicated how local erosion rules lead to an optimality

principle. These approaches, however, do not provide adequate models of the emergence of

channelized flows while the variational principles evoked are typically difficult to justify on

physical grounds.

A third class of models is based oncontinuous modeling techniques, conservation con-

ditions, and constitutive relationshipsexpressed in terms of PDEs. Such models have led
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to (1) some understanding of early instabilities underlying the initiation of channelized flow

[72, 37, 23, 24, 2, 73, 36]; (2) a significant understanding ofthematurephases of drainage basin

evolution [7, 71, 74]; (3) a rigorous derivation of variational principles governing drainage basin

evolution [71]; and, quite recently, to (4) valuable insights into the emergence of channels and

related scaling laws (see [11, 21, 22, 10] and below).

Developments in nonlinear, deterministic and probabilistic mathematics during the last two

decades are now ripe for a new and powerful synthesis. These theories raise the prospect for

advances in the geosciences that used to be out of reach of mathematical modeling and they

are also leading to significant advances in the theory of nonlinear stochastic partial differential

equations (SPDEs).

For a long time the unsurmountable problem in the theory of landsurface evolution was the

role of noise and instabilities. Erosion is driven by small noise because both the eroding surfaces

are unstable and small noise may trigger a large event. Theseinstabilities will typically take the

small noise that always exists in nature and in numerical computations and amplify it until it

become large enough to drive the system. The most challenging problem is how highly colored

the noise is when it comes through the magnifying glass created by the nonlinearities. The small

noise in the surroundings and in computations may be white, or uniformly distributed in time

and space, but the large noise that drives these systems is strongly colored, or non-uniform, both

in space and time. In this paper we will investigate how noiseis brought into the third class of

models discussed above.

1.1 The Noise Creation

The details of the noise creation can be understood in roughly the following manner. The tiny

perturbations caused by the small noise in the environment grow exponentially for a while be-

cause of the exponential growth created by the instabilities. But they do not grow exponentially
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forever as they would do if the system was linear. Instead thenonlinearities will saturate the

exponential growth and instead one gets noisy terms that areno longer small. Moreover, since

different modes get saturated in different ways and at different times, the large noisy terms are

no longer white. They become colored in some way that is characteristic to the system. In turn

this large colored noise will drive the system and create a characteristic noise-driven state.

The first conclusion we can draw from this argument is that evolving surfaces are not pre-

dictable. They are deterministic in the sense that the solutions are determined by the initial

conditions and one can make infinite-dimensional mathematical models that describe them, but

we cannot predict where the mountain or valley will be located or when the earthquake will

occur and how big it will be. However, these processes possess statistical behaviors that are

predictable. For example how rough the surface will be as specified by the variogram can be

predicted. It is then appropriate to adopt the language of probability theory when discussing

these system and think about their solutions as random variables that possess deterministic sta-

tistical properties.

The situation in geomorphology is in many respect analogousto the situation in chaotic

dynamics some forty years ago. Then scientists were faced with problems that could be posed

as initial value problems for ordinary differential equations (ODEs) but produced solutions that

are not predictable due to sensitive dependence on initial conditions, or instabilities magni-

fied so much by tiny random perturbations that predictability was lost. This is referred to as

theButterfly Effect. The difference is that whereas the ODE systems were finite-dimensional,

landsurface erosion is an infinite-dimensional phenomenon, described by partial differential

equations (PDEs).
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1.2 Ill-posed Problems

The infinite-dimensionality made erosion mathematically untouchable until recently. The rea-

son was that the PDE initial value problems that one could pose in infinite-dimensions were

ill-posed and this led researchers to the conclusion that these problems could not be solved, or

at least not numerically. Indeed this is true for linear problems that are ill-posed in the strongest

sense, because then the smallest modes will grow the fastestand after a short time the in-

significant details represented by these modes will completely saturate any computation. More

recently it has been realized that this is not the case for many ill-posed nonlinear problems. The

reason is that although the smallest modes grow initially the fastest they are also saturated the

fastest and simply end up contributing to the tail-end or high frequencies of the colored noise.

The numerical analysis of nonlinear SPDEs is still a formidable challenge and nonlinear

PDEs accompanied by ill-posed problems that turn themselves into nonlinear SPDEs are even

harder to solve. Not until recently has significant progressbeen made on how to solve such

equations numerically. The first observation was that explicit methods that are the methods of

choice for most computationally intensive problems because of their speed, were completely

useless. These methods require a significant amount of artificial dissipation to be put in by

hand. Whereas they can reproduce the large structures in theproblems, they get the production

of the colored noise wrong every time. Its characteristic structure (the color) is simply de-

stroyed by the amount of artificial numerical viscosity. Thenumerical methods that produce the

correct color areimplicit methods[47], because although these methods also create numerical

dissipation, it is much smaller and created in such a controlled fashion that it does not signif-

icantly alter the coloring of the noise. Thus implicit methods creating very small numerical

dissipation capture the magnification of the noise by the instabilities and produce numerically

the stochastic processes with the correct statistical properties. The price one pays is that the re-

sulting computations are very intensive, the implicit methods are much slower than the explicit
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ones, and to produce realistic landsurfaces and earthquakes on a fault system requires a large

computational facility dedicated to these computations. This was another reason why earth sci-

entists had not attempted such computations earlier; not until recently with the emergence of

powerful Beowulf clusters of workstations have these large-scale parallel computations become

economically feasible.

1.3 SOC Systems

The stochastic processes describing landsurface evolution are characterized by the statistical

quantities associated to them. The evolution of the statistical quantities can be described in

the following way. Initially they are not stationary but grow in time as a polynomial with

a characteristic leading coefficient called the temporal roughness coefficientβ. There is an

equivalence between the spatial and the temporal scale given by another coefficientz called

the dynamic coefficient coefficient, ort ∼ xz. Eventually the system reaches a critical size or

feels the influence of the boundaries and the temporal roughening saturates into a statistically

stationary state where the statistical quantities do not grow any more, but the system fluctuates

about the statistically stationary state and the fluctuations are correlated. In this stationary

state the statistical quantities are characterized by a polynomial scaling, given by the spatial

roughness exponentχ. Only two of those exponents are independent because of the equivalence

of the space and time scales. Their relationships is given bythe equation,

χ = β ·z.(1)

The statistically stationary state is determined by an invariant measure living on infinite-

dimensional phase space. This invariant measure determines a probability density that per-

mits a computation of all the relevant statistical quantities and it is invariant with respect to

the temporal evolution of the stochastic process. Typically the invariant measure lives on an

7



500 1000 1500 2000 2500 3000 3500
0

10

20

30

40

50

60

70

80

slope=0.003429

r2=0.93357

slope=0.12719

r2=0.99402

slope=0.032144

r2=0.99764
slope=0.014435
r2=0.99555

Width Function for Slope = 8.5 degrees

Figure 1: The scaling exponents of the variogram are shown asa function of time, for an
initial landsurface with a slope of 8.5 degrees, on a log-logplot. The temporal evolution shows
four different exponents (slopes), along with their regression coefficients, and a statistically
stationary state (with slope zero) is emerging, furthest tothe right.

infinite-dimensional subspace and the temporal rougheningprocess projects the dynamics onto

this infinite-dimensional subspace. If the invariant measure is coloredso that the different

directions, in the infinite-dimensional space occupied by the measure, have different weights

then we will call the systeman SOC system. Moreover, if the temporal roughening is charac-

terized by more than one temporal roughening coefficientβk, k = 1, · · · ,n, then the process is

calledmulti-fractal. This means that there are statistical quantities whose rate of growth during

the initial transient are not related. The multi-fractality is a signature of the complexity of the

process and such systems will be called an SOC systems withcomplex transients.

In the physics literature SOC systems have been studied for along time and go by the name

of self-organized-critical system. The (somewhat vague) idea was that the system somehow

self-organized during the initial transient and formed a ”SOC attractor” in the stationary state.

The mathematical theory developed for the landsurface evolution showed that no attractor ex-

cept the trivial one exists but the system projects onto a subspace which is therefore attracting

during the transients. Instead of an attractor there is an invariant measure living on this sub-
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space and this invariant measure completely determines thestatistically stationary state. The

stationary state is critical in the sense that the motion is ergodic on the subspace and both large

and small events are possible. Moreover their distributionis determined by the associated prob-

ability density.

The abundance of power laws in nature was noticed and studiedby many authors during

the 19th century, see for example Willis [80], Zipf [82] and Mandelbrot [46]. Many time-series

including electrical noise and stock market price variation, for example, show power-law tails

in their power spectra and this is called 1/f noise, see Press[52]. In 1987, Bak, Tang and

Wiesenfeld [5, 6] proposed SOC as an explanation of the ubiquity of 1/f noise in nature. The

book by Per Bak: How Nature Works : the science of self-organized criticality [3] contains

many applications of SOC to natural phenomena.

We will now give a brief introduction to SOC from a physical point of view following

Sneppen [67] and Dhar [16], with references for readers who want to read more of this literature.

Bak, Tang and Wiesenfeld [5] observed that mountain ranges,river networks and coastlines

have fractal structure, meaning that some correlation function has a power law behavior. For

mountain ranges the correlation is the variogram (width function) that scales as a function of

the lag variable, or the distance between two locations,

V(x,y, t)∼ |x−y|χ

with characteristic exponentχ, in the statistically stationary phase. The characteristic exponent

takes the valuesχ = 0.5 for channelizing surfaces,χ = 0.66 for young surfaces andχ = 0.75

for mature surfaces, in the transport-limited situation, see [10]. The width function played an

important role in the analysis of surface growth, see Kardar, Parisi and Zhang [38]. The shape

of a river basin is determined by both its young and mature phases and the first and the third

scaling laws above together produce Hack’s law [34]. Hack’slaw says that the length of the
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main river in a river basin scales with the area of the river basin to the power 0.58, see [10].

Actually, the exponent in Hack’s law has a range 0.5−0.7 depending on whether the river basin

is young our old, small or large, see [22, 18, 19, 20] for details. The ranges in Hack’s law will

be important for us below and we will associate them with three difference processes shaping

landsurfaces, initial channelization, adolescent growthand maturation. Another example is the

well-known Gutenberg-Richter law [33] for earthquakes. The interpretation of the existence of

such a power law is that the system does not possess a characteristic scale instead all scales are

connected. The absence of a characteristic scale means thatthe details of the system behavior

are not important, instead statistical properties must be used to describe the system as a whole

and these statistical properties should be scale invariant.

The SOC terminology originated in statistical mechanics where systems exhibiting correla-

tions with power law decay over a wide range of length scales are said to have critical correla-

tions. This is because correlations much larger than the length-scale of interactions were first

studied in equilibrium statistical mechanics in the neighborhood of critical phase transitions.

One needs to fine-tune some physical parameters (for exampletemperature and pressure) to

specific critical values. In nature this is rather unlikely to happen for example the growth of

a mountain range by uplift and its erosion is unlikely to be fine tuned to any parameters. The

systems that we are interested in are not in equilibrium, there is variation in time but average

properties are roughly constant in time. These system are frequently open and dissipative. We

can for example think about the influences of uplift and rainfall on a mountain range and the bal-

ancing dissipation of sediment by erosion. Thus we considerthese states to benon-equilibrium

steady states.

Bak, Tang and Wiesenfeld argued that the dynamics which giverise to the robust power-law

correlations seen in the equilibrium steady states in nature must not involve any fine-tuning of

parameters. It must be such that the systems under their natural evolution are driven to a state at
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the boundary between the stable and unstable states. Such a state then shows long range spatio-

temporal fluctuations similar to those in equilibrium critical phenomena. They also proposed a

system whose natural dynamics drives it toward and then maintains it at the edge of stability: a

sandpile. Their model was actually not a very good model for real sand, [35], however it was

solvable and generated a large number of papers, see [75] and[15] for recent reviews. It also

inspired experiments on piles of long-grained rice [28] that constitute an SOC system.

The sandpile model proposed by Bak, Tang and Wiesenfeld can be solved explicitly. This is

of course very useful because it mean that various properties of the system can then be spelled

out in all details. In [16] a slight generalization called the directed Abelian Sandpile Model

(ADM) is solved and it is shown that ADM is equivalent to Scheidegger’s model of river basins

[62], Takayasu’s aggregation model [68] and the voter model; see [45] and [25]. This means

that all of these models occupy the same universality class with the same scaling exponents. In

a recent paper Dhar and Mohanty [17] showed that the directedsandpile models fall in the same

universality class as directed percolation; see [25].

We do something similar in this paper with the continuum models, namely solve the linear

SPDEs driven by colored noise, see the next two sections, andspell out all their scaling laws. It

will be clear that all scaling exponents in a reasonable range in one-dimension are possible. This

means that there exist solvable SPDEs occupying all the available universality classes. Then

we will see in our applications to the nonlinear landsurfaceequations that three universality

classes are picked out by these nonlinear equations: one forthe channelizing surfaces, another

for young surfaces and the third for the mature ones. In a neighborhood of these surfaces

the nonlinear landsurface equations occupy the same universality class as the corresponding

solvable linear SPDEs. It is obvious that our SOC systems areequivalent to the SOC systems

in the physics literature because both are completely characterized by their scaling exponents.
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1.3.1 Temporal scaling invariance

The statistical quantities characterizing the SOC systemshave scaling invariances initially as

functions of time and eventually as functions of space. In Figure 1 the temporal evolution of the

variogram is shown as a function of time on a log-log plot. Thefigure shows that the temporal

evolution grows polynomially and is characterized by several scaling exponentsβk, k = 1, · · · ,4

which are shown as the slopes on the lines fitting the numerical data. This implies that there

exist several cross-over regions with different spatial scalings. The first characteristic exponent

for the maturation process, see [10], is of the orderβ2 = 0.127, which is in agreement with

the theory, and the higher order exponents are smaller; eventually the graph levels off. This

signifies that the system has entered thestatistically stationary statethat is characterized by the

exponentβ4 = 0. The data is composed of an ensemble average over five numerical runs with

an initial condition consisting of a smooth surface with a slope of 8.5 degrees, where each run

is done with a different random seeding of the initial data. For each run the time evolution is

averaged over the correlations of different spatial distances and a range of upslope positions.

It is clear from the plot that the maturation process in landsurface evolution is multi-fractal in

its temporal evolutions and eventually becomes stationary, different values of the initial slope

produce similar results.

1.4 Complexity in Geomorphology

The evolution of the surface of the earth under the influence of tectonic uplift, weathering and

erosion is a multi-scale multi-fractal process. In a seriesof papers Smith, Birnir and Merchant

[71, 74, 65] developed a family of landscape models, based onthe Smith-Bretherton model

[72], that capture the fundamental processes at work where landsurfaces are eroded by water.

They showed that in numerical simulations these landscape models capture the emergence and

development of stable, dendritic patterns of valleys and ridges. In a subsequent paper [10] they
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demonstrated the manner in which these models also capture the effects of random influences

in driving the processes of landscape evolution. In particular, their results provided a physical

basis for explaining various fundamental scaling relationships [44, 70, 55, 42, 60, 61, 59, 48,

54, 69, 62, 58, 32, 56, 21, 22] that characterize fluvial landscapes and supply a bridge between

deterministic and stochastic theories of drainage basin evolution.

Birnir, Smith and Merchant [10] employed several specific techniques from the emerging

theory of complex surface evolution (for a review see [41] and [8]) in investigating the models

discussed in [71, 74] as systems driven by noise or stochastic processes. First, they characterized

the statistical structure of eroding surfaces and flows in terms of variousstructure functions

(or variogram) that represent the statistical correlationstructure of complex surfaces. Second,

they applied known results from this theory concerning the form of scalings that emerge from

appropriate universality classes of PDEs when subjected torandom driving forces of a specific

form. The rationale for such application is that systems belonging to the same universality class

manifest qualitatively similar behaviors. Birnir et al. also connected part of the theory to the

concept of self-organized criticality (SOC) as proposed byBak et al. [5, 6, 4, 49, 3, 67, 15, 16,

17].

Careful studies of Hack’s exponent, see Dodds and Rothman [21, 22, 18, 19, 20], show that

it has three ranges apart form very large and very small scalewhere the exponent is close to

one. The three ranges seem to be shaped by a different type of water flow. The first range is

characterized by the roughness coefficient 1/2 of the water flow and corresponds to Brownian

motion, see Edward and Wilkinson [26], of water over channelizing slopes, we will associate

this range with theChannelization Process. The second range is associated with shock for-

mation, bores and hydraulic jumps in the water flow. It corresponds to quenched and pinned

Burger’s shocks, see Parisi [50] and Sneppen [66], and is characterized by the roughness coef-

ficient 2/3 of the water flow, see Welsh, Birnir and Bertozzi [78]. We will call this process of
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landsurfaces growing and evolving from a convex to a concave1 shape theAdolescence Process.

The largest range by far in Hack’s exponent is associated with turbulent water flow, see Birnir

[9], and is characterized by the scaling exponent 3/4. We will associate this range with the

Maturation Process.

In this paper we develop the basic mathematical theory for SOC systems and apply it to

nonlinear partial differential equations describing the formation of fluvial landscapes. We first

solve a SPDE driven by white noise in Section 2 producing the so-called Edward-Wilkinson

process [26] that models the short time and stationary behavior of infinite-dimensionalBrown-

ian motion. Then in Section 3 we give a mathematical definition of SOC systemsand solve a

SPDE driven by noise that has polynomial coloring in time, but this is the noise that we will

encounter in the evolution of mature landsurfaces. An example with exponential coloring in

time is also discussed. We compute the variogram for these equations and show that they have

both a transient and a stationary state as the Edward-Wilkinson process does, and an invariant

measure that lives on an infinite-dimensional subspace. In Section 4 we apply the theory to

the nonlinear PDEs describing transport-limited landsurfaces that were analyzed numerically

in [10]. This allows us to give a complete statistical characterization of the three processes

that govern the evolution of such landsurfaces: the Channelization Process that channelizes the

surface, the Adolescence Process that evolves it from a convex to a concave surface, and the

Maturation Process that controls the evolution of the mature surface. In Section 6 we discuss

the applications, limitations and possible extensions of this theory of landsurfaces and whether

it produces that most general SOC theory. Section 7 containsour conclusions.

1The use of these terms here and below follows their use in geomorphology which is opposite to the mathemat-
ical definition
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2 The Stochastic PDEs

We write the generic linear Stochastic PDE for SOC systems inthe form

dU = ∆Udt+dW, x∈ Ω, t ∈ R
+(2)

whereU(x, t) is the solution,∆ denotes the Laplacian andW is a Wiener process. We assume

thatΩ is either a box with periodic boundary conditions or a general domain with either Dirich-

let or Neumann boundary condition. The initial condition isgiven by the formula

U(x,0) = u0(x)

whereu0(x) can either be a deterministic function or a stochastic process inx.

Now suppose that the Wiener process can be expressed as

W =
∞

∑
k=0

Bk
t ek(x)(3)

were theBn
t s are standard independent Brownian motions and theen are the eigenfunctions of

the negative Laplacian−∆ on Ω with eigenvaluesλn. Then the stochastic initial value problem

can be solved in the following manner. We seek a solution of the form

U(x, t) =
∞

∑
k=1

Ak
t ek(x)

where theAn
t s are independent stochastic processes. A substitution intothe stochastic PDE

gives the stochastic ODE initial value problems

dAk
t = −λkA

k
t dt+dBk

t , t ∈ R
+
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Ak
0 = ûk

0, k = 0,1, ...

These problems are easily solved

Ak
t = e−λktAk

0 +
Z t

0
e−λk(t−s)dBk

s,

where the integral is the usual Ito’s integral and theAn
t s are the so-called Ornstein-Uhlenbeck

processes.

Now consider the stochastic initial value problem,

dU = ∆Udt+dW

with periodic boundary conditions

U(x, t) = U(x+ ı̂L, t); Ux(x, t) = Ux(x+ ı̂L, t), t > 0,

where the ı̂ are unit vectors inRn and initial conditions

u(x,0) = c, 0≤ xi ≤ L, i = 1, ..,n.

W(dx,dt) now denotes a white noise process that is white in both space and time and charac-

terized by its expectation

E(W(dx,dt)W(dx′,dt′)) = δ(x−x′)δ(t− t ′)dxdx′dtdt′.
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The solution of this initial value problem is

U(x, t) = c+
∞

∑
k=−∞
k6=0

Ak
t ek(x).

where

Ak
t =

Z t

0

Z L

0
ek(y)e

−λk(t−s)W(dy,ds), k∈ Z
+,

andek denotes the complex conjugate of the basis functionek. The basis functions are Fouries

components (exponentials) because of the periodic boundary conditions.

Lemma 2.1

Ak
t =

Z t

0
e−λk(t−s)dBk

s,

where Bk
t are standard,R-valued independent Brownian motions.

Proof:

E(Ak
t Ak′

t ′ ) =
Z t

0

Z L

0

Z t ′

0

Z L

0
ek(y)ek′(y

′)e−λk(t−s)e−λk′ (t
′−s′)E

(

W(dy,ds)W(dy′,ds′)
)

=

Z t∧t ′

0

Z L

0
ek(y)ek′(y)dy e−λk(t−s)e−λk′(t

′−s)ds,

wheret ∧ t ′ denotesmin(t, t ′),

=
Z t∧t ′

0
e−λk((t+t ′)−2s)ds, if k = k′,

and zero otherwise.
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On the other hand,

E

(

Z t

0
e−λk(t−s)dBk

s ·
Z t ′

0
e−λk′(t

′−s′)dBk′
s′

)

=

Z t

0

Z t ′

0
e−λk(t−s)e−λk′ (t

′−s′)E(dBk
sdBk′

s′ )

=
Z t∧t ′

0
e−λk((t+t ′)−2s)ds, if k = k′,

and zero otherwise. Hence both sides of the equality represent zero mean Gaussian processes

with same covariance function. QED

Now let E denote the expectation and V the width function or variogram, which is the square

root of the second momentρ2,

V2(x,y, t) = E(|U(y, t)−U(x, t)|2),

then, when the initial conditions are constant, we obtain
Lemma 2.2

E(Ak
t Ak

t ) =
1−e−2λkt

2λk
,

and

V2(x,y, t) =
∞

∑
k=−∞

1−e−2λkt

2λk
|ek(y)−ek(x)|2.

Proof: Let t = t ′ in the above proof to obtain

E(Ak
t Ak′

t ′ ) =
Z t

0
e−2λk(t−s)ds=

1−e−2λkt

2λk
.

The width function is computed in the following manner,

E(|U(y, t)−U(x, t)|2) =
∞

∑
k=−∞

∞

∑
j=−∞

E(Ak
t A j

t )|ek(y)−ek(x)|2,
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since E(Ak
t A j

t ) = 0, if k 6= j, and otherwise by the formula above, this is equal to

∞

∑
k=−∞

1−e−2λkt

2λk
|ek(y)−ek(x)|2.

QED

If the initial conditions are not constant they usually givea contribution to V.

The above formula for the width function is perfectly general but we will now specialize

to one dimension and a domain that is an interval with periodic boundary conditions. In this

case the basis of eigenfunctions of the Laplacian are the Fourier components with the following

eigenvalues

ek(x) =
1√
L

e
2πki

L x; λk =

(

2πk
L

)2

; k∈ Z.

The estimates can be carried out in higher dimensions but theapplications that we have in mind

are to a one-dimensional width function. This means that we can identify the interval[0,L] with

periodic boundary conditions as the circleS1. We leta∧b denote the minimum ofa andb. The

following estimates are proven in Walsh [76]; see also Edward and Wilkinson [26].

Lemma 2.3 The following two estimates hold

∞

∑
k=−∞

1−e−2λkt

2λk
≤
(

L
2π

)2

∧
√

t

(

L√
2π

+
2
√

2π
L

)

,

and
∞

∑
k=−∞

|ek(y)−ek(x)|2
2λk

≤ 1
π
|y−x|.

Proof:

1−e−2λkt ≤ 1
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always holds. In particular if

t ≥ 1
2

(

L
2π

)2

,

then it follows by the integral test that

2
∞

∑
k=1

1−e−2λkt

2λk
≤ 2

Z ∞

1

1

2
(

2πu
L

)2du

=

(

L
2π

)2

.

On the other hand, if

t <
1
2

(

L
2π

)2

,

then

2
∞

∑
k=1

1−e−2λkt

2λk
≤

∞

∑
k=1

1
(2πk

L

)2 ∧2t ≤ 2
Z

1
2π
L
√

2t

0
tdu+

Z ∞

1
2π
L
√

2t

1
u2du

=
L
√

t√
2π

+
2π

√
2t

L
if , t ≤ 1

2

(

L
2π

)2

.

The proof of the second inequality is

(

e
2πki

L y
√

L
− e

2πki
L x

√
L

)(

e
2πki

L y
√

L
− e

2πki
L x

√
L

)

=
1
L

(

1−e
2πki

L (y−x)−e−
2πki

L (y−x) +1
)

=
4
L

sin2
(

πk
L

(y−x)

)

≤ 4
L

(

1∧
(

πk
L

(y−x)

)2
)

.

Therefore,
∞

∑
k=−∞

|ek(y)−ek(x)|2
2λk

≤
∞

∑
k=1

2
L

(

1∧
(πk

L (y−x)
)2
)

λk
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=
2
L

∞

∑
k=1

1
(2πk

L

)2 ∧
(y−x)2

4
≤ 1

2

Z ∞

0

L
π2u2 ∧

(y−x)2

L
du

=
1
2

Z L
π|y−x|

0

(y−x)2

L
du+

1
2

Z ∞

L
π|y−x|

L
π2u2du=

1
2

( |y−x|
π

+
|y−x|

π

)

=
1
π
|y−x|.

QED

The width function characterizes both an initial transientstate and a stationary state for the

stochastic processU(x, t), these two different states are characterized by t (temporal) and x

(spatial) scalings of the width function.

Theorem 2.1 The stochastic process defined by the equation (2) and the noise (3) possesses

both a transient and a stationary state. Initially, during atransient growth,

V(x,y, t)≤
√

2√
L





(

L
2π

)

∧
(

L√
2π

+
2
√

2π
L

)1/2

t
1
4





whereas in the stationary state

V(x,y, t)≤
√

1
π
|y−x| 1

2 .

Proof: From Lemma 2.2,

V2(x,y, t) =
4
L

∞

∑
k=−∞

1−e−2λkt

2λk
sin2

(

πk
L

(y−x)

)

≤ 4
L

∞

∑
k=−∞

1−e−2λkt

2λk
.

The result follows from Lemma 2.3. The second estimates also follows from Lemma 2.3 and

the trivial estimate

V2(x,y, t)≤ 4
L

∞

∑
k=−∞

1
2λk

sin2
(

πk
L

(y−x)

)

.
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QED

Theorem 2.2 There exists a Gaussian invariant measure

µ(dx) = exp{−
∞

∑
−∞

λkx
2
k +θk}dx=

∞

∏
k=−∞

(

e−λkx2
k

√

π/λk

)

dxk

on the phase space H= L2(S1), where x= ∑∞
k=−∞ xkek is a general vector in H, whereθk =

1
2 ln(λk

π ) is the normalization factor of the Gaussian.

The proof of Theorem 2.2 is a special case of the proof of Theorem 3.2 and Corollary 3.2.

3 SOC Systems

We will now define processes that we call SOC systems or SOC processes.

Definition 3.1 A stochastic process U is an SOC system if it possesses both a transient growth

state and a statistically stationary state satisfying the following four conditions:

1. The process possesses a scaling, so the width function V= ρ
1
2
2 scales with a temporal

roughness exponentβ during the initial transients and the spatial roughness exponentχ

in the statistically stationary state.

2. There is an equivalence of time and space t∼ |x|z given by the temporal coefficient z

χ = z β

and the systems possesses a spatial scale L (system size, upper cut-off, wavelength se-

lection) that is an upper limit for the spatial scaling. A lower limit for the length of the

time-transients is given by t∼ Lz.
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3. The process projects the dynamics to a subspace H′ of the original phase space H as

t → ∞. H′ = H is also permitted as a special case.

4. There exists an measure µ on this subspace H′ and the process restricted to the subspace

is invariant with respect to this measure.

5. The invariant measure is colored; that is: the infinitely many directions in H′ are weighted

(colored), with weights different from a pure Gaussian or Poissonian measure.

The point of Condition 5 is that the invariant measure cannotbe a pure Gaussian as in Theorem

2.2. However, it can be a weighted Gaussian as in Corollary 3.2 with the weightsck providing

the color. In general it will be a non-Gaussian or Poissonianmeasure that is colored in the above

sense.

Definition 3.2 An SOC process hascomplex transientsif the process is multi-fractal during the

initial transients, so that either the width function scales with several different rationally inde-

pendent exponents, or homogeneous linear combinations of the higher moments(∑n
k=1akρn/k

k )
1
n ,

n > 2, scale with exponentsβn, which are rationally independent ofβ, βn 6= p
qβ, p,q∈ N.

Definition 3.3 An SOC process has acomplex stationary stateif the stationary state of the pro-

cess is multi-fractal, so that homogeneous linear combinations of the higher moments(∑n
k=1 akρn/k

k )
1
n ,

n > 2, scale with exponentsχn, which are rationally independent ofχ, χn 6= p
qχ, p,q∈ N, in the

stationary state.

Example 3.1 We now solve the equation (2) with thecolored noise,

dW =
∞

∑
k=0

c
1
2
k e−αktdBk

t ek(x).(4)

Here the coefficients give different weight to the differentdirectionsek and representspatial

coloring whereas the exponential factorse−αkt give (an exponential)temporalcoloring. Then
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by a similar computation as in Lemma 2.2

E(Ak
t Ak

t ) = e−2αkt 1−e−2(λk−αk)t

2(λk−αk)
,

and the width function becomes

V2(x,y, t) =
∞

∑
k=0

cke
−2αkt 1−e−2(λk−αk)t

2(λk−αk)
|ek(y)−ek(x)|2.

The following estimates hold

V ≤C t2β,

whereβ = supβ′ such that
∞

∑
k=0, αk 6=0

ck

|λk−αk|1−2β′ < ∞,(5)

C a constant and

V ≤C |y−x|2χ,

whereχ = supχ′ such that
∞

∑
k=0, αk=0

ck

λ1−χ′
k

< ∞.(6)

The proofs are similar to the ones in Lemma 2.3.

An example of a noise that gives a process with the above scalings is the noise (4) with the

coefficients,ck = a
kp , p = 2χ−1, and|λk−αk| = b kq, q =

2(1−χ)
1−2β , a andb being constants.

Colored Wiener processes with spatial coloring as in example 3 have been widely studied in

the literature; see for example Dawson and Salehi [14] wherethey are used to describe random

environments, and [51]. Dawson [13] gives a good account of linear PDEs driven by both white

and colored noise. In particular, it is shown in these references that colored noise gives colored

scalings for linear SPDEs.
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We can now show that the stochastic process with the colored noise in Example (3) is an

SOC process whereas the process defined by equation (2) and white noise (3) is not an SOC

process.

Lemma 3.1 The stochastic process in Example (3), defined by equation (2) with the colored

noise (4), is an SOC process. Moreover, if1
q is not a rational multiple ofβ then the stochastic

process has complex transients.

Proof: Conditions 1 and 2 in Definition 3.1 are proven by Example 3,L can here be taken

to be the spatial period (system size). The third condition in Definition 3.1 is also proven in

Example 3 which shows that ast → ∞ the variance ofU vanished except on the subspace where

αk = 0. Since the mean ofU also decays exponentially we see that the process is projected onto

this subspace,αk = 0, where the statistically stationary state lives, see Example 3. Corollary

3.2 gives the existence of an invariant measure on this subspace and satisfies Condition 4 of

Definition 3.1. Since this measure is a weighted Gaussian it also satisfies Condition 5. We need

to show that with the conditions onβ andq the process satisfies Definition 3.2. We will compute

the fourth moment,

ρ4 =
∞

∑
k=0

c2
ke−4λkt (1−e−2(λk−αk)t)2

4(λk−αk)2 |ek(y)−ek(x)|4

+ 3

(

∞

∑
k=0

cke
−2αkt 1−e−2(λk−αk)t

2(λk−αk)
|ek(y)−ek(x)|2

)2

.

The second part of this expression scales ast4β by Equation 5 whent is small, the first part is

estimated as in Example 3. By the integral test

∞

∑
k=0, αk 6=0

c2
ke−4αkt (1−e−2(λk−αk)t)2

4(λk−αk)2 ≤
∞

∑
k=0, αk 6=0

c2
k

1
4(λk−αk)2 ∧ t2

25



≤ C′
(

Z
c

t1/q

0
t2 1

u2pdu+
Z ∞

c

t1/q

1

u2(p+q)
du

)

,

assuming thatck = a
kp and |λk−αk| = b

kq , whereC′, a andb are constants. The last integral

equals

= C′(
1

1−2p
+

1
2(p+q)−1

)t
2(p+q)−1

q = Ct4β+ 1
q ,

where 2β = 1+ p−1
q andC is another constant. This shows that(ρ4−3ρ2

2)
1/4 scales with the

exponentβ+ 1
4q, which is rationally independent ofβ. QED

It is clear that the stochastic process in Example (3) does not have a complex stationary

state, because its invariant measure onH ′ is a weighted Gaussian by Corollary 3.2. This implies

that its variance and all homogeneous linear combinations of the higher moments scale with the

same exponent given by (6).

Corollary 3.1 The Edward-Wilkinson stochastic process defined by equation (2), with white

noise (3), does not have complex transients, and is not an SOCprocess.

Proof: The scalingβ = 1
2 corresponds to the long time asymptotics of Brownian motionand

it is well know that the moments scale asρ2k ∼ tk in that case. The Edward-Wilkinson process

is the transient toward a Brownian motion and then the scaling of the second moment isV2 =

ρ2 ∼ t1/2. The same argument as in the proof of the Theorem 2.1 gives theformulaρ2k ∼ tk/2

for the initial transients. Thus no linear combination of the moments can scale with an exponent

rationally independent ofβ = 1
4. It is also easy to check by carrying the computation in Lemma

2.3 out for the higher order terms int, that all the terms scale with the exponent1
4. Thus no

other exponents appear in the scaling ofV. This violates Definition 3.2. Conditions 1 and

2 of Definition 3.1 are satisfied by Theorem 2.1 and Theorem 2.2gives an invariant measure

supported on the full space (H ′ = H) and satisfies Conditions 3 and 4. However, it is a pure

unweighted Gaussian measure and thus fails Condition 5. QED

26



Polynomial Colored Noise

In this section we will consider processes that are colored by polynomially decaying noise

instead of exponentially decaying noise as in the last section. This is the coloring that we

will encounter in the application to fluvial landscapes in the following sections. As always we

consider a linear SPDE for a systems in the form

dU = ∆Udt+dW, x∈ Ω, t ∈ R
+(7)

whereU(x, t) is the solution, and∆ denotes the Laplacian. We assume again thatΩ is either a

box with periodic boundary conditions or a general domain with either Dirichlet or Neumann

boundary condition. The initial condition is given by the formula

U(x,0) = u0(x)

whereu0(x) can either be a deterministic function or a stochastic process inx.

We are now going to assume that the noise process is colored both in space and time and

can be express as

dW =
∞

∑
k=0

c
1
2
k (t + t0)

−αkdBk
t ek(x),(8)

were theBn
t s are standard independent Brownian motions and theen are the eigenfunctions of

the negative Laplacian−∆ onΩ with eigenvaluesλn. Notice that this time-coloring of the noise

is different from (4). There the noise decayed exponentially in time whereas here the decay is

polynomial. Then the stochastic initial value problem can be solve in the following manner. We

seek a solution of the form

U(x, t) =
∞

∑
k=0

Ak
t ek(x)
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where theAk
t s are independent stochastic processes. A substitution intothe stochastic PDE

gives the stochastic ODE initial value problems

dAk
t = −λkA

k
t dt+c

1
2
k (t + t0)

−αkdBk
t , t ∈ R

+

Ak
0 = ûk

0, k = 0,1, ...

These problems are easily solved

Ak
t = e−λktAk

0+c
1
2
k

Z t

0
(s+ t0)

−αke−λk(t−s)dBk
s,

where the integral is the usual Ito’s integral but now theAk
t s are no longer Ornstein-Uhlenbeck

processes.

Lemma 3.2 Let

Qk
t = ck

Z t

0
(s+ t0)

−2αke−2λk(t−s) ds,

then

V2(x,y, t) =
∞

∑
k=0

Qk
t |ek(y)−ek(x)|2.

The proof of the Lemma is similar to the proof of Lemma 2.2.

Lemma 3.3 If αk 6= 0, then

lim
t→∞

Qk
t = 0.

Proof:

lim
t→∞

Qk
t = ck lim

t→∞

Z t

0
(s+ t0)

−2αke−2λk(t−s)ds.
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The last integral is of the form

Z t

0

e−b(t−s)

(s+ t0)ads= −
Z t

0

e−bz

(t + t0−z)adz,

by the change of variablesz= t −s. The integral on the right hand side of the last equation can

be split
Z τ

0

e−bz

(t + t0−z)adz+e−bτ
Z t−τ

0

e−bx

(t + t0−x− τ)adx,

making the change of variablesz= x+ τ in the latter integral. Now the first integral converges

uniformly and we can take the limitt → ∞ inside the integral. The second integral converges

and we can letτ = t/2, then the second expression vanishes ast → ∞ because of the decay of

the exponentiale−bt/2 in front of the integral. Now letτk = tk/2 andt > tk → ∞, then both

expressions converge to zero. QED

Lemma 3.4 The following two estimates hold

∞

∑
k=0, αk 6=0

Qt ≤Ct2β,

where

β = minn,k(
n
2
−αk)+, n∈ Z

+, k∈ Z
+,

where(·)+ denotes the positive part, and

∞

∑
k=0, αk=0

ck

2λk
|(ek(y)−ek(x)|2 ≤C |y−x|2χ,

whereχ = supχ′ such that
∞

∑
k=0, αk=0

ck

λ1−χ′
k

< ∞.
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Proof: We integrate by parts to get

∞

∑
k=0, αk 6=0

Qk
t = ∑

n=1
∑

k=0, αk 6=0

(2λk)
n−1ck

∏n
j=1( j −2αk)

t(n−2αk),(9)

up to terms of higher order int. For t small the fastest growing terms has the coefficientβ =

minn,k(n−2αk). If only finitely manyαks satisfy,αk 6= 0, the sum converges. If infinitely many

αk 6= 0 we can only integrate by parts as long as

∑
k=0, αk 6=0

(2λk)
n−1ck < ∞.

The proof of the second estimate is the same as in Example 3.1 using that limt→∞ Qk
t = 0

for αk 6= 0 by Lemma 3.3. QED

Theorem 3.1 The stochastic process defined by Equation (7) and the colored noise (8) pos-

sesses both a transient and a stationary state. Initially, during the transient growth,

V(x,y, t)≤Ctβ,

C a constant, whereas in the stationary state

V(x,y, t)≤C |y−x|χ,

where the coefficientsβ andχ are defined in Lemma 3.4.

The following theorem is stated and proven as Theorem 6.2.1 in [51].

Theorem 3.2 Consider the stochastic PDE (SPDE)

dU = AU(t)dt+B(t)dW(t), U(0) = x,
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and suppose that A is the generator of a strongly continuous semi-group S(t) on a Hilbert space

H, and B(·) a linear operator B: H → H. For any t> 0 and x∈ H let

Qt =
Z t

0
S(s)B(s)B∗(s)S∗(s)x ds

be a trace class operator. Then for any x∈H the solutionU(t) is a stochastic processP (S(t)x,Qt),

with mean S(t)x and variance Qt and the SPDE possesses an invariant measure, given by

ν∗N (0,Q∞)

where

Q∞ =

Z ∞

0
S(s)B(s)B∗(s)S∗(s)x ds

andν is the invariant measure of the deterministic PDE, ut = Au.

Proof: The assumption onA andB imply that

U(t) = S(t)x+
Z t

0
S(t−s)B(s)dW(s)

is a mild solution of the SPDE.

The transition semi-group on H corresponding to the SPDE is

Rtϕ(x) =

Z

H
ϕ(y)P (S(t)x,Qt)(dy)

A probability measureµ∈M (H), M (H) is the set of all probability measures onH, is invariant

if
Z

H
Rtϕ(x)dµ(x) =

Z

H
ϕ(x)dµ

for all boundedϕ onH.
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Now the simplest way to proceed is to consider the characteristic functionalµ̂of the measure

P ,

Rte
i<h,x> = e<h,S(t)x>e−

1
2<Qth,h>, x∈ H,

for a fixedh ∈ H. We have letϕ(x) = ei<h,x> and the computation is standard. Clearly this

implies thatµ is invariant if and only if

µ̂(h) = e−
1
2<Qth,h>µ̂(S∗(t)h).(10)

It is this condition that we now prove. We define the measure tobe

µ(dx) = e−
1
2<Q−1/2

∞ x,Q−1/2
∞ x>dx,

so that

µ̂(h) = e−
1
2<Q∞h,h>.

Thus

µ̂(S∗(t)h) = e−
1
2<Q∞S∗(t)h,S∗(t)h> = e−

1
2<S(t)Q∞S∗(t)h,h>

whereh∈ H and

S(t)Q∞S∗(t)h= −1
2

Qth+
1
2

Q∞h

and substituting this expression in forS(t)Q∞S∗(t) in the exponential

e−
1
2<S(t)Q∞S∗(t)h,h> = e

1
2<Qth,h>e−

1
2<Q∞h,h>

gives

µ̂(S∗(t)h)e−
1
2<Qth,h> = µ̂(h)
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which is Condition (10).

QED

Corollary 3.2 Let H′ denote the subspace{x′ = ∑k=0, αk=0xkek}. There exists a weighted

Gaussian invariant measure

µ(dx′) = exp{− ∑
k=0, αk=0

λk

ck
x2

k +θk}dx′ =
∞

∏
k=0, αk=0







e
− λkx2

k
ck

√

πck/λk






dxk

on H′, whereθk = 1
2 ln( λk

πck
) is the normalization factor of the Gaussian.

Proof: Let H ′ be the subspace ofH, H ′ = {x′ = ∑k=0, αk=0xkek}. We need to proof Condition

(10). In the proof of Theorem 3.2 we defined the measure to be

µ(dx′) = exp{− ∑
k=0, αk=0

λk

ck
x2

k}dx′ = e−
1
2<Q−1/2

∞ x′,Q−1/2
∞ x′>dx′,

so that

µ̂(h′) = e−
1
2<Q∞h′,h′>,

and Condition (10) becomes

µ̂(h′) = e−
1
2<Qth′,h′>µ̂(S∗(t)h′).

Here the operatorQ∞ is defined by

Q∞x = ∑
k=0, αk=0

ck

2λk
xkek,
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thexks being the Fourier coefficients ofx = ∑∞
k=0xkek ∈ H. Thus

µ̂(S∗(t)h′) = e−
1
2<Q∞S∗(t)h′,S∗(t)h′> = e−

1
2<S(t)Q∞S∗(t)h′,h′>

whereh′ ∈ H ′ and

S(t)Q∞S∗(t)h′ = ∑
k=0, αk=0

ck

2λk
e−2λkthkek = ∑

k=0, αk=0

ck

2λk
(e−2λkt −1)hkek + ∑

k=0, αk=0

ck

2λk
hkek,

whereh = ∑∞
k=0hkek is the Fourier expansion ofh. The last expression above is nothing but

−1
2

Qth
′+

1
2

Q∞h′

and substituting this expression in forS(t)Q∞S∗(t) in the exponential

e−
1
2<S(t)Q∞S∗(t)h′,h′> = e

1
2<Qth′,h′>e−

1
2<Q∞h′,h′>

gives

µ̂(S∗(t)h′)e−
1
2<Qth′,h′> = µ̂(h′)

which is Condition (10). QED

The corollary is nothing but the classical computation of the (weighted) invariant measure for

an Ornstein-Uhlenbeck process.

Theorem 3.3 The stochastic process defined by equation (7) and the colored noise (8) is an

SOC process. It has complex transients if the difference of some of the coefficientsα1 −
p
qαk, k≥ 2, p,q∈ Z

+, that determine the t scaling of V , is not a rational number.
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Proof: The proof of the five conditions in Definition 3.1 is similar tothe proof of Lemma 3.1.

We need to prove the condition in Definition 3.2. By the Equation (9)

∞

∑
k=0, αk 6=0

Qk
t = ∑

n=1
∑

k=0, αk 6=0

(2λk)
n−1ck

∏n
j=1( j −2αk)

t(n−2αk),(11)

it is clear that someQk1
t will dominate initially with thet exponentn1− 2α1, wheren1 is a

positive integer or zero. Later on during the initial transients, otherQk
t s may dominate with a

smaller exponentn2−2α2, etc. If the differenceα1− p
qα2 is not a rational number, then these

exponents are rationally independent. QED

Remark 3.1 In practice it may be impossible to check the conditions in Definition 3.2 or Def-

inition 3.3, because any irrational number can be approximated arbitrarily closely by a rational

one. Thus in real application we interpret these conditionsto say that no low order rational

dependence can be found, or one withnot very largeintegersp,q∈ N.

Remark 3.2 We have presented a one-dimensional existence theory for the SPDEs in this sec-

tion but all the statements apply and are similar in higher dimensions. The only difference is

that in order for the stochastic processes solving the SPDEsto be continuous, the spatial col-

oring coefficientsck, in Equations (4) and (8), must decay faster withk in higher dimensions;

see Walsh [76]. Moreover, it turns out that it is the one-dimensional theory that applies to the

fluvial landsurfaces discussed below although these surfaces are themselves two-dimensional.

The reasons are that there is a strong bias initially, introduced by the initial slope of the surface

and the numerical scaling results, see [10], apply to one-dimensional cross-sections, perpendic-

ular to the down-slope direction of the surface. Later on as the erosion process approaches more

mature landscapes, there is an interplay between the initial channelization that is still active in

the bottom of the valleys along the main rivers, and the adolescence and maturation processes

that act on the slopes of the mountains, perpendicular to the(initial) down-slope direction. Thus
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the adolescence and maturation processes must also be gagedby a one-dimensional scaling in

the direction perpendicular to the (initial) down-slope direction; see [10] and below.

4 Fluvial Landsurfaces

Fluvial landsurfaces are described by two coupled nonlinear PDEs, see [10].H denotes the

height of the water surface andh denotes the water depth. This implies thatz= H −h is the

height of the landsurfaces, but it is easier to describe the evolution in terms of the first two

variables. We therefore focus our attention on the model

η2∂h
∂t

= ∇ ·
[

∇H
|∇H |h

5
3 |∇H | 1

2

]

+ R,(12)

∂H
∂t

− η
∂h
∂t

= ∇ ·
[

∇H
|∇H |h

5
3γ |∇H |

γ
2+δ
]

(13)

in which we have adopted the scaling relation[h]/[H]= [qw]/[qs]≡η, η being a small parameter

andR being the rainfall rate.

We use the same boundary and initial conditions as [71, 74] tomodel a linear ridge extending

uniformly in the lateral (x)-direction and defined over a rectangular domain of lengthL and

width K,

D = {(x,y) ∈ R
2|0≤ x≤ L, 0≤ y≤ K},

with initial conditions corresponding to a ridge of heightcK uniform in the x-direction and with

slopec in the y-direction,

h(x,y,0) = d(y), d(y) = ho, 0≤ y≤ K − ε
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d(y) = ho
K −y

ε
, K − ε ≤ y≤ K;(14)

H(x,y,0) = cy+d(y), 0≤ y≤ K,

and boundary conditions

h(x,K, t) = 0,

H(x,0, t) = h0 = h(x,0, t)(15)

corresponding to a water depth of zero at the top of the ridge and an absorbing body of water at

the base of the ridge. While the water surface must be considered to be a free surface at the top

of the ridge, it may be viewed as consisting of finitely many smooth curves that are solutions of

a nonlinear ODE (the PDE restricted to the boundary). These curves are joined in a continuous,

but not smooth, moving boundary (see, for example, Figure 3 that is borrowed from [10]). The

upper boundary is characterized by the additional conditions

qw = qs = 0,

where

qw =
∇H
|∇H |h

5
3 |∇H |

1
2 , qs =

∇H
|∇H |h

5
3γ |∇H |

γ
2+δ

are the water and sediment flux respectively, see [71], indicating the absence of any flux of water

or sediment over this boundary. Sinceqw andqs are expressed as powers ofh and∇H in the

constitutive relations, these conditions imply that the vanishing of the water depth dominates

the blow-up of the gradient ofH (in qw andqs) and that the normal derivative ofH may become

infinite at the upper boundary

n ·∇H(x,K, t) = ∞.
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We will choose the values of the sediment transport parameters γ = 2,δ = 2, which are realistic

values for a range of landsurfaces. We note that there is no significant variation of our results

in a whole neighborhood of such values ofγ andδ. The boundary conditions on the lateral

boundaries of the ridge atx = 0 andx = L are taken to be periodic, modeling a linear ridge of

infinite extent.

Water flowing down a uniform erodible sediment surface formssmall channels that quickly

cover the whole surface, see [71] and [10]. We will first examine what happens following this

initial channelization process. In particular, we assume that our perturbed solutions take the

form

h(x,y, t) = h1(x,y, t)+v(x,y, t), H(x,y, t) = H1(x,y, t)+u(x,y, t)

whereH1(x,y, t) represents a convex2 portion of an interfluvial ridge, see Figure 3 at 10% of

the sediment eroded. The functionh1(x,y, t) is the depth of water flow over this portion, and

v(x,y, t),u(x,y, t) are respectively the small perturbations to these quantities. The equations

linearized about the convex profiles are

η2∂v
∂t

= ∇ ·
[

5
3

h
2
3
1

∇H1

|∇H1|1/2
v

]

+(16)

∇ ·
[

h
5
3
1

∇u

|∇H1|1/2
− 1

2
h

5
3
1(∇H1 ·∇u)

∇H1

|∇H1|5/2

]

,

∂u
∂t

= ∇ ·





h
5
3
1

|∇H1|1/2
(
1
η

+h
5
3
1 |∇H1|5/2)∇u



 + ∇ ·
[

5
3

h
2
3
1

∇H1

|∇H1|1/2
(
1
η

+2h
2
3
1 |∇H1|5/2)v

]

+ ∇ ·
[

h
5
3
1(

−1
2η

+2h
5
3
1 |∇H1|5/2)(∇H1 ·∇u)

∇H1

|∇H1|5/2

]

,(17)

2Here and below the meaning of convex and concave is opposite to their mathematical definition in accordance
with the use of these terms in geomorphology
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The first equation is a hyperbolic equation forv driven by∇u. The second equation is a parabolic

equation foru driven byv and∇v.

Because water flows down the gradient of the surfaceH1(x,y, t), we may view the first

equation as a hyperbolic PDE in one space dimension. Namely,if we let u = ∇H1
|∇H1| denote the

unit vector in the direction of the gradient of the water surface, we can write the first equation

in the form

η2∂v
∂t

=
5
3

h
2
3
1 |∇H1|1/2∂v

∂s
+ g(x,y, t)v + f (x,y, t).(18)

where the scalars parametrize the direction of the gradient,∂v
∂s = u ·∇v. This equation is ana-

lyzed in the Appendices in [10], where it is shown thatit develops shocks if the profiles about

which we linearize are convexor have knick-point singularities.

The original nonlinear system (12,13) can be completely analyzed in the direction of the

maximal (negative) gradient ofH because then it becomes one-dimensional. This is done in

[78] and to some extent in [79]. It is shown that an initially linear profile develops a shock in the

water flow, when a small perturbation is inserted at the top. This shock is a bore that propagates

downstream; in the wake of the shock is another shock in the water surface, a hydraulic jump

that digs up sediment. In the increased water volume betweenthe stationary hydraulic jump and

the traveling bore sediment is deposited. If this process isrepeated in several storms it results

in a convex hillslope as in Figure 3 at 10% eroded.

The typical profile of the water surface is illustrated in Figure 2 borrowed from [78]. It

shows a propagating bore in front and stationary hydraulic jump in the back; the origin is the

top of the slope, with increased water height in between. Theoriginal height of the landsurface

is y = 0. The upshot of all of this is that since the water is rather uniformly distributed over the

whole surface, up to the formation ofH1, the small white noise is magnified intolarge colored

noise. Namely, the statistics of bores and hydraulic jumps are those of pinned Burger’s shocks,
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Figure 2: The profile of the water surface with a bore and a hydraulic jump

see [50] and [66]. In this phase the surface is evolving rather rapidly and it seems appropriate to

call this theadolescenceof the surface. We will see below that the adolescence phase possesses

its own characteristic scaling.

After the initial channelization some channels grow into river valleys separated by ridges

and this landscape evolves through adolescence, see [71] and [10], toward a mature landscape

that persists for a long time. The water flow down the slope of amature landscape and the

resulting scaling of the water (and land) surface is different from the scaling of channelization

or the adolescence. To find and analyze this other scaling we linearize equations (12) and (13)

about the separable solutions, see [71] and [65], representing the mature landscapes of valleys

and ridges3

H = H2(x,y, t)+ εu(x,y, t), h = h2(x,y.t)+ εv(x,y, t),

whereH2 = Ho(x,y)T(t), h2 = ho(x,y)T− 3
10(t), are the separable solutions of the equations

(12, 13). The form of the equations that we obtain foru(x,y, t), v(x,y, t) by this linearizion

process is the same as that characterizing the early period of channel emergence discussed

3As in our previous analysis, we employ sediment transport parameter valuesγ = δ = 2, noting that similar
results hold for parameter values in a neighborhood of these.
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above, namely (16) and (17), but with the termsH1(x,y, t), h1(x,y, t) replaced by the separable

solutionsH2, h2.

Again, the first equation is a hyperbolic equation forv driven by∇u and the second is a

parabolic equation foru driven byv and∇v. Since the first equation is really a hyperbolic PDE

in one space dimension, exactly as in equation (18), we let the scalarsparametrize the direction

of the gradient to obtain

η2∂v
∂t

=
5
3

h
5
3
2 |∇H2|1/2∂v

∂s
+ g(x,y, t)v + f (u, t).(19)

A straight-forward analysis of this equation, presented inan Appendix in [10], shows that its

solutions develop shocks, for separable surfaces with (slope) singularities, since concave slopes

with knick-points are the dominant feature of the mature separable landscape, as illustrated

in Figure 3, at 60% of the sediment eroded. More importantly for the mature surfaces the

nonlinear water equations (12) have turbulent solutions, see [9]. This turbulent water flow feeds

sediment divergences and generates colored noise in the linearized equations, see [10].

However, analogous to the adolescent phase, the linearizedsediment equation is simply a

reflection of what happens in the full nonlinear equations (13). These nonlinear PDEs can be

analyzed, as above, in the direction of the maximal gradientof the separable surfaces and this

is done in [78] and [79]. Now the noise is also colored and thiscoloring process is analyzed

in great detail in [78]. Once the convexity, created betweenthe bore and the hydraulic jump

discussed above, meets the lower boundary a small concavityis created. This produces a shock

in the gradient of the sediment flow; its profile in the riverbed is called a knick-point. The

shock travels upstream; once it get all the way to the top of the hillslope a concave profile

has been carved out; see Figure 3 at 60% eroded. The arrival ofthe knick-point at the upper

ridge completes the evolution of the tranport limited riverprofile but a similar evolution is also
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taking place on all the hillsides of all mature landsurfaces. Bores and hydrolic jumps are widely

observed and it is well known that knick-points (rapids) travel upstream in time.

The coloring process described in [78] proceeds as follows.A small perturbation at the

lower boundary is turned into small cavity in the hillslope which then travels upstream. In

Figure 4 borrowed from [78] we see the slope−Hx of the water surface as the knick-point ap-

proaches the upper boundary. Now the small perturbation gets magnified into a singularity in

Figure 4: The slope of the water surface as a function of the downslope direction, showing a
knick-point approaching the upper boundary, atx = 0.

the derivative of the slope, that is highly colored in space and represented by a Hölder contin-

uous function; see [78] for more details. Moreover, since there is very little water on top of

the mature ridges, the distribution of the shocks is no longer uniform in space. We conclude

that the equations linearized about the separable surfacesare driven by large noise which is

highly colored in space and polynomially colored in time dueto the decay of the separable sur-

faces in time. This flow over a knick-point seems to be a primary example of one-dimensional

turbulence, see [9] for further analysis.

5 The Channelization, Adolescence and Maturation Processes

Channelization and Adolescence
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In this section we will discuss the three stochastic processes determined by the equations

(12) and (13) linearized about the initial channelizing surface (h0,H0), and the convex (h1,H1)

and concave (h2,H2) surfaces respectively.

Consider the linearized equation describing the Channelization Process

∂u
∂t

= ∇ ·





h
5
3
0

|∇H0|1/2
(
1
η

+h
5
3
0 |∇H0|5/2)∇u





+ ∇ ·
[

h
5
3
0(

−1
2η

+2h
5
3
0 |∇H0|5/2)(∇H0 ·∇u)

∇H0

|∇H0|5/2

]

(20)

+ ∇ ·
[

5
3

h
2
3
0

∇H0

|∇H0|1/2
(
1
η

+2h
2
3
0 |∇H0|5/2)v

]

,

Initially the channels are very small, and the slope|∇H0| is going to be very small. We will

make the assumption that
h

5
3
0

|∇H0|1/2 < constant, except on a set of measure zero. Then ignoring

terms that are small the equation (20) becomes

∂u
∂t

= a∆u+c
∂v
∂x

(21)

wherea andc are constants. The reason for this is that the ratio
h

5
3
0

|∇H0|1/2 is approximately a

constant and all the terms multiplied by|∇H0| are small and can be ignored. Thus the equation

(20) reduces to the equation considered in Section 2, if∇v is white noise. To verify this we

solve the equation

η
∂v
∂t

= b
∂v
∂s

+
∞

∑
k=0

dBk
t ek(x)(22)

obtained from Equation (18), withH1 replaced byH0, by ignoring terms that are small and

adding the noise in the initial water flow. We have also canceled one power ofη by a small term

(|∇H0|) on the right hand side of the equation andb is a constant. Now settingη = 0 it becomes

44



clear that∂v
∂s = u ·∇v is white noise.

Next we solve the SPDE

dU = ∆Udt+dW(23)

where

W =
∞

∑
k=0

Bk
t ek(x)(24)

is our model for the (white) noise term in equation (20) wheretheeks are the one-dimensional

eigenfunctions of−∆ andBk
t s are independent and Brownian. Then an analogous proof to that

of Theorem 2.1, recalling that the initial water surface isH0(0), proves the following theorems.

Theorem 5.1 Assume that the last term in equation (20) can be modeled by white noise, then

the Channelization process u defined by equation (20) is a Edward-Wilkinson process and

H = H0(0,x,yo)+
∞

∑
k=0

At
tek(x)

constitutes Brownian motion of the channelizing surface, for every fixed yo, where the

Ak
t = e−λktAk

0+c
1
2
k

Z t

0
e−λk(t−s)dBk

s,

are independent Orstein-Uhlenbeck processes.

Theorem 5.2 The Channelization Process possesses a transient growth state where the width

function, of the slope∇H, grows with a temporal roughness exponent4 of 1
4

V((x,y),(z,y), t)≤ t
1
4 .

The process eventually gets into a statistically stationary state, where the width function has a

4The notation(x,y),(z,y) indicates that the lag variablez−x is in the direction of thex axis.
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spatial roughness coefficient of1
2

V((x,y),(z,y), t)≤C|z−x| 1
2 .

There exists an invariant measure residing on the whole space.

Corollary 5.1 The Channelization Process is not an SOC process.

Proof: The proof is the same as the proof of Theorem 2.2 and Corollary3.1 QED

The numerical simulations in [10] are done by considering a lag variablez−x in thex direction

for a fixedy (upslope direction).χ is called a scaling exponent ifV scales with the exponent

χ over a range of upslope valuesy all the way from the lower to the upper boundary. The

scaling brakes down close to the boundaries because of theirinfluence. The theorem proves the

numerical observations in [10], see also [11]. Because of the bias caused by the initial slope

Ho = cy+ d(y), ∇H, but notH, scales initially and the bias causes the scaling exponent to

appear asχ/2, see the appendix in [10] for the details. Moreover, initially, the water depthh

scales as Brownian motion, in the computations, lending support to our modeling of the noise

(24).

We consider the equations (12) and (13) linearized about thethe convex surface (h1,H1),

∂u
∂t

= ∇ ·





h
5
3
1

|∇H1|1/2
(
1
η

+h
5
3
1 |∇H1|5/2)∇u





+ ∇ ·
[

h
5
3
1(

−1
2η

+2h
5
3
1 |∇H1|5/2)(∇H1 ·∇u)

∇H1

|∇H1|5/2

]

(25)

+ ∇ ·
[

5
3

h
2
3
1

∇H1

|∇H1|1/2
(
1
η

+2h
2
3
1 |∇H1|5/2)v

]

,
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We have linearized the equations (12) and (13) about a fixed profile H(x,y, t0) = H1(x,y),

h(x,y, t0) = h1(x,y). The variablev describes perturbations of the water depth; it solves a hyper-

bolic equation and will develop shocks but more importantlythe solutionsH1 (andh1) contain

the bores and the hydraulic jumps as described in the previous section. Thus the last two terms

in the equation (20) containlarge colored noise, where the colorχ = 2/3 is similar to that of

shock solutions of Burger’s equation with multiplicative noise and a pinning force, see [78] and

Parisi [50] and Sneppen [66].

Lemma 5.1 If 0 < | h
5
3
1

|∇H1|1/2 |∞ < ∞ in Ω except on a set of measure zero, then the operator

Au = ∇ ·





h
5
3
1

|∇H1|1/2
(
1
η

+h
5
3
1 |∇H1|5/2)∇u





+ ∇ ·
[

h
5
3
1(

−1
2η

+2h
5
3
1 |∇H1|5/2)(∇H1 ·∇u)

∇H1

|∇H1|5/2

]

is dissipative and generates a continuous contraction semi-group.

Proof: The operatorA is clearly symmetric on the Hilbert spaceL2(Ω) with boundary con-

ditions that vanish on half of∂Ω and are periodic on the other half of∂Ω, see the equations

(12) and (13).A is defined on the subset of smooth functionsC∞(Ω) ⊂ L2(Ω), soA is a closed

operator. To show that A is dissipative if suffices to show that

< u,Au>≤ 0,

for all u∈ L2(Ω), where<,> denotes the inner product inL2(Ω), but

< u,Au> = < u,∇ ·





h
5
3
1

|∇H1|1/2
(
1
η

+h
5
3
1 |∇H1|5/2)∇u



>
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+ < u,∇ ·
[

h
5
3
1(

−1
2η

+2h
5
3
1 |∇H1|5/2)(∇H1 ·∇u)

∇H1

|∇H1|5/2

]

>=

−‖( h
5
3
1

|∇H1|1/2
(
1
η

+ h
5
3
1 |∇H1|5/2)|∇u|2+h

5
3
1(

−1
2η

+2h
5
3
1 |∇H1|5/2)

1

|∇H1|5/2
(∇H1 ·∇u)2)1/2‖

≤ −‖( h
5
3
1

|∇H1|1/2
(

1
2η

h
5
3
1 +3|∇H1|5/2)|∇u|2)1/2‖

by Schwartz’s inequality applied to the vector product(∇H1 ·∇u), where‖ · ‖ denotes theL2

norm. Now since the last expression is negative, we concludethat

< u,Au>≤ 0.

Now it is easy to show that 1 lies in the resolvent set ofA and this implies thatA generates aC0

semi-group, see Yosida [81], page 250. QED

The operator−A is in fact essentially self-adjoint onL2(Ω) with the hypothesis in Lemma

5.1 and has a sequence of eigenvaluesλ(2)
k → ∞ and associated eigenfunctionsek(x,y).

We now solve the SPDE

dU = AUdt+dW(26)

where

W =
∞

∑
k=0

ckB
k
t ek(x)(27)

where theck have the spatial coloringχ = 2/3 of the the KPZ (Burger’s) equation with multi-

plicative noise and pinning force, see Parisi [50] and Sneppen [66].

Theorem 5.3 Assume that the equation (25) is driven by the noise (27). Then the adolescent

surfaces are described a stochastic Adolescence Process. The Adolescence Process possesses a

transient growth state where width function, of the slope∇H, grows with a temporal roughness
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exponent5 of 1
3

V((x,y),(z,y), t)≤ t
1
3 .

The process eventually gets into a statistically stationary state, where the width function has a

spatial roughness coefficient of2
3

V((x,y),(z,y), t)≤C|z−x| 2
3 .

There exists an invariant measure residing on the whole space.

Corollary 5.2 The Adolescence Process is an SOC process.

Proof: The proof is the same as the proof of Lemma 3.1, withαk = 0, 0≤ k < ∞. This restricts

the dynamical exponent to bez= 2. The existence of a colored invariant measure follows from

Corollary 3.2. QED

We will now explain why the one-dimensional examples in Sections 2-3 apply to the two-

dimensional linearized equations in this Section. The reason is that both the evolution of the

convex and the concave profiles in Figure 3 takes place in the direction of the maximal gradient

of the water surface|∇H| and can be restricted to an evolution with a one-dimensionalspatial

variable. This direction is of course never a straight line but it is mostly directed in thex

direction. In they (upslope) direction the initial surface dominates and gives a bias to the

numerically computed scaling. Thus the scaling laws in [10]are obtained by cross-sections of

the surfaces (convex and concave) in thex directions at fixed values ofy. Statistically this is

identical to the information gained by taking cross-sections along the directions of max|∇H|;

see [10] for more information on this issue.

The operator−A has the same properties as above when restricted to one dimensional cross-

sections. Namely,−A is essentially self-adjoint onL2([0,L]) with periodic boundary conditions

5The notation(x,y),(z,y) indicates that the lag variablez−x is in the direction of thex axis.
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and has a sequence of eigenvaluesλ(1)
k → ∞ and associated eigenfunctionsek(x).

Maturation

We now linearized the equations (12) and (13) about a separable solutionH2 = Ho(x,y)T(t),

h2 = ho(x,y)T− 3
10(t), describing a mature decaying landscape, see [71, 74, 10]. The resulting

equations are

∂u
∂t

= ∇ ·





h
5
3
o

|∇Ho|1/2
(
T−1

η
+h

5
3
o |∇Ho|5/2T)∇u





+ ∇ ·
[

h
5
3
o(

−T−1

2η
+2h

5
3
o |∇Ho|5/2T)(∇Ho ·∇u)

∇Ho

|∇Ho|5/2

]

+ ∇ ·
[

5
3

h
2
3
o

∇Ho

|∇Ho|1/2
(
T3/5

η
+2h

2
3
o |∇Ho|5/2T2 9

10)v

]

(28)

and a hyperbolic equation for the waterv depth as described in the previous section. The water

depth can develop shock that are sources of noise, however indistinction to equation (20) this

noise is highly colored in space due to the fact that the waterdepth goes to zero on top of the

separable ridges, see [10], and the solutionsHo (andho) contain the colored knick-point shocks,

described in previous section. In addition the noise term involving ∇v andv is colored in time

due to the factorsT3/5, T andT2 9
10 . We conclude that Equation (28) is driven bylarge noise

that is highly colored both in space and time.The remainingT factorT−1 is removed in the

following manner.

It is shown in [71] that the time decayT satisfies the ODE,

∂T
∂t

= −aT2

where−a = Fo
Vo

is the ratio of the sediment fluxFo to the volumeVo =
R

Ω Ho(x,y)dxdy. This
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ODE is easily solved to give

T(t) =
1

(1+at)

assuming thatT(0) = 1. Substituting this expression in forT in the equation (28) and making

the change of variabless=
(1+at)2

2a give the equation

∂u
∂s

= ∇ ·





h
5
3
o

|∇Ho|1/2
(
1
η

+h
5
3
o |∇Ho|5/2 1

2as
)∇u





+ ∇ ·
[

h
5
3
o(

−1
2η

+2h
5
3
o |∇Ho|5/2 1

2as
)(∇Ho ·∇u)

∇Ho

|∇Ho|5/2

]

+ ∇ ·
[

5
3

h
2
3
o

∇Ho

|∇Ho|1/2
(

1

(2a)4/5s4/5
+2h

2
3
o

|∇Ho|5/2

(2a)119
20s119

20

v

]

(29)

This equation is also driven by large noise, in the last two terms, colored by a quenched (by the

absence of water on top of mountains) knick-point noise in space and polynomially colored in

the times.

Lemma 5.2 If 0 < | h
5
3
1

|∇H1|1/2 |∞ < ∞ in Ω, except on a set of measure zero, the operator

Aou = ∇ ·





h
5
3
o

|∇Ho|1/2

1
η

∇u



+∇ ·
[

h
5
3
o(

−1
2η

)(∇Ho ·∇u)
∇Ho

|∇Ho|5/2

]

is dissipative and generates a continuous contraction semi-group whereas the operator

A(s)u = ∇ ·





h
5
3
o

|∇Ho|1/2
(
1
η

+h
5
3
o |∇Ho|5/2 1

2cs
)∇u





+ ∇ ·
[

h
5
3
o(

−1
2η

+2h
5
3
o |∇Ho|5/2 1

2as
)(∇Ho ·∇u)

∇Ho

|∇Ho|5/2

]

generates a solution operator S(s,so) for the equation (29), for1/η large.
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Proof: The proof of the dissipativeness ofA is the same as in Lemma 5.1 but simpler. For 1/η

large the quadratic form< u,Au> bounds the form

< ∇u,(h
5
3
o |∇Ho|5/2 1

2cs
+2h

5
3
o |∇Ho|5/2 1

2as
(∇Ho ·∇u)

∇Ho

|∇Ho|5/2
)∇u >

uniformly in s. This implies that the form< u,A(s)u > generates a solution operator; see Kato

[39]. QED
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Figure 5: The scaling exponents of the variogram are shown asa function of time, for an
initial surface with a slope of 6.5 degrees, on a log-log plot. The temporal evolution shows
four different exponents (slopes), along with their regression coefficients, and a statistically
stationary state (with slope zero) is emerging, furthest tothe right.

The operator−Ao is also essentially self-adjoint onL2(Ω) with the hypothesis in Lemma 5.2

and once we restrict it to a one-dimensional cross-section as discussed above, it retains these

properties onL2([0,L]) and has a sequence of eigenvaluesλk →∞ and associated eigenfunctions

ek(x).

We now write the equation (28) restricted to a one-dimensional cross-section as a SPDE,

dU = AoUds+dWm(30)
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Figure 6: The scaling exponents of the variogram are shown asa function of time, for an
initial surface with a slope of 10 degrees, on a log-log plot.The temporal evolution shows
four different exponents (slopes), along with their regression coefficients, and a statistically
stationary state (with slope zero) is emerging, furthest tothe right.

where the noise

Wm =
∞

∑
k=0

ck

sαk
Bk

sek(x)

is colored both in space (thecks) and time (thes−αks) and some (infinitely many) of theαk are

zero. TheBk
t are independent Brownian motions and we have ignored the deterministic part of

the operatorA(s),

A(s)−Ao =





h
5
3
o

|∇Ho|1/2
(h

5
3
o |∇Ho|5/2 1

2cs
)∇u



 .

If η is small this part is going to be very small compared to 1/η and can be added by regular

perturbation theory. The same proof as that of Theorem 3.1 gives the following theorem.

Theorem 5.4 Assume that the noise for mature landscapes has the color

W =
∞

∑
k=0, αk 6=0

ck

sαk
Bk

sek(x)+
∞

∑
k=0, αk=0

ckB
k
sek(x),(31)
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then the mature landscapes are described by a stochastic Maturation Process

H(x,yo, t) =
Ho(x,yo)

(1+at)
+

∞

∑
k=0

Ak
(1+at)2

2a

ek(x).

where the

Ak
(1+at)2

2a

= e−λk
(1+at)2

2a Ak
0 +c

1
2
k

Z

(1+at)2

2a

0
e−λk(

(1+at)2

2a −s)s−αkdBk
s,

are independent. For k such thatαk = 0, the Ak
(1+at)2

2a

s are Ornstein-Uhlenbeck processes.

Theorem 5.5 Suppose that

minn,k(
n
2
−αk)+ =

1
10

,

i.e. α2 = 119
20 and that

∑
k=0,αk=0

ck

λ1−χ
k

< ∞,

for χ ≤ 0.75, then the Maturation Process possesses a transient growth state where its width

function, of the water surface H, grows with a temporal roughness exponent6 of 0.10

V((x,y),(z,y), t)≤ t0.10,

and the process eventually gets into a statistically stationary state, where the width function has

a spatial roughness coefficient of0.75

V((x,y),(z,y), t)≤C|z−x|0.75.

Proof: We apply Lemma 3.4 to the Equation (30), that models Equation(29), with the noise

(31). Then the Theorem follows from Theorem 3.1 observing that if V2 scales bys
1
10 then

(s
1
10)1/2 = s

1
20 = (c(t0+ t)

1
10) ≈Ct0.10 for t0 small. This means thatV scales ast0.10. QED

6The notation(x,y),(z,y) indicates that the lag variablez−x is in the direction of thex axis.
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Theorem 5.6 The Maturation Process projects, as t becomes large, onto a subspace, H′ =

{x′ = ∑xkek|αk = 0}, of the phase space L2([0,L]), where there exists an invariant measure.

Proof: This is a direct consequence of Theorem 3.2. QED

Corollary 5.3 The Maturation Process is an SOC process.

Proof: By Corollary 3.2 the invariant measure is a weighted Gaussian. Thus the process

satisfies Conditions 1-5 of Definition 3.1. QED

Remark 5.1 The verification of the fact that the Maturation Process has complex transients is

so far numerical. There are two exponents in Equation (29), 4−3 9
10 = 0.1 and 2−13

5 = 0.4. In

the roughening of the surface, the latter exponent is dominated by the first (which is smaller) and

does not show up. Numerically, two smaller coefficients dominate later during the transients, see

Figure 1 and Figures 5 and 6. Thus numerically the MaturationProcess satisfies Definition 3.2

and this is presumably due to the small terms we omitted, thatgive corrections witht exponents

smaller than 0.1.

Numerically there is a trade off between the length of the computations and the instabilities

that set in with larger slope. In Figure 1 we strike a balance with slope 8.5 degrees and get an

initial coefficient of 0.127 that persists. This is in rough agreement with the theory. In Figure 5,

with a slope of 6.5 degrees, we are not quit far enough into the maturation phase although the

computing time is already extremely long and get a slope of 0.066. In Figure 6 the slope of 10

degrees is rather unstable and we get the slope 0.189.

Remark 5.2 The upper-cutoff for the spatial scaling of the landsurfaces is not the system sizeL

but the half-width of the valleysℓ. Hack’s law implies that for young channelizing landsurfaces,

10% eroded,

0.1cK ∼ ℓ1/2, ℓ ∼ 0.01(cK)2
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wherecK is the height of the mountain range (K is the width in they direction andc the slope),

whereas

0.5cK ∼ ℓ3/4, ℓ ∼ 0.40(cK)4/3

for a mature landsurface, 50% eroded. This means that maturevalleys typically (unlesscK is

large) are wider than young ones and the numberN of valleys is,

N ∼ L
0.02(cK)2 ,

for young surfaces,L being the length (in thex direction) of the mountain range, whereas

N ∼ L

0.80(cK)4/3
,

for the mature landsurfaces. This says that mature surfacestypically (unlesscK is large) have

fewer valleys than the young surfaces.

Discussion:We showed that the three processes Channelization, Adolescence and Maturation

are driven by large noise terms, white for the first and colored both in space and time for the

latter two processes. These noise terms are created by shocks, bores and hydraulic jumps in the

second case and turbulent flow and knick-points in the secondcase, see [78] and [9]. In addition

the noise in the Maturation case is colored in time by the factthat the separable surfaces have

a distinct polynomial decay in time. This analysis allows usto associate these three processes

with solution of one-dimensional linear SPDEs driven by thethree different types of noise

above.

It would be more desirable to solve the nonlinear PDEs directly and read of all the above

information. This may be doable in the case of the Channelization Process where channelization

is working on the whole two-dimensional surface. Numerically, the bias of the initial surface is
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removed by considering∇H that scales over the whole surface. But this is more complicated

in the adolescence and maturation cases where the Adolescence and Maturation Processes are

working on the slopes of the separable mountains but the Channelization Process still works

on the bottom of the valleys. In fact for the mature landscapethe scaling properties of the

river basin, such as Hack’s law, may be understood by puttingtwo of those processes together;

see [10]. It may be that one-dimensional theory analogous tothe numerical results in [78] is

the ultimate result for the Adolescence and Maturation Processes. In any case it remains to

show that the full transport limited landsurface evolutionis a Markovian Stochastic Process

determined by the solutions of the full nonlinear PDEs, entraining large noise; and that these

solutions reduce to the three processes above, close to the initial channelizing surfaceH0(x,y, t),

the convex surfacesH1(x,y, t) and separable surfacesH2 = Ho(x,y)T(t) respectively. This is

what the numerical and analytical results indicate.

6 Applications and Limitations of the Theory

The theory presented here captures well the evolution of landsurfaces for transport-limited sit-

uations, such as one would typically find in desert environments. The scaling exponents are in

good agreement with the numerical simulations [10] both forthe channelization process, that

channelizes the initial surface, the adolescence process that evolves it from a convex to a con-

cave surface, and the maturation process that does the ultimate sculpting of the mature surface.

The agreement is good for the scaling exponents in the stationary states; see [10], and reason-

ably good during the initial transients of the maturation phase, as shown in Figures 5, 1 and 67.

In these figures the scaling exponent of the initial transient into the maturation phaseβ2 ranges

from 0.066 for slope 6.5, 0.127 for slope 8.5, to 0.189 for slope 10. The time-scale for these

transients is geological time and they take a very long time to compute and are very sensitive to

7These computations were done by Kirsten Meeker using an analysis program developed by Russell Schwab.
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the value of the slope. However, the average is reasonably close to the theoretical value of 0.1

for β2 in Theorem 5.5.

The picture is obviously more complicated for real landsurfaces. Erosion takes place on

a surface that may already have a complicated form and since the transients take place on a

geological time-scale it is not clear how the temporal scaling exponents can be measured. The

spatial exponents can on the other hand be measured from DEM (digital elevation model) data

and in [10] the numerically computed exponents were compared to exponents from a DEM [77],

with satellite data from Ethiopia, Somalia and Saudi-Arabia. The exponents measured in this

DEM fall in the range spanned by the spatial exponents of the channelization, the adolescence

and the maturation phases.

The magnification of the noise by the nonlinearities (the initial surface is seeded by tiny ran-

dom perturbations) is understood, see [10], [78] and [79]. The reason is that both the water and

sediment flow down the gradient of the water surface and the magnification can be understood

as shock formation in one dimension. This was pointed out in [10], and worked out in [78] ,

[79]. The details, presented in [78] , confirm the predictionfor the mechanism of the formation

of transport-limited surfaces in [71]. The shocks that carve out the concave mature slopes are

traveling knick-points. Thus the theory is completed by inserting the bores and hydraulic jumps

and the traveling knick-points into the noise in the adolescence phase. In the maturation phase

the color of the noise stems form turbulent water flow, see [9], including flow over these same

knick points (rapids) as the surfaces mature. In addition tothese results one would like to prove

the existence of an invariant measure for the full nonlinearPDEs (12) and 13) with these noise

inputs. For now, however, this is beyond our mathematical reach.
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6.1 The SOC Theory

The theory presented is essentially the mathematical version of the theory of Self-organized-

critical systems in the physics literature. The systems have two phases a transient and a sta-

tionary phase characterized by the scaling of the variogram. The idea of an SOC attractor is

replaced by an infinite-dimensional subspace that attractsthe dynamics. On this subspace there

exists an invariant measure that contains all the information about the stationary state. The sys-

tem is seen to temporarily self-organize during the transients in a rather trivial way. Either it

approaches the stationary state in the subspace where the stationary state lives or the motion is

in the orthogonal complement of this subspace and is eventually projected out. However, the

structure or scaling of the stationary state is gradually formed during the transients. It is explic-

itly expressed in how the different directions are weighted(colored) in the invariant measure.

This is how the stationary state isself-organizedduring the transients.

The mathematical model clarifies the role of instabilities and nonlinearities. The instabil-

ities make small perturbation grow and these dynamics are then colored by the nonlinearities.

Whether and how this coloring takes place plays an importantrole in the structure of the station-

ary state.8 The color produces long range spatial correlations in the stationary phase and long

range temporal correlations in the transient phase. Thus itis clear by examining the conditions

in Example 3.1 and 3.4, that any temporal exponents 0< β ≤ 1/4 is possible in one dimension

and any spatial exponent 1/2≤ χ < 1. The long range correlations are given by 0< β < 1/4

and 1/2 < χ < 1 respectively. The Edward-Wilkinson process ( Channelization and Brownian

motion ) sits at the boundary of these intervals, withβ = 1/4 andχ = 1/2. The Adolescence

Process is long-rangeβ = 1/3, χ = 2/3 and the Maturation Process more so withχ = 3/4.

The transport-limited erosion model gives us three processes. One, the channelization where

the white noise in the environment is magnified but not colored, resulting in channelization that

8 One might therefore be tempted to interpret SOC to mean ”systems of color”.
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is an Edward-Wilkinson process driven by white noise. The other two processes are driven by

highly colored noise because of the non-uniform distribution of water over the adolescent and

mature surface and the coloring of the system by bores and hydraulic shocks and knick-points

in the adolescent phase. The noise on the mature surfaces is created by turbulent water flow over

knick point and these concave mature surfaces. The Adolescent and Mature Processes are SOC

processes with long range correlations. In addition the Maturation Process possesses complex

transients that scale with several temporal exponents.

The above theory is not restricted to linear equations, linearizing about known profiles as in

the landsurface case, the modification for nonlinear SPDEs is straightforward, see [51]. Suppose

we start with a nonlinear SPDEs,

dU = (AU +F(U))dt+BdW,(32)

whereF(U) is a mildly nonlinear functions, for example Lipschitz inU , andBdWnoise similar

to the examples above. We assume thatB is a linear operator on the Hilbert spaceH where

U lives, andA generates a strongly continuous semi-group onH. Then there exists a solution

operatorS(t) of the deterministic nonlinear equation and given some conditions of S(t) we can

prove the existence of an invariant measure, see [51], so theabove results apply to the nonlinear

equation. Thus the SOC theory exists and is similar for nonlinear equations with mild nonlin-

earities. (Unfortunately, the nonlinearities in the landsurface equations (12) and (13) are not

mild.) However, we expect more complicated SOC systems to exist. The stationary states that

we get are not complex, see Definitions 3.1 and 3.3. The measures on the infinite dimensional

spaces that we are getting are all (colored) Gaussian and arecompletely determined by their

mean and variance (the variogram). There must be many spatially complex SOC systems with

more complicated invariant measures, or in other words withrainbow-colored stationary states,

so that the higher moments exhibit different spatial scalings.
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6.2 More General Landsurfaces

In this paper we use the one-dimensional analysis of the water flow over evolving landsurfaces

in [78] and [9], based on [26], [50], [66] and [9], to find the coloring of the nonlinear sediment

flow, linearized about three stages of evolving landsurfaces. These are the channelizing surface,

the adolescent surface and the mature surface. We concludedthat the color of the water deter-

mines the color of the surfaces. This was done for one particular model of water and sediment

flow describing a transport limited situation found in desert environments. For this model we

can completely describe the ranges, see [22, 18, 19, 20] in Hack’s law, see [10] and [9].

The detachment-limited case must be included to get a more complete stochastic theory of

landsurface evolution. Here one waits for the rock to weather before the sediment is carried

away. It is probable that the chemical composition of the rock will play a role in the statistical

characterization of the system and some results indicate that this is the case at least in the

characterization of the temporal evolution. Vegetation cover and soil must also be taken into

account, tectonic uplift and diffusion and at high altitudes and in cold climate, the action of

glaciers. It is probable that the inclusion of these phenomena will lead to stationary states

characterized by more a complex invariant measure than those above, thus producing a more

complete stochastic theory of complex SOC systems, with complex stationary states. Indeed

studies of DEMs show that topography exhibits fractal; see Klinkenberg and Goodchild [40],

and multi-fractal; see Lavallée, Lovejoy and Schertzer [43], structure.

7 Conclusions

The stochastic theory of transport-limited landsurfaces identifies three processes that shape

eroding surfaces consisting of loose sediment. The first process called the Channelization Pro-

cess is an infinite-dimensional Brownian motion driven by noise that is white both in time and
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in its spatial distribution. This process consists of the transient of a random walk biased in the

downslope direction. It then saturates in a stationary state characterized by the spatial scaling of

Brownian motion. The process is completely characterized by its mean and variance that allow

us to compute the variogram of topography. This process channelizes the originally smooth

surface and lays down the basic network of streams and rivers. It possess an invariant measure

living on the whole of infinite dimensional phase space and isnot a SOC system.

The second process is called the Adolescence Process and characterizes the evolution of

young surfaces from a convex to a concave shape. This processis driven by colored noise

created by shocks, bores and hydraulic jumps, in the water flow and knick points in the sediment

flow. The noise is quenched by absence of water a various locations on the surface and pinned

by the vanishing of the slope of the water surface. The Adolescence Process is characterized by

its mean and variance. It has a stationary state with a spatial roughness coefficientχ = 0.66. It

also possesses a colored invariant measure characterizingthe stationary state. This makes the

Adolescence Process an SOC process.

The third process called the Maturation Process is driven byhighly colored noise. It is also

characterized by its mean and variance and the variogram scales initially with several charac-

teristic temporal exponents. Eventually it reaches a steady state where the spatial scaling has a

large exponent 0.75, indicating a long range correlation. The Maturation Process possesses an

invariant measure living on an infinite-dimensional subspace of the original phase space. This

measure completely characterizes the stationary state. These properties make the Maturation

Process a SOC process with complex temporal transients.

Together these two processes produce the observable properties of transport-limited sur-

faces, such as Horton’s relations and Hack’s law, see [10], they possess the numerically ob-

served scaling laws [10] and agree with values obtained formDEMs [77].

SOC systems in Definition 3.1 capture the basic properties ofself-organized-critical system.
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The idea of temporal self-organization during the transients is manifested in the magnification

of the initially white noise, during a very short initial period of exponential growth and then

saturation and coloring by nonlinearities. This is the defining property of these systems. Thus

the self-organization is expressed in the spatial structure of the stationary state that is formed

by magnification and coloring of small white noise during thetransients. The motion is simply

projected onto an infinite-dimensional subspace during thetransients and the invariant mea-

sure living on this subspace determines all the properties of the stationary state. The invariant

measure seems the capture the idea of an SOC ”attractor” whereas the real attractor of at least

the transport-limited landsurfaces is trivial (a flat plateau). Thus SOC systems are defined as

systems that color themselves using the white noise in the environment as a source, can show

multi-fractal transients and then project onto an infinite-dimensional subspace where they pos-

sess an invariant measure completely determining their ”critical” stationary state. It is likely that

more complex landsurfaces will in addition be shown to have stationary states that themselves

are multi-fractal.
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